
Undefined 1 (2010) 1–10 1
IOS Press

The Mastro System for Ontology-based
Data Access

Diego Calvanese a Giuseppe De Giacomo b Domenico Lembo b Maurizio Lenzerini b

Antonella Poggi b Mariano Rodriguez-Muro a Riccardo Rosati b Marco Ruzzi b and
Domenico Fabio Savo b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy
Email: lastname@inf.unibz.it
b Sapienza Universita di Roma,Via Ariosto 25, I-00185, Roma, Italy
Email: lastname@dis.uniroma1.it

Abstract. In this paper we present Mastro, a java tool for ontology-based data access (OBDA) developed at the
University of Rome “La Sapienza” and at the Free University of Bozen-Bolzano. Mastro manages OBDA systems
in which the ontology is specified in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics
specifically tailored to ontology-based data access, and is connected to external JDBC enabled data management
systems through semantic mappings that associate SQL queries over the external data to the elements of the
ontology. Advanced forms of integrity constraints, which turned out to be very useful in practical applications,
are also enabled over the ontologies. Optimized algorithms for answering expressive queries are provided, as well
as features for intensional reasoning and consistency checking. Mastro provides a proprietary API, an OWLAPI
compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, Reasoning over ontologies

1. Introduction

In this paper we present Mastro, a tool for
ontology-based data access developed at the Uni-
versity of Rome “La Sapienza” and at the Free
University of Bozen-Bolzano. Ontology-based data
access (OBDA) refers to a setting in which an on-
tology is used as a high-level, conceptual view over
data repositories, allowing users to access data
without the need to know how they are actually
organized and where they are stored (cf. Figure 1).

The OBDA approach turns out to be very useful
in all scenarios in which accessing data in a unified
and coherent way is difficult. This may happen for
several reasons. For example, databases may have
undergone several manipulations during the years,
often for optimizing applications using them, and
may have lost their original design. They may have

Source

Query

Source

OntologyConceptual
Layer

Data
Layer

Fig. 1. Ontology-based Data Access

been distributed or replicated without a coherent

design, so that the information turns out to be dis-

persed over several independent (maybe heteroge-

neous) data sources, and source data tend to be

redundant and mutually inconsistent.

0000-0000/10/$00.00 c© 2010 – IOS Press and the authors. All rights reserved

2 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

Through Mastro it is possible to design and
manage OBDA systems, i.e., systems in which
an ontology is connected to external data sources
through mappings. As in data integration sys-
tems [23], we use mappings to specify the seman-
tic correspondence between a unified view of the
domain (called global schema in data integration
terminology) and the data stored at the sources.
The distinguishing feature of the OBDA approach,
however, is the fact that the global unified view is
given in terms of a conceptualization of the domain
of interest, constructed independently from the
representation adopted for the data stored at the
sources. This choice provides several advantages:
it allows for a declarative approach to data access
and integration and provides a specification of the
domain that is independent from the data layer; it
realizes logical/physical independence of the infor-
mation system, which is therefore more accessible
to non-experts of the underlying databases; The
conceptual approach to data access does not im-
pose to fully integrate the data sources at once, as
often happens in data integration mediator-based
system, but the design can be carried out in an in-
cremental way; The conceptual model available on
the top of the system provides a common ground
for the documentation of the data stores and can
be seen as a formal specification for mediator de-
sign.
Mastro has solid theoretical basis [3,5,4,26].

The ontologies it manages are specified in DL-
LiteA,id , a logic of the DL-Lite family of tractable
Description Logics (DLs), which are specifically
tailored to the management and querying of on-
tologies in which the extensional level, i.e., the
data, largely dominates the intensional level. From
the point of view of the expressive power, DL-
LiteA,id captures the main modeling features of
a variety of representation languages, such as ba-
sic ontology languages and conceptual data mod-
els. Furthermore, it allows for specifying advanced
forms of identification constraints [6]. General
forms of integrity constraints, which essentially
corresponds to generic first-order sentences, are
also expressible over the ontology. We call these
constraints EQL constraints and interpret them
according to the so-called epistemic semantics,
which is an approximation of first-order semantics
adopted for the other DL-LiteA,id axioms that en-
sures decidability and tractability of reasoning [4].
We notice that the ability to specify both identifi-

cation and expressive integrity constraints turned
out to be very useful in practical experiences we
conducted with Mastro [1,28], and that such con-
structs are not part of OWL 2, the current W3C
standard language for specifying ontologies.

The mapping mechanism adopted by Mas-
tro [26] allows for solving the so-called impedance
mismatch problem, arising from the fact that,
while the data sources store values, the instances
of concepts in the ontology are objects. Answer-
ing unions of conjunctive queries in OBDA sys-
tems managed by Mastro can be done through
a very efficient technique that reduces this task
to standard SQL query evaluation. Indeed, con-
junctive query answering has been shown to be in
LOGSPACE (in fact in AC0) w.r.t. data complex-
ity, i.e., the complexity measured only w.r.t. the
extensional level [5,26], which is the same com-
plexity of evaluating SQL queries over plain re-
lational databases. Even though very slight ex-
tensions of the expressive abilities of our system
lead beyond this complexity bound [3], also queries
that are more powerful than UCQs can be pro-
cessed in Mastro via a similar SQL encoding.
Such queries, which we call EQL queries, essen-
tially correspond to all first-order queries express-
ible over the ontology, and are interpreted under
the epistemic semantics [4].

Mastro is developed in Java and can be con-
nected to any data management system allowing
for a JDBC connection, e.g., a relational DBMS.
In those cases in which several, possibly non-
relational, sources need to be accessed Mastro
can be coupled with a relational data federation
tool1, which wraps sources and represents them as
a single (virtual) relational database.

Mastro comes with its proprietary API, but is
equipped also with an OWLAPI compatible inter-
face that has been developed for interaction with
OWLAPI compliant applications. In particular,
such an interface has been exploited to implement
the Mastro plugin for the Protégé 4 ontology ed-
itor2. Mastro is currently available for download
at http://www.dis.uniroma1.it/~quonto/.

1E.g., IBM WebSphere Application Server (http://
www.ibm.com/software/webservers/appserv/was/), Ora-

cle Data Service Integrator (http://www.oracle.com/us/
products/middleware/data-integration/).

2http://protege.stanford.edu/

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 3

The rest of the paper is organized as follows.
In Section 2, we briefly describe the framework of
ontology-based data access. In Section 3, we pro-
vide an in-depth description of the main modules
in which Mastro is organized, briefly describ-
ing the procedures and algorithms they realize. In
Section 4, we report on three main use cases in
which Mastro has been successfully trialed. In
Section 5, we discuss related work, and in Section 6
we conclude the paper.

2. Ontology-based data access

In OBDA, the aim is to give users access to a
data source or a collection thereof, by means of
a high-level conceptual view specified as an on-
tology. The ontology is usually formalized in De-
scription Logics (DLs) [2], which are logics that
allow one to represent the domain of interest in
terms of concepts, denoting sets of objects, roles,
denoting binary relations between objects, and at-
tributes, denoting relations between objects and
values from predefined domains (such as strings,
integers, etc.). A DL ontology K = 〈T ,A〉 consists
of a TBox T , representing intensional knowledge,
and an ABox A representing extensional knowl-
edge.
Mastro is able to deal with DL TBoxes that

are expressed in DL-LiteA,id , a member of the DL-
Lite family of lightweight DLs [5]. In such DLs,
a good tradeoff is achieved between the expres-
sive power of the TBox language used to cap-
ture the domain semantics, and the computational
complexity of inference, in particular when such a
complexity is measured w.r.t. the size of the data.
We don’t specify here the formal syntax and se-
mantics of DL-LiteA,id , for which we refer to [6],
but state only that this logic essentially captures
standard conceptual modeling formalisms, such
as UML Class Diagrams and Entity-Relationship
(ER) Schemas. Indeed, DL-LiteA,id distinguishes
at the semantic level between abstract objects
and domain values, and allows one to express in
a TBox the following kinds of logical assertions:
(i) inclusion assertions between concepts (that in-
clude projections of roles on one of their compo-
nents), expressing ISA between them, typing of
relations, mandatory participation to roles or at-
tributes, and disjointness between concepts (if the
negation of a concept occurs in the right-hand side

of the inclusion;) (ii) inclusion assertions between
roles and attributes, to express ISA between roles
and attributes, and disjointness between roles and
attributes (if negation is used in the right-hand
side of the inclusion); (iii) functionality assertions,
and complex forms of identification constraints3.
An ABox contains assertions about specific indi-
viduals or values, such as the fact that an indi-
vidual is an instance of a concept, that two indi-
viduals are related by a role, or that an attribute
relates an individual to some value.

In OBDA, the extensional level is not repre-
sented directly by an ABox, but rather by a
database that is connected to the TBox by means
of suitable mapping assertions4. Such mapping as-
sertions have the form Φ ; Ψ, where Φ, called
the body of the assertion, is an arbitrary SQL
query over the underlying database, and Ψ, called
the head, is a conjunction of atoms whose predi-
cates are the concepts, roles, and attributes of the
TBox. Intuitively, such a mapping assertion spec-
ifies that the tuples returned by the SQL query
Φ are used to generate the facts that instantiate
the concepts, roles, and attributes in Ψ. Notice
that, due to the fact that Ψ is a conjunction of
atoms (as opposed to a query, possibly with exis-
tentially quantified variables), such mappings can
be considered as a special form of global-as-view
(GAV) mappings [23] (cf. also Section 5). Indeed,
in order to overcome the so-called impedance mis-
match between the database, storing values, and
the TBox, maintaining objects, the mapping as-
sertions are used to specify how to construct ab-
stract objects from the tuples of values retrieved
from the database. This is done by allowing one
to use function symbols in the atoms in Ψ: to-
gether with the values retrieved by Φ, such func-
tion symbols generate so called object terms, which
serve as object identifiers for individuals in the on-
tology. We notice that the semantics we adopt in
Mastro (see also below) establishes that differ-
ent terms denote different objects (unique name
assumption), so that different terms never need to

3Thanks to identification constraints we are able in

DL-LiteA,id to also model, via reification, n-relations be-
tween concepts typical of UML Class Diagrams and ER

schemas.
4Note that, in the following, with some abuse of termi-

nology, when we use the term “ontology” in the context of

OBDA, we implicitly refer to a TBox only.

4 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

be equate during reasoning, which is coherent with
the assumption of not having existentially quanti-
fied variables in the body of mappings.

As an example, consider the mapping assertion

SELECT SSN, name

FROM TABPERS

WHERE age <= 5

;
Child(p(SSN)),
Name(p(SSN), name)

which specifies how to construct instances of the
concept Child and the attribute Name in the on-
tology starting from the database relation TABPERS

having among its columns SSN, name and age. As
shown in the example, the mappings used in Mas-
tro allow one to establish correspondences be-
tween elements, and instances thereof, belonging
to schemas expressed in different languages (and
over different alphabets), acting thus as a powerful
reconciling mechanism.

The semantics of DLs is given in terms of stan-
dard first-order interpretations. Traditional inten-
sional reasoning tasks w.r.t. a given TBox are con-
cept satisfiability and concept subsumption [2].
Among the extensional reasoning tasks w.r.t. a
given ontology 〈T ,A〉, the most relevant ones
are ontology satisfiability, i.e., checking whether
〈T ,A〉 admits at least one model, and query an-
swering , which amounts to computing the certain
answers to queries. The certain answers to a query
Q over 〈T ,A〉 are those tuples that are in the
evaluation of Q in every model of 〈T ,A〉. For the
logics of the DL-Lite family it has been shown
that for unions of conjunctive queries (UCQs), un-
der the unique name assumption, query answer-
ing can be carried out efficiently in the size of the
data, by reducing it to SQL query evaluation over
the ABox seen as a database [5]. Also satisfiabil-
ity, which is easily reducible to query answering,
can be solved through the same mechanism. All
the notions given above can be easily generalized
to OBDA systems, where a TBox T is connected
to an external database D through mappings M,
denoted 〈T ,M,D〉. In particular, the models of
〈T ,M,D〉 are those interpretations of T that sat-
isfy the assertions in T and that are consistent
with the tuples retrieved by M from D (see [26]
for the formal details). Satisfiability amounts to
checking whether 〈T ,M,D〉 admits at least one
model, while answering a query Q amounts to
computing the tuples that are in the evaluation of
Q over every model of 〈T ,M,D〉. When T is a

QuOnto

Mapping Processor

Datasource Manager

EQL Processor

Consistency Checker

Data
SourceClient

MASTRO

Fig. 2. Mastro basic architecture

DL-LiteA,id TBox and M is a set of assertions of
the form Φ ; Ψ described above, both satisfia-
bility and conjunctive query answering can be re-
duced to SQL query evaluation through an exten-
sion of the techniques for DL-LiteA,id ontologies
〈T , A〉 mentioned above. Such techniques are im-
plemented in Mastro and are briefly described in
Section 3.1, whereas we refer to [5,26] for a more
complete treatment.

3. Architecture of Mastro

In this section, we describe the general archi-
tecture of Mastro, and some of the important
aspects of the modules that constitute the sys-
tem, shown in Figure 2. We first present each such
module and the functionalities that concur to re-
alize the services that Mastro offers. Such ser-
vices amounts to intentional reasoning, conjunc-
tive query answering, mapping management, EQL
query and constraints management, and consis-
tency checking. We then provide the description
of the interfaces available for accessing Mastro’s
functionalities.

3.1. The Mastro modules

QuOnto module. QuOnto is a reasoner for
DL-LiteA,id that provides intentional reasoning
services, i.e., concept satisfiability, concept sub-
sumption, etc., as well as reformulation of UCQs.
In short, the reformulation process takes as input
a UCQ Q expressed over a DL-LiteA,id TBox T
and returns a UCQ Qr that represents the perfect
reformulation of Q with respect to T . The evalu-
ation of Qr over any DL-LiteA,id ABox A (seen

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 5

as a database) returns the certain answers to Q
with respect to 〈T ,A〉. The reformulation engine
implemented in QuOnto is based on the Perfec-
tRef algorithm presented in [5], adapted to deal
natively with OWL constructs captured by DL-
LiteA,id and not explicitly considered in [5], e.g.,
qualified existential restrictions in the right-hand
side of concept inclusions (see [11] for details).
Also, the reformulation is enhanced with optimiza-
tions that allow for reducing the number of queries
it generates.

Mapping Processor module. Since Mastro does
not explicitly manage ABoxes, but rather accesses
data stored in external systems via mappings,
the set of queries Qr is not evaluated over an
ABox, but processed according to the mappings
to obtain a query that can be evaluated over the
data sources. Indeed, Qr is phrased in terms of
concepts and roles of the TBox T and to ob-
tain a query expressed in terms of the vocab-
ulary of the sources, it is necessary to perform
a further rewriting step dependent on the map-
ping, which, roughly, substitutes the TBox pred-
icates occurring in Qr with their definitions pro-
vided by the mapping assertions. Such a process
is called query unfolding and is carried out by
the Mapping Processor module. Generally speak-
ing, query unfolding is quite a straightforward pro-
cedure, widely applied in data integration appli-
cations. In Mastro, however, query unfolding is
complicated by the presence of function symbols
in mapping assertions (see Section 2). To deal
with such aspects, the Mapping Processor imple-
ments the partial evaluation-based unfolding tech-
nique from [26], which we briefly summarize in the
following: (i) we “split” each mapping assertion
Φ(~v) ; Ψ(~w), where ~v is a sequence of variables
and ~w is a sequence of terms, into a set of as-
sertions having exactly one ontology predicate in
the head, i.e., for each predicate symbol S occur-
ring in Ψ(~w), we write an assertion of the form
Ψ(~v) ; S(~ws), where the terms in ~ws are con-
tained in ~w; (ii) we associate an auxiliary predicate
aux to each SQL query Φ(~v), thus obtaining a set
of assertions of the form aux (~v) ; S(~ws); (iii) we
transform each such assertion into a logic program
clause of the form S(~ws) :− aux (~v); (iv) we com-
pute the partial evaluation of Qr with respect to
the logic program gathering all clauses constructed
in the previous steps, i.e., a new set of conjunc-

tive queries phrased only in terms of the auxiliary
predicates5; and, last, (v) we translate the partial
evaluation into an SQL query over the sources, by
replacing each auxiliary predicate with the associ-
ated SQL view. The use of partial evaluation and
auxiliary predicates gives us the flexibility to work
on the unfolding process at an abstract level, in-
dependently from the type of data sources and the
specific form of the views that we associate to the
auxiliary predicates. Further details on the tech-
nique can be found in [26,28].

Datasource Manager module. This module is re-
sponsible for maintaining the connections to the
data sources, for coordinating query execution,
and for the management of database resources
such as pointer maintenance and transaction man-
agement. The most relevant feature of this mod-
ule is the ability to parallelize the execution of
the queries in the perfect reformulation to im-
prove query answering performance. This feature
is key for fast query processing even in the case
where a very big number of queries is generated
by the reformulation-unfolding process. Depend-
ing on the system configuration, several execution
threads are spawned and queries are assigned to
the different execution threads. Each thread man-
ages a group of queries, which are executed se-
quentially within the thread itself. When the pro-
cessing of any of these queries terminates, the re-
sult set associated to the answer is forwarded to
a result set wrapper that keeps receiving the re-
sults of subsequent queries, while forwarding them
progressively to the client.

EQL Processor module. This module provides
the ability to specify and execute EQL queries (cf.
Section 1). Syntactically, an EQL query is an SQL
query specified over virtual relations expressed as
UCQs over the ontology . As for the semantics, an-
swering an EQL query consists in computing the
extension of each virtual relation, i.e., its certain
answers with respect to the ontology, the mapping
and the source data, and evaluating the SQL query
over all such extensions. This actually corresponds
to putting each virtual relation under the scope of
an epistemic operator (see [4] for details). Rather
than computing the extension of the virtual rela-

5The term partial evaluation is due to the connection
of this technique with the optimization technique from the

logic programming literature that carries the same name.

6 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

tions, the EQL Processor exploits the reformula-
tion service offered by the QuOnto module, and
the unfolding service provided by the Mapping
Processor module, in order to rewrite each inner
query into an SQL query over the sources, thus
transforming the entire EQL query into an SQL
query over the sources. Such a query is then sent
to the Datasource Manager, which is in charge of
evaluating it. EQL queries are extremely useful
when the expressive power of UCQs is not enough.
For example, they allow for expressing negation
and comparison in queries. Also, through EQL
queries it is possible to specify powerful integrity
constraints over the ontology (as shown in [10]),
which go beyond the expressivity of the DLs of the
DL-Lite family.

Consistency Checker module. This module al-
lows Mastro to verify whether an OBDA system
it manages is satisfiable. By virtue of the charac-
teristics of DL-LiteA,id , such a check can be re-
duced to answering suitable queries posed over the
ontology, each one associated to a TBox asser-
tion or to an EQL constraint that can be violated
by data at the sources. The Consistency Checker
therefore relies on the services for conjunctive and
EQL query answering provided by the modules we
described above. Indeed, apart from basic features,
which enable for checking the violation of function-
ality and disjointness constraints, the Consistency
Checker allows one to verify consistency of iden-
tification and EQL constraints, which is reduced
to answering EQL queries over the ontology. The
Consistency Checker can also localize data that
violate TBox assertions and/or constraints over
the ontology. It can indeed generate those queries
(UCQs or EQL) whose answers return data that
cause inconsistencies.

3.2. Interfaces

Mastro’s functionalities can be accessed in
three ways: through a proprietary API, through
an OWLAPI compatible interface, and by means
of a plugin for the Protégé 4 ontology editor. In
particular, Mastro’s proprietary API is used to
integrate all the modules that compose the sys-
tem. This API is also used to implement specific
procedures required during the deployment of the
tool in application scenarios, as the ones described
in Section 4. The API also provides parser facil-

ities for loading ontologies with mappings using
Mastro’s own XML and functional-style syntax
[10] and allows for accessing all the functionalities
offered by the system.

The OWLAPI compatible interface is built on
top of Mastro’s API. This public interface allows
for a straightforward integration of Mastro with
OWLAPI6-OBDALib7 applications. The main ac-
cess point of this API is the so-called MastroOWL-
Reasoner, an implementation of the OWLRea-
soner interface from the OWLAPI, and of the
OBDAReasoner interface, which is part of the
OBDALib. Through functionalities provided by
the OWLReasoner interface, clients have access
to Mastro’s services associated with traditional
OWL reasoners, i.e., concept subsumption, satis-
fiability, etc. Through the OBDAReasoner inter-
face, clients can access Mastro’s OBDA related
functionalities, i.e., specification of ontology with
mappings, conjunctive query answering, etc.

In order to provide its functionalities, the
OWLAPI compatibility layer relies on an OWL
to DL-LiteA,id translator module that is able to
process OWL 2 ontologies represented by means
of OWLAPI objects and produce DL-LiteA,id on-
tologies represented by Mastro’s internal API
objects. In particular, being OWL 2 a very expres-
sive language, it may happen that some OWL 2
assertions cannot be translated into corresponding
DL-LiteA,id assertions, and hence are disregarded
by the module.

Last but not least, Mastro can also be accessed
by means of a Protégé 4 plugin. This plugin is built
on top of the MastroOWLReasoner (cf. Figure 3)
and exposes all functionalities of Mastro, allow-
ing for the use of the facilities offered by Protégé
for ontology editing and by the OBDA Plugin for
editing of mappings towards external data sources.
The Mastro plugin extends Protégé with new
features to express assertions that are not part
of the OWL 2 language but that are supported
by Mastro, such as identification and EQL con-
straints.

4. The system at work: experiences on real cases

In order to demonstrate the usefulness of OBDA
and the feasibility and efficiency of the Mastro

6http://owlapi.sourceforge.net/
7http://obda.inf.unibz.it/

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 7

MASTRO

MastroOWLReasoner

Mastro-Plugin Protege 4

OWLAPI

Native API

Fig. 3. Mastro interfaces

system, we report on three real world applications
in which it has been experimented.

SELEX Sistemi Integrati. SELEX Sistemi Inte-
grati (SELEX-SI) is a Finmeccanica Company
that is a world leader in the provision of integrated
defence and air traffic systems. We considered
Configuration and Data Management (C&DM) in
SELEX-SI and focused on a significant portion of
the data manipulated in this context [1].

C&DM is a technical management model that
is central to all SELEX-SI activities since it gov-
erns the entire products’ life cycle. We mainly fo-
cused on the data concerning the design and the
production of components that are used to real-
ize complex systems, the physical deployment of
such components, and the analysis of their obso-
lescence. At the time of the experimentation, such
data were stored in various, partially overlapping
and continuously evolving sources, and managed
by five different systems under diverse data models
(relational, XML-based, etc.). We used Mastro
to integrate such data, in such a way that relevant
queries connected to important C&DM informa-
tional needs could be automatically processed.

Specifically, we first used the external data
federation tool Websphere Federation Server8 to
present to Mastro all the data sources as a single
relational database. Thus, we obtained a relational
schema managed by Websphere, with around 50
relational tables, with an average of 15 attributes
each.

After the federation step described above, we
conducted an in-depth analysis of the C&DM do-
main interested by our experimentation, which led
to an ontology consisting of 357 DL-LiteA,id ax-
ioms over 42 concepts, 33 roles, and 51 attributes.
Then, we defined around 100 mapping assertions

8http://www-306.ibm.com/software/data/

integration/federation_server/.

connecting the source and the ontology. Finally,
we tested a set of significative queries for C&DM.

A challenge in this experimentation has been
providing the possibility of comparing analogous
data from different sources, e.g., to answer queries
like “is the component declared obsolete in source
A obsolete also according to source B?”. This re-
quired to introduce some predicates in the ontol-
ogy to explicitly represent the data sources and
pieces of information stored in each source.

The outcome of the experimentation was very
promising. In particular, it demonstrated the use-
fulness of Mastro to easily and efficiently access
information in all cases where a user would query
separately each data source, and manually com-
bine the single answers. This appeared to be even
more remarkable, given that the data sources were
known to evolve rapidly. Also, the possibility of
comparing through the ontology the data content
of different sources turned out to be crucial for the
success of the experimentation.

Monte dei Paschi di Siena. Within a joint project
with Banca Monte dei Paschi di Siena (MPS)9,
Free University of Bozen-Bolzano, and Sapienza
Università di Roma , we used Mastro for access-
ing a set of data sources from the actual MPS
data repository by means of an ontology [28]. In
particular, we focused on the data exploited by
MPS personnel for risk estimation in the process
of granting credit to bank customers. A 15 mil-
lion tuple database, stored in 12 relational tables
managed by the IBM DB2 RDBMS, has been used
as data source collection in the experimentation.
Such source data are managed by a dedicated ap-
plication, which is in charge of guaranteeing data
integrity (in fact, the underlying database does
not force constraints on data). Not only the appli-
cation performs various updates, but data is up-
dated on a daily basis to identify connections be-
tween customers that are relevant for the credit
rating calculus.

The main challenge that we tackled within the
experimentation was the ontology and mapping
design. This was a seven man-months process that
required to both inspect the data source and inter-
view domain experts, and was complicated by the

9MPS is one of the main banks, and the head company
of the third banking group in Italy (see http://english.

mps.it/).

8 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

fact that the source was managed by a specific ap-
plication. The resulting OBDA system is defined
in terms of approximately 600 DL-LiteA,id asser-
tions over 79 concepts, 33 roles and 37 attributes,
and 200 mapping assertions.

The experimentation showed that the usefulness
of the Mastro system goes beyond data integra-
tion applications and embraces data quality man-
agement. In particular, it confirmed the impor-
tance of several distinguished features of our sys-
tem, namely, identification constraints and epis-
temic constraints, which have been used exten-
sively to model important business rules. Check-
ing that such rules were satisfied by data retrieved
from the sources through mappings has been the
main objective of the project. With respect to this,
we highlight two kinds of data quality problems
that we were able to detect, one related to unex-
pected incompleteness in the data sources, and the
other one related to inconsistency in the data.

Our work has also pointed out the importance
of the ontology itself, as a precious documenta-
tion tool for the organization. Indeed, the ontol-
ogy developed in our project is adopted in MPS
as a specification of the relevant concepts in the
organization. At present we are still working with
MPS in order to extend the work to cover the core
domain of the MPS information system, with the
idea that the ontology-based approach could re-
sult in a basic step for the future IT architecture
evolution.

Network inventory systems. Finally, we briefly
mention an experimentation we carried out in the
telecommunication context, and specifically in the
domain of network inventory systems. Within this
experimentation, the customer was interested in
accessing, through a conceptual view, a 3 million
tuples source database, stored in 45 relational ta-
bles managed by the Oracle 10g RDBMS.

The distinguishing characteristic of this experi-
mentation is the size of the OBDA system we re-
alized. The ontology is formed by a DL-LiteA,id

TBox involving 112 concepts, 84 roles, and 15
attributes, and consisting of 920 axioms, among
which 91 are identification constraints and EQL
constraints. Furthermore, the mapping layer is
formed by 348 mapping assertions.

As well as for the MPS case study, in this
case the experience demonstrated the usefulness
of Mastro for data quality management. Actu-

ally, the experimentation revealed a huge amount
of “dirty data” in the exploited data source and
allowed the customer to gain an insight into where
the data dirtiness came from. On the other hand,
the experimentation showed an actual need for
meta-level management capabilities. This need ap-
pears to be aligned with the work on higher-
order ontology languages we are currently carry-
ing out [13], which however requires further inves-
tigation to be incorporated within Mastro.

According to the idea that the quality of the
data stored in the sources can be measured in
terms of the amount of data respecting the con-
straints implied by the domain description of-
fered by the ontology, we laid down the basis of
a methodology for using Mastro for data qual-
ity management. The last two experiences we have
mentioned, have revealed how the same ontology
can be used both for querying data and for check-
ing the quality of data sources. The different ob-
jectives in the two cases only partially influence
the design of the mapping, whereas the ontology
design turns out to be an independent task. An-
other important lesson concerns the mapping gen-
eration: according to our experiences, due to the
complexity of extracting the right semantics of the
source tables, the bulk of the work in mapping
specification has to be essentially carried out man-
ually.

5. Comparison with other approaches and tools

To the best of our knowledge, Mastro is the
only system currently available that allows for
both sound and complete conjunctive query an-
swering over an ontology and for connecting it to
external data sources with powerful mappings, and
that at the same time is very efficient in doing
this, even in data intensive applications. This is
possible by virtue of the nice computational char-
acteristics of DL-Lite, which still hold when it is
used in combination with the mappings allowed in
Mastro.

Differently from QuOnto, the reasoning en-
gine at the basis of Mastro, other well-known
DL reasoners such as Racer [17], Pellet [29], and
Fact++ [18] are essentially focused on standard
DL reasoning services, whereas only limited forms
of query answering are supported, i.e., instance

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 9

checking/retrieval or grounded conjunctive query
answering. Grounded conjunctive queries are es-
sentially characterized by the fact that general
joins typical of CQs are performed only on indi-
viduals explicitly mentioned in the ABox. For this
reason some of the entailed answers to CQs are
missed in grounded conjunctive query answering,
thus only approximating computation of certain
answers. Although some optimizations have been
implemented, such systems are not able to deal
with very large ABoxes (e.g., with several millions
of membership assertions) as the ones we consid-
ered in our experimentations. This is mainly due to
the inherent computational complexity of answer-
ing queries in the expressive DL languages sup-
ported by the above mentioned systems.

In KAON2 [20], reasoning is not based on
tableaux calculus, as in the above systems, but
on a reduction of SHIQ ontologies (an expressive
fragment of OWL DL) into Disjunctive Datalog.
Experimental results show that KAON2 outper-
forms Pellet and Racer for ontologies with simple
TBoxes and large ABoxes [19]. Such ABoxes, how-
ever, do not contain more than hundreds of thou-
sands of assertions, which is in general exceeded
in OBDA applications, and again only grounded
conjunctive query answering is supported.

The system SHER [14] implements algorithms
based on an ABox summarization technique,
which are aimed at scalable grounded conjunctive
query answering over SHIQ ontologies. This ap-
proach requires to manipulate the ABox, which
is stored in an RDBMS, and is therefore not ex-
tendible to an OBDA scenario, where data sources
are in general outside of the control of the integra-
tion system and are accessed at query time only.

Both OWLIM10 and Oracle 11g11 allow for
native storage and management of RDF data
and support reasoning for RDFS and some frag-
ments of OWL 2, including the tractable profile
OWL 2 RL12, for which conjunctive query an-
swering has been shown to be PTIME-complete13.
In both such tools inference is performed ahead
query time, and inferred triples are materialized.

10http://www.ontotext.com/owlim/
11http://www.oracle.com/it/products/database/
12http://www.w3.org/TR/owl2-profiles/
13Notice that DL-Lite is instead at the basis of an-

other profile, namely OWL 2 QL, which enables conjunctive

query answering in LOGSPACE (in fact AC0).

As for SHER, this makes such tools not directly
extendible to an OBDA scenario. Furthermore, the
form of reasoning they support is not fully char-
acterized from a formal point of view.

Differently from the above systems, the Virtu-
oso object-relational database engine14 provides a
SPARQL access to RDF data with reasoning sup-
port at query time. However, inference is limited
to consider very few RDFS and OWL assertions,
and is therefore in general incomplete for OWL
and its standard fragments.

Apart QuOnto, other DL-Lite based approa-
ches and reasoners have been developed. In [21]
an alternative approach to query answering is pre-
sented. Besides a (less complex) query reformu-
lation step, such an approach requires to suit-
ably “extend” the ABox (managed by a RDBMS)
with the aim of reducing the amount of rewritten
queries produced by the reformulation step. Re-
sults given by first experiments support well this
approach (notice that in QuOnto the size of the
reformulation may be exponential in the size of
the input query). However, once again, the ABox
manipulation that it requires makes it difficulty
applicable in an OBDA scenario.

The Requiem reasoner [25] implements a rewrit-
ing algorithm which reduces the number of queries
in the final reformulation, still being purely inten-
sional like QuOnto. However, it currently sup-
ports none of the QuOnto advanced features,
such as identification or EQL constraint manage-
ment, nor mappings to external databases.

The OWLGres prototype [30], which allows for
TBox specification in DL-Lite, uses the Post-
greSQL DBMS for the storage of the ABox, and
provides conjunctive query processing. The algo-
rithm for query answering implemented in OWL-
Gres, however, is not complete with respect to the
computation of the certain answers to user queries.
More details on the comparison between OWL-
Gres and QuOnto can be found in [11].

None of the above mentioned systems provides
a mechanism for connecting an ontology to exter-
nal independent data sources with powerful map-
pings. In fact, Virtuoso, as well as, Ontobroker15,
which is a commercial version of KAON2, provide

14http://virtuoso.openlinksw.com/
15http://www.ontoprise.de/en/home/products/

ontobroker/

10 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

some form of support to information integration,
which allows for accessing multiple ontologies or
data sources. Such features however are not char-
acterized in a formal way and cannot be framed
in terms of the conceptual architecture at the ba-
sis of semantic data integration [23]. A similar
observation can be made on commercial products
nowadays offered by several major software ven-
dors (Oracle, IBM, Microsoft, etc.): such tools can
be seen as a collection of wrappers allowing the
users to access a variety of data sources and to
see such sources as a single database. However,
while suitable for system interoperation, no real
semantic integration is carried out. Such systems
may have to be considered more as data federa-
tion tools rather than semantic data integration
tools. From the research point of view, semantic
data integration [23] has been studied deeply in
the last two decades, producing a number of in-
teresting results. The various approaches can be
classified according to the form they adopt for
the mapping that connects the global view to the
sources. In the global-as-view (GAV) approach the
entities of the global schema are defined by means
of queries over the sources, whereas in the local-as-
view (LAV) approach source entities are defined by
means of queries over the global schema. We notice
that currently Mastro adopts a very general form
of GAV mapping. Examples of GAV systems are
TSIMMIS [8], and Garlic [31]. Information Man-
ifold [24], InfoMaster [15], and Picsel [16] are
instead notable examples of LAV systems.

Notice, however, that all the data integration
systems mentioned above suffer from some weak-
nesses from the modeling perspective, mainly due
to the limited expressive power of the languages
provided to model the global schema of the inte-
gration system. In this direction, Mastro aims
at overcoming this limitation by providing the
best expressive power allowed while preserving
tractability of conjunctive query answering and of
the integration tasks.

6. Conclusions

In this paper we presented Mastro, a system
for ontology-based data access, which provides a
comprehensive solution to such a problem by of-
fering features both for specifying and reasoning
on an ontology, and for mapping external data

sources to it. Efficient algorithms for advanced
forms of query answering are implemented, which
enable effective data access. Experiences on real
cases yielded very encouraging results, showing
the applicability of the Mastro approach to real-
world problems.

We plan to extend Mastro in the following di-
rections:

(i) Enriching the ontology representation and
reasoning layer with inconsistency tolerant capa-
bilities: indeed, when integrating different data
sources under the same ontology, it may happen
that the reconciled data do not satisfy the ontol-
ogy. In such cases, repairing the data could be in-
convenient, or not possible at all. However, it is
possible and important to exploit techniques for
consistent query answering [9] in order to make
Mastro able to support meaningful query an-
swering even in the presence of inconsistent data.
Theoretical results at the basis of the approach we
want to implement can be found in [22].

(ii) Allowing for more expressive forms of map-
pings: LAV mappings could be adopted for those
settings in which source data may be incomplete
with respect to the ontology used to access the
sources underlying the system.

(iii) Implementing “write-also” capabilities: most
of the studies carried out in information integra-
tion, and the systems proposed to solve the in-
tegration problem are mainly oriented towards
a read-only approach. This means that the data
flows from the sources to the global ontology only.
However, several studies have been carried out on
the update problem [12,7], attempting to reflect
over the sources an update expressed in terms of
the global ontology. We already carried out some
experiments in this direction and plan to extend
Mastro in order to support such features.

(iv) Finally, we are currently working to opti-
mize the reformulation step in QuOnto, following
the line of research of [27,25], in order to reduce
the number of queries produced: this aspect may
have a crucial impact on the performance of the
whole system.

Acknowledgments This research has been par-
tially supported by the ICT Collaborative Project
project ACSI (Artifact-Centric Service Interoper-
ation), funded by the EU under FP7 ICT Call 5,
2009.1.2, grant agreement n. FP7-257593, and by
Regione Lazio under the project “Integrazione se-
mantica di dati e servizi per le aziende in rete”.

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 11

References

[1] A. Amoroso, G. Esposito, D. Lembo, P. Urbano, and
R. Vertucci. Ontology-based data integration with

Mastro-i for configuration and data management at
SELEX Sistemi Integrati. In Proc. of SEBD 2008,

pages 81–92, 2008.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description

Logic Handbook: Theory, Implementation and Appli-

cations. Cambridge University Press, 2003.
[3] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, and R. Rosati. Data complexity of query answer-

ing in description logics. In Proc. of KR 2006, pages
260–270, 2006.

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, and R. Rosati. EQL-Lite: Effective first-order
query processing in description logics. In Proc. of IJ-

CAI 2007, pages 274–279, 2007.
[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, and R. Rosati. Tractable reasoning and effi-

cient query answering in description logics: The DL-
Lite family. J. of Automated Reasoning, 39(3):385–

429, 2007.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-
erini, and R. Rosati. Path-based identification con-

straints in description logics. In Proc. of KR 2008,

pages 231–241, 2008.
[7] D. Calvanese, E. Kharlamov, W. Nutt, and

D. Zheleznyakov. Evolution of DL-Lite knowledge

bases. In Proc. of ISWC 2010, 2010.
[8] S. S. Chawathe, H. Garcia-Molina, J. Hammer,

K. Ireland, Y. Papakonstantinou, J. D. Ullman, and
J. Widom. The TSIMMIS project: Integration of

heterogeneous information sources. In Proc. of the

10th Meeting of the Information Processing Society of
Japan (IPSJ’94), pages 7–18, 1994.

[9] J. Chomicki. Consistent query answering: Five easy

pieces. In Proc. of ICDT 2007, volume 4353 of LNCS,
pages 1–17. Springer, 2007.

[10] C. Corona, E. Di Pasquale, A. Poggi, M. Ruzzi, and

D. F. Savo. When OWL met DL-Lite In Proc. of
SWAP 2008, 2008.

[11] C. Corona, M. Ruzzi, and D. F. Savo. Filling the gap

between OWL 2 QL and QuOnto: ROWLKit. In Proc.
of DL 2009, volume 477 of CEUR, ceur-ws.org, 2009.

[12] G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati.

On the update of description logic ontologies at the
instance level. In Proc. of AAAI 2006, pages 1271–

1276, 2006.
[13] G. De Giacomo, M. Lenzerini, and R. Rosati. On

higher-order description logics. In Proc. of DL 2009,
volume 477 of CEUR, ceur-ws.org, 2009.

[14] J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schon-
berg, K. Srinivas, and X. Sun. Scalable grounded con-

junctive query evaluation over large and expressive
knowledge bases. In Proc. of ISWC 2008, volume 5318

of LNCS, pages 403–418. Springer, 2008.
[15] M. R. Genereseth, A. M. Keller, and O. M. Duschka.

Infomaster: An information integration system. In

Proc. of ACM SIGMOD, pages 539–542, 1997.

[16] F. Goasdoue, V. Lattes, and M.-C. Rousset. The use

of CARIN language and algorithms for information in-
tegration: The Picsel system. Int. J. of Cooperative

Information Systems, 9(4):383–401, 2000.

[17] V. Haarslev and R. Möller. RACER system descrip-
tion. In Proc. of IJCAR 2001, volume 2083 of LNAI,

pages 701–705. Springer, 2001.

[18] I. Horrocks. The FaCT system. In H. de Swart, editor,
Proc. of TABLEAUX’98, volume 1397 of LNAI, pages

307–312. Springer, 1998.

[19] U. Hustadt, B. Motik, and U. Sattler. A decomposi-
tion rule for decision procedures by resolution-based

calculi. In Proc. of LPAR 2004, pages 21–35, 2004.

[20] U. Hustadt, B. Motik, and U. Sattler. Reasoning in de-
scription logics by a reduction to Disjunctive Datalog.

J. of Automated Reasoning, 39(3):351–384, 2007.
[21] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and

M. Zakharyaschev. The combined approach to query

answering in DL-Lite. In Proc. of KR 2010, 2010.
[22] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and

D. F. Savo. Inconsistency-tolerant semantics for de-

scription logics. In Proc. of RR 2010, 2010.
[23] M. Lenzerini. Data integration: A theoretical perspec-

tive. In Proc. of PODS 2002, pages 233–246, 2002.

[24] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query-
ing heterogenous information sources using source de-

scriptions. In Proc. of VLDB’96, 1996.

[25] H. Pérez-Urbina, B. Motik, and I. Horrocks. A com-
parison of query rewriting techniques for DL-lite. In

Proc. of DL 2009, volume 477 of CEUR, ceur-ws.org,
2009.

[26] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,

M. Lenzerini, and R. Rosati. Linking data to ontolo-
gies. J. on Data Semantics, X:133–173, 2008.

[27] R. Rosati and A. Almatelli. Improving query answer-

ing over DL-Lite ontologies. In Proc. of KR 2010,
2010.

[28] D. F. Savo, D. Lembo, M. Lenzerini, A. Poggi,

M. Rodŕıguez-Muro, V. Romagnoli, M. Ruzzi, and
G. Stella. Mastro at work: Experiences on ontology-

based data access. In Proc. of DL 2010, volume 573

of CEUR, ceur-ws.org, pages 20–31, 2010.
[29] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner.

In Proc. of DL 2004, volume 104 of CEUR, ceur-ws.
org, 2004.

[30] M. Stocker and M. Smith. Owlgres: A scalable OWL

reasoner. In Proc. of OWLED 2008, volume 432 of
CEUR, ceur-ws.org, 2008.

[31] M. Tork Roth, M. Arya, L. M. Haas, M. J. Carey,

W. F. Cody, R. Fagin, P. M. Schwarz, J. T. II, and
E. L. Wimmers. The Garlic project. In Proc. of ACM

SIGMOD, page 557, 1996.

