Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. Science, 313
(5786):504–507, 2006.
Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems (NIPS), 2016.
Khandelwal, A., Weihs, L., Mottaghi, R., and Kembhavi, A.
Simple but Effective: CLIP Embeddings for Embodied
AI. arXiv:2111.09888, 2021.
Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2014.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks.
25:1097–1105, 2012.
Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented
data. In International Conference on Neural Information
Processing Systems (NeurIPS), 2020.
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In International
Conference on Learning Representations (ICLR), 2016.
Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. Feature pyramid networks for object
detection. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.
OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Józe-
fowicz, R., McGrew, B., Pachocki, J., Petron, A., Plap-
pert, M., Powell, G., Ray, A., Schneider, J., Sidor, S.,
Tobin, J., Welinder, P., Weng, L., and Zaremba, W. Learn-
ing Dexterous In-Hand Manipulation. The International
Journal of Robotics Research (IJRR), 39(1):3–20, 2020.
Parisi, S., Dean, V., Pathak, D., and Gupta, A. Interesting
Object, Curious Agent: Learning Task-Agnostic Explo-
ration. In International Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2021.
Peng, X. B., Abbeel, P., Levine, S., and van de Panne,
M. DeepMimic: Example-Guided Deep Reinforcement
Learning of Physics-Based Character Skills. ACM Trans-
actions on Graphics, 37:143:1–143:14, 2018.
Purushwalkam, S. and Gupta, A. Demystifying contrastive
self-supervised learning: Invariances, augmentations and
dataset biases. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020.
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on
Machine Learning (ICML), 2021.
Rafailov, R., Yu, T., Rajeswaran, A., and Finn, C. Visual
adversarial imitation learning using variational models.
In International Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2021.
Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade,
S. M. Towards generalization and simplicity in continu-
ous control. In Advances in Neural Information Process-
ing Systems (NIPS), 2017.
Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learn-
ing and Demonstrations. In Proceedings of Robotics:
Science and Systems (R:SS), 2018.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M. S., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision, 115:211–252, 2015.
Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.,
Parikh, D., and Batra, D. Habitat: A Platform for Em-
bodied AI Research. In International Conference on
Computer Vision (ICCV), 2019.
Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning (ICML), 2015.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-CAM: Visual explanations
from deep networks via gradient-based localization. In
International Conference on Computer Vision (ICCV),
2017.
Shah, R. and Kumar, V. RRL: ResNet as representation for
Reinforcement Learning. In International Conference on
Learning Representations (ICLR), 2021.
Shang, W., Wang, X., Srinivas, A., Rajeswaran, A., Gao,
Y., Abbeel, P., and Laskin, M. Reinforcement Learning
with Latent Flow. In Advances in Neural Information
Processing Systems (NIPS), 2021.
Srinivas, A., Laskin, M., and Abbeel, P. CURL: Contrastive
Unsupervised Representations for Reinforcement Learn-
ing. In International Conference on Machine Learning
(ICML), 2020.