
A Video Game Description Language
for Model-based or Interactive Learning

Tom Schaul
Courant Institute of Mathematical Sciences

New York University, 715 Broadway,
10003, New York

schaul@cims.nyu.edu

Abstract—We propose a powerful new tool for conducting
research on computational intelligence and games. ‘PyVGDL’ is
a simple, high-level description language for 2D video games, and
the accompanying software library permits parsing and instantly
playing those games. The streamlined design of the language is
based on defining locations and dynamics for simple building
blocks, and the interaction effects when such objects collide, all
of which are provided in a rich ontology. It can be used to quickly
design games, without needing to deal with control structures, and
the concise language is also accessible to generative approaches.
We show how the dynamics of many classical games can be
generated from a few lines of PyVGDL.

The main objective of these generated games is to serve
as diverse benchmark problems for learning and planning al-
gorithms; so we provide a collection of interfaces for different
types of learning agents, with visual or abstract observations,
from a global or first-person viewpoint. To demonstrate the
library’s usefulness in a broad range of learning scenarios, we
show how to learn competent behaviors when a model of the
game dynamics is available or when it is not, when full state
information is given to the agent or just subjective observations,
when learning is interactive or in batch-mode, and for a number
of different learning algorithms, including reinforcement learning
and evolutionary search.

I. MOTIVATION

During a session at a recent workshop in Schloß Dagstuhl,
it was proposed to develop a video game description language
(VGDL) in order to facilitate the generation (guided or auto-
matic) of very large and diverse portfolios of games, which
are in turn suitable for evaluating architectures and algorithms
that purport to be general-purpose; the complete deliberations
are published in a report [1].

Motivated by those discussions, this paper is following up
and proposing a concrete instantiation of a VGDL, formally
defined, and an accompanying implementation in Python, in-
cluding many useful tools for interfacing with diverse learning
paradigms, and which satisfies most of the envisioned criteria.
For completeness, we reiterate the main motivations for a high-
level VGDL from this report, and highlighting the desired
features of such a language.

Working backward from the long-term goal of using games
to foster artificial general intelligence [2], a recent proposal
has argued for extending the framework of general game
playing (GGP) to video games [3], and to establish an AI
competition where agents must demonstrate their proficiency

wwwwwwwwwwwww
wA w w
w w w
w w w +ww
www w1 wwwww
w w G w
w 1 ww
w 1 ww
wwwwwwwwwwwww

Fig. 1. Textual level description for a Legend of Zelda-like game (left), and
its rendering (right). Here the avatar of Link ‘A’ starts in the top left, needs
to find a key ‘+’ and exit through to the goal ‘G’ while avoiding or killing
monsters ‘1’. Impenetrable walls are found at the ‘w’ locations.

on a wide range of video games. To make this feasible, the
authors proposed to limit the domain to arcade-style games
in 2D, which form a sufficiently diverse space, given that
they kept a generation of human gamers interested. We thus
propose a video game description language designed for this
purpose, which should eventually permit capturing the majority
of mechanisms found in arcade games.

We reiterate here the desirable features for such a VGDL,
as motivated in more depth in [1]: The language should
be clear, human-readable, and unambiguous. Its vocabulary
should be highly expressive from the beginning, yet still
extensible to novel types of games. Finally, its representation
structure should be easy to parse and facilitate automatically
generated games, in such a way that default settings and sanity
checks enable most random game description to be actually
playable.

Previous work included description languages for logic-
based games [4], [5], board games [6], or text-based adven-
tures [7]. On the other hand, high-level programming/scripting
languages for video games exist (e.g., [8], [9]), but none are
as deliberately abstract. This work also draws inspiration from
the Arcade Learning Environment (ALE) [10], a framework for
games from the classic Atari 2600 console. A related, but less
ambitious precursor to our design was proposed in [11]. For a
broader overview, limitations and many additional references
see [1], [3].

The next section describes our proposed language, in-
cluding the formal syntax. Section III provides an overview
of its implementation, discussing the parser, interpreter and
the multiple interfaces for human and non-human players.

BasicGame
LevelMapping

G > goal
+ > key
A > nokey
1 > monster

SpriteSet
goal > Immovable color=GREEN
key > Immovable color=ORANGE
sword > Flicker limit=5 singleton=True
movable >
avatar > ShootAvatar stype=sword

nokey >
withkey > color=ORANGE

monster > RandomNPC cooldown=4
InteractionSet

movable wall > stepBack
nokey goal > stepBack
goal withkey > killSprite
monster sword > killSprite
avatar monster> killSprite
key avatar > killSprite
nokey key > transformTo stype=withkey

TerminationSet
SpriteCounter stype=goal win=True
SpriteCounter stype=avatar win=False

Fig. 2. Game description for a Legend of Zelda-like game. Words in violet
are (arbitrary) user-defined identifiers for different sprite types (used elsewhere
using the keywork parameter stype), the texts in blue is referring to elements
from ontology. Note the hierarchy of class definitions in the ‘SpriteSet’ block,
the on-the-fly specialization of ontology elements with the ‘keyword=value’
format.

Section IV demonstrates the simplicity and diversity through
a few example games that can be defined very concisely.
Finally, in section V we show how such games can be used
to learn behaviors, in three different paradigms: model-based
and fully observable policy iteration, model-free and partially-
observable reinforcement learning, and direct evolution of bot
controllers. Before concluding, we then outline some future
directions of development.

II. THE PYVGDL LANGUAGE

The canonical video game description language is imple-
mented in Python, and builds directly on the widely used
pygame package for game development [9] (but is much
higher level); henceforth we refer to it by “PyVGDL”. The
complete source code, including many example games, is
available at:

https://github.com/schaul/py-vgdl.

Our design for the structure of the description language
(as discussed in [1]) is to restrict ourselves to a 2-dimensional
(rectangular) space, in which all game-relevant objects are
located. Essentially, objects can move, interact with other
objects, disappear, or spawn new objects, subject to global or
object-specific rules and player actions.

A game is defined by two separate components, the level
description, which essentially describes the positions of all
objects and the layout of the game in 2D (i.e., the initial

conditions), and the game description proper, which describes
the dynamics and potential interactions of all the objects in
the game.

The level description is simply a text string/file with a
number of equal-length lines, where each character maps to
(read: instantiates) one or more objects at the corresponding
location of the rectangular grid. See Figure 1 for an example
level description.

The game description is composed of four blocks of
instructions. Figure 2 provides an example of a full game
description, based on the game Legend of Zelda, and we will
refer to it to illustrate the different concepts below.

• The LevelMapping describes how to translate the
characters in the level description into (one or more)
objects, to generate the initial game state. For example,
each ‘1’ spawns an object of the ‘monster’ class.

• The SpriteSet defines the classes of objects used,
all of which are defined in the ontology, and derive
from an abstract VGDLSprite class. Object classes
are organized in a tree (using nested indentations),
where a child class will inherit the properties of its
ancestors. For example, there are two subclasses of
avatars, one where Link possesses the key and one
where he does not. Furthermore, all class definitions
can be augmented by keyword options. For example,
the ‘key’ and ‘goal’ classes differ only by their color
and how they interact.

• The InteractionSet defines the potential events
that happen when two objects collide. Each such
interaction maps two object classes to an event method
(defined in the ontology), possibly augmented by
keyword options. For example, swords kill monsters,
monsters kill the avatar (both subclasses), nobody is
allowed to pass through walls, and when Link finds a
‘key’ object, the avatar class is transformed.

• The TerminationSet defines different ways by
which the game can end, each line is a termination
criterion, different criteria are available through the
ontology and can be further specialized with keyword
options. Here, it is sufficient to capture the goal (bring
the sprite counter of the ‘goal’ class to zero) to win.

What permits the descriptions to be so concise is an under-
lying ontology which defines many high-level building blocks
for games, including the types of physics used (continuous,
or grid based, friction, gravity, etc.), movement dynamics of
objects (straight or random motion, player-control, etc.) and in-
teraction effects upon object collisions (bouncing, destruction,
spawning, transformation, etc.).

Further, many components are easily recombinable
through subclasses and keyword options. For example,
an object class, when defined with the option
physicstype=GravityPhysics dramatically alters
its behavior (now suddenly being subjected to gravity). See
Figure 8, which gives the game description of Lunar Lander.
Also, as all projectiles are object classes themselves, their
interactions with other objects or level structures can be
altered in very simple ways. Recombinability goes as far as

permitting level descriptions that were intended for one type
of game to be used in a very different context, akin to what
is done in the game “ROM Check Fail” [12].

Finally, it is relatively straightforward to extend the pro-
vided ontology of behaviors, effects and object classes. In fact,
most of the many predefined classes and effects are coded
in just a handful lines of Python code. In other words, this
permits easy prototyping of novel game dynamics, which can
immediately be recombined with existing ones.

A. Features

To whet the reader’s appetite, we list some of the elements
available in the current ontology:

• Spawning, cloning and elimination of objects, as well
as transformation from one type into another.

• Self-propelled movements of objects, taking consistent
or random actions, or erratically changing direction.

• Non-deterministic chasing and fleeing behaviors.

• Projectile objects, spawned at the location of arbitrary
objects, on fixed or random schedules, based on user
actions, or triggered by collision effects.

• Stickiness, i.e., one object pulling another one.

• Bouncing and wrap-around behavior, from other ob-
jects or the edge of the screen.

• Teleportation of objects, to fixed or random end-
locations.

• Continuous physics effects like inertia, friction and
gravity.

• Stochastic effects like slipping in the current direction,
or wind gusts.

B. Syntax

The PyVGDL syntax is based on a simplified version of
the syntax of the Python language itself, retaining white-
space based indentation, comments and keyword arguments.
However, game descriptions must conform to a strict tree-
like structure which resembles more closely an XML schema.
Figure 4 gives the formal description of the syntax’ context-
free grammar in the notation of Extended Backus-Naur Form.

The parser implemented for the syntax handles both level
descriptions and game descriptions, and given one of each
(provided as text strings), it generates the full code for the
game (in Python). The generated game object includes the
dynamics, on-screen visualization, and interactions with the
(human or artificial) player. Parsing and instantiation takes less
than a second – making all generated games instantly playable.

III. INTERPRETER AND INTERFACES

As detailed above, the PyVGDL library defines a game
description language, and an initial ontology of behaviors,
but it also encompasses a wide range of additional tools that
are designed to make it directly useful to the computational
intelligence researcher.

Fig. 3. For the same game state, we show the rendered game from
the objective (birds-eye) perspective, left, and the subjective (first-person)
perspective, right. Note how in the subjective view, impenetrable objects like
walls are shown as blocks, while other objects (the green one in the corner)
are drawn on the level floor.

There are a number of distinct dimensions in which learn-
ing frameworks may vary. Below, we list which of these
options are currently available, and how they are implemented:

• Player type: we currently support direct interactive
play with a human player (through the keyboard),
and an interface to artificial players (bots), which
may take one action per cycle. The interface for the
bots is conforming to the “Agent/Environment/Task”
model of the PyBrain machine learning library [13],
allowing an arbitrary controller to interact with the
game chiefly through calls to the getSensors and
performAction methods. This could easily be
extended to richer interfaces as well.

• Number of players: The library currently supports a
single player, which is the dominant means of mea-
suring absolute performance. Nevertheless, we plan
to extend the interface to multiple agents (mixed
human/non-human control), and connect it to a tour-
nament environment for bot play.

• Perspective: By default, a game is played from the
birds-eye perspective (objective), with the full rect-
angular 2D space visible at once. As an alternative,
we also provide an option to play from a first-person
viewpoint (subjective), where the game becomes ef-
fectively partially observable (not implemented for all
types of physical dynamics yet). For an illustration,
see Figure 3.

• Observation: Orthogonally to the perspective of obser-
vation, we also provide to different types of encoding
for observations provided to the player: they are avail-
able rendered visually as a medium-resolution image,
or in ‘clean’ form, representing only the functionally
different components. The latter is making learning
easier, as the representation is capturing all the essen-
tial information without redundancy, but eventually,
strong general-purpose agents should be capable of
dealing with the visual observation stream directly,
like humans do.

• Model: Some learning and planning approaches rely
on the availability of a complete forward-model of
the game dynamics, in order to simulate (roll-out)
action sequences before taking a decision. This is
always available, as the game state can be read, stored
and reset after the roll-out. To further accommodate
model-based approaches, we provide a conversion
tool, which transforms the game dynamics into the
full transition matrices of a Markov Decision Process

〈game〉 ::= game class 〈eol〉 INDENT 〈level-block〉 〈sprite-block〉 〈interaction-block〉 〈termination-block〉

〈level-block〉 ::= LevelMapping 〈eol〉 INDENT { 〈char-map〉 NEWLINE } DEDENT

〈sprite-block〉 ::= SpriteSet 〈eol〉 INDENT { 〈sprite-def 〉 NEWLINE } DEDENT

〈interaction-block〉 ::= InteractionSet 〈eol〉 INDENT { 〈interaction-def 〉 〈eol〉 } DEDENT

〈termination-block〉 ::= TerminationSet 〈eol〉 INDENT { 〈termination-def 〉 〈eol〉 } DEDENT

〈char-map〉 ::= CHAR ‘ > ’ 〈sprite-type〉 { ‘ ’ 〈sprite-type〉 }

〈sprite-def 〉 ::= 〈sprite-simple〉 [〈eol〉 INDENT { 〈sprite-def 〉 〈eol〉 } DEDENT]

〈sprite-simple〉 ::= 〈sprite-type〉 ‘ > ’ [sprite class] { ‘ ’ 〈option〉 }

〈interaction-def 〉 ::= 〈sprite-type〉 〈sprite-type〉 ‘ > ’ interaction method { ‘ ’ 〈option〉 }

〈termination-def 〉 ::= termination class { ‘ ’ 〈option〉 }

〈eol〉 ::= { ‘ ’ } [‘#’ { CHAR | ‘ ’ }] NEWLINE

〈option〉 ::= IDENTIFIER ‘=’ (〈sprite-type〉 | evaluable)

〈sprite-type〉 ::= IDENTIFIER | ‘avatar’ | ‘wall’ | ‘EOS’

Fig. 4. Grammar of the video game description language PyVGDL, in Extended Backus-Naur Form (square brackets indicate optional terms, curly brackets
indicate repetition). The terms in bold denote terms that are defined in the ontology that accompanies the grammar. Furthermore, “evaluable” could be any
valid Python expression that can be evaluated within the scope of the ontology. Note that implicitly, only sprite types that are defined in the level-block (or are
defined by default) can be used in the other blocks.

(MDP). Given that those matrices scale quadratically
with the number of distinct states, this is only feasible
for games that do not suffer from a combinatorial
explosion of reachable states.

Other useful tools include the possibility to enable/disable
the visualization (resulting in dramatic speed gains), to record
the actions taken during a game and replay them, and to create
animated GIF videos from such replayed action sequences.

Our objectives are for PyVGDL to remain lightweight, fast
and agile, so very little emphasis has been on sophisticated
rendering of the objects, creatures and environment, nor are
there any flashy animated effects (most objects are just solid
colored squares). This aspect is extensible however, because
care was taken to keep the graphical aspects and the game
dynamics separate, so adding a new (or interfacing to an
existing), more advanced rendering engine should be easy.

IV. EXAMPLE GAMES AND BENCHMARKS

To demonstrate the wide spectrum of games that can be
encoded in PyVGDL, we implemented simplified versions of
a number of classical, well-known games, and some classical
reinforcement learning (RL) benchmarks. They include:

• Space invaders, with shooting, complex movement
sequences, timed spawning points.

• Frogger, with sticky/attachable objects and wrap-
around movement.

• Lunar lander, with delicate continuous gravity and
inertial effects.

• Physical Traveling Salesman Problem (PTSP [14]),
with continuous control of salesman spaceship that can
bounce off walls.

• Pac-Man, showing off simple ghost chasing behaviors
and transformative power pills.

• Sokoban, where the agent can push blocks around in
a maze, but not pull them.

• Dig-Dug, with diggable ground, and sacks of gold that
fall through the tunnel system when touched.

• Portal, exploring different types of teleportation mech-
anisms.

• Legends of Zelda, with a unique directional attack,
keys, and locked doors; see Figures 1 and 2.

• Super Mario, including moving elevator platforms,
Goombas and Koopa Paratroopas.

• Windy gridworld [15], demonstrating stochastic envi-
ronmental features.

• 89-state maze [16], with stochastic actions and obser-
vations; see Figure 5.

• T-maze, a classical RL task for generalizing state
memorization across long time-scales [17].

The first three of these were the motivating examples in [1],
and a few of them are depicted in Figure 9. All of them ship
with the library, and serve the double purpose of providing a
potential game developer with a tool to learn the language by
example. The game descriptions are all concise and simple, the
descriptions in Figure 2 and 8 are typical in that respect, and
indeed none of the games mentioned require game descriptions
of more than 40 lines.

V. DEMONSTRATIONS

Producing agents that exhibit competent behavior in a game
environment is a very general problem, and not surprisingly,

Fig. 5. Value function of the optimal policy, as computed by PI on a
maze task. Darker red corresponds to higher values, black denotes inaccessible
locations. The unique goal is in the upper left dead end. Left: the agent can
move into any of the four cardinal directions, leading to 23 unique states.
Right: the agent can move forward or rotate by an angle of 90, 180 or 270
degrees, leading to 89 distinct states, consisting of cell location plus agent
orientation (marked by the black pointers).

drastically different methodologies exist, including model-
based planning, Monte-Carlo tree search [18], various flavors
of RL [15], [19], neuro-evolution [20], etc. PyVGDL aims to
be agnostic with respect to how its games are used in that
context.

In this section we will give examples of how some of these
types of learning can use PyVGDL to define and interface
to game benchmarks. In our case, all the algorithms that do
the actual learning1 are available in the PyBrain open source
machine learning library [13].

A. Optimal policies with model and full state information

As an initial demonstration, we place a minimal burden on
an agent’s learning capabilities, namely providing it with per-
fect state information and a full model of the game dynamics:
for each state and chosen action, it knows the true probabilities
P of reaching the subsequent state, and the accompanying
reward. The PyVGDL library can convert any sufficiently
simple game into a P ∈ R|A| · R|S| · R|S| tensor, where A
and S denote the discrete action and state spaces.

For a given policy, it is therefore possible to compute the
expected (discounted) future reward for each state in closed
form, and we use policy iteration (PI [15]) to iterate between
this evaluation step and the policy defined by greedily value-
maximizing actions, until no further improvement is possible.
Figure 5 shows the value function of the optimal agent, after
convergence, for two maze variants using the same level map.

B. Least-squares approximation with partial observability

Often, state information is not available directly to the
agent, instead it has access only to a set of observations or
features, in each state. Among the algorithms that learn from
sequences of actions and observations, without requiring a
model or perfect information, we chose Least-Squares Policy
Iteration (LSPI [21]), a batch method that minimizes the
errors of the value function in a least-squares sense. LSPI
accumulates observation-based transition data from which the
approximate value function can then be found in closed form.

1All the scripts used to produce the results and figures in this paper are
distributed with the PyVGDL code, as use-case examples, and to guarantee
reproducibility.

Fig. 6. Windy gridworld. Left: the game rendered for a human player, with
the agent (in white with a green boundary) close to the goal (in green) already.
Partial observability means that the agent will only see the colors in the four
positions immediately adjacent to it, no further. Right: the value function of
the agent policy learned by LSPI: darker red corresponds to better values.

The outer loop then iterates over increasingly better greedy
policies, just like PI.

To add an additional difficulty, we test LSPI on a game
benchmark with stochastic transitions, the classic windy grid-
world [15]. Each state provides as observations the colors on
the current and the four adjacent grid positions, where colors
can take five different values (one each if the position has
a wall, goal, weak wind, strong wind, or is empty), which
makes many states ambiguous. For our experiment, we gather
sufficient data that every action is attempted at least 20 times
in each state. The resulting (approximate) value function is
shown in Figure 6.

C. Training a neural network controller

An alternative to value-function based methods, particu-
larly useful if the state-space is large, is to learn the policy of
an agent directly, by encoding a mapping from observations
to actions. A general-purpose tool for such an encoding are
neural networks (NN), which can in principle approximate any
continuous function, but may have many trainable parameters
(‘weights’). In this case, we use the interactive interface of
PyVGDL, connecting the agent/policy directly to the game
environment in which it can take actions for a while, after
which it is evaluated based on performance achieved (‘fitness’).

We employ Separable Natural Evolution Strategies
(SNES [22]), an evolutionary direct search algorithm, which
is based on updating search distributions according to the
estimated natural gradient. SNES is a state-of-the-art algorithm
for non-Markov continuous control problems like the classic
double-pole balancing task.2 In addition, it’s computational
complexity scales linearly with the number of parameters, per-
mitting the training of large networks. For the implementation,
we use again the tools provided in the PyBrain library, which
includes implementations of SNES, and of numerous neural
network variants.

For this experiment, SNES was run for 12 generations (with
its default population size of 17), tuning the 94 parameters
of a 3-layer feed-forward network with softmax output and
tanh transitions functions on its 6 hidden units. The fitness of
individuals was averaged over three independent roll-outs. The
results are depicted on Figure 7, which shows that a reactive
observation-based navigation policy is easily learned.

2Also, its acronym suits the theme of the paper.

Fig. 7. Policies of evolved neural controllers using SNES, after a certain number of generations. Each colored line represents the trace of one roll-out, given the
same initial position and following the currently best-found policy. The goal, in the middle of the maze, is marked in dark red. Left: after 4 generations, the best
policy is a very exploratory one. Center: after 8 generations, the agent does sometimes reach its goal, and after 12 generations (right), it does so consistently
and without detours. Note that the optimal policy here is reactive, that is does not require any form of memory of past observations or actions to succeed.

BasicGame
LevelMapping

G > pad
SpriteSet

pad > Passive color=BLUE
avatar > InertialAvatar physicstype=GravityPhysics

InteractionSet
avatar wall > killSprite
avatar EOS > killSprite
pad avatar > killIfSlow

TerminationSet
SpriteCounter stype=pad limit=4 win=True
SpriteCounter stype=avatar win=False

Fig. 8. Game description for Lunar Lander, a continuous physics-based game. The game is over if the rocket can land one of five landing pads with low
velocity (the pad is destroyed by such an interaction through the ‘killIfSlow’ method), after which the count of remaining pads goes to four, which triggers the
winning condition. On the other hand, any collision with a wall or the end-of-screen (‘EOS’) ends the game in a loss.

VI. FUTURE WORK

The development work of PyVGDL is far from completed,
and we propose extending it in a number of directions. In terms
of game dynamics, a key lacking component are resource-
type objects (health, heat, coins) which could be integrated
in numerous ways, possibly borrowing from the Machinations
framework [23]. Another important extension for the near
future is a more complete, fine-grained score system with
intermediate rewards to help RL approaches. Other desirable
features are momentum-preserving object splits, area-of-effect
events, or line-of-sight conditions. Some of these should
arise naturally in the process of implementing more example
games, such as Asteroids or Pong. More generally, we foresee
permitting multi-player games (with mixed human/non-human
controllers), additional visualization and characterization tools
for learned agents, and parallelized execution of forward
models to speed up learning.

VII. CONCLUSIONS

We proposed a powerful new tool for conducting re-
search on computational intelligence and games. The simple,
high-level language allows the design of games by non-
programmers, and its concise descriptions are accessible to
potential generative approaches (not just of game levels, but
of full game dynamics). These games are immediately human-

playable, from a global or first-person viewpoint, and can be
directly interfaced to (learning) agents.

To demonstrate the package’s usefulness in a broad range
of scenarios, we provided a number of simple but diverse
examples of gameplay, and showed how to learn competent
behaviors when a model of the game dynamics is available or
when it is not, when full state information is given to the agent,
or just subjective observations, and for a number of different
learning algorithms.

The library’s availability as an open-source package, under
the non-restrictive BSD license, is an invitation for others
to use and build upon it, for example to diversify RL com-
petitions [24], [25], more generally to benchmark learning
algorithms in the games domain, or even to use it in teaching.

ACKNOWLEDGMENTS

The author wants to thank the participants of the 2012
Dagstuhl Seminar on Artificial and Computational Intelligence
in Games, in particular, Marc Ebner, John Levine, Simon
Lucas, Tommy Thompson and Julian Togelius for the dis-
cussions that triggered and inspired the development of this
paper; additional helpful input came from Mark Ring, and all
four reviewers. This work was funded in part through AFR
postdoc grant number 2915104, of the National Research Fund
Luxembourg.

Fig. 9. Renderings (bird-eye view) of a few example games; clockwise from the top left: Pac-Man, Physical TSP, Dig-Dug, Super Mario and Lunar Lander.

REFERENCES

[1] M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson, and
J. Togelius, “Towards a video game description language.”
Dagstuhl Follow-up. To appear., Preprint available at
http://www.idsia.ch/∼tom/publications/dagstuhl-vgdl.pdf.

[2] T. Schaul, J. Togelius, and J. Schmidhuber, “Measuring intelligence
through games,” Arxiv preprint arXiv:1109.1314, 2011.

[3] C. B. Congdon, M. Bida, M. Ebner, G. Kendall, J. Levine, S. Lucas,
R. Miikkulainen, T. Schaul, and T. Thompson, “General video game
playing,” Dagstuhl Follow-up. To appear., 2013.

[4] M. Genesereth and N. Love, “General game playing: Overview of the
aaai competition,” AI Magazine, vol. 26, pp. 62–72, 2005.

[5] A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game
engine for modeling videogames,” in Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on. IEEE, 2010, pp. 91–98.

[6] C. Browne, “Evolutionary game design,” IEEE Transactions on Com-
putational Intelligence and AI in Games, pp. 11–21, 2011.

[7] G. Nelson, The Inform Designer’s Manual. Placet Solutions, 2001.

[8] G. Maggiore, A. Spanò, R. Orsini, M. Bugliesi, M. Abbadi, and
E. Steffinlongo, “A formal specification for casanova, a language for
computer games,” in Proceedings of the 4th ACM SIGCHI symposium
on Engineering interactive computing systems. ACM, 2012, pp. 287–
292.

[9] W. McGugan, Beginning Game Development with Python and Pygame:
From Novice to Professional. Apress, 2007.

[10] M. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Arxiv
preprint arXiv:1207.4708, 2012.

[11] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG), 2008.

[12] Farbs, “Rom check fail (game),” http://www.farbs.org/games.html,
2008.

[13] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “PyBrain,” Journal of Machine
Learning Research, vol. 11, p. 743746, 2010.

[14] D. Perez, P. Rohlfshagen, and S. M. Lucas, “The physical travelling
salesman problem: WCCI 2012 competition,” in IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2012, pp. 1–8.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA, 1998.

[16] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in International
Conference on Machine Learning, 1995, pp. 362–370.

[17] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[18] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A

survey of monte carlo tree search methods,” Computational Intelligence
and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1–43, 2012.

[19] J. Togelius, T. Schaul, D. Wierstra, C. Igel, F. Gomez, and J. Schmidhu-
ber, “Ontogenetic and phylogenetic reinforcement learning,” Zeitschrift
Künstliche Intelligenz - Special Issue on Reinforcement Learning, pp.
30–33, 2009.

[20] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Evolving competitive car
controllers for racing games with neuroevolution,” in Proceedings of
the 11th Annual conference on Genetic and evolutionary computation.
ACM, 2009, pp. 1179–1186.

[21] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of
Machine Learning Research, 2003.

[22] T. Schaul, T. Glasmachers, and J. Schmidhuber, “High Dimensions and
Heavy Tails for Natural Evolution Strategies,” in Genetic and Evolu-
tionary Computation Conference (GECCO), Dublin, Ireland, 2011.

[23] J. Dormans, “Machinations: Elemental feedback structures for game
design,” in Proceedings of the GAMEON-NA Conference, 2009, pp.
33–40.

[24] S. Whiteson, B. Tanner, and A. White, “The reinforcement learning
competitions,” AI Magazine, vol. 31, no. 2, pp. 81–94, 2010.

[25] B. Tanner and A. White, “Rl-glue: Language-independent software for
reinforcement-learning experiments,” The Journal of Machine Learning
Research, vol. 10, pp. 2133–2136, 2009.

