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Abstract. A Software-Defined Networking (SDN) controller plays a key
role for assuring the security and robustness of its underlying network
system. Previous studies focus on eliciting bugs in such SDN controller
via penetration testing or fuzzing without considering code coverage feed-
back from a target controller under testing. We propose FSF, a code
coverage-driven SDN fuzzer. We designed and implemented a fuzzing
algorithm to take into account coverage differences incurred by mutated
OpenFlow (OF) messages. FSF demonstrated its superiority in increas-
ing the code coverage of a target controller and generated unique 146
tests that trigger bugs in the latest version of Floodlight, a well-known
open-source SDN controller.

1 Introduction

Recent years have seen a surging interest in software-defined networking (SDN).
SDN is an innovative methodology to build a networking system wherein network
controlling attributes are abstracted by software referred to as an SDN controller.
SDN has been applied in diverse fields, such as cellular networks [4,31], IoT [11,
23], and broadband access [6,29] infrastructures, offering its own benefits for
large enterprises and telecommunication networks.

Meanwhile, the growing popularity of adopting SDN calls into question the
security of SDN systems. Yoon et al. pointed out that emerging SDN stacks
have introduced new attack vectors due to their design decisions on facilitat-
ing dynamic network flows and topology managements [32]. Previous studies
also introduced SDN security challenges [18,26] and manifested concrete attack
scenarios [5].

Security researchers have conducted fuzzing and penetration testing to
automatically gauge the security of off-the-shelf and open-source SDN sys-
tems [9,15,20,30]. Notably, DELTA [20] and BEADS [15] conducted fuzz test-
ing by randomly mutating seed traffic, which are generated by executing the
pingall and iperf commands from hosts. However, these approaches did not
leverage any feedback information from a controller under testing, thereby solely
depending on the input and output behaviors of the controller. They generated
tens of thousands of testing strategies, i.e., test cases, which were chosen at the
discretion of the testing analyst without any runtime feedback from a controller.
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Consequently, the generated test cases do not trigger diverse inherent behaviors
of the controller.

In this paper, we design and implement FSF, the first code coverage-driven
SDN fuzzer. FSF is designed to find bugs in a target SDN system by feeding
unexpected test inputs to the south bound communication channels between an
SDN controller and SDN switches. The crux of our approach is to leverage the
code coverage information obtained from an SDN controller to guide the test
case generation.

We evaluated FSF using Floodlight, a popular open-source SDN controller, to
vet its capabilities of increasing testing code coverage and discovering SDN con-
troller bugs. FSF outperformed DELTA, a previous state-of-the-art SDN fuzzing
tool, in covering code coverage and produced discovered 146 of unique test inputs
that trigger bugs residing in the controller.

Our main contributions are as follows.

1. We present a novel code coverage-driven fuzz testing algorithm tailored for
testing an SDN system. The proposed technique leverages the coverage infor-
mation from a controller to evolve test cases during a fuzzing campaign.

2. We implement the proposed algorithm in our prototype and evaluate it on
the latest version of Floodlight. FSF produced unique 146 tests that trigger
critical bugs, which affect the daily operations of an entire SDN system. To
the best of our knowledge, our tool is the first feedback-driven SDN fuzzer.

2 Background and Motivation

Software-Defined Networking. A network system consists of two main
planes: a data plane that forwards network packets between routers, and a con-
trol plane that computes network paths that forward packets. In traditional
networks, the data plane and the control plane tightly coupled within a single
device, which makes it hard to insert new functionalities or updates forwarding
rules into the device. SDN has emerged to overcome this problem. It conceptually
separates the control plane from the data plane, and they communicate with a
protocol called OpenFlow [3] to exchange the routing information. Changing the
flow table with a logically centralized controller is straightforward, thus easing
the management of a network system.

SDN Fuzz Testing. Fuzzing or fuzz testing is a software testing technique
that detects software security vulnerabilities and was first used by Miller in the
early 1990s [22]. Fuzzing feeds adversarial inputs to a program under test and
monitors resulting crashes [7,13,27,28,33].

Many studies have applied SDN fuzzing to enhance the security of SDN sys-
tems [9,15,20,30]. SDN fuzzing differs from general fuzz testing schemes. Due to
the intrinsic nature of a SDN system that consists of diverse architectural com-
ponents and their complicated interconnections, the following questions should
be addressed when designing a fuzzing algorithm: (1) which components provide
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an input (testing source)? (2) which components take this input (testing target)?
(3) which bugs or threats the algorithm find (detection criteria)?

DELTA [20], for example, implements a black box fuzzing technique that tests
an entire SDN system (testing target) consisting of SDN applications, control
channels, and hosts (testing source). In particular, their testing source mutates
SDN control flow sequences and input values of the control flow. It employs seven
detection criteria, including controller crash and switch-performance degrada-
tion. Another SDN fuzzer is BEADS [15]. BEADS drops, duplicates, delays,
and changes OpenFlow packets from malicious switches and injects ARP pack-
ets from malicious hosts to test the controller. They validate OpenFlow error
messages, network state, pair-wise connectivity, controller resource usage, and
switches based on the detection criteria.

Limitations of Previous SDN Fuzzers. Previous fuzzers expose some of the
erroneous behaviors of the SDN system, but their approaches have the limitation
of only observing the input and output behaviors of the controller as a black
box. They limit the mutations of the input data without runtime feedback or
controller internal information (e.g., code coverage) that can evolve test inputs to
trigger unexpected behaviors. In fact, none of the previous SDN testing methods
has applied this feedback information to the mutations. Thus, the generated
test input often fails to cover the diverse operations of an SDN controller. For
example, to modify an ongoing OpenFlow message, BEADS uses the following
strategy; modifies a specific field of a specific type of a OpenFlow message to a
specific value. Since there is no automatic guidance or feedback to systematically
select these values (field, type, modification values), they blindly select values
that are likely to trigger inherent bugs. As a result, their approaches are not
general to elicit diverse unexpected SDN controller behaviors.

3 Threat Model

In this paper, we assume a southbound interface (SBI) attacker. An SBI is an
interface between an SDN controller and its connected switches. An SBI attacker
is capable of compromising a switch or performing a man-in-the-middle attack
that feeds malicious OpenFlow messages to the controller on the SBI. Several pre-
vious studies have shown the feasibility of compromising practical SDN switches
by exploiting network operating systems using outdated software [24,25]. Once
an attacker compromises a switch, she is able to generate an arbitrary Open-
Flow message as controller input. It is also feasible for an SBI attacker to perform
an MITM attack by exploiting the communication channel between the control
plane and the data plane. The OpenFlow specification [3] recommends the use
of SSL/TLS protection to protect OpenFlow messages. However, many exist-
ing controllers are packaged with the default setting that disables the SSL/TLS
support to ease the initial deployment. Furthermore, the protection is frequently
disabled due to its noticeable performance degradation [5,10].
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Fig. 1. FSF architecture.

4 Design

This section provides an overview of FSF and then describes each procedure for
leveraging the coverage feedback from an SDN controller under testing, which
makes FSF distinctive from other fuzzing tools, including DELTA and BEADS.

4.1 Overview

Figure 1 depicts the overall architecture of FSF. At a high level, it takes a set
of user-configurable parameters. FSF then initiates a fuzz testing campaign.
Once the campaign is completed, FSF reports a set of discovered bugs. FSF
conducts a fuzz testing campaign in tandem with an SDN testing environment.
The testing environment consists of a controller under testing, a set of SDN
switches (data plane), and proxies that connect between the switches and their
controller. FSF orchestrates these testing components to conduct a coverage-
driven fuzzing testing campaign.

Testing Infrastructure. We implemented a proxy for each channel between
the controller and its connected switches. Thus, each of these proxies is able to
model the capability of an SBI attacker (Sect. 3).

A proxy has two roles: (1) forwarding benign OpenFlow messages, and (2)
sending manipulated OpenFlow messages to a controller. The first role is required
to maintain the continuous connections between the controller and its switches,
which is an intrinsic characteristic of an SDN system. The proxy simply forwards
incoming OpenFlow messages to avoid tampering with any ongoing transactions
originating from benign switches. The second role models the capability of an SBI
attacker. In the proxy, FSF mutates OpenFlow messages according to a given
mutation policy and then sends these messages to elicit erroneous behaviors in
the controller. The user-provided configuration parameters govern the distinction
between benign and malicious switches. For instance, when Switch 1 in Fig. 1 is
configured as a malicious switch, its corresponding Proxy 1 feeds diverse tests
to elicit malicious behaviors in the controller.
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Testing Procedure. Given a configuration file, FSF conducts three phases.
Phase I collects seed messages by monitoring ongoing messages or by generating
arbitrary OpenFlow messages (Sect. 4.2). Based on the collected seed messages,
Phase II conducts a fuzzing campaign (Sect. 4.3). Specifically, it splits seed mes-
sages into several message sets, where the length of each is governed by a given
configuration parameter. For each message set, FSF randomly mutates those
messages in the set and feeds the mutated set to the controller. It then obtains
the instruction coverage of the controller and leverages the feedback for subse-
quent fuzzing iterations. Phase III determines whether each mutated message set
triggers bugs residing in the controller, thus serving as a bug oracle (Sect. 4.4).

4.2 Collecting Seed Messages

FSF begins a fuzzing campaign by collecting seed messages, which are observed
from configured proxies. Because our testing target is an SDN controller, we only
consider OpenFlow messages from a malicious switch to the controller. To diver-
sify seed messages, we first identified what types of OpenFlow messages belong
to switch-to-controller flows. According to the OpenFlow v1.3 specification [3],
of 30 message types, 15 types are switch-to-controller OpenFlow messages. Note
that DELTA [20] and BEADS [15] only covered six message types out of these
15 types (40%), which the pingall and iperf commands are able to trigger.

FSF considers all the 15 types of switch-to-controller messages. This means
that FSF covers more diverse code spots in a target controller, thereby increas-
ing the possibility of eliciting unexpected behaviors. We collect seed messages
through three methods: (1) capturing packets in the stand-by state; (2) capturing
packets after executing pre-defined commands to the control plane or data plane;
and (3) generating packets according to the OpenFlow grammar specification.

Stand-By State. A proxy gathers seed messages by capturing network pack-
ets when a controller is in the stand-by state, awaiting incoming OpenFlow
messages. In this state, the controller is involved only in (1) handshaking proce-
dures that establish connections between the controller and its switches and in
(2) checking the stability of established connections.

Commands Sent to the Control or Data Plane. To collect diverse seed
messages, FSF lets the controller and its switches execute pre-defined commands.
It then captures the packets caused by the exercised commands. FSF sends
commands to the controller via its REST API. For instance, FSF inserts a flow
rule to a switch and then removes it to generate FLOW REMOVED messages. It
also performs commands to the data plane using switch command-line interface
(CLI) or host CLI. For instance, FSF asks a switch to disconnect a connection
and reconnect it on a specific switch port to capture a PORT STATUS message.

Generating Packets. The aforementioned methods are unable to cover the
remaining four types. For these messages, FSF generates random messages
according to the OpenFlow v1.3 specification [3]. When generating these mes-
sages, FSF identifies data fields to fill as well as their constraints and then assigns
random values to generate seed messages.
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Algorithm 1. Feedback-driven SDN Fuzzing Algorithm.
1 function Fuzzing(conf, seed msgs, controller, proxy, switch)
2 cov base ← ResetComponent(controller, proxy, switch)
3 for i ← 0 to conf.sizeq do
4 subset ← RandomSample(seed msgs, conf.sizes)
5 Q.enqueue(subset, 0)

6 while Q �= ∅ do
7 subset, counter ← Q.dequeue()
8 test cases ← MutateSubset(subset)
9 proxy.send(test cases)

10 unseen msgs ← GetUnseenMsgs()
11 found bug, cov ← Evaluate(controller, proxy, switch)
12 bugs.append(found bug)
13 if cov base < cov then
14 mutated m, non mutated m ← SplitMsgs(test cases)
15 Q.enqueue(mutated m.append(unseen msgs, conf.sizes),0)
16 Q.enqueue(non mutated m.append(unseen msgs, conf.sizes),0)
17 cov base ← cov

18 else if counter < conf.thresholdc then
19 Q.enqueue(subset, counter + 1)

20 return bugs

4.3 Coverage-Driven SDN Fuzzing

Given a set of seed messages, FSF performs code coverage-driven fuzz testing
by leveraging the coverage feedback from a target SDN controller. Algorithm 1
describes the overall fuzzing procedure. The underlying idea is to discard mes-
sages that caused no increase of code coverage and to give more chances to
messages that already increased code coverage. Our assumption is that a mes-
sage that helped increase code coverage is likely to be a good seed for further
mutations, increasing code coverage.

The algorithm starts with a configuration file (conf ), seed messages
(seed msgs), and instances of a controller, proxies, and switches.

FSF begins by resetting all the components in a testing environment and
computing the baseline code coverage of the controller in Ln 2. Lns 4–5 initial-
ize a test queue Q by assigning multiple input subsets, each of which contains
randomly sampled messages from seed msgs. Ln 5 enqueues each subset with its
counter value, which is later used for discarding subsets tested multiple times.
The size of Q and subset is configurable by setting conf.sizes and conf.sizeq.

For each iteration, FSF mutates a message subset dequeued from Q, sends
the mutated messages in this subset, and evolves the message set by leverag-
ing the feedback of a code coverage difference from the target controller, as
Lns 6–19 show. The MutateSubset function in Ln 8 mutates randomly chosen
messages in the subset. There are various ways to mutate messages such as flip-
ping multiple bytes or inserting dummy bytes but, based on the results of our
empirical study (Sect. 5.1), we selected the flipping multiple bits operation. Ln 9
sends messages in test cases to the controller one by one. Note that there exist
certain messages that require the precedence of a request from the controller
(e.g., MULTIPART REPLY). To address this, FSF invokes a REST API to incur the
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corresponding request (e.g., MULTIPART REQUEST) from the SDN controller before
sending a response message from the proxy as its replying message.

The GetUnseenMsgs function in Ln 10 collects previously unobserved mes-
sages. The unseen messages are switch-to-controller messages that occur after
performing Ln 9. Their contents are unique so that FSF has not observed before-
hand. Adding unseen messages to test cases improves the diversity of seed mes-
sages on which the mutations are performed. Therefore, we put these unseen
messages in the queue later in Lns 15 and 16. Ln 11 performs an evaluation
to determine whether bugs are triggered through the implemented bug oracle
(Sect. 4.4) and to measure the cumulative code coverage in the controller.

If the mutated test cases successfully hits new code space in the controller,
FSF enqueues it to Q (Ln 13–17). As test cases consists of mutated and
non-mutated messages, FSF splits them by invoking the SplitMsgs function
in Ln 14. Ln 15 enqueues the purely mutated messages (mutated m) to Q.
Because the size of the mutated m is smaller than the conf.sizes, the num-
ber of (conf.sizes-len(mutated m)) of unseen msgs is randomly selected and
appended to mutate m. The same process is used to enqueue non-mutated mes-
sages (non mutated m) because there is a chance that they contribute to increas-
ing the code coverage when they are mutated later (Ln 16). We designed the
algorithm to refine messages by separating mutated messages from non-mutated
messages since non-mutated messages were already tried in previous iterations.
Thus, we create a new message set by adding several unseen messages to mutated
messages, which help the odd of increasing code coverage. At the same time, it
gives another chance to non-mutated messages by creating a new message set
with additional unseen messages.

If the test cases does not touch any new code spots, FSF does not discard it
immediately. We give it more chances to be used in further testing by putting
them to Q with an increased counter, as shown in Ln 19. The value of the counter
threshold conf.sizes is also determined by a given configuration file.

4.4 Bug Oracle

The bug oracle determines whether test inputs trigger bugs or not by monitor-
ing the components of the testing environment. We describe four standards to
implement a bug oracle.

Controller Process Termination. FSF checks whether the controller process
has terminated or crashed. In SDN, because multiple switches are continuously
connected to an SDN controller, the controller’s abrupt termination causes a
denial of service for the entire SDN network.

Control Plane Resource Exhaustion. FSF also checks whether the CPU
usage of the control plane process suddenly surges after sending testing messages.
The abrupt increased usage when compared to a benign baseline indicates an
opportunity for a denial of service, which impairs the controller’s ability to deal
with OpenFlow messages. Therefore, a bug that exhausts the CPU usage of the
control plane can drop the QoS of the entire network.
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Benign Switch Disconnection. We consider whether a benign switch is dis-
connected from the controller. A benign switch, e.g., switch 0 in Fig. 1, is a
switch that is not compromised by the SBI attacker. When a mutated switch-
to-controller message from a compromised switch contributes to other unrelated
switch-to-controller channels being disconnected, the bug oracle considers it a
DoS for benign switches.

Inter-host Communication Disconnection. The final bug oracle standard
is a pair-wise connectivity test to check whether the data plane network works
well. In particular, our testing scheme uses pingall command from the hosts
to check that all hosts are reachable from all other hosts. This is effective in
detecting message spoofing attacks and connectivity attacks.

5 Evaluation

We evaluated FSF using a real-world SDN system. We preliminary analyzed the
efficacy of deployed mutation operations (Sect. 5.1), and measured the perfor-
mance of FSF for improving testing code coverage (Sect. 5.2) and finding bugs
(Sect. 5.3).

Experimental Setup. We evaluated FSF on the latest version (v1.2) of Flood-
light [1]. We setup our system within a Virtual Box with an Intel core i7-9700K
CPU and 9 GB of RAM. To measure the instruction coverage of the controller
under testing, we used JaCoCo [2], a Java code coverage library. JaCoCo con-
ducts online instrumentation in which instrumentation code is inserted in Java
byte code when Java classes are loaded into main memory. We set the timeout to
be 24 h for each fuzz testing campaign, and measured the cumulative instruction
coverage of the controller during the testing time.

5.1 Operation Significance

To compare the efficacy of different mutation operations, we implemented a base
fuzzer that only uses five mutation operations but leverages no feedback from
the controller. This fuzzer takes following procedures: (1) setting the proxy to
mutates observed switch-to-controller messages with a 10% probability; (2) it
periodically generating multiple switch-to-controller messages according to the
procedure described in Sect. 4.2.

Mutation Operations. We designed five mutation operations as follows. Note
that each operation is designed to explore the diverse control flow of the con-
troller under testing.

(a) Flipping multiple bits: it selects and flips multiple random bits. The number
of bits to be mutated is randomly chosen from 1 to one tenth of all available
bits.

(b) Flipping multiple bytes: it selects and flips the selected bytes. The number
of mutated bytes is randomly selected from 1 to 10.
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Fig. 2. The instruction coverage of different fuzzers running for 24 h.

(c) Flipping single bit : it flips one randomly chosen bit in the message.
(d) Inserting dummy bytes: it inserts random bytes at the random position

within the message. The length of the dummy is randomly chosen from
one byte to 71,680 bytes.

(e) Changing multiple fields: it selects multiple random message fields, and
change the selected field values to random values while preserving the type
constraints according to the OpenFlow specification [3]. The number of
mutated fields is randomly set from 1 to 20% of all available fields.

We compared the instruction coverage of the controller when each single
mutation operation was applied. The objective here is to gauge how each muta-
tion affects on increasing the instruction coverage of the SDN controller under
testing.

Figure 2a shows the instruction coverage of preliminary base fuzzer with five
operations for 24 h. Note that the flipping multiple bits operation touched the
most number of instructions, 377,970 instructions in total. Based on the above
observation, we adopted the flipping multiple bits operation to FSF.

We further analyzed root causes of observed coverage differences among
the different mutation strategies. Floodlight internally uses OpenFlowJ, which
parses a given OpenFlow messages according to the OpenFlow protocol specifi-
cation. When a received message does not meet this specification, OpenFlowJ
raises an exception, hindering to reach a deeper code region. Furthermore,
each message field in a OpenFlow message requires a different primitive type,
such as uint8, uint32, and uint64. Non-compliance of such primitive type
requirements will also cause low code coverage. The three mutations of chang-
ing multiple fields, flipping multiple bytes, and inserting dummy bytes are
more likely to generate OpenFlow messages that do not satisfy the specifica-
tion nor the primitive type constraints. For instance, flipping multiple bytes
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often breaks a required type constraint. For example, the Capabilities field
value in a FEATURES REPLY message should have one of the following values:
0x00000000,0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000020,
0x00000040, and 0x00000100. When flipping multiple bytes of this message, this
mutation is able to generate a message with 0x00000011, which is not a valid
OpenFlow message.

Flipping multiple bits is a simple but effective mutation strategy in prac-
tice. It is widely used in many fuzzers [12,14,33]. As shown in Fig. 2a, flipping
multiple bits also was the most effective mutation strategy than other ones in
terms of improving code coverage. Bit flipping causes no significant change in
its target field, thus resulting in a high chance of not violating the aforemen-
tioned constraints. Also, flipping multiple bits is better than flipping single bit
in generating more diverse tests.

5.2 Coverage Improvement

We compared the coverage improvement of FSF with that of two other fuzzers:
(1) a preliminary base fuzzer with the flipping multiple bits operation (Sect. 5.1),
and (2) DELTA [20], a state-of-the-art SDN security assessment framework.
Unfortunately, the DELTA project [20] did not contain a fuzz testing function
at the time of writing. The project does, however, support penetration testing,
a key task of DELTA with 40 known attack scenarios. To compare our tool
with DELTA, we measured the number of covered instructions after conducting
penetration testing.

Figure 2b shows the instruction coverage of different fuzzers. We observed
that FSF and the base fuzzer significantly outperformed DELTA on instruc-
tion coverage. Recall from Sect. 4.2, both fuzzers leverage all of the switch-to-
controller OpenFlow message types, while DELTA only relies on a set of limited
known attack scenarios. Therefore, we concluded that it is important to have a
diverse set of seed messages to conduct comprehensive testing of an SDN system.

We also observed that FSF touched 4,835 more instructions than base fuzzer.
As stated in Sect. 5.1, the main difference between the preliminary base fuzzer
and FSF is the existence of a coverage feedback loop. Therefore, we note that the
difference in the instruction coverage comes from the coverage feedback iteration.

5.3 Bugs Found

We further analyzed FSF in terms of its bug finding ability. Recall from Sect. 4.4
that we consider four types of bugs as our detection criteria: (1) controller process
termination, (2) control plane resource exhaustion, (3) benign switch disconnec-
tion, and (4) inter-host communication disconnection. Table 1 summarizes the
number of test instances that trigger bugs residing in the target SDN controller.
We counted the number of distinct tests that trigger the bugs based on two
different metrics that each column represents.

The second column in Table 1 shows the number of mutated message sets
that trigger the corresponding bug. In total, 1 controller process termination,
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Table 1. The number of test instances that trigger bugs.

Bug oracle Total test instances Unique test instances

Controller process termination 1 0

Control plane resource exhaustion 0 0

Benign switch disconnection 198 132

Inter-host communication
disconnection

18 14

198 benign switch disconnection, and 18 inter-host communication disconnec-
tion bugs with their test instances were reported during the 24 h of a fuzzing
campaign. We observed that FSF successfully triggered three types of bugs.
Benign switch disconnection imposes a DoS for other benign switches. Hosts can
not communicate with each other when disconnection occurs. Furthermore, the
controller process crashes cause a DoS for the entire SDN network.

As a postmortem analysis, we extracted mutated message sets (i.e.,
test cases) that successfully triggered bugs, send each of it in initial testing
infrastructure, and see whether same bugs were triggered or not. Additionally,
we minimize the reproducible test cases by leveraging delta debugging [30,34]
technique to get a minimized message set that causes the same bug. Finally, we
compare minimized subsequence with each other in terms of sequence length,
message type, and message length to count the number of unique message sets.
As the third column in Table 1 shows, FSF found unique 146 test instances.

We further analyzed the 14 minimized unique instances that triggered the
inter-host communication disconnection and identified two unique bugs via con-
ducting postmortem analyses on the controller source with the input instances.
One bug caused the failure of ping operations between hosts under benign
switches. When a malicious switch sends an identified attack payload, this packet
contributes hosts under benign switches to disconnecting from the network, caus-
ing a remote denial of service. Another bug caused not only the failure of ping
operations but also the flooding of PACKET OUT messages, demonstrating a fea-
sible denial of service. Both bugs got assigned CVE numbers and have remained
in the reserved status at the time of writing. On the other hand, the instances
triggered the controller termination was not reproducible in the postmortem
analysis.

6 Discussion

FSF only supports the latest version of Floodlight. However, it is straightforward
to apply it to other types of SDN controllers, e.g., POX, ONOS, ODL, because
the core idea of FSF in leveraging code coverage of the controller is indeed
platform agnostic.

FSF only adopted the flipping multiple bits mutation. However, we believe
that consolidating multiple mutations will bring a better result in terms of finding



52 H. Kim et al.

bugs as well as improving code coverage. Also, deploying combinatorial testing [8]
that mutates fields with only known interesting values helps prune unnecessary
test cases, enabling an efficient fuzzing campaign.

Note that the mutation ratio for the flipping multiple bits mutation is an
important parameter to effectively trigger bugs [7]. Thus, exploring optimal
mutation ratios for a fuzzing campaign can be a promising future direction of
research.

We only implemented the bug oracles that detect the availability of an under-
lying SDN network. However, the bug oracles can be extended to check the
confidentiality [21] and integrity of a target SDN network.

7 Related Work

SDN Attacks and Defenses. Many previous studies have presented attacks
and defenses that can occur in SDN [5,16,17,19,26]. Benton et al. [5] presented
the feasibility of an MITM attack in control channels due to the lack of SSL/TLS
adoptions by vendors. Kazemian et al. [16] proposed an SDN system hardening
tool. They identify all state changes in the communication channel, and check
network policies in real time based on the header space analysis.

There exist previous survey studies to summarize the various SDN security
issues [17,19,30,32]. Scott-Hayward et al. [30] proposed possible DoS attacks due
to the limitations due to the design decisions, including centralized controllers
and network flow tables. Flow Wars [32] presented a survey for the possible
attacks with its attack vectors. They found 14 attacks and 22 concrete attack
scenarios. For each attack classification, they suggested defense mechanisms.

SDN Fuzzing. Based on these SDN security problems, prior studies have been
actively conducted on implementing automated testing tools to identify vulner-
abilities [9,15,20,30]. DELTA [20] deploys a blackbox fuzz testing technique. It
models the fuzzing input source to be malicious applications, control channels,
or hosts. The input sources mutate SDN control flow sequences or input values
of such control flows. BEADS [15] assumes malicious switches and hosts. It sup-
ports various mutations, including dropping, duplicating, delaying, and chang-
ing OpenFlow messages as well as ARP injection operations to elicit erroneous
behaviors in an SDN system. AIM-SDN [9] focuses on identifying problematic
data inconsistencies between data stores, which may exist in an SDN system.
It uses REST API and SBI to perform fuzz testing to find data inconsistency
problems.
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