antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers K Blin, MH Medema, D Kazempour, MA Fischbach, R Breitling, E Takano, ... Nucleic acids research 41 (W1), W204-W212, 2013 | 985 | 2013 |
Improved lanthipeptide detection and prediction for antiSMASH K Blin, D Kazempour, W Wohlleben, T Weber PLoS One 9 (2), e89420, 2014 | 63 | 2014 |
FATBIRD: A Tool for Flight and Trajectories Analyses of Birds TS D. Kazempour, A. Beer, F. Herzog, D. Kaltenthaler, J.-Y. Lohrer 2018 IEEE 14th International Conference on e-Science (e-Science), 2018 | 10 | 2018 |
On comads and principal component analysis D Kazempour, MAX Hünemörder, T Seidl Similarity Search and Applications: 12th International Conference, SISAP …, 2019 | 9 | 2019 |
Detecting global hyperparaboloid correlated clusters based on Hough transform D Kazempour, M Mauder, P Kröger, T Seidl Proceedings of the 29th International Conference on Scientific and …, 2017 | 9 | 2017 |
Enhancing cluster analysis via topological manifold learning M Herrmann, D Kazempour, F Scheipl, P Kröger Data Mining and Knowledge Discovery 38 (3), 840-887, 2024 | 7 | 2024 |
Luck-linear correlation clustering using cluster algorithms and a knn based distance function A Beer, D Kazempour, L Stephan, T Seidl Proceedings of the 31st International Conference on Scientific and …, 2019 | 6 | 2019 |
PARADISO: an interactive approach of parameter selection for the mean shift algorithm D Kazempour, A Beer, JY Lohrer, D Kaltenthaler, T Seidl Proceedings of the 30th International Conference on Scientific and …, 2018 | 5 | 2018 |
I fold you so! An internal evaluation measure for arbitrary oriented subspace clustering D Kazempour, A Beer, P Kröger, T Seidl 2020 International Conference on Data Mining Workshops (ICDMW), 316-323, 2020 | 4 | 2020 |
Rock-Let the points roam to their clusters themselves. A Beer, D Kazempour, T Seidl EDBT, 630-633, 2019 | 4 | 2019 |
D-MASC: A novel search strategy for detecting regions of interest in linear parameter space D Kazempour, K Bein, P Kröger, T Seidl Similarity Search and Applications: 11th International Conference, SISAP …, 2018 | 4 | 2018 |
Similarity Search and Applications: 14th International Conference, SISAP 2021, Dortmund, Germany, September 29–October 1, 2021, Proceedings N Reyes, R Connor, N Kriege, D Kazempour, I Bartolini, E Schubert, ... Springer Nature, 2021 | 3 | 2021 |
Grace-Limiting the Number of Grid Cells for Clustering High-Dimensional Data. A Beer, D Kazempour, J Busch, A Tekles, T Seidl LWDA, 11-22, 2020 | 3 | 2020 |
Sidekick: Linear correlation clustering with supervised background knowledge MAX Hünemörder, D Kazempour, P Kröger, T Seidl Similarity Search and Applications: 12th International Conference, SISAP …, 2019 | 3 | 2019 |
CoMadOut—a robust outlier detection algorithm based on CoMAD A Lohrer, D Kazempour, M Hünemörder, P Kröger Machine Learning, 1-75, 2024 | 2 | 2024 |
“Show Me the Crowds!” Revealing Cluster Structures Through AMTICS F Richter, Y Lu, D Kazempour, T Seidl Data Science and Engineering 5 (4), 360-374, 2020 | 2 | 2020 |
Towards an internal evaluation measure for arbitrarily oriented subspace clustering D Kazempour, P Kröger, T Seidl 2020 International Conference on Data Mining Workshops (ICDMW), 300-307, 2020 | 2 | 2020 |
Detecting Global Periodic Correlated Clusters in Event Series based on Parameter Space Transform D Kazempour, K Emmerig, P Kröger, T Seidl Proceedings of the 31st International Conference on Scientific and …, 2019 | 2 | 2019 |
Detecting global hyperparaboloid correlated clusters: a Hough-transform based multicore algorithm D Kazempour, M Mauder, P Kröger, T Seidl Distributed and Parallel Databases 37 (1), 39-72, 2019 | 2 | 2019 |
CODEC-Detecting Linear Correlations in Dense Clusters using coMAD-based PCA. MAX Hünemörder, A Beer, D Kazempour, T Seidl LWDA, 111-114, 2019 | 2 | 2019 |