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Existence and Uniqueness of Solutions of a Boundary Value
Problem of Fractional Order via S-Iteration

HARIBHAU L. TIDKE and GAJANAN S. PATIL

ABSTRACT. The present paper studies the existence and uniqueness of solutions to a boundary value prob-
lem (BVP) of fractional order involving the Caputo fractional derivative and also discusses some other properties
of the solutions. An example in support of all established results is given.

1. INTRODUCTION

We consider the following boundary value problem involving the Caputo fractional de-
rivative with boundary conditions of the form:

(D2)y(t) = F(t.(). (1)

fort € I =la,b], n —1 < a < n,n € Nwith the given boundary conditions
yD(a)=c¢j, j=0,1,2,--- ,n—2 y" "V (b) = ¢ (12)
where F : I x X — X is continuous function and ¢; (j = 0,1,2,...,n — 2), ¢, are given

elements in X.

Several researchers have introduced many iteration methods for certain classes of opera-
tors in the sense of their convergence, equivalence of convergence and rate of convergence
etc. (see [2, 4,5, 6,10, 13, 14, 23, 24, 25, 26, 27, 28, 29, 34, 35]). The most of iterations are
devoted for both analytical and numerical approaches. The S— iteration method, due to
simplicity and fastness, has attracted the attention and hence, it is used in this paper.

The problems of existence, uniqueness and other properties of solutions of special forms
of BVP (1.1)-(1.2) and its variants have been studied by several researchers under variety
of hypotheses by using different techniques (as in [1, 3, 11, 12, 15, 16, 17, 18, 19, 20, 21, 31,
32]). Recently, S. Soltuz and T. Grosan [36] have studied the special version of equation
(1.1). Authors are motivated by the work of D. R. Sahu [34] and influenced by [36, 37].

The main objective of this paper is to generalize the results of the paper [37] by the use of
normal S—iteration method which establishes the existence and uniqueness of solutions
of the boundary value problem (1.1)-(1.2) and other qualitative properties of solutions.

2. PRELIMINARIES

Before proceeding to the statement of our main result, we shall setforth some preliminar-
ies and hypotheses that will be used in our subsequent discussion.

Received: 04.02.2022. In revised form: 26.09.2022. Accepted: 03.10.2022

2010 Mathematics Subject Classification. 34A08, 34A12, 26A33, 35B30, 34B15.

Key words and phrases. Existence and uniqueness, Normal S—iterative method, Fractional derivative, Continuous
dependence, Closeness, Parameters, Boundary value problem.

Corresponding author: Haribhau L. Tidke; tharibhau@gmail.com

97



98 Haribhau L. Tidke and Gajanan S. Patil

Let X be a Banach space with norm || - || and I = [a, b] denotes an interval of the real line
R. We define B = C"(I, X) (Where r = n for « € Nand r = n — 1 for a ¢ N.) as a Banach
space of all r times continuously differentiable functions from [ into X, endowed with the
norm

lyllz =sup{|ly(t)l| : y € B}, tel.

Definition 2.1. [33] The Riemann-Liouville fractional integral (left-sided) of a function
h € C'{a,b] of order a € R4 = (0, 00) is defined by
«@ 1 ! a—1
Ia h,(t) = @/{l (t — 8) h(s) dS,

where T' is the Euler gamma function.

Definition 2.2. [33] Letn — 1 < a < n, n € N. Then the expression
Doh(t) = 577; [I7h(1)], ¢ € [a,b]
is called the (left-sided) Riemann-Liouville derivative of h of order a whenever the ex-
pression on the right-hand side is defined.
Definition 2.3. [30] Let h € C™[a,b] and n — 1 < a < n, n € N. Then the expression
(D2 )h(t) = 157 *h" (1), t € [a,b]
is called the (left-sided) Caputo derivative of h of order c.

Definition 2.4. [9] Let {a, } and {b,,} be two sequences of real numbers that converge to
a and b, respectively, and assume that there exists

(a) If I = 0, then it can be said that {a,,} converges to a faster than {b,,} converges to
b.

(b) If 0 < I < 1, then it can be said that {a,,} and {b,} have the same rate of conver-
gence.

Suppose that for two fixed point iteration procedures {u,} and {v, }, both converging to
the same fixed point p, the error estimates

lun —p|l < an, Vn €N, (2.3)
lvn —p|l < bp, VR €N, (2.4)

are available, where {a,} and {b,,} are two sequences of positive numbers (converging to
zero). Then, in view of Definition 2.4, we will adopt the following concept.

Definition 2.5. [9] Let {u,, } and {v,, } be two fixed point iteration procedures that converge
to the same fixed point p and satisfy (2.3) and (2.4), respectively. If {a,, } converges faster
than {b,,}, then it can be said that {u,,} converges faster than {v,} to p.

Lemma 2.1. [22] If the function f = (f1,- -+ , fu) € C'[a,b], then the initial value problems

(DSZ)y(t) = fi(t7y17"' ayn)7 y’fk)(o) = 07];(}7 1= 1727"' , 1, k= 1727"' , Ty

where m; < «; < m; + 1, are equivalent to Volterra integral equations:

m; k
yl(t): § C;vy+1alfi(tayl7"'ay7L)7 1<i<n.
k=0
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As a consequence of the above Lemma, it is easy to observe thatif y € Band F € C*[a,b],
then y(¢) satisfies the following integral equation which is equivalent to (1.1)-(1.2):

2, o Flay®)b-a !

y(t) = ; G (t—ay+ ((n— D T2 a—nt2) ) —ay
- S!F(Qn—; 1) /ab(b N S)QHF(S’y(S>)dS+p(1®/:(t - SVHF(S,y(s))ds.

(2.5)

We need the following pair of known results to establish our results.

Theorem 2.1. ([34], p.194) Let C be a nonempty closed convex subset of a Banach space X and

T : C — C a contraction operator with contractivity factor k € [0,1) and fixed point z*. Let o,

and f3,, be two real sequences in [0,1] such that « < oy, < land < B, < 1foralln € Nand

for some o, 5 > 0. For given uy = vi = w; € C, define sequences uy,, v, and wy, in C as follows:
Un+1 = (1 - an)Tun + anTyYn,

{ yn = (1 = Bn)un + BnTun,n € N.

Picard iteration: Upt1 = Tv,,n € N.

Mann iteration process: Wpt1 = (1 = Bp)wn + BrTw,,n € N.

Then we have the following:

(@) Nunsr — ¥ < k1= (1 k)aﬁ]"nul — 2|, foralln € N.
(®) ||[vpt1 — z*|| < k™|lvr — x*||, forall n € N.
(©) |lwns1 —a*|| < [1 —(1- k)ﬂ] lwy — a*|, forall n € N.

S-iteration process:

Moreover, the S-iteration process is faster than the Picard and Mann iteration processes.
In particular, for o, = 1, n € N, the S-iteration process can be written as:

Yo € 07
Yn+1 = Tzp, (2.6)
2n = (1= Bn)yYn + BuTyn, n € N.

Lemma 2.2. ([36], p.4) Let {f,};> be a nonnegative sequence for which one assumes there
exists ng € N, such that for all n > nqg one has satisfied the inequality

Bn—&-l < (1 - Mn)ﬁn + lnYn, (27)

where (1, € (0,1), foralln € N, Z W = 00 and y, > 0, VYn € N. Then the following inequality
n=0

holds
0 <lim sup B, <lim sup ~,. (2.8)

n— oo n—oo

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS VIA S—ITERATION

Now, we are able to state and prove the following main theorem which deals with the
existence and uniqueness of solutions of the equation (1.1)-(1.2).

Theorem 3.2. Assume that there exists a function p € C'(I,R4) such that

O )
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o0
Let {&1 152 be a real sequence in [0, 1] satisfying Z & =o0. If
k=0

[ (b—a)*p(a) (b—a)"!
(

n_2)a-nt2) | (-1

L7 () + L, ()| < 1,

then the BVP (1.1)-(1.2) has a unique solution y € B and normal S—iterative method (2.6)
converges to y € B with the following estimate:

Okt+1

P —
B~ 6(1—@) SF &

Hyk+1 —yH Yo —yHB- (3.10)

Proof. Let y(t) € B and define the operator

n—2

(Ty)(t)ZZ%(t—a)j+< o Flay®)b=a

)a—n+1 -
Sy TR o v ey [t

j=0
—a n—1 b .
- (n—glr(i—nﬂ)/a (b=s)" F(S’y(s)>d$

+ ﬁ /at(t — s)"_l.)"-'(&y(s))ds7 tel. (3.11)

Let {y}72, be iterative sequence generated by normal S—iteration method (2.6) for the
operator given in (3.11).

We will show that y, — y as k — oc.

From (2.6), (3.11) and assumptions, we obtain

=S5 e (ot T ey e

_ )1 b »
o it)!F(a)— Py /a (b — )~ ]:(s,zk(s))ds

+ ﬁ /:(t - s)a_l.}'(s, zk(s))ds

— Cj j ¢ Fla,y(0))(b — a)* ! n—
-2 5 t-o _((n—bl)!+ =2 T(a—-n+2) )i oy

(t—a)nt

b
= )T(a—nt1) / (b= )" F (5,405 ) ds

- ﬁ /at(t - s)o‘fl]-"(s, y(s))ds”

| F a2 ®) = Fla,y®) | 6 = aye—+
< ( n—2)T(a—n+2)

(t B a)n—l b a—n
T m DT a—ntD) / (b=s)

+

)t —ay!

f(s, zk(s)) - .7:(8, y(s)) Hds
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+F(1a)/at(t_8)a_1 ]:(&Zk( )) f(‘g y(s )Hds

p(@)|[2(0) = y®) |0 = @)2 1

= ( (n—=2)T' (¢ —n+2) )(t

T S!}(‘fjn_;+ 5 / - )" n(5)||24(5) — y(s) s

o a)nfl

t iy [0t o) — o). (¢12)

Now, by taking supremum in the inequality (3.12), we have

a)" ! a)*—ntl
s 0 L

_ < (
I

- / (b 5o p(s)ds

2 — Z/HB(t —a)
(n—DTMa—n+1)

sz yH
+ —= / t—s)*" 1 s)ds
( t an 1 b a)a n+1)
(n—2) 'F (a —n+2)
(t—a)"”

)l
a)n 1 b a)a n+1

(n—
( )( 2)'Fa n+2) )Hk yH

+ [ e a0+ 0]
(b —a)*p(a) (b—a) !
= {(nf T(a—n+t2) (1)

g@sz—yHB. (3.13)

+

=],

[+ nepo] o],

=]
yB

LY " p(b) + Iaap(t)} sz - yHB

Now, we estimate
|21(t) = y0)]| = [ = €0llue(®) = ()] + &l (Tw)®) — T OI]

p(a)Hyk(b) — y(b)H(b — g)a—n+l

< =&l Ol + & (— g ey )"
o &F(‘Zj"_; 5/ (6= 9750 Jn(s) — o)
ey €970 ste) — 6 a5} (G.14)

Similarly, by taking supremum in the inequality (3.14) to get
o=+,

<[1-a- [ targ + e o+ 0]
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>< p—
Jov =,
=[1-a(-0)]fw s, @15

Therefore, using (3.15) in (3.13), we have

R P ) 010

Thus, by induction, we get

ool <o I [-s0-O)w-ol, 6o
§=0

Since &, € [0,1] for all £ € N, the definition of © yields {, <1 and © <1

=0 <&

= &(1-0) <1 vken. (3.18)

From the classical analysis, we know that

2 1'3

T
l-z<e?=1 :z:+2! 3!+ , € [0,1].

Hence by utilizing this fact with (3.18) in (3.17), we obtain

< @ktlem (176) POLINE

=] -
B B
@k—i—l
=y — . 3.19
€<1_®) z§=0 € Yo yHB ( )
Thus, we have proved (3.10).
Since Z & = oo, then
k=0
e (10)Tio& 0 as ko 0. (3.20)

Hence using this, the inequality (3.19) implies klim llyr+1 — yl|z = 0 and therefore, we get
— 00
Y — y as k — oo. |

Remark 3.1. It is interesting to note that the inequality (3.19) gives the bounds in terms
of known functions, which majorizes the iterations for solutions of the equation (1.1)-(1.2)
fort e I.

4. CONTINUOUS DEPENDENCE VIA S—ITERATION

In this section, we shall deal with continuous dependence of solution of the problem (1.1)
on the boundary data, functions involved therein and also on parameters.
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4.1. Dependence on boundary data. Suppose y(¢) and 7(t) are solutions of (1.1) with
boundary data

Y9 (a) = ¢, §=0,1,2,--- ,n—2; y "B = ¢ (4.21)
and

79(a) =d;, 5 =0,1,2,- ,n—2 7" V() =5 (4.22)
where ¢, d; (=0,1,2,...,n —2), ¢, G are given elements in X.

Then looking at the steps as in the proof of Theorem 3.2, we define the operator for the
equation (1.1)- (4.22)

[v)

_ — d; : c F(a,5(b))(b—a)* "
Ty)t) =) = (t—a) + ((n _b 1)! (57, —y;))!;((a - 11 +2)

)t —ay!

(t—a)*1

b
T - (a—n+1) / (b S)an(s’?(s))ds

=+ ﬁ /{:(t — s)“_l.}'(s,y(s))ds, tel. (4.23)

The following theorem deals with the continuous dependence of solutions of equation
(1.1) on boundary data.

Theorem 4.3. Suppose the function F in equation (1.1) satisfies the condition (3.9). Consider the
sequences {yx }req and {y, } 1 generated normal S— iterative method associated with operators
T in (3.11) and T in (4.23), respectively with the real sequence {&,}72 in [0, 1] satisfying & < &
forall k € N. If the sequence {7, } 1=, converges to g, then we have

3M

Hy _yHB < W, (4.24)
where
U PR L

Proof. Suppose the sequences {yi } 5= and {7, } 1= generated normal S— iterative method
associated with operators T'in (3.11) and 7 in (4.23), respectively with the real sequence
{&k )72, in [0, 1] satisfying § < & for all k € N. From iteration (2.6) and equations (3.11);
(4.23) and assumptions, we obtain

|9s1(6) = T (1)

- H(Tzk)(t) - (T?k)(t)H

-1 -0+ (G e )

(t—a)" 1

b
R p— /a (b— s)a*”]:(s, zk(s))ds

+ ﬁ /at(t - s)"‘_l]:(s, zk(s))ds
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n—1)! (n—2)Ta—n+2)

(t —a)" 1

b
(n=1MN(a—n+1) /a (b S)a*”f(&gk(s))ds

- ﬁ /at(t - s)a_l]:(s,zk(s)>ds

+

e R

< 2 7l (t—a)! + L (t —a)"!
‘ ‘/—"(a, Zk(b)) - }—(a,zk(b))H(b _ a)afnjtl B
+< (n—2)!r(a—n+2) )(t—a)

(t_a)n71 b a—n
Tz 1)!I‘(a—n+1)/a (b=s)

1 ! _sa—l
+@/a<t )

F((s.20(5)) = F (5205 )Hds

=24 e -t
= ]Z:O I H (b—a) + M(b_ a)"!
(a)| 2k (b) — Z () ||(b — @)+
+ (p H (22)!;(04Hn+2) )(t—a)"—l

+

o S.}{;)n__; 5 / - $)77"p(s) | (5) = 20 (s) | s
(

+ F(la)/at(t 5)*"1p(s) sz — Zk(s Hds
2(b)]|(b — a)—+?
—M+( ( 2T (aHn—|—2 )t —ay

(t—a)! ’ “n
+(n—1)!r(a—n+1)/a(b_s) p(s)

F iy [0 900 ate) 30

Recalling the equations (3.13) and (3.15), the above inequality becomes

ds

zk(s) — Zx(s)

-7 <M+@Hz -z H ,
Hyk+1 yk+1HBf k k B

and similarly, it is seen that

-, <6+ () -

_ z_: &9 (t _ a)j _ (( Cp + ‘F(aazk(b))(b - a)a—n+ )(t _ CL)n—l

F (s 20(5)) = F (5,705 )Hds

(4.25)

(4.26)

(4.27)

Therefore, using (4.27) in (4.26) and using hypothesis © < 1, and § < & for all k € N, the

resulting inequality becomes
-7 <M+ Hz -z H
R I

<M+ &M+ [1 —fk(l - @)} Hyk _?’“HB
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<26 M + &M + [1 — &k (1 - @ﬂ Hyk —?kHB
< [1-@(1—@)”‘%—kaB+5k(1—@)(13_M@). (4.28)
We denote
Br = Hyk —?kHB >0,
Pk = Sk(l - @) € (0,1),
3M > 0.

’Yk:@_

oo

The assumption % < & for all £ € N implies Z &, = oo. Now, it can be easily seen that

k=0
(4.28) satisfies all the conditions of Lemma 2.2 and hence we have

0 <lim sup B < lim sup %

k—o0 k—o0
. _ . 3M
= 0 < lim sup Hyk — ka <lim sup ——
k—o0 B k—o0 (1 — @)
3M
= 0 < lim sup Hyk —ka < ——. (4.29)
k—oo B (1 — @)
Using the assumption klirn Yk =Y, klim U, = U, we get from (4.29) that
—00 —00
3M
(4.30)

Hy‘ﬂBS(L4»’

which shows that the dependency of solutions of BVPs (1.1)-(1.2) and (1.1)-(4.22) on given
boundary data. O

4.2. Closeness of solution via S—iteration. Consider the problem (1.1)-(1.2) and the cor-
responding problem

(D)7 = F(£.30)), (431)
fort € I =Ja,b], n —1 < a <n,n €N, with the given boundary conditions
79) =d;, j=0,1,2,--- ,n—2, 5" V(b) =75 (4.32)
where F is defined as Fand d; (j = 0,1,2,...,n — 2), ¢, are given elements in X.

Then by refereeing the steps as in the proof of Theorem 3.2, we define the operator for the
equation (4.31)- (4.32)

n

(Ty)(t) =

; F(a,g(b))(b - a)*—"H! n—1
TR ((n— D 2 Ta—n+t2) )t~ a)
(t—a)"?

b R
T - (a—n+1) / U S)C!fnf(s’y(s))ds

4+ ﬁ /at(t — s)a_1?<s,@(s))ds, tel (4.33)

|
N

| &
c(}\

<.
Il
o
<
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The next theorem deals with the closeness of solutions of the problems (1.1)-(1.2) and
(4.31)-(4.32).

Theorem 4.4. Consider the sequences {yi}rey and {7, }reo generated normal S— iterative
method associated with operators T in (3.11) and T in (4.33), respectively with the real sequence
{&11%20 in [0,1] satisfying 3 < & for all k € N. Assume that

(i) all conditions of Theorem 3.2 hold, and y(t) and y(t) are solutions of (1.1)-(1.2) and
(4.31)-(4.32) respectively.
(ii) there exists non negative constant e such that

() ~F(tw)| < e i (434

If the sequence {y,, }7=, converges to g, then we have

B 3{M +e(b— a)a<(n72)ll—‘%o¢7n+2) + ooy F(oikl))}
o, |
’ (1-9)

Proof. Suppose the sequences {y }—, and {7, } 7~ generated normal S— iterative method
associated with operators 7" in (3.11) and T in (4.33), respectively with the real sequence
{€1%20 in [0,1] satisfying § < & for all k € N. From iteration (2.6) and equations (3.11);
(4.33) and hypotheses, we obtain

(4.35)

9s1(®) = T )

- H(Tzk)(t) - (T?w(t)H

B ¢ ; ¢ F(a, zx (b)) (b — a)>—+! e
H;)j!(t‘” +((n_b1)!+ (n—k2)!F(oz—n+2) )iy

_ )1 b .
_ (n—g!r(of—n*-l)/a (b—s) }"(&zk(s))ds

+ ﬁ /at(t - s)a_l]-'(s, zk(s))ds

—d ; & Fla,zab)(b— a)o-m+ -
=2 Git-a - ((n—bl)! * (n7k2)!1“(a—n+2) )t~ a)

b R
D a—n+1) / (b= )"~ F (5,74(5) ) ds
- ﬁ /at(t - s)aflf(s,ik(s))dsH

n=2? iy *de e —a )
S LI | Ry 7 ¥ AN R | Lo
_]E:O (t—a) + ] (t—a)

+

i
H]:(a, zi (b)) — 7(a,§k(b))H(b _g)enl
+( (n—2)T(a —n+2)

(t_a')n_l b a—n
(n— 1)!I‘(a—n+1)/a (b-s)

(t—a)" !

+

f(s, zk(s)) - ?(s,?k(s)) Hds
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f(s,zk( )) f(s Zi(s )Hds

[l

(n—1)!

2 e — ds

(t—a) + (t—a)" !

4!

| 70,200~ Fla, 20| 6~y

ol (n—2)T(a—n+2) ) -
| |

‘ F(a,zr (b)) — ]-'(a’gk(b))H(b — q)anH
(n—2) (v —n+2)

—a)* 1 b a—n
T A, ¢
N G s )/b(b_sy*—" F(sa1(9) = F (5200 as

mn—DTMa—n+1
7 (s 30(0)) = 7 (5. 74te))
F (o

F(la)/at(ts)a !
+ﬁ/a(t—s)“1 (szk ) )Hds
oo =]

(b—a)’ + =1

I(S,Ek(s)) - 7(8,@(8)) Hds

+

+

(b—a)!

0
e(b—a)>—nHt 1 (t—a)" ! b -
+<(n—2>!F(a—n+2>>(’f_“) +(n—l)!F(a—n+1)/a(b_8) s

1 ! a—1
+m/a (t—s)* “eds

X <p<a>sz<b> —7(0)]|(b -

-2 (a—-n+2) )i oy

+ (n ﬁ’;,;[j“; 5 / . () () — () s

/ (t - 5)*p(s)

a)a—n+1

ds

2k (s) — Zx(s)

e(b ) N e(b—a)* " b —a)" 1  €e(b—a)®

(n— 2)'I‘ a— n+2) (n—1Ma—n+2) INa+1)
’zk b) — zk(b H b—a)* ntl

+< (n—2)T(a—n+2)

*xn_358i2+1%[@—sfwﬂﬁWﬂﬁ—%@W“

L(a)
M+(

)t = ay?

ol R e | EYC R 8 (4.36)
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Recalling the derivations obtained in equations (3.13) and (3.15), the above inequality
becomes

Hy’““ - y’f“HB < MAelb- “)a((n - 2)!r(1a sy g 1)!F(1a ) F(a1+ 1))
+@sz —zkHB, (4.37)
and similarly, it is seen that
sz ZkH <£k{M+ (b—a) ( —2) 'F (a—n+2) * (n—l)!F(loz—n+2) + F(al—kl))}
ST ) s

Therefore, using (4.38) in (4.37) and using hypothesis © < 1, and § < &, for all k € N, the
resulting inequality becomes

Hyk+1 ?k+1H

< [M+eb-a) ( 'I‘a n+2)+(n—1>!r(1a—n+2)+r(a1+1)ﬂ+ %k~ Zk
1 1
< M+ eo-a) (( 'I‘a n+2)+(nfl)!F(a—n+2)+F(a+1))}
FG[M 4 eb—a)° ((n 2)'r(1a n+2)+(n_1)1r(1a_n+2)+r(a1+1))]
+i-a(1-0)] - ka
< 26 [M + (b~ a) (n Q'I‘a n+2)+(n-1)!r(1a—n+2)+r(a1+1)ﬂ
1 1 1
oM +eb—a)® ((n—?)!F(a—n+2)+(n—1)!F(a—n—|—2)+F(a—|—1))}
+i-a(1-0)]fu-m,
<[t-a(1-0)]w -,
+&(1-0) e a>“(<nz>!r3a(:+2)®+) et * )| (4.39)
We denote

Br = Hyk *?kH >0,
B
pre = &k (1 - @> € (0,1),
3|M +e(b—a)® 1 + 1 e
(n—2)IT'(a—n+2) (n—1)IT(a—n+2) T'(a+1)

(17@) > 0.

The assumption § < & for all k € N implies Z &, = 00. Now, it can be easily seen that
k=0
(4.39) satisfies all the conditions of Lemma 2.2 and hence we have

T =

0 <lim sup S < lim sup

k—oc0 k— o0
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3[ M+ e(b—0)( oty + ot + v )|
—0< lim sup Hyk—ng <lim sup (n2)T(an42) " (n—1)!T'(an+2) * T'(oHl)
k—o0 B k—o0 (1_@)

3 {MJF e(b— a)a((n—Q)!Fga—n—Q—Q) + (n—1)!rga—n+2) + r(a,1+1))}

=0<lim sup Hyk—ka <
B

k—o0 (1 — @)

(4.40)

Using the assumption lim y; =y, lim 7, =7, we get from (4.40) that

k—o0 k—o0
3[M +e(b— a)a((nﬁ)!rga—nﬁ) + (nfl)!I‘%a*nJr?) + F(O}H))}
Hyin < , (4.41)
’ (1-9)

which shows that the dependency of solutions of BVP (1.1)-(1.2) on the function involved
on the right hand side of the given equation. O

Remark 4.2. The inequality (4.41) relates the solutions of the problems (1.1)-(1.2) and
(4.31)-(4.32) in the sense that if F and F are close as ¢ — 0, then not only the solutions of
the problems (1.1)-(1.2) and (4.31)-(4.32) are close to each other (i.e. ||y — y|lzg — 0), but
also depend continuously on the functions involved therein and boundary data.

4.3. Dependence on Parameters. We next consider the following problems

(D2)y(®) = F(t.y(®), m), (442)
fort € I =la,b], n —1 < a <n,n € N with the given boundary conditions
y(])(a’> = 5, ] = Oa 17 27 N = 27 y(n_l)(b> =0 (443)
and
(D)) = F (170, 12), (4:44)
fort € I =la,b], n—1 < a <n,n € N with the given boundary conditions
where F : I x X x R — X is continuous function, ¢;, d; (j =0,1,2,...,n—2), ¢, G are

given elements in X and constants 11, 112 are real parameters.

Let y(t), 7(t) € B and following steps from the proof of Theorem 3.2, define the operators
for the equations (4.42) and (4.44), respectively

n—2 Cj . c F a, b , b—a a—n+1 1

(Ty)(t)zj;j!(t—a)3+((n_b1)!+ ((ny—(;)ﬁ‘l()(i—ni—Q) )(t—a)
t—a n—1 b on
C(n— i)lr(i —n+1) / (b—s) 7(3’ y(s), “1)d3
+ F(la)/ (t— s)“’lf(s,y(s),ul)ds, tel (4.46)
and

_ n—2 s ; z F a,f(b 7 ) h— q)e—ntl o
Ty =) = (t=a) +((nfn! + ((ny ;);?((iner) )i -a)
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—a n—1 b
T (- S!F(o? “n+1) /a (b- S)afnf<s’y(s)’ “Q)ds
+ ﬁ /:(zf - s)a—lf(s,y(s),ug)ds, tel (4.47)

The following theorem proves the continuous dependency of solutions on parameters.

Theorem 4.5. Consider the sequences {yy}rey and {7, }reo generated normal S— iterative
method associated with operators T in (4.46) and T in (4.47), respectively with the real sequence
{6302 in [0,1] satisfying 3 < &, for all k € N. Assume that

(i) y(t) and y(t) are solutions of (4.42)-(4.43) and (4.44)-(4.45) respectively.
(ii) the function F satisfy the conditions:

o) (o) <50
and

HF(t,?ﬂ,Ml) - ]:(t,ul,,u2) H < T(t)‘,ul — pa,
where p, r € C(I,R,).

If the sequence {g,, }>2, converges to g, then we have

(b—a)™1

I N R
-7, < (i-o) )
(4.48)
where © = [(n _(Z)?F(E):}i(z)+ ) + (b(;j)ln)'l 1% p(b) + Iaaﬁ(t):| <1

Proof. Suppose the sequences {y; }7=, and {7}, generated normal S— iterative method
associated with operators T in (4.46) and T in (4.47), respectively with the real sequence
{6372, in [0, 1] satisfying 2 < &, for all k € N. From iteration (2.6) and equations (4.46);
(4.47) and hypotheses, we obtain

Hyk+1(t) = g (t) H
= |20 - Tz )|

; c Fla, 2,(b), 1) (b — a)* "+
:HZ (t*a)+<(n—b1)!Jr (nk—z)lr(a—n+2) )(tfa)

b
RN p—— /a (b-— s)o"”}'<s, zk(s), ,ul)ds

+ﬁ / t(t—s>a—1f(s,zk<s>,u1)ds

n—2 dj j C ]:(a,g (b),ﬂ )(b_ a)oc—n—i—l -
XS (G T e ey )

(t _ a)n—l

b
+ (n—l)!F(a—n—i—l)/a (b—s)(’_"}'(s,ék(s),u2>ds
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S
n—2 ‘Cj_de ) ch_EbH
< 3 (t CI,)j —+ (t _ a)nfl
jgo 7! (n—1)!

H]—"(a, 2, (b), 1) — ]:(a,zk(b),m)H(b — gyt
(n - 2)!I‘(a —n+ 2)

—g)n 1 b a—n
+ (n_&r(a)_mn/a o)
+ ﬁ /at(t — syt f(sazk(s)vM) - f(&z’“(s)””) Hds

—+
/

)(t —a)" !

f(s, zk($), ,ul) - F(S,Ek(s),,@) Hds

= gw (t—a) + H(: : f;” (t—a)"
| (@, 200), ) = Fla,2000), 2| 0 = )21 -
+( (n—2)IT(a — n + 2) )(t—a)
’ F(a, zk(b), p1) — f(a,?k(b),ul)H(b — q)o .
! ( (n=2)T'(a—-n+2) )(t —a)

+ (t —a) /bsan

(n -1 a—n+1)

F(s.20(),m1) = F (5. 70(5), 2 ) | s

T S'r(cg ;+1 / (b= )" F (s 2(s ) (E‘““)’M)H‘“
ol Il 4 CE YN B CENONA |

i / O OB s (RN | 2
a:%;ww b k ﬂwawl

+ (T(a()n - ;)!r(’;b—_nai;ﬂ )= oy

+

- ‘ds

(t— a)”*l b L
e [
1 t .
i L =9 )

p(a) sz(b) —zx(b) H (b— a)>—m+t
+( (n—2)T(a—n+2)

ds

) (t—a)"!

(t—a)" !

b
+ (n — 1)'F(a —n+ 1) /a (b — s)ad@(s)

2k (8) — Ek(s)Hds
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+F(1a)/at(t 5)*'p sz zk(s)Hds

r(a)|pu1 — p2|(b—a)
SMJF((n—‘Z)!F(a‘—n—l—Q))
—a n—1 b
Tz S!F(OB—TL—I— ) /a (b= )" "r(s) s — o s

by [

T?(a)HZk(b) — Ek(b)H(b )

ds

( (n—2)T(a—n+2) )i —a
T e RS ) PYB R
+ ﬁ /at(t s)*~'p sz Ek(s)Hds
<M (7“(51(1)‘/;1)';(/;2‘(bn—+a;) ) ‘Ml - /(: ’(bl;a)n— Lo~ (b) + ’,u1 _ uz‘la“r(t)

p(a)||z Zk(D)||(b — a)®
*( (lkz)m(;—i‘m) )

anfl b
+(n—§t)'F(03—n+1)/(b )7 (0)] | a(5) = 7o) s

b [ 650 Jats) — 3 s (449

Recalling the derivations obtained in equations (3.13) and (3.15), the above inequality
becomes

-1

‘m uz‘(b a) ) ’m uz’(b a)”

WHF@HHBSM+(W (@ —n+2) CET I
+ | = | L7 (1) + Oz — | (4.50)
and similarly, it is seen that
p1 — p2|(b—a) 1 — pa|(b—a)" !
HZ’C_EkHB Sgk{MJr((n ‘21)'r(:‘ n+2)) ‘ — (2‘ ! Lo )

®]+[1-&(1-9)] Hyk ~ Tkl - (4.51)

Therefore, using (4.51) in (4.50) and using hypothesis © < 1,and % < & forall k € N, the
resulting inequality becomes

+ ’m — p2| I

Hyk+1 ?kﬂ”

—1

‘/h M2‘(b a) ) ‘Ml ,u2’(b a)” [

< [ar+ ( (- 2)T(a—n+t2) (-1 () + | = pa[1a"r(0)
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==
B

—1

r(a)’m - uz‘(b - a)“) ‘ul - m‘(b —a)"

S[M+<(n_2)!r(a—n+2) (n—1)!

Iaa7n+1r(b) + ’/il — g

Iaar(t)]

n—1

r(a)|p—pe2|(b—a)®y |u1 — pg(b—a)
[ M+ ( & _‘ 2)!F(a‘— nt2) ) | (n‘— D!

s (t-0)fu-nl,

IaafnJrlT(b) + ‘,Ln — 2

127(1)]

can o (O IO ]
O T e N P [ )
M ()t o0 | e[ Lar)
+p-a(-8)u -,
<[-a)lns,
+€k(1 B @)3[M + (Tﬁﬂl;ﬁfi_(il?;) + “”Zbl)f;ljﬁnﬂr(b) + ’m — pi2 Iaar(t)} |
(4.52)
We denote
o=, 2o
=& (1-8) € (0,1),
3[M + (((n)_’;;ia‘_(b;ai) M_Z’i;a)nlfa“"“r(b) + \ul — 2 Ia“r(t)} .

" (1-9)

The assumption 3 < & for all k£ € N implies Z &, = 00. Now, it can be easily seen that
k=0
(4.52) satisfies all the conditions of Lemma 2.2 and hence we have

0 <lim sup By < lim sup %
k—o0 k—o0

= 0 < lim sup Hyk —kaB

k—oco
r(a)|p1—p2 |(b—a)® p1—pua | (b—a) "1 S )
3[M i ( (n=2)T(a—n+2) ) A e r(b) + ’m — p2|lq r(t)}
< lim sup
k— o0 (1 B @)

= 0 < lim sup Hyk fngB

k—oc0
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r(a)‘ 11— /Ll—/tg‘(b—a)"71

(b—a)° .
3[M+( (-2 (a—n+2) )+ LT (b) + ’,Ul — fi2

<Qar@ﬂ

< —
(1-9)
(4.53)
Using the assumption klim Yk = U, klim U, = U, we get from (4.53) that
—00 —00
r(a)|p1—p2|(b—a)® p1—pa |(b—a)™ " . o
H < 3[M * ( (n—2)IT(a—n+2) ) + (-1 L7 (b) + ’Nl — h2|la T(t)}
Y- yH = — )
’ (1-9)
(4.54)
which shows the dependence of solutions of the problem (1.1)-(1.2) is on the parameters
w1 and po. O

Remark 4.3. The result (4.54) deals with the property of a solution called “dependence of
solutions on parameters”. Here the parameters are scalars and also note that the boundary
conditions do not involve parameters. The dependence on parameters is an important
aspect in various physical problems.

5. EXAMPLE

We consider the following problem:

(Df)y(t)z%[%], tel0,],n—1<a<n,neN (5.55)
with the given boundary conditions
y(j)(o) =0,j=0,1,2,--- ,n—2, y(n—l)(l) -1 (5.56)

Comparing this equation with the equation (1.1), we get

feCUxRR%mmfﬁy@y:%F;ﬂ¥&Q}

Now, we have

F(t.y() - F.3(0)| < |

Bt = sin(y(1))) _ t —sin(g(t)
= 5

gﬁm@m—m@M
3t
T AR 57
< Tolvo 7). 557)
where p(t) = %
5.1. Existence and Uniqueness of Solutions. Therefore, we the estimate
(b — a)ap(a) (b — a)n—l a—n+1 [eY
© [<n7 Da-—n+2) " o o PO+ p(t)]
p(O) 1 a—n+1 @
- I 1)+ I%p(t
hn_mwm—n+m*wn_nl p(1) + pm]

- 0 1
_[m_mm@—n+m*xn—n

1o (1) + 1°p(8)] (p(0) = 0)
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_3 [(nfl)!r(la,nJrl)/o (1—s)a_”sds+ﬁ/o (t — 5)° Lsds

[E—

10
3 1 1
< — t<1). .
*10[(n—1)!F(0z—n—|—3)+F(a—|—2)]( <) (5.58)
If the quantit i{ ! + ! }< 1, then © < 1. In particular, we
Y 0l — DM@ —n+3)  Tlat+2)) ~ - P '
choose = 2, thenwehaven =[a] +1=[3]+1=2+1=3and
3 1 1
0< —
- 10[(3—1)!1“(%— +3)+F(%+2)]

3.1, 8
_ﬁ{§+ﬁ}
43
EN

~ (.1387

<1

We define the operator T : B — B for the given problem by

(Ty)(t) = % - I;F(l%)/o (1- s)—%% {%@(8))“8

1 t %35 s — sin(y(s))
+F(g)/0(t_s) g[f}ds,tef. (5.59)

Since all conditions of Theorem 3.2 are satisfied and so by its conclusion, the sequence {y; }
associated with the normal S—iterative method (2.6) for the operator 7" in (5.59) converges
to a unique solution y € B. This convergence under S-iteration process is faster than the
Picard, Mann and Ishikawa iteration processes.

Now, we will discuss the simplicity and fastness of the S- iteration method. By refereing
[7, 8,27, 34], the definitions of ay, by, ¢ and d; under S-iteration, Picard iteration, Mann
iteration and Ishikawa iteration are given, respectively:

k

(@) ap =~ {1 —(1- Z/)Oéﬁ} |l — 2¥]|,

(b) by = v*|jvy — 2",

k *
© e = [L= (1 =0)8] flwr a7,
k

@) di = [1 = (1=)%8] l|e1 = 2",

where v € [0,1) is contracting factor. For given u; = v; = w1 = z1 € R, the convergence
k
of sequences {ax}, {bx}, {cx} and {d;.} depend only the factors ©; = v* [1 —(1- V)aﬂ] ,
k k

0y = vk, O3 = {1 —(1- V)B] and O, = [1 —(1- u)QB] respectively. Therefore,
the following comparison table shows the values of the factors ©;, 02, ©3 and 04 under

respective iteration processes for the numerical example discussed in this paper with v =
© =0.138629441 and &, = 5, =

1.
5
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Iteration (k) | S-iteration (O,) | P-iteration (O3) | M-iteration (©3) | I-iteration (O,4)

1 0.078923781 0.138629441 0.569314720 0.629020380

2 0.006228963 0.019218122 0.324119251 0.395666639

3 0.000491613 0.002664197 0.184525861 0.248882379

4 0.000038800 0.000369336 0.105053289 0.156552089

5 0.000003062 0.000051201 0.059808384 0.098474454

6 0.000000242 0.000007098 0.034049793 0.061942439

7 0.000000019 0.000000984 0.019385049 0.038963056

8 0.000000002 0.000000136 0.011036193 0.024508557

9 0.000000000 0.000000019 0.006283067 0.015416382

10 0.000000000 0.000000003 0.003577043 0.009697218
Hence, observing the above table and Definitions 2.4, 2.5, it is easy to see that klim I _ 0,
klim Z—k =0 and klim o — 0. Therefore, we conclude that the S-iteration process is
faster than the Picard, Mann and Ishikawa iteration processes.
5.2. Error Estimate. Further, we also have for any yo € B

k+1
_ < - _
lyk+1 —ylls < o) v lyo — yllp
[ 43 r“
1757
< [ - } —llvo vl
¢ I-mm | Zimo &
( 7§3 )k'+1
< 17evE (5.60)

] lyo — ylls,
(-7 ) St

where we have chosen &; = 1%1 € [0, 1]. The estimate obtained in (5.60) is called a bound
for the error (due to truncation of computation at the k—th iteration).

5.3. Continuous Dependence. One can check easily the continuous dependence of solu-
tions of equations (1.1) on boundary data. Indeed, forco =c1 =dp =d1 =0, ¢, =1, G =
1, we have

_ 3M
ly —7ls < W

IN

~ 0.8707. (5.61)
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5.4. Closeness of Solutions. Next, we consider the perturbed equation:

(Df)@(t) — %[ﬂ} —t+ %’ t €10,1], (5.62)

with the given boundary conditions
5(0) =0, 7'(0) =0, 7"(1) = 5. (5.63)

Similarly, comparing it with the equation (4.31), we have

o) = 2[Ry L

k,.i

One can easily define the mapping T : B — B by

0= e 0 G e
+r(5/ 92 [Sism () s+ lds el (5.64)

In perturbed equation, all conditions of Theorem 3.2 are also satisfied and so by its con-
clusion, the sequence {7} associated with the normal S—iterative method (2.6) for the
operator T in (5.64) converges to a unique solutiony € B.

Now, one can easily prove the estimate:

oo

[F(ty(0) = Fty@) < = =« (5.65)
Consider the sequences {yx } 1o With yx — y as k — oo and {7, } 72, with g, > Jas k —
oo generated normal S— iterative method associated with operators 7' in (5.59)and T in
(5.64), respectively with the real sequence {&; } 72 =0 in [0, 1] satisfying 1 < ¢ forall k € N.

Then we have from Theorem 4.3 that for M = , a=0,b=1, e= %

ly—Tls < 3[M +e(b— a)a<(n—2)!F(1a—n+2) + Goowasary T+ F(a1+1))]
Y—YliB > (1 B @)

IN

~ 8.8062. (5.66)

This shows the closeness and dependency of solutions on functions which are involved
therein.
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5.5. Dependence on Parameters. Finally, we shall prove the dependency of solutions on
real parameters.
We consider the following integral equations involving real parameters j1, po:

IL3Mﬂ::%rZ:E%gdﬁz+u4,te[QlL (5.67)
with the given boundary conditions
y(0)=0,¢'(0) =0, y"(1) =1 (5.68)
and
_D*%ya)::%f 513?%@492-+ﬂ2},te[0,u, (5.69)
with the given boundary conditions
5(0) =0, 7(0) =0, 5"(1) = 5. (570)
Based on the above discussion, one can observe that p(t) = p(t) = %, r(t) = % and

therefore, we have © = ©. Hence by making similar arguments and from Theorem 4.5,

onecanhave (M =%, a=0,b=1, p(t) =p(t) = 3L, r(t) = 3)

(b—a)

T(a)’Itl—Mz‘(b—G)a 1= p2 a—ni1 o
n—2)T'(a—n+2 n—1)! a r H1— p2ida T
B 3IM + ( Gz a—nt2) D) 1, (b) + I,%r(t)
ly =79l < —
(1-9)
1 7(0) |1 —p2 mi—pz| 5 5t
i () b iy
i (1= %)
1757
3+ 12— ]
P S . (.71)
(1= %)
1757
In particular, if we choose i1 =1, po = %, then we have from (5.71) that
_ 3{%""17??/%1_%”
ly =9l <
(1= %)
1757
1.1659
< 7
~ 0.8613
~ 1.3537. (5.72)

This proves the dependence of solutions is on both boundary data and real parameters.

6. CONCLUSIONS

First, we proved existence and uniqueness of the solution of the BVP (1.1)-(1.2) using
S-iterative method. Next, we discussed various properties of solutions like continuous
dependence on the boundary data, closeness of solutions, dependence of solutions on pa-
rameters and functions involved therein. Finally, we gave suitable example which illus-
trate all proved results along with the comparison table showing that S-iteration method
is faster than Picard, Mann and Ishikawa iteration processes.
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