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Abstract— We introduce a runtime verification framework
for programmable switches that complements static analysis.
To evaluate our approach, we design and develop P6, a runtime
verification system that automatically detects, localizes, and
patches software bugs in P4 programs. Bugs are reported via
a violation of pre-specified expected behavior that is captured by
P6. P6 is based on machine learning-guided fuzzing that tests
P4 switch non-intrusively, i.e., without modifying the P4 program
for detecting runtime bugs. This enables an automated and real-
time localization and patching of bugs. We used a P6 prototype
to detect and patch existing bugs in various publicly available P4
application programs deployed on two different switch platforms,
namely, behavioral model (bmv2) and Tofino. Our evaluation
shows that P6 significantly outperforms bug detection baselines
while generating fewer packets and patches bugs in large P4
programs, e.g., switch.p4 without triggering any regressions.

Index Terms— Programmable networks, P4, verification.

I. INTRODUCTION

THE introduction of programmable networks is a paradigm
shift in network design, management, and operation.

Network devices on the data plane, e.g., switches, that tradi-
tionally have fixed and vendor-specific network functionality
and rely on proprietary hardware and software, can now be
programmed and customized by network operators. The P4
language [1], [2] was introduced to enable the programmability
and customization of data plane functionalities in network
devices. P4 is an open-source domain-specific language
designed to allow programming of packet forwarding planes,
and is now supported by a number of network vendors.

While programmable networks enable to break the tie
between vendor-specific hardware and proprietary software,
they facilitate an independent evolution of software and
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hardware. With the P4 language, one can define in a P4
program, the instructions for processing the packets, e.g.,
how the received packet should be read, manipulated, and
forwarded by a network device, e.g., a switch. Nevertheless,
with the new capabilities, new challenges in P4 software
verification, i.e., ensuring that the software fully satisfies
all the expected requirements, have been unleashed. The P4
switch behavior depends on the correctness of the P4 programs
running on them. We realize that a bug in a P4 program,
i.e., a small fault such as a missing line of code or a fat
finger error, or a vendor-specific implementation error, can
trigger unexpected and abnormal switch behavior. In the worst
case, it can result in a network outage, or even a security
compromise [3].
Problem Statement: In this paper, we examine and verify the
behavior of P4 switches after the P4 programs are deployed.
We pose the question: “Is it possible to automatically
detect, localize, and patch software bugs in a P4 program
running on P4 switches?”. We believe that being able to
answer this question, even partially, unlocks full potential
of programmable networks, improves their security, and will
hence increase their penetration in operational and mission-
critical networks.

Recently, a panoply of P4 program verification tools [4], [5],
[6], [7], [8], [9] has been proposed. These verification systems,
however, fail to repair the P4 program containing bugs. Most
of them [4], [5], [6], [7] aim to statically verify user-defined
P4 programs which are later, compiled to run on a target
switch. They mostly find bugs that violate the memory safety
properties, e.g., invalid memory access, buffer overflow, etc.
Furthermore, they are prone to false positives and are unable
to verify the runtime behavior on real packets. In addition,
classes of bugs, e.g., checksum-related, ECMP (Equal-Cost
Multi-path) hash calculations-related or platform-dependent
bugs, cannot be detected by static analysis approaches. Since
runtime verification aims to verify the actual behavior against
the expected behavior of a switch by passing specially-crafted
input packets to the switch and observing the behavior, such
verification is complementary to static analysis. Note, the
detection of bugs causing the abnormal runtime behavior is a
complex and challenging task. In particular, the P4 switch does
not throw any runtime exceptions. Furthermore, the detection
of bugs can be a nightmare if there is no output, i.e., packets
are silently dropped instead of being forwarded. Thus, the
runtime verification of the switch behavior is crucial.

A useful approach to verify the runtime behavior is fuzz
testing or fuzzing [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], a well-known dynamic program testing
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technique that generates semi-valid, random inputs which
may trigger abnormal program behavior. However, for fuzzing
to be efficient, intelligence needs to be added to the input
generation, so that the inputs are not rejected by the parser
and it maximizes the chances of triggering bugs. This becomes
crucial especially in networking, where the input space is huge,
e.g., a 32-bit destination IPv4 address field in a packet header
has 232 possibilities. With the 5-tuple flows, the input space
gets even more complex and large. To make fuzzing more
effective, we consider the use of machine learning, to guide the
fuzzing process to generate smart inputs that trigger abnormal
target behavior. Recently, Shukla et al. [20] have shown that
Reinforcement Learning (RL) [21], [22] can be used to train
a verification system. We build upon [20] by adding (a) static
analysis to the fuzzing process to significantly reduce the input
search space, and thus, adding input structure awareness, and
(b) support for platform-dependent bug detection.

Even if a bug in a P4 program is detected, the localization of
code statements in the P4 code that are responsible for the bug,
is non-trivial. The difficulty stems from the fact that practical
P4 programs can be large with a dense conditional structure.
In addition, the same faulty statements in a P4 program may
be executed for both passed as well as failed test cases
and thus, it gets hard to pinpoint the actual faulty line/s of
code. Tarantula [23], [24], [25] is a dynamic program analysis
technique that helps in fault localization by pinpointing the
potential faulty lines of code. To localize the software bugs,
we tailor Tarantula for generic software to P4 programs by
building a localizer called P4Tarantula and integrating it with
the bug detection of machine learning-guided fuzzing. In this
paper, we combine these two approaches to detect and localize
bugs in P4 programs in real-time.
Our P6 System: In P4, the automated program repair [26] is an
uncharted territory and becomes increasingly important as the
software development lifecycle in programmable networks is
short [27] with insufficient testing. In this paper, we show that
due to the structure of P4 programs, it is possible to automate
patching of platform-independent bugs (P4 program-specific
software bugs) in P4 programs, if the patch is available.
To this end, we present P6, P4 with runtime Program
Patching, a novel runtime P4-switch verification system that
(a) detects, (b) localizes, and (c) patches software
bugs in a P4 program. P6 improves existing work on machine
learning-guided fuzzing [20] in P4 by extending it and
augmenting it with: (a) automated localization, and (b) runtime
patching. P6 relies on the combination of static analysis of
the P4 program and Reinforcement Learning (RL) technique
to guide the fuzzing process to verify the P4-switch behavior
at runtime.

In a nutshell, in P6, the first step is to capture the
expected behavior of a P4 switch, which is achieved using
information from three different sources: (i) the control plane
configuration, (ii) queries in (§ III-B1), a query language
which we leverage to describe expected behavior using
conditional statements, and (iii) accepted header layouts, e.g.,
IPv4, IPv6, etc., learned via static analysis of the P4 program.
If the actual runtime behavior to the test packets generated
via machine-learning guided fuzzing differs from the expected

behavior through the violation of the p4q queries, it signals
a bug to P6 which then identifies a patch from a library of
patches. If the patch is available, P6 modifies the original P4
program to fix the bug signaled by the p4q queries. Then,
the patched P4 program is subjected to sanity and regression
testing.

We develop a prototype of P6 and evaluate it by testing it
on eight P416 application programs from switch.p4 [28],
P4 tutorial solutions [29], and NetPaxos codebase [30]
across two P4 switch platforms, namely, behavioral model
version 2 (bmv2) [31] and Tofino [32]. Our results show that
P6 successfully detects, localizes, and patches diverse bugs
in all P416 programs while significantly outperforming bug
detection baselines without introducing any regressions. Part
of this work appeared in [20], [33], and [34].
Contributions: Our main contributions are:
• We introduce a runtime verification framework for

programmable switches that complements previously proposed
static analysis approaches.
• We design, implement, and evaluate P6, the first end-to-

end P4 runtime verification system that detects, localizes, and
patches bugs in P4 programs non-intrusively. (§III)
• We observe that the success of P6 relies on the increased
patchability of P4 program from old (P414) to the new
version (P416). We confirm this by studying the code of P4
applications in the two different P4 versions. (§II)
• We evaluate our P6 prototype on a P4 switch running eight
P416 programs (including switch.p4 with 8, 715 LOC)
from publicly available sources [28], [29], [30] across two
platforms, namely, behavioral model and Tofino. Our results
show that P6 non-intrusively detects both platform-dependent
and platform-independent bugs, and significantly outperforms
state-of-the-art bug detection baselines. (§V)
• We show that in case of platform-independent bugs, P6
can localize bugs and fix the P4 program, when the patch is
available, without causing any regressions or introducing new
bugs in an automated fashion. (§III, §V)
• To ensure reproducibility and facilitate follow-up work,
we release the P6 software and library of ready patches
for all existing bugs in the P4 programs to the research
community [35].

II. P4 VERIFICATION: CHALLENGES & OPPORTUNITIES

In this section, we describe the P4 packet processing
pipeline. Then, we outline the challenges in discovering
bugs in P4 programs or switches, and we motivate the
need for runtime verification. We conclude this section by
characterizing the evolution and structure of P4 programs,
that, to our surprise provides opportunities for automated P4
program patching.

A. Packet Processing Pipeline of P4

P4 [1], [2] is a domain-specific language comprising
of packet-processing abstractions, e.g., headers, parsers,
tables, actions, and controls. The P4 packet processing
pipeline evolved from [36] to its current form P416 [2],
see Figure 1. In P416 packet processing pipeline, there are
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Fig. 1. An example of a platform-independent bug in P416 packet processing pipeline.

Fig. 2. An example of a platform-dependent bug in P416 packet processing pipeline.

six programmable blocks that are platform-independent,
namely, ingress parser, ingress match-action,
ingress deparser, egress parser, egress
match-action, and egress deparser. The
programmable blocks are annotated with a solid line in
Figures 1 and 2.

The ingress parser transforms the packet from bits into
headers according to a parser specification provided by the
programmer. After parsing, an ingress match-action (also
called ingress control function) decides how the packet will be
processed. Then, the packet is queued for egress processing in
the ingress deparser. Upon dequeuing, the packet is processed
by an egress match-action (also called egress control function).
The egress deparser specification dictates how packets are
deparsed from separate headers into a bit representation on
output, and finally, the packet leaves the switch. Note that both
ingress and egress match-actions (control functions) direct the
packet through any number of match-action tables.

In the P416 packet processing pipeline, there are also two
platform-dependent blocks (annotated with dashed lines in
Figures 1 and 2), that rely on proprietary implementations
of the hardware vendors and are non-programmable. These
blocks are the packet replication engine (PRE) and
the buffer queuing engine (BQE).

B. Challenges: Runtime Bugs in P4

Bugs or errors can occur at any stage in the P4 pipeline.
If a bug occurs in any of the programmable blocks, then the
bug is platform-independent and software patching can solve
the problem. If the bug appears in the non-programmable
or platform-dependent blocks, namely, the PRE or BQE,
then the vendor has to be informed to fix the issue as the
implementation is vendor-specific. P4 program verification
systems [4], [5], [6], [7] are able to detect bugs using static
analysis. Unfortunately, static analysis is (i) prone to false
positives, (ii) cannot detect platform-dependent bugs, and
(iii) cannot detect runtime bugs that require to actively send
real packets.

As an example, consider the scenario in Figure 1 (solid line
blocks) that illustrates part of the implementation of Layer-
3 (L3) switch, provided in the P4 tutorial solutions [29].

Here, the parser does not check if the IPv4 header contains
IPv4 options or not, i.e., if the IPv4 ihl field is equal
to 5 or not. When updating the IPv4 checksum of the
packets during egress processing, IPv4 options are not taken
into account, hence for those IPv4 packets with options, the
resulting checksum is wrong causing such packets to be
forwarded and incorrectly dropped at the next hop. This leads
to anomalies in network behavior. Other bugs that fall in this
category are those related to IPv4/6 checksum in the packet
(see Figure 5 later). Such bugs are platform-independent ,
as they only result from programming errors.

Figure 4 illustrates a simple scenario where due to a bug or
fault, the packet reaching a P4 switch has a time-to-live (TTL)
field in the IP header with value as 0. The expected behavior
is that the packet gets dropped, but currently, there is no such
check in the P4 code. Thus, the switch forwards the packet and
decreases the value of the TTL field, causing it to be increased
to 255 incorrectly. This happens due to wraparound caused
by underflow in an 8-bit field. Such an anomaly can be non-
trivial to detect and localize. In addition, it can be responsible
for the abnormal behavior of a P4 switch.

As illustrated in Figure 5, the problem lies in the fact that
the P4 program fails to specify that the IPv4 checksum
inside the packet needs to be verified before forwarding.
An adversary can easily intercept the packets and modify them
(e.g., as a Man-in-the-Middle attack (MitM) ) and does not
even need to recalculate the checksum. Therefore, additional
information can be inserted even into encrypted packets.
When such a malicious or malformed packet arrives at the
P4 switch, it selects the corresponding action based on the
match-action tables and forwards the packet without verifying
the checksum. Such checksum-related bugs may inflict
serious damages to critical servers and can be a nightmare
to debug. We must clarify that P6 signals a bug whenever
the actual behavior differs from the expected behavior. This
may or may not be a vulnerability of security compromise.
In Figure 4, accepting the packets with abnormal TTL, i.e.,
TTL < 2 signals a violation of expected behavior where actual
behavior differs from the specification. Therefore, it is a bug.
For Figure 5, packet with the wrong checksum is accepted
but it should be dropped in the first place. Since the actual

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on February 15,2023 at 08:25:15 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. Evolution of the P4 program structure from P414 to P416 version.

Fig. 4. P4 switch running the P4 program does not check if the time-to-live
(TTL) value in the packet is 0. Blue arrows show the expected, red dashed
arrows show the actual path.

Fig. 5. P4 switch running the P4 program does not check the faulty IPv4
checksum in the packet. Blue arrows show the expected path, red dashed
arrows show the actual path.

behavior differs from expected behavior, it is designated as a
bug by P6. It is noteworthy that in all of these unexpected
behaviors, the malicious payload in the processed packet can
be leveraged to compromise the target system via algorithmic
complexity attacks (ACAs) [39], [40] or via a volumetric DoS
attack.

For a platform-dependent bug, consider the scenario shown
in Figure 2 (dashed line blocks). Here, we assume a P4
program implements at least two match-action tables. Any
table except the last one could be a longest prefix match
(LPM) table, offering unicast, clone and drop actions (ingress
match-action block). The last match-action table implements
an access control list (ACL). So, the packets can either be
dropped or forwarded according to the chosen actions by the
previous tables. In this case, it is possible that conflicting
forwarding decisions are made. Consider packets are matched
by the first table (Table I) and a clone decision is made, later,
those are dropped by the ACL table (Table n). In such a case,
the forwarding behavior depends on the implementation of
the PRE, which is platform-dependent. PRE implementation
for the SimpleSwitch target in the behavioral model (bmv2)
is illustrated in Figure 2. It would drop the original packet,
however, forward the cloned packer copy. Similar bugs can
occur, if instead of the clone action, the resubmit action is

chosen (blue). Another bug can be found when implementing
multicast (green).

The above motivates us to turn our attention to runtime
detection of bugs. Runtime verification is a useful and com-
plementary tool in the P4 verification repertoire that detects
both platform-independent bugs resulting from programming
errors as well as platform-dependent bugs.

C. Opportunities for Patching: P4 Program Structure

In the evolution of P4, there are two recent versions:
P414 [41] and P416 [2]. P416 allows programmers to use
definitions of a target switch-specific architecture, PSA
(Portable Switch Architecture) [37], [38]. P416 is an upgraded
version of P414. In particular, a large number of language
features have been eliminated from P414 and moved into
libraries including counters, checksum units, meters, etc.,
in P416. P414 allowed the programmer to explicitly program
three blocks: ingress parser (including header definitions of
accepted header layouts), ingress control and egress control
functions. Recall that P416 allows to explicitly program six
programmable blocks (see Figure 1).

By analyzing programs in the P414 and P416 versions,
we realize that as more blocks of the P4 program get
programmable, there is more onus on the programmer to
write a program that behaves as expected (when it gets
compiled and deployed on the P4 switch). Missing checks or
fat finger errors can cause havoc in the network. However,
this is a blessing in disguise as the more programmable
the code is, the more patchable it is. Thus, programming
errors can be fixed. Figures 3a and 3b illustrate that the
potentially patchable code percentage increases from P414 to
P416 in all applications (excluding calculator) from P4 tutorial
solutions [29] and NetPaxos codebase [30] in behavioral
model (bmv2) switch platform [31] and other generic PSA
switch platforms [37], [38], e.g., Tofino [32] respectively.
Figures 3c and 3d illustrate the patchable code percentage
in the latest P416 version. The patchable code percentage
comes from the six programmable blocks in P416. Roughly,
whatever is programmable, is patchable. In principle, around
40-45% of a P4 program is patchable in P416 programs for
behavioral model (bmv2) switch platform [31] (Figure 3c).
This increases to 50-55% if the ingress deparser and egress
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Fig. 6. P6 in Action: depicting the automated detection, localization and patching of a bug in a L3 switch P4 program [29].

Fig. 7. P6 Workflow. Modules of P6 (in solid green boxes).

parser are programmable for other target switch platforms,
e.g., Tofino [32] (Figure 3d).

In particular, the parser and header definitions account for
20-40% of the total patchable code. If there is no bug in parser
or header, packets with incorrect header get dropped. However,
the bug still can be either in the non-patchable platform-
dependent block or in the application code logic or deparser
which is patchable as it is platform-independent.

Observation: From P414 to P416, P4 program possesses
twice as many programmable blocks increasing the chances
for patchability. Bugs detected in the platform-independent
part can be localized and patched; a platform-dependent bug
may not be patchable if it is hardware-related.

III. P6: SYSTEM DESIGN

A. P6: Overview

The goal of P6 (see Figure 7) is to detect, localize and patch
the software bugs in a P4 program at runtime with minimal
human effort. This is achieved by verifying the actual runtime
behavior against the expected behavior of a P4 switch running
a pre-compiled P4 program to the incoming packets.
The P6 contains three main modules:
(1) Fuzzer : Generates test packets using RL-guided fuzzing,
static analysis, and p4q queries (§III-B.1) to the P4 switch
running the pre-compiled P4 program. (§III-B)
(2) Localizer : P4Tarantula is the Localizer which pinpoints
faulty lines of code causing bugs in the P4 program. (§III-C)
(3) Patcher : Automates patching of the bugs localized by
P4Tarantula Localizer, if patchable. Then, Patcher compiles
and loads the patched P4 program on the P4 switch. (§III-D)

P6 Workflow. P6 is a closed-loop control system. Through
a pre-generated dictionary from control plane configuration,
p4q queries, and static analysis of a P4 program, the expected
runtime behavior of the P4 switch is captured and sent as
an input to the Fuzzer containing the RL Agent and the
Reward System (§III-B). As shown in Figure 7, the Fuzzer
selects appropriate mutation actions such as add/delete/modify
bytes in a packet to generate test packets towards the P4 switch
running the pre-compiled P4 program ➀. If the actual runtime
behavior towards the packets defies the expected behavior
through the violation of the p4q queries, it signals a bug in
the form of a reward as a feedback to the Reward System
which is then, exploited by the RL Agent to improve the
training process by selecting better mutation actions on the
packet ➁. After the bug detection, the Fuzzer automatically
triggers Localizer (§III-C), P4Tarantula (only for platform-
independent bugs; for platform-dependent bugs, the vendor is
informed) which pinpoints the faulty line of code ➂ to trigger
the Patcher (§III-D) which searches for the appropriate patch
from a library of patches for the corresponding P4 program
➃. If the patch is available, Patcher modifies the original P4
program, compiles and loads it on the P4 switch and checks
if the bug is no longer triggered by p4q queries by repeating
the whole-cycle and executing sanity and regression testing ➄.
Note, P6 is non-intrusive and thus, requires no modification
to the P4 program for testing before patching.
P6 in Action. Before we dive into the details of Fuzzer,
Localizer and Patcher, we demonstrate the operation of P6.
Figure 6 illustrates how P6 detects, localizes, and patches an
existing bug in a layer-3 (L3) switch P4 source code (program)
from [29] in an automated fashion. The left part of Figure 6
shows the P4 program containing a platform-independent
bug in the parser code, i.e., no header field validation is
implemented, hence all IPv4 packets are incorrectly accepted
by the parser. After the P4 program is deployed on the
P4 switch, P6 is triggered. Initially, the Fuzzer detects
the bug violating the corresponding p4q query based on
the feedback (reward) received from the P4 switch. Then,
it triggers the P4Tarantula for localization (shown in the
center of Figure 6) where it pinpoints the problematic part
of the code (highlighted). Afterwards, the Patcher is triggered
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Fig. 8. Fuzzer. Reward System (in yellow) and Agent (in pink).

automatically, patching the necessary problematic parts of
the code, i.e., adding header field verification statements
(highlighted in right), after checking if the patch was indeed
missing from the P4 program. Finally, Patcher automatically
compiles [42] and deploys the patched P4 program on the P4
switch, and triggers P6 to ensure that the patches caused no
regressions and fixed the detected bug.

B. Fuzzer: RL-Guided Fuzzing

The goal of Fuzzer is to detect the runtime bugs discussed
in §II-B. We improve [20] by augmenting Fuzzer with the
static analysis of a P4 program which makes the Fuzzer aware
of the input structure or accepted header layouts, e.g., IPv4,
IPv6, etc., and thus, it significantly reduces the input search
space. Indeed, techniques to further reduce the input search
space within the accepted headers are discussed in [43], which
can be augmented to static analysis. We guide the mutation-
based white-box fuzzing [12] via RL [21], [22]. The feedback
in the form of rewards is received from the switch based on the
evaluation of actual against expected runtime behavior. Note,
the expected behavior is determined using the static analysis,
the control plane configuration, i.e., forwarding rules and
p4q queries (§III-B.1). p4q queries are conditional queries
(if-then-else) where each query has multiple conditions
and each condition acts as a test case. A violation of a test
case represents a bug detection.
Reinforcement Learning (RL). Reinforcement learning [21],
[22] is a machine learning technique that aims at enabling an
Agent to learn how to interact with an environment, based on a
series of reinforcements, i.e., rewards or punishments received
from the target environment, in our case, a switch. The Agent
observes the switch and chooses an action to be executed.
After the action is executed, the Agent receives a reward or
punishment from the switch. While the goal of learning is to
maximize the rewards, we argue it is equally crucial to design
a machine learning model which is general enough for any
kind of target environment. To detect the bugs triggered by
fuzzing, one can observe the output of the target switch in
response to the input packets. Thus, reinforcement learning
allows developing a Reward System where feedback in the
form of rewards from the switch trains the Agent and thus,
guides the fuzzing process.
In our RL-based model, we define states, actions, and rewards
as follows:
States: The sequence of bytes forming the packet header.
Actions: The set of mutation actions for each individual
packet header field, e.g., add, modify or delete bytes at a

given position in the packet header. Note, the add and modify
actions either use random bytes or bytes from a pre-generated
dictionary (explained below).
Rewards: The Agent can immediately receive the reward,
after a mutated packet was sent to the target switch and the
results of the execution are evaluated. It is likely to experience
sparse rewards when most of the sent packets do not trigger
any bug. Thus, the reward is defined as 0, if the packet did
not trigger a bug and 1, if the packet successfully triggered a
bug.

The input to the Fuzzer is a dictionary (hereafter, referred
to as dict) that comprises information extracted from static
analysis, the control plane configuration, and the queries
defined with p4q (§III-B.1). The static analysis is used to
derive the input structure awareness such as accepted header
layouts and available header fields in the P4 program. The
control plane configuration comprises the forwarding table
contents and the platform-dependent configuration. Boundary
values for the header fields may be extracted from the p4q
queries, i.e., when queries explicitly compare packet header
fields with values, e.g., TTL > 0.

Figure 8 depicts the Fuzzer workflow. In step 0 (initial-
ization), the Reward System receives the dict as an input.
Then, the Agent observes the current state or the current packet
header (see the initialization in §III-B.2). The observed state
is the input for the neural networks of the Agent (§III-B.2),
which outputs the appropriate mutation action. The selected
action is applied for the given packet, and the packet is sent
to the P4 switch. After the packet is processed by the switch,
the behavior is evaluated, the reward of 1 is generated when
the p4q query specifying the expected behavior is violated and
returned to the Agent. In particular, the packet which was sent
to the P4 switch is saved together with a final verdict (pass
or fail). A packet’s verdict is considered either passed: if the
generated reward is equal to 0, i.e., actual runtime behavior
matches expected behavior when the p4q query is not violated
or failed: if the generated reward is equal to 1, i.e., actual
runtime behavior does not match expected behavior when the
p4q query is violated. Then, the Agent (§III-B.2) uses the
received reward to improve the action selection in subsequent
executions (exploitation).

1) p4q Query Language: Before diving into the details of
the Agent training, we explain the query language, p4q [20],
used for specifying the expected switch behavior. To achieve
the goal of an automated runtime verification system, P6
system must query the actual runtime behavior of a P4
switch against a specification defining the expected behavior.
To extend the query repertoire of p4q from [20], we augment
it with platform-dependent queries. In a nutshell, p4q queries
are used to compare expected against actual switch behavior.
Currently, our p4q queries act as specification of Layer 3 IPv4
protocol. In particular, we mostly focus on 20 bytes of
Layer 3 IPv4 header space (from IPv4 Version field till
Destination IP Address). Our P6 system is trained with such
queries on a P4 program and thus, a trained model can find
errors in other P4 programs quickly by choosing mutation
actions within that IP space that lead to rewards, i.e., bugs
or unexpected behavior in our case. However, we believe that
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Fig. 9. p4q Queries. Queries 1-6 represent platform-independent, and Query
7-8 represent platform-dependent queries respectively.

Fig. 10. p4q grammar.

by training the P6 Agent for other packet header spaces such
as L4 and L2, we can increase the bug scope of P6 to a larger
header space.
p4q queries. In a p4q query, the behavior is expressed
using if-then-else statements in the form of tuples. The
programmer can specify conditions for packets to fulfill at
ingress of the switch (if), with corresponding conditions
to fulfill at egress (then). In addition, the programmer can
describe alternative conditions (else), e.g., if the condition
of the then branch is not fulfilled at egress. To automate the
usage of P6, an option to execute all the queries of p4q
with a single command is provided (see §IV). To define these
conditions, the p4q syntax and grammar are used.
p4q Grammar. Figure 10 depicts the grammar and constructs
defined in p4q. The p4q grammar allows common boolean
expressions and relational operators as they can be found
in many programming languages like C, Java or Python,
to ease the work for the programmer. The boolean expressions
and relational operators have the same semantics as common
logical operators and expressions. Variables can either be
integers, header fields, header field values, or the evaluation
result of the primitive methods, e.g., calcChksum() and
table_val(). Each header has a prefix (ing. or egr.)

indicating if it is the packet arriving at ingress or exiting the
switch at egress.

Figure 9 illustrates an example of how the packet processing
behavior of an IPv4 layer 3 (L3) switch, written in P4, can
be queried easily using p4q. Query 1 (lines 1-3), defines
that incoming packets with a wrong IPv4 checksum are
expected to be dropped. Similarly, the following four queries
(lines 4-13) express the validation of the IPv4 version field,
the IPv4 header length, the packet length and the IPv4
time-to-live (TTL) field for packets at ingress of the switch
respectively. However, there are also conditions for packets
at the egress of the switch. These conditions are described
by Query 6 (lines 15-20). Namely, changing source and
destination MAC addresses to the correct values, decrementing
the TTL value by 1, recalculating the IPv4 checksum and
emitting the packet on the correct port as instructed by
the control plane configuration (forwarding rules). Query 7
(lines 22-27) corresponds to the platform-dependent part of the
switch (PRE) and defines conditions for packets that are cloned
by the switch. Such packets need to fulfill the same conditions
as per Query 6, but the egress port should correspond to the
clone session configuration of the target switch. Similarly,
Query 8 (lines 29-34) expresses the conditions for multicast
packets that need to fulfill the same conditions as per Query
7 but the egress ports should correspond to the configured
multicast group configuration of the target switch.

Note, queries written in p4q can be extended, reused and
provided in the form of libraries. More importantly, the p4q
queries help in the availability of a library of pre-defined
patches for the corresponding violations. Note, an easily
extensible interface is provided to augment p4q further with
user queries as per the deployment scenario to allow detection
of more bugs.

2) Agent : The Agent houses the RL algorithm
(Algorithm 1), inspired by Double Deep Q Network (Double
DQN) [44] (improved Deep Q Networks (DQN) [45]).
Double Deep Q Network (DDQN). DDQN algorithm [44]
is a recently-developed algorithm based on Q-learning [22],
hence a model-free reinforcement learning algorithm. Model-
free means, the Agent does not need to learn a model of
the dynamics of an environment and how different actions
affect it. This is beneficial, as it can be difficult to retrieve
accurate models of the environment. At the same time, the
goal is to provide sample efficient learning, i.e. reduce the
number of packets sent to the target switch, makes the DDQN
a suitable choice. The basic concept of the algorithm is to
use the current state (packet header) as an input to a neural
network, which predicts the action the Agent shall select to
maximize future rewards. In addition, Double DQN algorithm
splits action selection in a certain state from the evaluation of
that action. To achieve, it uses two neural networks: (i) the
online network responsible for action selection, and (ii) the
target network evaluating the selected action. This improves
the learning process of the Agent, as overoptimism of the
future reward when selecting a certain action, is reduced and
thus, helps to avoid overfitting.
Prioritized Experience Replay. Experience replay [46] was
introduced to eliminate problems of oscillation or divergence
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Algorithm 1 Agent Training
Input: Empty prioritized experience replay memory M ,

uninitialized online and target network
Output: Trained online and target network models

1 Initialize online network with random weights
2 Initialize target network with copy of online network

parameters
3 for i = 1 to num_episodes do
4 Initialize byte sequence b1

5 Preprocess b1 to get the initial state
s1 = preprocess(b1)

6 for step = 1 to max_ep_len do
7 Select action astep randomly with probability �

(exploration) or use online network to predict astep

(exploitation)
8 Execute action astep, observe reward rstep and

byte sequence bstep+1

9 Set sstep+1 = preprocess(bstep+1)
10 Save the transition

(sstep, astep, rstep, sstep+1, terminal) in M
11 Sample batch of transitions (sj , aj , rj , sj+1) from

M
12 yj =⎧⎨⎨

⎨⎩

rj if terminal

rj + γ ∗ Q(sj+1, maxa Q(sj+1, aj ; Θ), Θ′)
otherwise

13 Perform stochastic gradient descent using
categorical cross entropy loss function

of parameters, resulting from correlated data. To overcome
this problem, the experiences of the Agent, i.e., a tuple
comprising the current state, predicted action, reward received,
and resulting state are saved in the memory of Agent.
To enable learning by experience replay, the neural network
model is updated using random samples from past experiences.
To counter the scenario of sparse rewards, a simple form of
prioritized experience replay, inspired by [47], is applied. The
memory is sorted by absolute reward and each experience is
prioritized by a configurable factor and the index.
Agent Training Algorithm. Algorithm 1 presents the training
algorithm of the Agent in the P6 system. For our algorithm,
we rely on the use of Multi-Layer Perceptron (MLP) [48].
In the initialization phase, the weights of online and target
neural networks are initialized (Lines 1-2). For each execution,
the current state is reinitialized by randomly choosing a packet
header in byte representation from a pre-generated set of
packet headers. The corresponding bytes are then converted
to a sequence of float representations (Lines 4-5). An �-
greedy policy is applied to determine the action to be executed
(Line 7). Applying an �-greedy policy means that during
training of the Agent, an action is selected randomly by
the Agent with probability � to ensure sufficient exploration.
As the training progresses, probability � is decreased linearly
until a lower bound is reached. This helps in reducing
overfitting as well, since the Agent never stops exploring the

Algorithm 2 P4Tarantula (Localizer)
Input: P4 source code (SC), sent packets (Ps) and

corresponding verdicts (V )
Output: S[j] - suspiciousness score for the corresponding

line j
// V[p] represents the verdict about

packet p (pass or fail)
// SC[j] represents line j of the

source code
// Initialization

1 totalFailed = 0, totalPassed = 0
2 foreach p in Ps do
3 if V[p] == pass then
4 totalPassed+ = 1
5 else
6 totalFailed+ = 1
7 end
8 follow p through SC:
9 foreach executed line j in SC do

10 if V[p] == pass then
11 SC[j].pass+ = 1
12 else
13 SC[j].fail+ = 1
14 end
15 S[j] = SC[j].fail/totalFailed

SC[j].pass/totalPassed+SC[j].fail/totalFailed

16 end
17 end
18 call Patcher

effects of other actions on the environment during training.
The determined action will be executed, the result is observed
and saved in the experience memory (Lines 8-10). As a last
step, a sample out of the experience memory is selected to
calculate yj which is used to calculate the categorical cross-
entropy loss and perform the stochastic gradient descent step
to update the network weights (Lines 11-13).

C. Localizer: P4Tarantula

P4Tarantula is the Localizer or the bug localization module
of P6. P4Tarantula is based on a dynamic program analysis
technique for generic software, Tarantula [23], [25]. In case
a bug is discovered by Fuzzer, it automatically notifies
P4Tarantula. Note, P4Tarantula will not be notified in case of
platform-dependent bugs, as they are neither localizable nor
patchable in the P4 program. As an input, P4Tarantula uses
the P4 program or source code, the packets that were sent by
Fuzzer as per the p4q query (test cases) to trigger the bug and
the pass (if p4q query is not violated) or fail verdict (if p4q
query is violated) corresponding to those sent packets. Recall,
a verdict corresponds to a condition of the p4q query which
acts as a test case.

Algorithm 2 presents the localization algorithm used by
P4Tarantula. First, P4Tarantula initializes two counters, mea-
suring the number of passed or failed verdicts corresponding
to the sent packets (Line 1). In the next step, P4Tarantula
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increments the counters according to the verdicts made for
the given packet (Lines 3-7). Now, the P4 source code needs
to be traversed line-by-line (similar to symbolic execution
but with actual packet header values to avoid all possible
header values), to find the code execution path for the given
packet (Line 8). For each line of the P4 source code executed
for the given packet, counters for the corresponding verdicts
are incremented (Lines 10-14). For the executed lines of the
P4 source code, a suspiciousness score [25] is calculated
(Line 15). The suspiciousness score is between 0 and 1 as
the same line/s can be executed for passed and failed verdicts
corresponding to packets. This score corresponds to the
likelihood of a line of code causing a potential bug. The closer
it is to 1, the more likely it is that the corresponding line of
code is problematic. Finally, the P4 program lines are ordered
as per their suspiciousness score to localize the bug. Then,
Patcher is notified.

D. Patcher

Patcher is the novel automated patching module of the
P6 system. If a bug is localized by P4Tarantula, it notifies
Patcher. The input for Patcher is the P4 source code, the
results of static analysis of the P4 source code, the localization
results of P4Tarantula, and the violated p4q query. Patcher
compares the localized problematic parts of the code with
appropriate available patches. Note, Patcher comes with a
library of patches for P4 programs, i.e., those which violate
p4q queries. Nevertheless, it can be easily extended when,
previously unseen bugs, e.g., bugs in application code logic,
are detected.

From the results of the static analysis, Patcher extracts the
required parser state names, header names, header field names,
metadata names and metadata field names for the patches in
the current version of the library of patches. In P4, metadata
is used to pass information from one of the programmable or
non-programmable blocks to another.

Note, in most P4 programs (including the publicly available
programs from [28], [29], and [30]) no variables apart from
user-defined names for parser states or header/metadata fields
are present. Thus, with the gathered knowledge about user-
defined names Patcher can compare through, e.g., regex or
string comparison, if the patch (correct code) is already present
in the P4 source code or if missing, the patch needs to
be applied. Note, if the patches in the patch library require
the analysis of custom variables or stateful components, e.g.,
registers and meters, the comparison if the patch is present or
not requires further code analysis.

In case no appropriate patch is available, the programmer is
informed by the Patcher. After Patcher finishes the execution,
it calls the P4 compiler (p4c) to re-compile the patched
version of the P4 program and triggers the re-deployment of
the code on the P4 switch. In addition, the Fuzzer is notified
automatically by Patcher to test the patched program again,
to confirm the patches and ensure no regressions were caused
by the patches by testing via the p4q queries and executing
regression testing.

Algorithm 3 Patcher
Input: P4 source code (SC), static analysis results (Sr),

localization results (Lr) and violated p4q query
(q)

Output: A patched version of the source-code (PSC)
// The patcher offers a patch only for

those lines where the suspiciousness
score ≥ 0.5

1 Import & process user-defined parser state names, header
and header field names, metadata and metadata field
names from Sr required for patches in the patch-library

2 for lines in Lr do
3 if Suspiciousness score ≥ 0.5 then
4 check corresponding line/s of code pinpointed by

P4Tarantula
5 if the patch is missing and violating q then
6 apply the preferred patch
7 else
8 inform the programmer
9 end

10 Goto next line
11 else
12 Goto next line
13 end
14 end
15 Compile & re-deploy the patched P4 program (PSC)

and notify Fuzzer for testing the patches and regressions

A patch has the following properties: (a) preferably, few
lines of code, e.g., missing checks in parser, (b) makes the
P4 program conform to the expected behavior, (c) passes
the sanity testing or checks for basic functionality, (d) does
not cause regressions breaking existing functionality, and
(e) should not only fix the error under the assumption that
the match action tables will be populated as needed. The patch
should be configuration-agnostic or the proprieties of the patch
should be equally upheld for all potential types of incoming
packets.

Algorithm 3 shows the Patcher algorithm. First, Patcher
imports the needed header or metadata field names, as well
as parser state names for the currently available patches in
the library of patches. Then, for each line in the localization
results, Patcher checks if the suspiciousness score is greater
than the defined threshold of 0.5 (threshold is configurable as
per deployment scenario) (Line 2), as it is highly likely that
the corresponding line of code is responsible for triggering the
detected bug. In case the suspiciousness score is above the
defined threshold, Patcher will check the corresponding line
of code. The Patcher, then, checks if the patch is available,
e.g., through string comparison with the appropriate patch to
be applied for the violated p4q query. If the patch is indeed
missing, then the problematic line of code is patched, else
the programmer is informed as the appropriate patch is not
available (Lines 3-8). Once, all the localization results are
processed (Lines 9-12), the patched P4 program is compiled
by triggering the compiler (p4c) to be re-deployed on the P4
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TABLE I

BUGS (WITH BUG IDS) DETECTED BY THE P6 PROTOTYPE THROUGH THE
VIOLATION OF THE CORRESPONDING p4q QUERIES (IN FIGURE 9).

NOTE, PI AND PD REFER TO PLATFORM-INDEPENDENT AND -
DEPENDENT RESPECTIVELY

switch and the Fuzzer is triggered to re-test the patched code
(Line 14).

IV. P6 PROTOTYPE

We develop a P6 prototype using Python version 3.6 with
≈ 3, 100 lines of code (LOC); Fuzzer with ≈ 2, 200 LOC,
P4Tarantula with ≈ 490 LOC and Patcher with ≈ 430
LOC. Fuzzer is implemented using Keras [49] library with
Tensorflow [50] backend and Scapy [51] for packet generation
and monitoring. Currently, P6 only supports programs written
in P416 [2] as the P4 compiler (p4c [42]) supports the
translation of programs written in P414 [41] to P416. The
Agent was trained separately, for each condition of each
query written in p4q. The training process as well as the
later execution using the trained Agents, however, can be
parallelized. For queries described in Figure 9, the trained
model of the Agent can be reused for testing different P4
programs that implement IPv4 packet processing.

In addition to the modules described in §III, we implement
a control plane module using P4Runtime [52] and Python. For
the P4 switch, we rely on software switches supporting P416,
namely behavioral model (bmv2) [31] with SimpleSwitchGrpc
target (Version 1.12.0), and Barefoot Tofino Model [32]
(Version 8.3.0). To simplify and automate the usage of
P6, a default option is provided where all queries of p4q
are executed by: P6 ‘p4/source_code_location’
–default

V. EVALUATION

In this section, we evaluate the P6 verification capabilities.

A. Baselines

We compare P6 against three baseline fuzzing approaches:
(1) Advanced Agent. The first baseline is an Advanced
Agent only relying on random fuzz action selection, i.e.,
without prioritized experience replay. Thus, Advanced Agent
can execute the same mutation actions as P6, but cannot learn
which actions lead to rewards. It represents the intelligent
baseline.
(2) IPv4-based fuzzer. The second baseline is an IPv4-
based fuzzer, which is aware of the IPv4 header layout
and randomizes the different available header fields, except
IP options fields and the destination IP as it prevents the
packets from being dropped by the forwarding rules of

the P4 switch. The actual behavior is evaluated using the
queries of p4q.
(3) Naïve fuzzer. The third baseline is a simple naïve
fuzzer, which is not aware of any packet header layouts.
It generates and sends Ethernet frames from purely random
mutation of bytes. The actual behavior is evaluated using the
p4q queries.

B. Bugs

Table I provides an overview of existing bug types (with bug
IDs) detected in the publicly available P4 programs from [28],
[29], and [30] by the P6 prototype. These bugs are detected as
they violate the corresponding p4q queries (from Figure 9).
In total, P6 prototype can detect 10 distinct bugs in the P4
programs. Out of these 10 bugs, 7 are patchable platform-
independent (bugs 1 − 7), and 3 are platform-dependent bugs
(bug 8 − 10).
Platform-independent bugs. The two detected bugs with bug
ID 1 and 2, are related to wrong IPv4 checksum computation
and missing checksum validation. P6 is able to detect,
localize and patch these bugs. The four bugs with IDs 3−6 are
missing or wrong IPv4 packet header validation. Specifically,
missing validation of IP version (bug 3), IPv4 header length
(bug 4), IPv4 total length (bug 5) and IPv4 time-to-live (TTL)
(bug 6). P6 can detect, localize and patch these bugs. While
the current approaches may be able to detect the bugs, they
still lack localization and patching of the bugs. The last of
the platform-independent bugs is faulty TTL decrement bug
(bug 7). In this case, the P4 program accepts packets with
IPv4 TTL 0, the TTL decrement is still executed, causing an
incorrect increment of TTL to 255. Note, these 7 platform-
independent bugs already exist in the publicly available P4
programs of [29] and [30]. In switch.p4 program [28], bugs
with IDs 1,2,4 and 5 exist.
Platform-dependent bugs. In addition to the aforementioned
platform-independent bugs, P6 is able to detect three platform-
dependent bugs. The first bug (Bug ID 8) is described in
Figure 2 and occurs when using ingress-to-egress clone action.
It violates Query 7 in Figure 9 leading to incorrect forwarding
of cloned packets when they are supposed to be dropped.
The second bug (Bug ID 9) involves the resubmit operation.
Packets with the resubmit metadata field set which are marked
to be dropped in a later stage, will be incorrectly resubmitted,
i.e., the packet will be processed again, starting at the ingress
parser. Thus, packets that are not expected to be resubmitted
will be processed again. In the worst case, this can lead
to packets being resubmitted over and over again or other
unexpected behavior. It violates Query 6 in Figure 9. The third
bug (Bug ID 10) involves the multicast operation. If a packet
is marked to be dropped and later the mcast_grp metadata
field is set, then the multicasted copies of the packet are
incorrectly forwarded and do not get dropped. It violates
Query 8 in Figure 9. Note, we found all platform-dependent
bugs specifically, in basic.p4 program [29] on bmv2
platform [31]. Furthermore, these bugs cannot be detected by
current approaches that are based on static analysis.
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Fig. 11. Bug detection, localization and patching times of different P4 programs in bmv2 and Tofino. Each plot represents a median over 10 runs.

Fig. 12. P6 vs Baselines. Each plot represents a median over 10 runs.

TABLE II

P416 PROGRAMS’ LOC IN BMV2 AND TOFINO

Fig. 13. Experiment topology.

C. Experiment Strategy

For conducting our experiments and to evaluate P6
prototype, we ran P6 together with the P4 switch and

control plane module in a Vagrant [53] environment with
VirtualBox [54]. We emulate the network shown in Figure 13.
For each program, separate Vagrant machines, each with
10 CPU cores and 7.5 GiB RAM, are used. The Vagrant
machines ran on a server running Debian 9 OS (Version
4.9.110), with Intel Xeon CPU and 256 GiB RAM. Each
experiment was executed ten times on each of the eight
P416 programs shown in Table II from P4 tutorials [29],
NetPaxos [30] and switch.p4 [28] repository. For each of the
ten runs, 9 test-cases were executed, where each test-case
corresponds to one condition of the queries 1 − 6 illustrated
in Figure 9. Note, basic.p4 program has 10 test-cases as it
is also tested using query 7 for the platform-dependent bug.
Furthermore, we currently trained the Agent separately for
each test-case and sequentially execute the test cases. This can,
however, be parallelized easily. We observed that for only two
conditions of the p4q queries, no bugs were detected.

1) Experiment Topology: Figure 13 shows the topology
used for the experiments as part of the P6 system evaluation.
In total, five virtual machines are used. One of the machines
is running the P4 switch, which is connected to all other
machines. The controller is connected to the P4 switch,
in order to deploy the P4 program and fill the forwarding
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tables. The P6 system is connected to one port of the switch
for sending the packets generated by Fuzzer. Two virtual
machines act as the receiver for these packets. The feedback
of the receivers is used by the P6 system to evaluate the actual
behavior of the P4 switch. In addition, the machine running
P6 is connected to the controller to trigger re-deployment of
the patched P4 program, in case a bug is detected.

D. Metrics

In particular, we ask the following questions:
Q1. How much time does P6 take to detect, localize, and patch
all bugs? (§V-D.1)
Q2. How does P6 perform against the baselines? (§V-D.2)
Q3. How many rewards does P6 generate against the baseline
of an Advanced Agent for Agent training? (§V-D.3)
Q4. How many packets does P6 generate to detect bugs
against the baselines? (§V-D.4)
Q5. What is the accuracy of P6 ? (§V-D.5)

1) Performance (Speed) of P6 : To evaluate the perfor-
mance of P6, we execute the detection, localization, and
patching on 8 publicly available P4 programs from the P4
tutorials [29], NetPaxos [30] and switch.p4 [28] repository
with minimal manual efforts.

Figure 11a and 11d show the median bug detection time
of P6 over ten runs for the different programs using bmv2
SimpleSwitchGrpc and Barefoot Tofino Model, respectively.
Note, switch.p4 program is only available for bmv2 and
was not tested using Tofino. In all runs on bmv2 except for
switch.p4 program, P6 was able to detect all bugs in less
than two seconds. In switch.p4, P6 was able to detect all
bugs in less than ten seconds. The detection time is higher for
switch.p4 as compared to the other tested programs since
more packets get dropped making bug detection more difficult.
On Tofino, the median detection time was slightly higher for
four out of seven programs. The reason for the increased bug
detection time with the NetPaxos programs [30] can be due
to the instrumentation of these programs by us to make them
run on CPU intensive Tofino Model.

Figures 11b and 11e illustrate the median bug localization
time of P6 for the different programs using bmv2 Sim-
pleSwitchGrpc and Barefoot Tofino Model. Overall, all bugs
for 7 of the programs were localized by P6 in just above
0.12 seconds on bmv2 and Tofino. To our surprise, the bug
localization time for switch.p4 program running on bmv2
is only increased by a factor of 4×, even though the program
has about 30× more lines of code compared to the other
tested programs (see Table II). The median time of patching
the code is shown in Figures 11c and 11f for bmv2 and
Tofino respectively. P6 is able to patch the P4 programs with
millisecond scale performance (max. 98 milliseconds).

2) P6 Vs Baselines: Detection Time: We compare P6
against the three baseline approaches in terms of bug detection
time. We observe that the Advanced Agent baseline, see
Figure 12a (with quartiles), was able to detect all the bugs
present in the tested programs, which is due to the similarity
with the P6 Agent. Advanced Agent, however, cannot learn
from the rewards, hence generates more packets and thus,

TABLE III

P6 VS BASELINES. MEDIAN #PACKETS SENT PER RUN OVER 10 RUNS

takes more time to detect the bugs than P6 Agent. IPv4-
based fuzzer was only able to detect 4 out of 10 bugs in
the seven programs from [29] and [30]. For switch.p4
program [28], IPv4-based fuzzer was able to detect 3 out of
4 bugs which were IPv4-based. In Figure 12b (with quartiles),
the speedup is defined as infinite for the test-cases where IPv4-
based fuzzer could not detect the bug. Accordingly, the bars
representing these test-cases range until the top of the figure.
Note, Naïve fuzzer was not able to detect bugs at all, even
though generating 16k packets.

Figure 12a shows the speedup (Advanced Agent/P6 Agent)
for all bugs detected in the seven tested programs from [29]
and [30]. The results show that P6 Agent can detect bugs
up to 10.96× faster than the Advanced Agent baseline. Only
bug 7 was detected faster by the Advanced Agent in 3 of the
7 P416 applications tested as the Advanced Agent needs less
time for random action selection than P6 Agent for intelligent
action selection, based on its neural networks. In addition,
Advanced Agent can make use of the same mutation actions
and the pre-generated dict, hence when triggering the bug,
the overall execution time will be slightly lower than that
of P6 Agent. In 94% of the test-cases, Advanced Agent
required more time and packets to detect the bugs than the
P6 Agent. For switch.p4 program [28], the results show
that P6 Agent is able to detect bugs up to 30× faster than the
Advanced Agent baseline.

Figure 12b shows the speedup (IPv4-based fuzzer/P6
Agent) for all bugs detected in the seven tested programs from
[29] and [30]. For the test-cases where IPv4-based fuzzer was
able to detect the bug, we observe that in 89% of the test-
cases P6 Agent is able to detect the bugs faster while sending
significantly fewer packets. P6 Agent outperforms IPv4-based
fuzzer by up to 8.88× even though IPv4-based fuzzer sends
packets at a higher rate. For switch.p4 program, the results
show that P6 Agent is able to detect bugs up to 30× faster
than IPv4-based fuzzer.

3) P6 Vs Advanced Agent Training: To verify that P6
Agent is able to effectively learn to detect bugs, we compare
P6 Agent against an Advanced Agent, that only relies on
random action selection. This makes Advanced Agent similar,
but not as intelligent as P6 Agent. Advanced Agent can still
execute the same mutation actions but is not able to reason
about which actions lead to maximized rewards. Figure 12c
shows a comparison of the mean cumulative reward (MCR)
of the training process of both agents for bug ID 4 of
Table I. We observe that the P6 Agent is able to outperform
the baseline by a factor of 3.56× for the mentioned case.
Especially, the prioritized experience replay helps the P6
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Fig. 14. Training: P6 vs Advanced Agent (random action selection) in the
case of bug ID 2 in Table I.

Fig. 15. Training: P6 vs Advanced Agent (random action selection) in the
case of bug ID 5 in Table I.

Fig. 16. Training: P6 vs Advanced Agent (random action selection) in the
case of bug ID 6 in Table I.

Fig. 17. Training: P6 vs Advanced Agent (random action selection) in the
case of bug ID 7 in Table I.

Agent to quickly learn about which actions lead to reward,
hence trigger bugs in the program. Since the P6 Agent is

trained only using experiences which are valuable for the
training.
P6 Agent is trained for each condition of each query

described by Figure 9 using the same set of hyper-parameters.
More results. Figure 14 shows the training comparison results
for the bug ID 2 (Generated wrong checksum) in Table I.
Also, in this case, the P6 Agent is able to outperform the
Advanced Agent baseline by a factor of 2.62×.

The training comparison results for the bug ID 5 (IP
TotalLen Value is too small) can be seen in Figure 15,
showing that P6 Agent is able to outperform Advanced Agent
baseline by a factor of 2.06×.

In the case of the bug ID 6 (TTL 0 or 1 is accepted), P6
Agent is able to outperform Advanced Agent baseline by a
factor of 2.11×, as illustrated by Figure 16.

Figure 17 shows that P6 Agent outperforms Advanced
Agent for the bug ID 7 (TTL not decremented) by a factor of
2.03×. These results show the clear advantage of P6 Agent
over the Advanced Agent baseline.
Above results show P6 Agent consistently outperforms
Advanced Agent in MCR for other queries. Overall, this shows
the clear advantage of P6 Agent over the baselines and the
ability to detect bugs with fewer packets.

4) P6 Vs Baselines: Dataplane Overhead: Table III
illustrates the number of packets sent by P6 and the baselines.
This shows the usefulness of the P6 Agent which generates
less packets by learning about rewards, and generates packets
that trigger bugs. In this case, the Advanced Agent is almost
similar. IPv4-based fuzzer can detect 4 out of 10 bugs, but
generates around 6k packets per run. For each test-case, naïve
fuzzer sends around 2k packets (in total between 12k and 16k)
but it was not able to trigger any bug.

5) P6 Accuracy: During the experiments, we could not
observe any false positives in bug detection. Note, false
positives can occur if the p4q queries are not correct and
complete. In the case of bug localization by P4Tarantula,
false positives are not observed. We did not observe any false
positives in patching by the Patcher as it only fixes the code
if the correct code is missing. Note, if localization results by
P4Tarantula contain false positives, then Patcher is prone to
false positives as it makes the patching decisions based on the
localization results.
Summary. Our results show that P6 due to RL-guided fuzzing
significantly outperforms the baselines across two different
platforms: bmv2 and Tofino in terms of detecting runtime bugs
(including platform-dependent bugs) with minimal dataplane
overhead non-intrusively. We observe that most of the
platform-independent bugs existed in the parser or header
part, otherwise packets with invalid headers get rejected.
P6 accurately and swiftly localizes and patches (millisecond
scale) the bugs due to the P4 program structure in an
automated fashion.

VI. RELATED WORK

Verification of programmable networks has been in a
constant state of flux. Approaches like [57], [58], and [59]
perform modeling of the network from the control plane
to check the reachability, loop freedom, and slice isolation.
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TABLE IV

RELATED WORK IN P4 VERIFICATION. PD CORRESPONDS TO THE
PLATFORM-DEPENDENT BUGS. NOTE, �DENOTES THE CAPABILITY,

(�) DENOTES A PART OF FULL CAPABILITY, AND × DENOTES THE

MISSING CAPABILITY

ATPG [60] generates test packets based on control plane
configuration using [57] for functional and performance
verification in traditional networks and SDNs (Software-
defined Networks). All of the aforementioned tools [57], [58],
[59], [60], however, assume that the control plane has a
consistent or correct view of the data plane in traditional
IP-based networks or SDNs only. P6 does not assume the
correctness of the control plane and observes the runtime
behavior to detect, localize and patch the software bugs in P4
switches. References [61], [62], and [63] use different machine
learning approaches for finding security vulnerabilities or
compiler specific-bugs which cause crashes, however, they
are insufficient for network-related verification. P6 executes
switch verification to identify the bugs in a P4 switch.

Currently, most of the P4-related verification techniques, use
static analysis of P4 programs using symbolic execution [4],
[6], [7] or Hoare logic [5]. The static analysis is prone
to false positives as it analyzes the P4 program without
passing any real inputs, e.g., packets. Therefore, checksum-
related bugs where computations are required on input packets
and platform-dependent bugs cannot be detected. Such bugs
require P6-like runtime verification. In addition, [5], [6],
[7] require a P4 program to be manually annotated by the
programmer which is cumbersome and prone to manual errors
whereas P6 is non-intrusive as it does not require to modify
P4 program for bug detection and localization. p4pktgen [8]
focuses on locating errors in the toolchains used to compile
and run P4 code, e.g., p4c, and uses symbolic execution
to create exemplary packets which can execute a selected
path in the program. However, it cannot detect platform-
dependent bugs or egress pipeline bugs. Such a verification
method can complement our solution. P4NOD [56] statically
models the network, however, it does not check how the
actual P4 switches behave upon receiving the malformed
packets e.g., incorrect IPv4 checksum. Cocoon [55] suggests
refinement-based programming for network verification. While
this approach tries to ensure that programs match their
specification, it requires a huge amount of additional and
manual user input. For runtime verification, such a formal
method is insufficient. Recently, [64] propose data-plane
primitive for detecting and localizing bugs: tracking each
packet’s execution path through the P4 program by augmenting
P4 programs. However, this remains an in-progress and
intrusive approach as it requires augmenting P4 code whereas
P6 does not change P4 program. Furthermore, recently [65]
was developed which uses a mix of static verification, code

changes and runtime checks to ensure that the deployed P4
program is bug free. It complements our approach as it also
focuses on control plane related bugs. Also, [66] detects
packet-processing errors induced by bugs that are not caught
(or are difficult to catch) before the P4 program deployment.

In-band network telemetry (INT) [67], [68] enables to
collect telemetry data from each switch, however, unlike
P6, it cannot localize or patch bugs if packets get dropped.
Recently, Shukla et al. proposed P4CONSIST [9], a system
that gathers the control and data plane states independently
for comparison to verify the control-data plane consistency
of P4 SDNs by detecting the path violations for critical
flows in P4, however, without localization or patch support.
In [20], a machine learning guided-fuzzing system is used
to only detect platform-independent bugs in P4 programs.
In the context of fuzzing, two approaches like [10] and [17]
are worth-considering. [10] is insufficient as it uses program
coverage feedback to guide fuzzing without knowing which
mutations lead to bugs. Reference [17] transforms the target
program to remove sanity checks for fuzzing, however, it is
intrusive as the target program requires modification for
testing. P4wn [69] is a program profiler that can analyze
program behaviors of stateful data plane systems. We note that
such an approach can be complementary to P6. Furthermore,
P4wn differs from P6 in its use case as P4wn is more security-
centric relying on adverserial testing of stateful P4 programs
for vulnerability detection whereas P6 performs an end-to-end
network verification of stateless P4 programs which not just
focuses on bug detection but also on localization and patching.
Aquila [70] focuses on verifying P4 programs for bugs and
also, localizes bugs but unlike P6, it is not in its focus to
patch the bugs or even report platform-dependent bugs.

Unlike P6, P4-based verification approaches [4], [5], [6],
[7], [8], [9], [20], [55], [56], [67], [68] are insufficient in
localizing and patching the runtime bugs in P4 programs.
Besides, they cannot detect the platform-dependent bugs.
Table IV illustrates the capabilities of other P4 verification
tools as compared to P6.

VII. DISCUSSION

Traditionally, fuzz testing or fuzzing is known to offer a
partial testing solution as it is prone to false negatives. Rice’s
theorem [71] states that all the non-trivial, semantic properties
of a program are undecidable. Semantic properties refer to
the behavior of a target program for all inputs. Therefore,
if fuzzing does not detect any problems, it does not ensure
that there is no problem at all. Statistical techniques like Good-
Turing frequency estimations [72], [73], [74] for fuzz testing
partially, aid in inferring the probability that the next generated
test input leads to the discovery of a previously unseen species.
P6 can only verify functional or binary properties such as

whether actual behavior is the same as expected behavior
or not. However, we cannot verify properties such as
performance-related ones. In P6, static analysis acts as a
guiding process for P6 Fuzzer which helps to significantly
reduce the input search space and adds input structure
awareness. In general, the quality of the input seeds, e.g., the
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relevance of mutations to the target and program coverage
serve as good indicators to assess the quality of a Fuzzer.
However, there is a tradeoff between speed and precision of
fuzz testing as there is an instrumentation overhead involved
in generating a dictionary of meaningful inputs for effective
testing and significantly reducing the input search space as
compared to random mutations of bits in the inputs.

Machine learning techniques like reinforcement learn-
ing [21], [22] helps to some extent with the training of the
models based on the feedback from the target. However,
what is a good feedback? is debatable. Traditionally, feedback
depends on the coverage but it all boils down to the program
under test. In addition, machine learning is as good as the input
training data and thus, offers insufficient guarantees as instead
of learning, the model may memorize. A generalized model
applicable to any kind of training data is highly desirable as
it avoids the problems of overfitting and underfitting [75].

Dynamic program analysis technique for fault-localization
like Tarantula [23], [24], [25] benefits from utilizing the
information from multiple failed test cases which helps it
in leveraging the richer information base. Therefore, it helps
to have at least one failed test case. In addition, allowing
tolerance for passed test cases that occasionally execute faults
is essential for an effective fault-localization technique.

Software patching facilitates in fixing the software code
errors. The patches, however, may cause regressions which
reflect in the form of abnormal behavior of the software. Sanity
testing and modular code design facilitate in ensuring that
basic functionality is not affected by the patch. However, one
cannot assure that there are no other problems (false negatives)
caused by the fix.

We note that leveraging programmability, future program-
mable networks will encompass even more possibilities of
faults with a mix of vendor-code, reusable libraries, and
in-house code. As such the general problem of network
verification will persist and we will have to explore how to
extend the P6 system to traditional IP-based networks and
verify important classes of properties such as performance-
related ones (e.g., mean and tail flow completion times).
To address state loss and flow interruption due to the
deployment delay of the patched P4 program, the existing
flows can be migrated to the relevant servers for processing
via approaches like [76].

VIII. CONCLUSION

We presented a new approach to verify programmable
switches at runtime. We also present the design, implemen-
tation, and evaluation of P6, the first system that enables
runtime verification of P4 switches in a non-intrusive fashion.
P6 uses static analysis- and machine learning-guided fuzzing
to detect multiple runtime bugs which are then, localized
and patched on the fly with minimal human effort. Through
experiments on existing P4 application programs, we showed
that P6 significantly outperforms the baseline bug detection
approaches to detect existing platform-independent and
-dependent bugs. In the case of platform-independent bugs,
P6 takes advantage of the increased programmable blocks to

localize them and repair the P416 programs, if and when a
patch is available.

We believe P6 is an important foray into self-driving
networks [77], which come with stringent requirements on
dependability and automation. With P6, developers of P4
programs and operators of P4-enabled devices can improve
the security of their products. To make the results of this work
available to the public, we release the P6 software and library
of ready patches that we, respectively, developed and used in
this work. As a part of our future agenda, we plan to apply
P6 on commercial-grade P4 programs and networks to report
our experience.
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