&)

w s W

o N

49

Failure Recovery in Resilient X10*

DAVID GROVE, IBM T. J. Watson Research Center

SARA S. HAMOU DAT, Australian National University, Sorbonne Université, and INRIA Paris
BENJAMIN HERTA, IBM T. J. Watson Research Center

ARUN IYENGAR, IBM T. J. Watson Research Center

KIYOKUNI KAWACHIYA, IBM Research — Tokyo

JOSH MILTHORPE, Australian National University

VIJAY SARASWAT#, Goldman Sachs

AVRAHAM SHINNAR, IBM T. J. Watson Research Center

MIKIO TAKEUCHI, IBM Research — Tokyo

OLIVIER TARDIEU, IBM T. J. Watson Research Center

Cloud computing has made the resources needed to execute large-scale in-memory distributed computations
widely available. Specialized programming models, e.g., MapReduce, have emerged to offer transparent fault
tolerance and fault recovery for specific computational patterns, but they sacrifice generality. In contrast, the
Resilient X10 programming language adds failure containment and failure awareness to a general purpose,
distributed programming language. A Resilient X10 application spans over a number of places. Its formal
semantics precisely specify how it continues executing after a place failure. Thanks to failure awareness, the
X10 programmer can in principle build redundancy into an application to recover from failures. In practice
however, correctness is elusive as redundancy and recovery are often complex programming tasks.

This paper further develops Resilient X10 to shift the focus from failure awareness to failure recovery, from
both a theoretical and a practical standpoint. We rigorously define the distinction between recoverable and
catastrophic failures. We revisit the happens-before invariance principle and its implementation. We shift most
of the burden of redundancy and recovery from the programmer to the runtime system and standard library. We
make it easy to protect critical data from failure using resilient stores and harness elasticity—dynamic place
creation—to persist not just the data but also its spatial distribution.

We demonstrate the flexibility and practical usefulness of Resilient X10 by building several representative
high-performance in-memory parallel application kernels and frameworks. These codes are 10x to 25X larger
than previous Resilient X10 benchmarks. For each application kernel, the average runtime overhead of resiliency
is less than 7%. By comparing application kernels written in the Resilient X10 and Spark programming models

*This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published at https://doi.org/10.1145/3332372

TResearch performed during PhD studies at the Australian National University

#Research performed while employed at IBM T. J. Watson Research Center

Authors’ addresses: David Grove, IBM T. J. Watson Research Center, groved @us.ibm.com; Sara S. Hamouda, Australian
National University , Sorbonne Université , INRIA Paris, sara.hamouda@inria.fr; Benjamin Herta, IBM T. J. Watson Research
Center, bherta@us.ibm.com; Arun Iyengar, IBM T. J. Watson Research Center, aruni @us.ibm.com; Kiyokuni Kawachiya,
IBM Research — Tokyo, kawatiya@jp.ibm.com; Josh Milthorpe, Australian National University, josh.milthorpe @anu.edu.au;
Vijay Saraswat, Goldman Sachs, vijay @saraswat.org; Avraham Shinnar, IBM T. J. Watson Research Center, shinnar @us.
ibm.com; Mikio Takeuchi, IBM Research — Tokyo, mtake @jp.ibm.com; Olivier Tardieu, IBM T. J. Watson Research Center,
tardieu @us.ibm.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions @acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2019/7-ART15 $15.00

https://doi.org/10.1145/3332372

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

https://doi.org/10.1145/3332372

50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:2 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

we demonstrate that Resilient X10’s more general programming model can enable significantly better application
performance for resilient in-memory distributed computations.

ACM Reference Format:

David Grove, Sara S. Hamouda, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya, Josh Milthorpe, Vijay
Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu. 2019. Failure Recovery in Resilient X10.
ACM Trans. Program. Lang. Syst. 41, 3, Article 15 (July 2019), 30 pages. https://doi.org/10.1145/3332372

1 INTRODUCTION

The explosive growth of compute, memory, and network capacity that is economically available in
cloud computing infrastructures has begun to reshape the landscape of Big Data. The design and
implementation of the initial wave of Big Data frameworks such as Google’s MapReduce [Dean and
Ghemawat 2004] and the open-source Hadoop system [Cutting and Baldeschwieler 2007; White
2009] were driven by the need to orchestrate mainly disk-based workflows across large clusters
of unreliable and relatively low-performance nodes. Driven by increasing system capability and
new compute and data intensive workloads, new programming models and frameworks have begun
to emerge focusing on higher performance, in-memory distributed computing. Systems such as
HaLoop [Bu et al. 2010] and M3R [Shinnar et al. 2012] enhanced the performance of MapReduce by
enabling in-memory caching of data in iterative MapReduce workflows. Specialized systems such as
Pregel [Malewicz et al. 2010], GraphLab [Low et al. 2012], MillWheel [Akidau et al. 2013], and
many others were built to optimize the performance and programmability of specific application
domains. More recently, the Apache Spark system [Zaharia et al. 2012] and its underlying Resilient
Distributed Dataset (RDD) abstraction and data-parallel functional programming model have gained
significant traction. The Spark programming model is significantly more general-purpose than prior
Big Data frameworks. However, by design, Spark still presents a heavily restricted programming
model. Spark focuses on functional data-parallel operations over immutable RDDs and declarative
SQL-like operations over DataFrames [Armbrust et al. 2015]. Spark hides scheduling, distribution
and communication decisions from the application programmer, and provides a single built-in
approach to fault tolerance.

While transparent fault tolerance has obvious benefits, the one-size-fits-all approach has drawbacks
too. Many applications can take advantage of domain-specific strategies for fault management that
translate into all kinds of savings, e.g., time, memory, disk, network, power, etc. Some applications
can evaluate or estimate the loss of precision resulting from a fault and decide to accept this loss.
Scientific simulations can often rely on conservation laws—mass, volume—to fill gaps in data sets.
The architecture of an application can also influence the choice of a fault tolerance approach. For
instance, global checkpoints are well suited for bulk synchronous algorithms, whereas MapReduce
workloads are better served by per-task checkpoints.

The Asynchronous Partitioned Global Address Space (APGAS) programming model [Saraswat
et al. 2010] has been demonstrated to enable both scalable high performance [Milthorpe et al. 2015;
Tardieu et al. 2014] and high productivity [Richards et al. 2014] on a variety of High Performance
Computing (HPC) systems and distributed applications. Although originally developed in the context
of the X10 language [Charles et al. 2005], the core concepts of the APGAS programming model
can be found in a number of other HPC programming systems including Chapel [Chapel 2016],
Habanero [Cavé et al. 2011; Kumar et al. 2014], Co-Array Fortran 2.0 [Yang et al. 2013], and
UPC++ [Zheng et al. 2014]. Recent work on Resilient X10 [Crafa et al. 2014; Cunningham et al.
2014] enhanced APGAS with failure containment and failure awareness. An X10 application spans
over a number of places, typically realized as separate operating system processes and distributed
over a network of computers. When places fail, tasks running at surviving places continue to execute.
Lost places and tasks are reported to survivors via software exceptions. Application programmers

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

https://doi.org/10.1145/3332372

99

100
101
102
103
104
105
106
107

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Failure Recovery in Resilient X10 15:3

can implement exception handlers to react to place failures and take corrective actions. The order
of execution of the surviving tasks cannot diverge from the failure-free execution, even in case of
orphan tasks, i.e., tasks that have lost their parent task. This happens-before invariance principle is
crucial to preclude races between orphan tasks and failure handling code. But it does not come for
free as it requires the runtime system to maintain its control state using fault-tolerant algorithms and
data structures.

Despite these advances, programming fault tolerance in Resilient X 10 remains challenging. There
is no built-in redundancy outside of the happens-before invariance implementation. Tasks at failed
places cannot be respawned magically. Data at failed places is lost. Lost places are no longer available
to host tasks or data, creating holes in the address space. In short, programming fault tolerance is
rather difficult and error-prone. Moreover, there is little point to the exercise if the resilient code is
significantly slower than the original. In most scenarios, running the non-resilient code repeatedly
until success is a better trade-off. Beyond these practical concerns, there are also foundational issues.
The formal failure model of Resilient X10 is too permissive: all the places can fail at once. The
guarantees of Resilient X10 are formally valid in this scenario. But there is no way for an application
to recover from such a catastrophic failure. While the Resilient X10 programmer can persist data by
using an external data store, this is a priori a recipe for disaster as the happens-before invariance does
not encompass foreign libraries.

In this paper, we revisit Resilient X10 to extend, improve, or revise aspects of the language, its
semantics, and implementation to establish a practical general framework for efficient in-memory
distributed computing with programmable fault tolerance. Our goal is to evolve Resilient X10 so
that it not only enables failure recovery code to exist in theory, but makes the development of
recovery code a rewarding experience. Our work is driven primarily by our experience in porting
existing realistic applications, frameworks, and class libraries to Resilient X10 and in developing
new applications. Our contributions provide dramatic increases to programmers’ productivity and
applications’ performance:

e We rigorously specify resilient data stores and revise the failure model and happens-before
invariance principle to accommodate them. We implement two resilient data stores with
different trade-offs: a resilient store based on Hazelcast [Hazelcast, Inc. 2014], an off-the-shelf
external distributed store, and a resilient store implemented in pure Resilient X10. With these
stores, application programmers can trivially protect from failure application data deemed
critical.

e We augment the language, its semantics, and runtime system to permit the dynamic creation of
places. The combination of dynamic place creation with generalized indirect place addressing
in the standard library enables non-shrinking recovery, that is, after recovery the program will
have access to the same number of places as it did before the failure. This stability in the
number of places significantly reduces the complexity of the application’s failure recovery code
since it avoids the need to redistribute data or otherwise change the program’s communication
topology.

o We identify and address performance bottlenecks in the existing open-source implementation
of the happens-before invariance principle that cause up to 1000x slowdowns on common
code patterns.

e We implement and empirically evaluate a suite of representative Resilient X10 application
kernels including typical Big Data problems from the machine learning domain, scientific
simulations, and global dynamic load balancing. Most are based on pre-existing X10 applica-
tions with small localized code changes for resiliency. These codes comprise a significantly
more realistic corpus of APGAS programs—10x to 25X greater code size—than any prior

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

L N S

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:4 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

evaluation of Resilient X10. Across all our application kernels, the average overhead imposed
by resiliency on non-failing runs was under 7%, and often well under.'

e Where possible, we compare the performance of the X10 kernels to equivalent kernels written
using the Spark programming model to demonstrate that the additional flexibility provided by
the APGAS programming model can yield significant performance benefits.

Section 2 presents the fundamental capabilities that the Resilient X10 system provides to the
programmer; it includes a brief review of the APGAS programming model to provide necessary
background. Section 3 illustrates how these capabilities can be combined to build resilient applications
and frameworks. Section 4 describes key aspects of our implementation. Section 5 presents some
of the application kernels we built to gain practical experience with Resilient X10 and provides an
empirical evaluation of their performance. Finally, Section 6 covers additional related work and
Section 7 concludes.

2 PROGRAMMING MODEL

This section presents an overview of the Resilient X10 programming model. The base X10 program-
ming model (Section 2.1) and the semantics of resilient control (Section 2.4) are not new contributions
of this paper. The failure model (Section 2.2) follows from prior work but is refined for this paper.
Non-shrinking recovery (Section 2.3) and resilient stores (Section 2.5) are new contributions.

2.1 X10 Background

The X10 programming language [Charles et al. 2005] has been developed as a simple, clean, but
powerful and practical programming model for scale-out computation. Its underlying programming
model, the APGAS (Asynchronous Partitioned Global Address Space) programming model [Saraswat
et al. 2010], is organized around the two notions of places and asynchrony.

Asynchrony is provided through a single block-structured control construct, async S. If S is a
statement, then async S is a statement that executes S in a separate fask (logical thread of control).
Dually, finish S executes S, and waits for all tasks spawned (recursively) during the execution of S
to terminate, before continuing. Exceptions escaping from S or tasks spawned by S are combined
in a MultipleExceptions instance that is thrown by finish upon termination. Constructs are
provided for unconditional (atomic S) and conditional (when (c) S) atomic execution.

A place is an abstraction of shared, mutable data and worker threads operating on the data, typically
realized as an operating system process. A single APGAS computation may consist of hundreds or
potentially tens of thousands of places. The construct at (p) S permits the current task to change its
place of execution to p, execute S at p and return, leaving behind tasks that may have been spawned
during the execution of S. The termination of these tasks is detected by the £inish within which the
at statement is executing. The object graphs reachable from the final variables used in S but defined
outside S are serialized, transmitted to p, and de-serialized to reconstruct a binding environment in
which S is executed. The snippet below shows how finish, async, and at can be combined to print
a message from each place:

val msg = "Hello World";
finish for (p in Place.places())
at (p) async
Console.OUT.println(here+" says "+msg);
Console.OUT.println("GoodBye!");

'This number does not include the application-level checkpointing overhead, which can be decided arbitrarily and should
reflect the expected mean time between failures (MTBF).

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

230
231

Failure Recovery in Resilient X10 15:5

The messages from each place will be printed in an arbitrary order, but £inish ensures they will
appear before "GoodBye! " is printed.

Variables in one place can contain references (global refs) to objects at other places. Calling
GlobalRef(obj) constructs a global ref to obj in the local heap. A global ref can only be derefer-
enced at the place of the target object.

Places are assigned numbers starting from zero. The application main method is invoked at
place zero. The method Place.places() returns the set of places at the time of invocation; here
evaluates to the current place.

2.2 Failure Model

Resilient X10 [Crafa et al. 2014; Cunningham et al. 2014] builds on X10 by exploiting the strong
separation provided by places to provide a coherent semantics for execution in the presence of
failures. It assumes a fail-stop failure model [Schlichting and Schneider 1983] where the unit of
failure is the place.? A place p may fail at any time, with the instantaneous loss of its heap and tasks.
The failure is contained: running tasks and heaps at other places are not affected by the failure of
place p. In particular, if g#p, any at (q) S initiated from place p or any other place before the failure
of place p will execute to completion (see Section 2.4). Surviving tasks are made aware of failed
places as follows. Any at (p) S executing at a place q will throw a DeadPlaceException (DPE).
Any attempt to launch an at (p) S from place q will also throw a DPE. Global refs pointing to objects
hosted at p now “dangle”, but they cannot be dereferenced since an at (p) S will throw a DPE.

While this failure model makes it possible to reason about execution in the presence of failures, we
need more to reason about failure recovery. Obviously an application cannot recover from a scenario
where all places have failed at once, as there is no place left to run recovery code. In other words,
not all failures can be recovered from. We have to draw a line between catastrophic failures and
recoverable failures.

For this work, we extend Resilient X10 with the concept of a resilient data store. A resilient store is
a safe haven for data (see Section 2.5). It is designed to transparently overcome place failures to avoid
data loss. A store fails if and only if it loses data. The condition for a failure depends on the store
implementation (see Section 4.2) and the actual content. For example, a store can be implemented
to tolerate up to n concomitant place failures by maintaining replicas of each data element in n+1
places. A store can survive any number of infrequent failures over time if it rebuilds redundancy after
each place failure. An empty store never fails. A place failure is defined to be catastrophic if it causes
the failure of a resilient store instance.

Execution of an X10 program begins by executing the main method in a single task in place
zero. As a result, X10 programs are typically structured with place zero containing a master task
that coordinates overall execution. Therefore, Resilient X10 treats the failure of place zero as a
catastrophic failure. This model is not unusual; for example Spark can recover from failed executors
but a failure of the driver process (a Spark program’s main) is a catastrophic failure. In Resilient X10
however, there is no requirement that place zero be a master place for all aspects of the execution,
e.g., scheduling tasks, maintaining directories.

Our runtime and resilient store implementations do not assume that place zero cannot fail (see
Section 4). While one of our implementations of the finish construct in Resilient X10 does make this
assumption, we also offer a £inish implementation that can survive the failure of place zero. Except
for this special, opt-in implementation of £inish, the runtime state and resilient data are replicated
and distributed uniformly across all the places to protect from the failure of any place, including

2In a fail-stop failure model, the only failures are crash failures of servers. All non-crashed servers can detect that a crashed
server has failed. Messages between servers are never lost unless either the sender or receiver crashes.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

246
247
248
249
250
251

253
254
255
256

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

276

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:6 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

place zero, and ensure scalability. In principle, when used with the non-place-zero dependent £inish
implementation, our underlying runtime system could support running X10 as a service® where a
failure of place zero is not considered catastrophic. However, we have not experimented with writing
any applications that exploit this capability.

In summary, a place failure is catastrophic if and only if (i) the failed place is place zero or (ii)
the place failure triggers the failure of a resilient store instance (data loss). In the remainder of this
paper, we only consider recoverable, i.e., non-catastrophic, failures. Thanks to this definition, we can
decompose the failure recovery problem into two independent subproblems: avoiding data loss by
means of resilient data store (see Section 2.5 and Section 4.2) and preserving application behavior
assuming no data loss (see Section 3 and Section 5).

2.3 Non-Shrinking Recovery

All problems in computer science can be solved by another level of indirection. —
D. Wheeler

Many APGAS applications contain structured data and structured communication patterns where
places exchange specific data blobs with specific collections of other places. For example, row/column
based broadcasts in distributed matrix operations or boundary data exchange with “neighbors” in a
k-dimensional grid in scientific simulations. Prior work on Resilient X10 [Cunningham et al. 2014]
only supported shrinking recovery. When a place fails, an application can reorganize to continue
running with fewer places. However, for X10 applications with substantial distributed state, this
reorganization often incurred a productivity and a performance cost. The programmer had to code
the data movements explicitly and provide algorithms that work with flexible place counts. Often
these algorithms would only imperfectly tolerate reduced place counts, resulting in imbalance that
degraded future performance. To improve productivity and performance, we add to Resilient X10
support for non-shrinking recovery, i.e., the ability to compensate for lost places with fresh places,
therefore greatly reducing the algorithmic burden for the programmer.

To permit non-shrinking recovery, we have augmented Resilient X10 with elasticity—the ability
to dynamically add places to a running application. Elasticity is also useful by itself in cloud infras-
tructures where the availability and cost of resources vary dynamically. New places may be created
externally, or may be requested internally by the running application via asynchronous invocations
of System.addPlaces(n) or synchronous invocations of System.addPlacesAndWait(n). After
joining is complete, calls to Place.places() will reflect the new place(s). Numeric place ids are
monotonically increasing and dead place ids are not reused. Higher-level abstractions, such as the
PlaceManager described below, use these runtime calls internally to dynamically manage places,
automatically compensating for lost places.

Because numeric place ids are managed by the runtime system and affected by place failures,
they should not be directly targeted by application programmers. Instead, they should use X10
standard library abstractions such as PlaceGroup and Team. The PlaceGroup class represents an
indexed sequence of places and provides methods for enumerating the member places and mapping
between places and their ordinal numbers in the group. The Team class offers MPI-like collective
operations. As a concrete example, a place p’s neighbors in a structured grid are usually computed as
a simple mathematical function of p’s assigned grid id. Instead of using the place’s actual numeric
id, p.1id, a Resilient X10 application should instead define a PlaceGroup pg containing all the
constituent places of the grid and use pg.index0f(p) as the grid id of p. In conjunction with the
PlaceManager facility described below, consistent use of PlaceGroup indices in this way creates a
level of indirection that is sufficient to enable the bulk of the application code to be used unchanged

3X10 as a service accepts and runs X10 tasks submitted to any place belonging the X10 service instance.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

329
330
331
332
333

335
336
337
338
339
340
341
342
343

Failure Recovery in Resilient X10 15:7

with non-shrinking recovery in Resilient X10. Many prior systems, including Bykov et al. [2011]
and Chuang et al. [2013], have combined elasticity and logical naming to achieve similar high-level
objectives.

The PlaceManager is a new addition to the X10 standard library that encapsulates place manage-
ment for both shrinking and non-shrinking recovery. In essence, it implements a PlaceGroup that
can be adjusted when a place fails. It exposes two primary APIs to higher-level frameworks and appli-
cations. First, it exposes an active PlaceGroup. Second, it has a rebuildActivePlaces () method
that should be invoked when a place failure is detected to rebuild the active PlaceGroup. Depending
on configuration, this method simply purges the dead places from the active PlaceGroup—for
shrinking recovery—or replaces the dead places with fresh places—for non-shrinking recovery.
The PlaceManager for non-shrinking recovery orchestrates the process of elastically requesting
new places from the lower level X10 runtime system when necessary to replace dead places. It can
be configured to keep an optional pool of “hot spare” places ready for immediate use. It uses hot
spares if available (replenishing the pool asynchronously), or if none are available it waits for more
places to be created. Finally, rebuildActivePlaces() returns a description of the places that were
added/removed from the set of active places to enable application-level initialization of newly added
places and updates.

While we could make the PlaceManager automatically react to place failures, in practice we
observed that controlling the exact timing of the rebuildActivePlaces() invocation explicitly
leads to cleaner code and simpler recovery logic than an implicit asynchronous invocation from the
runtime system.

2.4 Resilient Control

X10 permits arbitrary nesting of async/at/finish. Hence when a place p fails it may be in the
middle of running at (q) S statements at other (non-failed) places q. The key design decision in
Resilient X10 is defining how to handle these “orphan” statements. While S has lost its parent place,
it still belongs to enclosing finish and at constructs, e.g.,

finish { ... at(p) { ... at (@) S ... } } T

In a failure-free program, the execution of S happens before the execution of T. Resilient X10
maintains the strong invariant that the failure of a place will not alter the happens-before relationship
between statement instances at the non-failed places. This guarantee permits the Resilient X10
programmer to write code secure in the knowledge that even if a place fails, changes to the heap at
non-failed places will happen in the order specified by the original program as though no failure
had occurred. Failure of a place p will cause loss of data and computation at p but will not affect
the concurrency structure of the remaining code. In this example, if place p fails, S may execute
or not depending on the timing of the failure. If S does execute, it will complete before T executes.
Similarly, if place q fails, S may execute fully, partially, or not at all, but again (any surviving tasks
spawned by) S will finish before T executes.

The operational semantics of X10 and Resilient X10, the happens-before relationship, and the
invariance principle are formalized by Crafa et al. [2014]. Resilient X10 extends the base X10
semantics with transitions to model failures. The happens-before partial order is specified by means
of execution traces: statement s; happens before s; if and only if 51 occurs before s; in any trace
containing s,.* The invariance principle theorem states that if statement s; happens before statement
s viz. X10’s semantics, then s happens before statement s, viz. the semantics of Resilient X10.

#The happens-before relationship of [Crafa et al. 2014] relates activations of dynamic instances of statements in the execution
of a given program and initial heap.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

344
345
346
347
348
349
350
351
352
353
354

356
357
358
359
360
361
362
363
364

366
367
368
369
370
371
372
373
374

376
377
378
379
380
381
382
383
384

386
387
388
389
390
391
392

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:8 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

Cunningham et al. [2014] informally establish the link between the happens-before relationship and
the control-flow constructs of the language. Moreover, they observe that although many constructs
(sequence, conditional, loops, etc.) contribute to the partial order, only finish and at constrain
the order of execution across places. In a sense, a sequence S T is naturally resilient as the loss of
the ordering constraint cannot occur independently of the loss of T, which makes the constraint
irrelevant. Therefore, only finish and at require new implementations for Resilient X10. We
discuss our £inish implementations, i.e., resilient distributed termination detection implementations
in Section 4. The at construct is basically implemented as a £inish with a single task.

Crafa et al. [2014] formalize X10’s partitioned global address space, i.e., the distributed heap.
The invariance principle therefore encompasses heap operations. In particular, a mutation of the
heap is guaranteed to complete before any enclosing finish irrespective of any place shifts and
place failures along the way. On the other hand, invocations of external services are not included
in this formalization. While these invocations could be modeled as asynchronous tasks running at
other places, we believe this would not make sense in practice. External services typically should
not be expected to be aware of and contribute to (Resilient) X10’s termination detection protocols.
In particular, if a place fails just after invoking an external service, Resilient X10 cannot guarantee
that a particular program statement will only happen after the completion of the invocation (whereas
finish can offer this guarantee when dealing with invocations of asynchronous X10 tasks at failed
places). But in practice, recovery code in Resilient X10 can still leverage the invariance principle to
build strong ordering guarantees using mechanisms provided by the external service such as fences,
epochs, transaction logs, etc.

2.5 Resilient Store

In order to enable applications to preserve data in spite of place failures, we extend Resilient X10
with the concept of a resilient data store realized as a distributed, concurrent key-value map. Since
the APGAS programming model enforces strong locality—each object belongs to one specific
place—a resilient data store is also partitioned across places. Invocations of the set (key, value)
and get (key) methods of a resilient store associate a value to a key or return the value for a key for
the current place. Map operations on a given key k at a given place p are linearizable.

Applications may use a resilient store to checkpoint intermediate results or sets of tasks (completed,
in progress, pending). Upon failure, an application is responsible to replace or reconstruct the lost
data using the content of the resilient store.

A resilient store ranges over an active PlaceGroup as defined in the previous section. In non-
shrinking recovery, if a fresh place p replaces a dead place q, the map entries for place q are seamlessly
transferred to place p. In short, the store content for place q survives the failure of place q and place
p takes ownership of this content. For shrinking recovery, we support querying the content of the
store of a dead place from any surviving place via the getRemote(place, key) method.

The resilient store implementations (see Section 4.2) handle the data replication and/or data
movement needed to preserve the data. Using a resilient store is semantically equivalent to transferring
objects across places, i.e., an object retrieved from the store is a deep copy of the object put into the
store.

Resilient stores must obey the happens-before invariance principle (see Section 2.4). Store op-
erations must happen in the order specified by the failure-free program. In particular, an update
operation initiated from a task interrupted by the death of the hosting place must not linger. It must
either mutate the store before any finish waiting for the task completes or never mutate the store.
This property is crucial to ensure that recovery code can be constrained to happen after any store
operations coming from the place whose death triggered execution of the recovery code.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
42710
428 11
429 12
430

431

432

433

434

435

436

437

438

439

440

441

O 00 39 N Lt AW~

Failure Recovery in Resilient X10 15:9

A resilient store implementation in Resilient X10 can of course build upon async and finish to
achieve happens-before invariance trivially. In contrast, integration of an off-the-shelf in-memory
data grid in Resilient X10 may require some additional work to fulfill the requirement, such as
flushing operation queues before reporting the death of a place to the X10 application.

3 BUILDING RESILIENT APPLICATIONS

This section illustrates how the core programming model concepts of Section 2 can be combined
to define higher-level fault-tolerant application frameworks. We implement non-shrinking check-
point/restart, a well-known technique for transparent fault tolerance in iterative applications. While
Resilient X10 is intended to enable innovation in software fault tolerance, we want to devote this
section to the programming model, not the particulars of an original or atypical fault tolerance
algorithm. Moreover, we will use this algorithm as well as variations of this algorithm to bring fault
tolerance to some of the application kernels presented in Section 5. We briefly discuss a few other
approaches to resilience in Section 3.5.

3.1 Resilient Control
An iterative application typically looks like the following:

while(!app.isFinished()) app.step(Q);

The step and isFinished methods, respectively, specify the loop body and termination condition.
Each step may entail a distributed computation over the active place group of a PlaceManager pm.

Using Resilient X10, we can rewrite this loop to make it fault tolerant. The execute method
below takes an instance of an IterativeApp and executes it resiliently, i.e., using checkpoint/restart
to protect from place failures:

def execute(app:IterativeApp) {
globalCheckpoint (app);
var err:Boolean = false;
var i:Long = 1;
while(true) {
try {
finish {
if(err) { globalRestore(app); i=1; err=false; }
if(app.isFinished()) break;
app.stepQ;
if(i ¥ N == 0) globalCheckpoint(app);
i++;
}} catch(e:MultipleExceptions) {
if(e.isDPE()) err = true; else throw e;
33}

To invoke the execute method, the programmer must provide an instance of an IterativeApp, i.e.,
implement the methods listed in Figure 1. The code for step and isFinished is unchanged from
the original non-fault-tolerant loop. The programmer must specify how to checkpoint and restore
the local state of the application in between iterations. The checkpoint method should insert critical
application data for the current place into a hash table. The restore method does the reverse. The
programmer may also specify initialization code to run on dynamically created places by means of
the remake method. Importantly, none of these methods need to handle data distribution or place

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

w

O 0 N N W b~

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:10 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

[m e e e e e e e
H '

interface IterativeApp {

def isFinished():Boolean;

def step():void;

def checkpoint():HashMap[K,V];

def remake(changes:ChangeDescription):void; |
def restore(ckptData:HashMap[K,V]):void; :

____________________________ g
| IterativeExecutor |
| ResilientStore | | PlaceManager |

Fig. 1. X10 Resilient Iterative Framework

failures. The globalCheckpoint and globalRestore methods implemented in the next section
orchestrate the invocations of app.checkpoint, app.restore, and app.remake to checkpoint
and restore the global application state.

We now explain how fault tolerance is implemented by the execute method in details. The code
first checkpoints the initial application state. The loop code cannot recover from a place failure before
the completion of this first checkpoint. This invocation of globalCheckpoint is not in the scope of
the try-catch construct. However, the application itself may be capable of replaying its initialization
and invoke execute again.

The loop periodically makes checkpoints based on a configurable checkpointing interval N. It
detects place failures and rolls back to the last checkpoint using a single exception handler. The
handler distinguishes the dead place exceptions (using the i sSDPE helper method) that are transparently
handled from other exceptions that abort the execution. The handler takes care of place failures at
any stage of the loop, not only in app.step or app.isFinished, but also in globalCheckpoint
and globalRestore using the same retry strategy for all failures. For instance, a place failure
during the execution of globalCheckpoint sets err to true, which triggers the invocation of
globalRestore when the while loop is reentered. The globalCheckpoint method implemented
below uses double buffering to guard against incomplete checkpoints.

Together execute, globalCheckpoint, and globalRestore handle any combination of non-
catastrophic place failures past the initial checkpoint. This includes not only failures during
app.step or app.isFinished, but also during globalCheckpoint and globalRestore.

3.2 Resilient Data

The globalCheckpoint and globalRestore methods are implemented using the PlaceManager
pm and a resilient store rs:

def globalCheckpoint(app:IterativeApp) {

val k = key.equals("red") ? "black" : "red";

finish for(p in pm.activePlaces()) at(p) async rs.set(k,
app.checkpoint());

key = k;

}

def globalRestore(app:IterativeApp) {
val changes = pm.rebuildActivePlaces();
rs.recover (changes) ;
app.remake (changes) ;

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

491 10
49211
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

526
527
528
529
530
531
532
533
534

536
537
538
539

Failure Recovery in Resilient X10 15:11

finish for(p in pm.activePlaces()) at(p) async app.restore(rs.get(key));
}

The two methods, respectively, invoke app . checkpoint and app.restore in every active place to
extract the local state to checkpoint or restore it. Double buffering defends against failures during
checkpointing. The checkpointing key is mutated only after finishing successfully all the local
checkpoints. If any of the app. checkpoint () invocations fails, the control is transferred from the
enclosing finish to the exception handler, skipping over the key = k assignment. Before attempting
to restore the last checkpoint, the globalRestore method makes sure to rebuild the place group—
replace dead places with fresh places—and reorganizes the resilient store accordingly. It also invokes
app.remake to give the application the opportunity to process the changes, e.g., initialize data
structures at the newly added places.

3.3 Discussion

At first, the fault tolerant loop code may seem daunting. After all, we started from one line of code and
ended up with two dozen lines for execute, globalCheckpoint, and globalRestore combined.
Most of the code however—the checkpointing interval logic, the error flag, the while loop, the
invocations of step, isFinished, globalCheckpoint, and globalRestore—would be similar
in any checkpoint/restart implementation. The logic is subtle but orthogonal to Resilient X10. The
Resilient-X10-specific code follows a single pattern: the try-catch construct and the finish construct
immediately inside of it. This pattern is enough to cover all non-catastrophic failure scenarios.
Because it is so simple, it is easy to write, read, and maintain. In short, it is robust.

Moreover, the loop code in Resilient X10 can be refined or customized easily, whereas oft-the-shelf
checkpoint/restart frameworks typically offer a finite set of configuration flags or parameters. For
instance, the initial checkpoint often has a broader scope than subsequent checkpoints because
of immutable data (see Section 5). The input data may be reloaded or recomputed instead of
checkpointed in memory. The X10 code can be adjusted to account for these variations. In contrast
with off-the-shelf frameworks for transparent fault tolerance, Resilient X10 provides the means to
tailor fault-tolerance schemes to specific workloads or application domains with benefits such as
reduced performance overheads, reduced memory footprint, or improved recovery times. We discuss
one such variant in the next section.

3.4 Resilient lterative Executors

We added this checkpoint/restart framework to X10’s standard library and used it to implement several
application kernels discussed in Section 5. The IterativeExecutor class exposes an execute
method that is essentially the same as the one presented here. We refer to this executor as a global
executor; it can be used for algorithms that perform arbitrary communications as well as regular
SPMD-style computations. For SPMD computations, the step method must start remote tasks at each
active place, each task performing a single iteration. We implement an SPMDIterativeExecutor
to better support this application pattern. This executor distributes the computation over the set of
active places. It creates parallel remote tasks that run multiple iterations (up to the checkpointing
interval) of the isFinished and step methods, which are no longer in charge of distributing the
computation. By doing so, the SPMD executor eliminates the overhead of creating remote tasks at
each step.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:12 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

3.5 Other Approaches to Resilience

While bulk synchronous checkpoint/restart is one of the most commonly used techniques today,
many applications can benefit from other approaches to resilience. Resilient X10 makes it possible to
tailor recovery strategies to particular application domains or patterns.

In Section 5.2, we will demonstrate a resilient Unbalanced Tree Search application kernel that
adopts a different approach. In this particular application, the tasks to be executed are highly
unbalanced. Implementations that rely on periodic synchronizations or centralized schedulers perform
poorly. The reference, non-resilient, state-of-the-art implementation uses distributed work-stealing
to achieve high CPU utilization and low communication overheads. Using an iterative framework
such as the one we have just described would require rearchitecting the application code and cripple
performance. Therefore, we make independent checkpointing decisions in each place. A work transfer
due to work stealing requires the synchronous (i.e., transactional) update of only two checkpoints,
rather than updating them all in a bulk synchronous style. While the overhead per steal increases, the
fundamentals of the scheduling scheme are preserved and the performance is good.

Some applications can estimate and possibly tolerate the loss of precision resulting from a fault.
Scientific simulations can often rely on conservation laws—mass, volume—to fill gaps in data sets.
For instance, a shallow water simulation that divides an area of interest into a grid and distributes
grid elements across a compute cluster can reconstruct the water surface at a failed place using (i)
the conservation of mass, (ii) the boundary condition, and (iii) a simple interpolation. Of course, the
latter assumes the water is relatively calm. Resilient X 10 makes it possible to not only implement
such a recovery strategy but also dynamically switch between this strategy for water that is calm
enough vs. a checkpoint-based strategy for water that is not.

4 IMPLEMENTATION HIGHLIGHTS

A feature of the X10 system is that a single X10 program can be compiled for execution on a
wide variety of platforms and network transports with varying performance characteristics. X10
is implemented with two backends. On the managed backend, X10 compiles into Java and runs
on (a cluster of) JVMs; on the native backend, X10 compiles into C++ and generates a native
binary for execution on scale-out systems. X10’s communication layer can use multiple underlying
network transports including TCP/IP sockets, MPI, and PAMI. Resilient execution over MPI is
supported using MPI User Level Failure Mitigation (ULFM) [Hamouda et al. 2016]. This diversity
of implementation is valuable: different combinations are best suited for specific application domains
or deployment scenarios. Therefore, our implementation of Resilient X10 includes both native and
managed X10, three network transports (Java sockets, native sockets, MPI), and full support for
Linux, Windows, and macOS.

The key implementation challenge in providing Resilient X10’s happens-before invariant for
resilient control is making X10’s £inish construct resilient. This entails adjusting the distributed
termination algorithm used by finish to be failure aware and storing its distributed state in a
(potentially specialized) resilient store. Logically, the resilient store used for finish is distinct
from the resilient store used for application data. Three implementations of resilient finish were
described in Cunningham et al. [2014]: one that stored all finish state at place zero, one that used
ZooKeeper [Hunt et al. 2010] as an external resilient store, and one that used a custom resilient
distributed store for finish state implemented in X10. The place zero approach is not scalable to large
place counts. The use of a custom store was motivated by results showing that the ZooKeeper-based
store was impractically slow, but the prototype custom store implementation could only survive a
single place failure.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

637

Failure Recovery in Resilient X10 15:13

In this paper, we revisit the viability of using an off-the-shelf external distributed store. We
implement resilient finish and the resilient store API on top of the Hazelcast in-memory data
grid [Hazelcast, Inc. 2014]. Hazelcast offers a scalable, in-memory data grid which can be embedded
in an X10 application to store control state as well as application data. For Resilient X10, we associate
each compute node with a separate Hazelcast member. As data are backed up on multiple members,
Hazelcast ensures that no data are lost in the event of a node failure.> We instantiate several Hazelcast
distributed fault-tolerant maps to safeguard both the resilient application state and the runtime state
of the resilient finish implementation. At this time, this implementation is only available with the
managed backend.

We also continue to develop a pure X10 implementation of Resilient X10. We improved the place
zero resilient finish performance. We developed a scalable resilient store in X10 that is capable of
rebuilding redundancy on the fly, hence surviving multiple place failures. These artifacts are usable
with both backends. In contrast to the Hazelcast implementation, the place zero finish cannot survive
the failure of place zero. The resilient store, however, has no such limitation when instantiated in
combination with Hazelcast finish.

The remainder of this section describes the major enhancements and extensions we have made
over the system of Cunningham et al. [2014]. All have already been contributed back to the X10
open source project and were included in the X10 2.6.1 release [X10 v2.6.1 2017].

4.1 Resilient Control

All three prior implementations of resilient finish imposed a significant performance penalty on task
creation. As a result, common X10 programming idioms that utilize fine-grained tasks would incur
crippling overheads under Resilient X10 (see Table 1). This greatly reduced the practical usefulness
of resilient finish by preventing the unmodified reuse of existing X10 frameworks and applications.
We developed several optimizations to reduce the cost of task creation; they are presented below in
order of their relative importance.

The most important problem to tackle was to minimize the resiliency imposed overheads on the
very common operation of local task creation and local finishes. We did this by exploiting the insight
that only a subset of the tasks actually need to be tracked resiliently to provide the full Resilient X10
semantics. In particular, the exact number and identity of tasks that were executing in a failed place
is not observable in the surviving places. This insight allows a non-resilient place-local counter to be
used to cheaply track the lifetime of each incoming task and its locally spawned descendants. The
counter starts with a value of one to indicate the liveness of the already started incoming task; it is
incremented when local children are spawned and decremented when tasks it is tracking complete.
Interactions with a resilient store are only required when (i) a new remote task is spawned or (ii) when
a local counter reaches zero, indicating termination of its local fragment of the task tree. Similarly,
the existence of a finish does not need to be resiliently recorded until it (transitively) contains a
non-local task. The combination of these two optimizations virtually eliminates the performance
penalty of resiliency for fine-grained concurrency within a place.

Second, in non-resilient X10, spawning a remote task is mostly asynchronous: the parent task is
not stalled waiting for the remote task to begin executing. More precisely, the parent task continues
its own execution as soon as it has initiated the message send requesting the remote task creation and
recorded the initiation of a remote task in the local portion of the distributed (non-resilient) state of
its controlling finish. In all three original resilient finish implementations, spawning a remote task

SEarlier versions of Hazelcast promised strong consistency, however, starting from version 3.9 Hazelcast promises only
eventual consistency, where a failure to correctly replicate a mutating operation is notified by throwing an exception. At the
Resilient X10 layer, such an exception could be treated as a catastrophic failure of the resilient store.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

676
677
678
679
680
681
682
683
684

686

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:14 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

entailed synchronous interactions with a resilient store. Synchronization with the store ensured that
the termination of the parent task could not be observed by the resilient store before it observed the
initiation of the remote child task. However, as shown in Table 1 below, the additional synchronization
greatly increased the cost of fan out communication patterns. An important additional benefit of the
local termination optimization described above is that it also provides a simple path to supporting
asynchronous spawning of remote tasks that is independent of the implementation details of the
resilient store. In effect, the X10 runtime system is enhanced to spawn an additional synthetic local
child of the current task that is responsible for an asynchronous interaction with the resilient store.
The presence of the additional local child allows the parent task to continue (and even terminate)
without the possibility of its termination being prematurely reported to the resilient store resulting
in incorrect early exit from the finish (the synthetic child ensures that the value of the local counter
cannot reach zero until the communication with the resilient store has been completed). This recovers
the mostly asynchronous spawning of remote tasks enjoyed by non-resilient X10.

Finally, an additional optimization can be applied to the place zero resilient finish to reduce the
communication traffic during the spawning of a remote task. If the serialized data for the task is
relatively small, the spawning place can send the task and data to place zero, which can update the
resilient finish state and then transmit the task and data to the destination place (2 messages). The
original protocol sent the task data only once directly from the source to destination places, but
required a request/response interaction with place zero by both the source and destination places
to update the resilient finish state (5 messages). We measured the performance of the place zero
resilient finish with and without this optimization on the microbenchmark suite. For benchmarks that
spawned remote tasks, it enabled performance gains ranging from 10% to 33%. It is important to
note that this optimization is not generally applicable to distributed resilient stores because it relies
on the strong invariant that place zero processes each message exactly once.

Table 1. Performance cost of resilient finish for important communication and concurrency patterns at small
and medium scale. Each number is the slowdown vs. non-resilient finish to perform the same operation
with the same number of places (1.0 indicates no slowdown).

Slowdown factor vs. non-resilient finish

Scenario PPoPP’14 place zero | Current place zero | PPoPP’14 distributed Hazelcast

8 places 80 places | 8 places 80 places | 8 places 64 places | 8 places 80 places
Local work 945.4 909.9 1.1 1.1 10.3 19 1.0 1.0
Single remote activity 5.8 6.6 4.0 3.9 5.8 55 17.0 30.8
Fan out, message back 19.2 42.6 3.5 3.9 6.4 4.2 13.5 15.2
Fan out, local work 2011 297.8 3.0 2.6 5.9 4.8 11.4 11.9
Fan out, fan out 9.0 192.9 4.8 2.0 7.7 12.1 10.4 1.2
Tree fan out 6.3 251 3.7 7.6 - - 15.4 191

Using the microbenchmark suite from Figure 6 of Cunningham et al. [2014] as updated in the
X10 2.6.1 release,® we studied the performance and scalability of resilient finish. Table 1 compares
the performance of the PPoPP’ 14 resilient finish implementations as found in X10 2.4.1 (as cited
in Cunningham et al. [2014]) to our current implementations. All the patterns use a single finish to
manage the whole group of spawned tasks, except the tree fan out pattern which creates a binary
tree of finishes each managing two remote tasks at two different places. The first and fourth rows
demonstrate the effectiveness of our enhancements to eliminate resiliency overheads for purely local

Osee x10.dist/samples/resiliency/BenchMicro.x10 from X10 v2.6.1 [2017]

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

687
688
689
690
691
692
693
694

696
697
698
699
700
701
702
703
704
705
706

731

Failure Recovery in Resilient X10 15:15

Single Remote Activity Fan out, local work
60.00 1000.00
50.00
40.00 100.00
3000
20.00 10.00
10.00

0.00 Mhd—iit e - > " " " " 1.00 &
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

a— Nonresilient Place 0 Hazelcast a— Nonresilient Place 0 Hazelcast

Fan out, fan out Tree fan out

100000.00 1000000.00

10000.00 100000.00

10000.00
1000.00
1000.00

100.00 100.00

1000 Py AT 1000

1.00 4 1.00

0 20 40 60 80 100 120 140 160 180 010 ¢ 20 40 6 80 100 10 140 150 130

a— Nonresilient Place 0 Hazelcast a— Nonresilient Place 0 Hazelcast

Fig. 2. Finish microbenchmarks with trivial task bodies. The graphs show the relative worst-case per-
formance of our implementation of non-resilient, place zero, and Hazelcast finishes for four important
concurrency/distribution patterns. The y-axis of each graph is the slowdown relative to non-resilient finish
at 2 places; the x-axis is the number of places. For all but the top left graph, the amount of work increases
with the number of places and the y-axis is logarithmic.

concurrency. Rows three through six show the impact of mostly asynchronous spawning of remote
tasks. Overall the improvements to the place zero finish implementation are substantial, especially as
the number of places increases.

Unfortunately, despite significant effort, we were unable to reproduce the PPoPP’ 14 distributed
resilient finish results using the X10 2.4.1 release. All of the microbenchmarks containing remote
activities failed to run correctly with X10’s 2.4.1 distributed resilient finish implementation. Therefore
the numbers in the PPoPP’ 14 distributed column of Table 1 are taken from the prior paper’s raw
experimental data. Comparing these columns with that of the Hazelcast-based resilient finish suggests
that although there may be modest performance advantage to using a highly customized distributed
store, using a general in-memory resilient store is a viable approach. The PPoPP’14 distributed
resilient finish implementation was later removed in the X10 2.5.0 release, primarily due to lack of
confidence in its correctness and maintainability.

Figure 2 shows the scaling graphs for our enhanced place zero and Hazelcast resilient finishes
compared to non-resilient finish at 2 places. The scaling graphs provide a more detailed view than
Table 1, which only presented data for 8 and 80 places. We expect there to be a cost to resiliency that
depends on the implementation of resilient finish, the number of finish scopes executing concurrently,
and the number of spawned remote tasks per finish. A truly distributed resilient finish implementation
may have increasing overheads with an increasing number of spawned remote tasks, however, it is
expected to provide better scalability than a place zero implementation in patterns that generate a
large number of parallel finish scopes, such as the tree fan out pattern.

The top left graph shows the cost of spawning a single remote task. The message reduction
optimizations for place zero finish enable overhead of less than 4x at all scales; overheads for
Hazelcast increase from 13X to 49x as the number of places increases. The remaining three graphs
represent commonly occurring APGAS work distribution patterns. The ‘fan out’ pattern (top right
in Figure 2) is important as it is commonly used in X10 applications. The amount of termination

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

736
737
738
739

741

759
760
761
762
763
764
765
766
767

769
770

776

780

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:16 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

detection work for a ‘fan out’ finish is O(V), where N is the number of places. A typical X10 program
uses a ‘fan out’ finish multiple times, for example to assign work to each of the available places or
to create global data structures that span all places. The ‘fan out, fan out’ pattern (bottom left in
Figure 2) creates a single direct task to each of N places, each of which in turn creates N tasks to
all places. Therefore, the expected complexity of termination detection is O(N?). The ‘tree fan out’
pattern (bottom right in Figure 2) creates a binary tree of tasks at N places, with a complexity of
O(log(N)). Figure 2 shows that, for the three patterns, place zero stays within 10X of the non-resilient
finish and Hazelcast within an additional 2Xx to 5x of the place zero finish. While these numbers
remain high in the absolute, our experimental study demonstrates that they are now good enough to
support the programming model in practice.” The overhead of resiliency including resilient finish but
excluding application-level checkpointing remains below 7% for all applications considered (see
Section 5). We are currently implementing a native distributed finish implementation that is expected
to outperform the Hazelcast implementation and deliver better scalability for task decomposition
patterns that create a large number of parallel finish scopes.

4.2 Resilient Stores

We experimented with a number of approaches and decided to focus on two implementations: a
resilient store based on Hazelcast and a resilient store implemented in X10.

We provide a common store API, so that the store implementation can be decided at application
startup time. The core API consists of the get (key), set(key, value), and getRemote(place,
key) methods discussed in Section 2.5.

4.2.1 Hazelcast-based store. This store is implemented using a distributed Hazelcast map. The
resilient store get and set methods are mapped to Hazelcast’s homonymous methods by appending
the place index in the active place group to the key. Method getRemote also simply maps to
Hazelcast’s get method.

Catastrophic failures depend on the Hazelcast configuration. In our experiments, we configure
Hazelcast with one synchronous backup, i.e., one level of redundancy. The store can survive multiple
place failures as long as the failures are distant enough in time for Hazelcast to rebuild its redundancy
in-between failures.

4.2.2 X10 Resilient Store. We implement a resilient store in X10 by maintaining two replicas
of the data. The key value pairs at place p (master) are transparently replicated at the next place in
the active place group (slave). Store read operations only access the master replica (local). Write
operations require updating both the master and the slave as follows:

1 finish at (slave) async slaveStore.set(key, value);

masterStore.set(key, value);

The resilient finish ensures the slave is updated successfully before the master, thus guaranteeing that
no value can be read from the store before being replicated. If the slave dies before or during the
update, the write fails with a DPE. A lock (not represented) ensures no two writes can overlap.

The store is constructed over the set of active places in a PlaceManager. It has a method
recover (changes) that should be invoked when a process failure is detected. The changes param-
eter is obtained from the PlaceManager; it includes the new set of active places, as well as the set
of added/removed places since the last invocation for the PlaceManager’s updateActivePlaces()

7 As described in more detail by Tardieu et al. [2014], the P1aceGroup class in the X10 standard library provides convenience
methods that compensate for the O(N) complexity of finish by implementing a scalable ‘fan out’ communication pattern with
a dynamically constructed tree of £inish instances. Since they are simply compositions of £inish, these highly scalable
PlaceGroup methods are also available in Resilient X10.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

785
786
787
788
789
790

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

828
829
830
831
832
833

Failure Recovery in Resilient X10 15:17

method. The store replaces each removed place with an added place at the same ordinal location.
Each removed place had previously held a master replica for its own data, and a slave replica for
its left neighbor. These replicas are now lost, however, copies of them are available at other places,
assuming no catastrophic failure happened that caused the loss of two consecutive active places. The
copies are fetched. They provide the initial state of the store at the fresh places.

Like the Hazelcast store, this store can survive any number of place failures, provided failures
happen one at time, with enough time in-between for the store to rebuild the lost replicas. The store
is implemented with less than 500 lines of X10 code, and can be considered an application study in
its own right which demonstrates the expressiveness of the Resilient X10 model. It supports a much
richer API than the core API we discuss in this paper. In particular, it handles local transactions,
where multiple keys are accessed atomically at the same place. A local transaction object, e.g.
tx, can be created at the master replica by calling startLocalTransaction. An activity can
submit a group of get and set operations to the store through the tx object, by calling tx.get (key)
and tx.set(key, value) methods and commits the transaction by calling tx.commit(). The
execution of concurrent local transactions at the same place can result in conflicts if two transactions
are accessing the same key and at least one of them is writing. We currently avoid this scenario by
executing the transactions in order, however, more sophisticated concurrency control mechanisms are
also feasible to implement. During transaction execution, write operations are performed on shadow
copies of the data at the master replica. A transaction log records the updated keys and their new
values. At commit time, the transaction log is applied at the master replica only after successfully
updating the slave. A failed slave results in aborting the transaction at the master replica by discarding
the log and throwing a DeadPlaceException.

4.2.3 Distributed Transactions. One of our applications (see Section 5.2) requires the ability to
atomically update the local store and a remote store. The application is such that no conflicting
updates can ever occur. The X10 resilient store currently lacks support for distributed transactions.
To support this application, we implement the method set2(keyl, valuel, place2, key2,
value2) using a simple transaction log. The transactions in progress (logged) are replayed after
a place failure, before accessing the store to restore the application state. The log itself is also
implemented as a resilient store.

4.3 Elasticity

Enabling elasticity required enhancements to all levels of the X10 implementation stack: the launching
infrastructure that creates the initial processes, the network transports that bind them together, the
core runtime that implements the PGAS abstractions, and a variety of standard library classes that are
built on top of the PGAS abstractions. Additionally, in a cloud environment, acquiring the necessary
computational resources to execute the additional processes that will become the new places requires
negotiation with cluster management software.

Our current implementation fully supports elasticity for Managed X10 including an integration
with the Apache Hadoop YARN [Vavilapalli et al. 2013] cluster resource manager. With a single
additional command line argument, Managed X 10 applications can be launched on a YARN-managed
cluster and the implementation of System.addPlaces(n) will automatically acquire new containers
from YARN and launch the new places within them.

Although much of the runtime implementation is shared by Managed and Native X10, elasticity
support for Native X10 is not yet complete. The primary gap is at the X10RT network layer: none
of Native X10’s X10RT implementations support the dynamic addition of new places after initial
application launch. Adding such support to Native X10’s TCP/IP-based x10rt_sockets transport
could be done with modest development effort.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:18 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

5 APPLICATION STUDIES

We developed a number of resilient application kernels to assess the flexibility of the Resilient
X10 programming model and the capabilities of our implementations. Most codes are derived
from existing X10 kernels and frameworks that were extended to make them resilient. All of our
enhancements to the X10 runtime have already been incorporated into the master branch of the main
X10 git repository [The X10 Language 2019], and have been part of the X10 2.6.1 release.

This section presents four such resilient application kernels—Unbalanced Tree Search, KMeans,
PageRank, LULESH——chosen to illustrate how different aspects of the programming model can be
combined to achieve flexible resiliency solutions that best meet application needs. Each subsection
describes the kernel, the design decisions made to make it resilient, and experimental results including
direct comparisons with Spark-based implementations for the first three kernels.

5.1 Experimental Setup

All experiments were conducted on a 23-node compute cluster. Each node contains two quad-core
AMD Opteron 2356 processors and 12 GiB-16 GiB memory. The cluster is connected via a 4xDDR
Infiniband network using IP over IB. The compute nodes run RHEL 6.9 and the cluster is managed
using Apache YARN 2.6.0. For comparisons with Spark, we used Apache Spark 2.0.1 with -master
yarn. Our X10 implementation is a pre-release version of X10 2.6.1, the most recent open source
release of X10. The JVM for both Managed X10 and Spark was Oracle Java HotSpot Server version
1.8.0_101.

For each application, we are primarily interested in three scenarios: non-resilient execution,
failure-free resilient execution, and resilient execution with three place failures during a single run.
Application parameters were chosen to achieve runs lasting approximately five minutes. This gives
sufficient time to amortize application and JVM warmup while being short enough to permit a large
number of runs to be completed. We inject failures by killing processes with a timer to guarantee that
there is no correlation between the failure time and the ongoing computation. Failures are spaced by
at least 30s to ensure no catastrophic failure occurs. Of course, this failure scenario is unrealistic.
Mean time between failures (MTBF) is typically much longer. Our experimental protocol is intended
to stress the runtime system and demonstrate its reliability more effectively than a single-failure
scenario would.

For Resilient Managed X10, we use Hazelcast version 3.7.1 as the underlying store for both
resilient finish and the resilient data store. This represents a scalable solution based on a production-
level fully-distributed store. In the three-failure scenario, Resilient Managed X10 is configured to
maintain one “hot spare” place; the PlaceManager will asynchronously replace the spare place after
each failure to minimize future recovery time. As the Hazelcast-based resilient finish and resilient
store are only implemented for Managed X10, for Resilient Native X 10 we use the place zero resilient
finish and the X10 resilient store of Section 4.2.2. Because Native X10 does not support elasticity,
the three-failure scenario requires starting with three spare places. Therefore, unless otherwise noted,
all experiments use 20 nodes (160 cores) for application execution. For X10, this corresponds to
20 active X10 places, each with X10_NTHREADS=8. For Spark it corresponds to 20 executors,
each with 8 cores. This enables apples-to-apples comparison of application throughput across all
configurations.

Unless otherwise stated, all execution times are the mean of at least 15 runs and the 95% confidence
intervals are less than 1% of the computed averages for X10. Spark performance on 15 runs is less
predictable with 95% confidence intervals ranging from 1% to 7% of the mean.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Failure Recovery in Resilient X10 15:19

5.2 Global Load Balancing: UTS

Lifeline-based global load balancing (GLB [Saraswat et al. 2011; Zhang et al. 2014]) is a technique
for scheduling large irregular workloads over distributed memory systems. The Unbalanced Tree
Search benchmark (UTS [Olivier et al. 2007]) is the canonical benchmark for GLB. An X10
implementation of UTS using the GLB approach has been shown to scale to petaflops systems with
tens of thousands of cores [Tardieu et al. 2014]. Our baseline UTS implementation is similar but
uses multiple threads/workers per place so we can fully utilize a node with a single place. It is only
intended for the managed backend as it uses Java’s MessageDigest API for computing cryptographic
hashes.

UTS measures the rate of traversal of a tree generated on the fly using a splittable random number
generator. A sequential implementation of UTS maintains a queue of pending tree nodes to visit
initialized with the root node. It repeatedly pops a node from the queue, computes and pushes back
the children ids if any, until the queue is empty.

The distributed implementation divides this queue among many worker threads by dynamically
migrating node ids from busy workers to idle workers using a combination of stealing and dealing.
There is no central scheduler. An idle worker can request work from a random peer. The code has a
simple structure. At the top a finish waits for all the workers to terminate. Requests and responses
are implemented with remote tasks. There is more to the load balancing than random work stealing,
but this does not fundamentally affect the fault tolerance problem.

To add resilience to UTS,? the workers checkpoint their progress to a resilient store. Each worker
stores how many nodes it processed so far, as well as the node ids in its queue. The lack of a central
scheduler and global synchronization is important for the performance of the non-resilient algorithm.
We want to preserve this property in the resilient code. Therefore workers independently decide
when to checkpoint based on individual progress and idleness. Before sending work to an idle
worker, the sender updates the checkpoints of both the sender and the receiver in one transaction (see
Section 4.2.3). While the collection of checkpoints is constantly changing and may never reflect
the progress of all workers at one specific point in time, it is always correct, i.e., the aggregated
node count is consistent with the aggregated pending node lists. Upon place failure, all workers
abort (possibly doing a last checkpoint) and fresh workers load the checkpoint and resume the
traversal. The dominant task pattern in UTS is the fan out finish, which is used for initializing the
places, performing the computation-intensive tree generation task at each place, and collecting the
number of traversed nodes by all the places for computing the tree traversal rate. Checkpointing and
work-stealing are performed concurrently at each place using finish constructs that create a maximum
of one remote task. With the distributed Hazelcast store, concurrent handling of these small finishes
has less significant impact on the scalability of the application, therefore, the expected scalability
model for Resilient UTS is O(N), where N is the number of active places.

For comparison purposes, we have implemented UTS in Spark using a map/reduce strategy.
The tree traversal is divided into rounds. In each round the global pending node list is split into p
fragments producing to p independent tasks that can be scheduled in parallel. Each task traverses up
to n tree nodes before returning the updated node counts and lists to the global scheduler. We tuned p
and n to achieve the best performance for our benchmark configuration.

Evaluation. Table 2 compares the execution time and the rate of traversal expressed in million
nodes per second of the sequential X10 code, the distributed non-resilient code, the resilient code
without and with three place failures, and the Spark code. We run with managed X10. At scale, we

8The code for Resilient UTS is in the ResilientUTS directory of the benchmarks repository at [X10 Benchmarks 2019].

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

933
934
935

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

980

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:20 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

Table 2. UTS execution times (seconds) and throughput (Mnodes/s) using Managed X10 and Spark

Depth Time Throughput

Sequential X10 14 164.8 6.43
Non-resilient X10 18 267.7 1011.3
Resilient X10 + Ckpt 18 268.4 1008.4
Resilient X10 + Ckpt + 3 Failures 18 277.3 976.1
Spark 18 376.8 718.8

use a tree of about 270M nodes (fixed geometric law with seed 19 and depth 18). For the sequential
code, we reduce the depth to 14. The throughput of the sequential code does not depend on the depth.

The sequential code achieves 6.43Mnodes/s in average. The distributed code, with 160 cores,
achieves 98% of the sequential code efficiency. Adding fault-tolerance adds less than 1% overhead.
Each place lost reduces throughput by about 1.1%. The failure-free resilient execution takes 268.4s in
average. Each loss increases execution time by about 3s. Roughly half of the 3s is taken to detect the
place failure and recover: updating the active place group and initializing the workers. We attribute
the other half to lost work, startup cost, and the cost of rebuilding redundancy. While the spare
place pool mitigates the startup latency, the fresh JVMs have not been trained to run the UTS code.
Hazelcast rebuilds the resilient map redundancy in a few seconds taking resources away from the tree
traversal and increasing the latency of the resilient store. Without a spare place pool, the recovery
time increases to 14s per failure.

In comparison, the Spark implementation only achieves about 70% of the efficiency of the
sequential X10 code (without node failures). This is not surprising. We observe that the generated
tasks complete in anywhere between a few tens of milliseconds to a few seconds leading to a lot of
imbalance. Overdecomposition does not improve this result.

5.3 KMeans Clustering

KMeans clustering is a commonly used kernel for unsupervised learning. We implement a distributed
version of Lloyd’s iterative algorithm [Lloyd 1982] in X10. Our base implementation contains 220
lines of code. Implementing checkpoint/restore, adding resiliency testing scaffolding, and conforming
to the ITterativeApp interface of the global resilient executor framework of Section 3.4 required
modifying 16 existing lines of code and adding 57 new lines. We use KMeans to demonstrate how
the Resilient X10 programming model supports application kernels with substantial immutable
distributed data structures (the input data) and modestly sized but rapidly changing mutable data (the
current estimate of the cluster centroids). Thus, the initial checkpoint must persist GBs of input data
while subsequent checkpoints need only ensure that the current estimate of the cluster centroids can
be recovered. In fact, because the current cluster centroids are broadcast to every active place at the
start of each iteration, it is not necessary to actually checkpoint the centroids. Upon failure, they can
be recovered from any surviving place and the computation can continue with at most the loss of one
iteration of work. Therefore in our X 10 implementation,’ after the initial checkpointing of their input
data, the active places do not actually store any state in response to checkpointing requests from the
iterative framework. KMeans is entirely implemented as a series of fan out finish blocks with local
work at each place, therefore, its expected scalability model is O(N), where N is the number of active
places.

see x10.dist/samples/resiliency/ResilientKMeans.x10 in the X10 git repository [The X10 Language 2019]

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

981
982
983
984

986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Failure Recovery in Resilient X10 15:21

For comparison we use two variants of the KMeans implementation from Spark’s MLLib. The
first is the unchanged MLLib code, which is capable of handling input data containing both sparse or
dense vectors. The second is our manual specialization of the MLLib implementation to only handle
dense vectors, which is a fairer comparison to our X10 implementation. For both Spark variants we
persisted the RDD containing the input data with StorageLevel .MEMORY_ONLY_2 to match X10’s
in-memory persistence strategy for this data.

Table 3. KMeans execution times (seconds)

Total Time Single Step

Managed X10 283.4 5.64
Resilient Managed X10 291.5 5.79
Resilient Managed X10 + Ckpt 318.7 5.79
Resilient Managed X10 + Ckpt + 3 Failures 389.5 5.90
Native X10 195.9 3.90
Resilient Native X10 196.1 3.91
Resilient Native X10 + Ckpt 199.4 3.91
Resilient Native X10 + Ckpt + 3 Failures 229.9 3.90
Spark MLLib 473.6 8.92
Spark DenseVector 368.2 6.81

Evaluation. Table 3 shows the total execution times'® and single step times for 50 steps of the
KMeans algorithm configured to find 300 clusters over an input of 20,000,000 30-dimensional points
represented as dense vectors. When checkpointing is enabled, the initial checkpoint averaged 21.8
seconds for Resilient Managed X10 and 3.1 seconds for Resilient Native X10. Spark averaged 27
seconds to persist the input RDD. Checkpointing time accounts for 27.2 of the 35.3 second gap
between Managed X 10 and Resilient Managed X10 + Ckpt. Runtime overheads, primarily that of the
Hazelcast-based resilient finish, account for the remaining 8.1 seconds (less than 3%) of overhead.

These results also illustrate the advantage of Native X10 for numerically intensive loop-based ker-
nels: it significantly outperforms Managed X10, which in turn outperforms Spark. This performance
difference is primarily attributable to the effectiveness of the underlying compilers in generating
efficient machine code for the computationally intense loop nest that is the heart of the KMeans
computation. The exact same KMeans X10 code is more effectively optimized when it is compiled
to C++ and statically compiled by the platform C++ compiler than when it is compiled to Java and
JIT compiled by the JVM. Similarly, the JVM’s JIT compiler is able to do a better job optimizing the
bytecodes generated from the X10 version of the key loop nest than it does for those generated from
Spark’s Scala version of the loop.

On the runs with three failures, there is an average 70.8 second (23.6 per failure) performance
drop for Resilient Managed X10. As with UTS, approximately 2 seconds can be attributed to failure
detection and recovering the X10 runtime system. Restoring the application state from a checkpoint
averages 13 seconds per failure. We attribute the remaining 9 seconds to lost work (50% of an
iteration is 3 seconds) and JVM warmup of the newly added place (which takes 3-5 iterations to

10For KMeans, the 95% confidence interval for Resilient Managed X10 is 1.5% of the mean and 3.5% for Resilient Managed
X10 with failures.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:22 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

reach peak performance). Since KMeans is an SPMD-style algorithm, performance is gated by the
slowest place.

5.4 Global Matrix Library: PageRank

The X10 Global Matrix Library (GML) implements distributed linear algebra operations over matrices
in a variety of dense and sparse formats [Hamouda et al. 2015]. It includes a set of benchmark codes
using common algorithms for data analytics and machine learning. The core GML library consists
of 20,500 lines of X10, 2,100 lines of C++ and 250 lines of Java. To support resilience in GML,
snapshot and restore methods were implemented for the key matrix and vector classes.

We evaluate the cost of resilience for the GML PageRank benchmark!! using the SPMD resilient
executor described in Section 3.4. Approximately 50 lines of codes were added or modified from
the original implementation to conform with the IterativeApp interface. In contrast, Cunningham
et al. [2014] were not able to base their resilient SpMV kernel on the existing GML code base;
they wrote 536 lines of new custom code. We compare with the Spark/GraphX [Xin et al. 2014]
PageRank SynthBenchmark implementation. The expected scalability model of the GML PageRank
benchmark is O(N), where N is the number of active places. It uses the fan out finish pattern, with
complexity of O(N), multiple times for constructing distributed matrices, initializing input data,
and starting an activity at each place to execute the steps of the PageRank algorithm. The steps use
collective operations from the Team class, which organizes the places in a binary tree structure and
has a complexity of O(log(N)).

Table 4. PageRank execution times (seconds)

Total Time Single Step

Managed X10 292.6 9.75
Resilient Managed X10 312.9 10.4
Resilient Managed X10 + Ckpt 440.8 10.4
Resilient Managed X10 + Ckpt + 3 Failures 684.1 14.9
Spark/GraphX 996.8 33.2

Evaluation. We measured the time to compute 30 iterations of PageRank for a randomized link
matrix with 5 million pages and 633 million edges using a log-normal distribution of edges with
p=4and o = 1.3 as per Malewicz et al. [2010]. For Spark/GraphX, the number of edge partitions
numEParts was set to twice the total number of cores.

Table 4 shows the total time and time per iteration.!> The first checkpoint for PageRank is
very slow at 82.0s, as it includes the immutable link matrix (about 10GiB for this problem size).
Subsequent checkpoints are much faster at 5.1s as they only store the mutable PageRank vector
(40MiB). Excluding the checkpointing time, the overhead of resiliency is less than 7% over the
non-resilient execution time.

Using a checkpoint time of 5.1s, we used Young’s formula to approximate the optimum check-
point interval for each problem size: \/2 X fcheckpoint X MTBF, where MTBF is the mean time to
failure [Young 1974]. Assuming a high failure probability—MTBF of 60 seconds for the full
cluster—the optimum checkpoint interval is 24.7s or approximately 3 iterations.

'The code for PageRank and the GML framework it uses are in the main X10 git repository [The X10 Language 2019] in the
directories x10.gml/src and x10.gml/examples/pagerank, respectively.
12For PageRank, the 95% confidence interval is 1.6% of the mean for Resilient X10 and 2.9% for Resilient X10 with failures.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Failure Recovery in Resilient X10 15:23

Resilient Managed X10 is around 2.3x faster than Spark/GraphX. For comparison, Kabiljo et al.
[2016] report an Apache Giraph implementation of PageRank is 2x to 4x faster than Spark/GraphX
(for a large Twitter graph).

On the runs with three failures, there is an average 243.3 second performance drop for Resilient
Managed X10 (81.1s per failure). Approximately 2s per failure can be attributed to failure detection
and recovering the X10 runtime system. Restoring the application-level state from a checkpoint
averages 31.8s per failure. Another 21s is attributable to the loss of an average of two iterations
per failure. We conjecture the significant slowdown of the average iteration time results from the
combination of a cold JVM—GML PageRank is a much larger body of code than, say, KMeans—and
the overhead of the memory management associated with the large amount of resilient data. Even
with 3 failures, Resilient Managed X 10 remains around 30% faster than Spark/GraphX running with
no failures.

5.5 Scientific Simulations: LULESH

The LULESH proxy application [Karlin et al. 2013] simulates shock hydrodynamics on an unstruc-
tured mesh. Each place holds a rectangular block of elements, as well as the nodes that define those
elements. Like the previous applications, the fan out finish pattern is used for creating distributed
data structures and an activity at each place to execute local work for each step of the application. At
each time step, a series of stencil operations are applied to update node-centered kinematic variables
and element-centered thermodynamic variables. As the stencil operations require element- or node-
centered values from a local neighborhood, it is necessary to exchange boundary or ghost regions
between neighboring processes. The ghost region exchange is implemented between neighbors using
global references to pre-arranged communication buffers and pair-wise synchronized one-sided get
and put operations. LULESH also includes a spectrum of intra-place concurrent loops that rely on
local finish/async patterns. Each iteration, all places agree on an adaptive time step using a collec-
tive allreduce operation. The X10 implementation of LULESH exploits both intra- and inter-node
parallelism, and is around 10% faster than the reference implementation using C++/OpenMP/MPI
across a range from 125 to 4,096 places (750 to 24,576 cores) [Milthorpe et al. 2015].

We modified LULESH' to more abstractly specify its communication patterns using P1laceGroups
over subsets of active places, to use the SPMD resilient executor described in Section 3.4, and to add
support for checkpoint/restore of all of its per-place data structures. LULESH contains approximately
4,100 lines of code; supporting resiliency entailed adding 106 new lines and modifying 94 other lines.
Our LULESH code is a significantly more realistic example of a scientific simulation than the 175
line Heat Transfer kernel used in Cunningham et al. [2014].

The overhead of the fan out finish pattern, O(N), is expected to dominate the overhead of the parallel
finish blocks used in exchanging ghost cells, O(1), and collective operations, O(log(XN)), therefore,
LULESH’s scalability model is O(N), where N is the number of active places. However, using the
place zero finish implementation is expected to cause a performance bottleneck for LULESH at large
scales and result in high resilience overhead. We are currently implementing a native distributed
finish implementation, which aims to address this limitation in LULESH and similar applications.

Evaluation. Table 5 shows the execution time in seconds using Native X10. We do not report times
for LULESH on Managed X10 because LULESH heavily relies on stack allocation of worker-local
temporary arrays for performance in its parallel for loops. Since Managed X10 does not support this
Native X10 feature, LULESH performs quite poorly on it.

13The code of LULESH is found in the lulesh2_resilient directory of the applications repository at [X10 Applications
2019].

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:24 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

Table 5. LULESH execution times (seconds)

Total Time Single Step

Native X10 210.2 0.0875
Resilient Native X10 210.6 0.0875
Resilient Native X10 + Ckpt 216.6 0.0875
Resilient Native X10 + Ckpt + 3 Failures 233.1 0.0890
1000
900
800
700
600
500
400 P
300
\ N
5 M \
| B
0 . \
Managed Managed Native Managed Native
uTsS KMeans PageRank LULESH

X10 M Resilient X10 + Ckpt Resilient X10 + Ckpt + 3 Failures Spark

Fig. 3. Execution times for all the benchmarks (seconds)

We use a problem size of 35° elements per place running with 8 places.'* At this problem size,
LULESH has an average checkpoint time of 0.097 seconds. Applying Young’s formula and assuming
MTBF of 60 seconds yields an optimal checkpoint interval of 3.4 seconds, which corresponds to
checkpointing every 38 steps. For 8 places and 35° elements per place, the simulation takes a total of
2,402 time steps. Resilient X10 with checkpointing takes 6.4 seconds (3%) longer than non-resilient.
Of this, 6 seconds is checkpointing and 0.4 is attributable to resilient finish (0.2%). On the runs with
three failures, there is an average 16.5 second (5.5 per failure) performance drop. Approximately 1.5
seconds can be attributed to failure detection and recovery of the X10 runtime system, 0.5 seconds to
application-level recovery, and the remaining 3.5 seconds to lost work.

5.6 Summary

Figure 3 and Table 6 summarize the performance results across all the benchmarks and configurations.
We observe that Resilient X10 always outperforms Spark. This confirms two things. First, the
expressivity and level of control offered by the Resilient X10 programming model does not come
at the expense of performance. Even for application kernels for which the Spark programming
model is well suited, e.g., KMeans, Resilient X10 can match or exceed Spark performance. Second,
Resilient X10 can deliver much higher levels of efficiency for applications that are not as well
suited for Spark, e.g., UTS. In UTS, Resilient X10 has an overhead of less than 3% compared the
sequential throughout, Spark is much higher at 30%. Moreover, with X10 there is the opportunity
to go native, and for computationally intensive codes this is often a clear win as illustrated by the
KMeans benchmark.

4 ULESH requires a cubic number of places; to be consistent with our other experiments we run one place per node and thus
have a max of 8 places possible on our 23 node cluster.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Failure Recovery in Resilient X10 15:25

While some applications have higher resiliency overheads that others, these overheads are almost
entirely due to application-level checkpointing. We measured the checkpointing costs for instance
for KMeans between Resilient X10 and Spark and found them to be comparable.

Moreover, the experimental setup we have chosen—3 failures in 5-minute runs—over-emphasizes
the checkpointing costs. First, the initial checkpoint is often very expensive but it is only needed once
(and alternative implementations could be considered such as reloading input data from disk). With
our configuration, the initial checkpoint is not amortized and amounts to a significant fraction of the
execution time. Second, we implemented very frequent checkpoints to optimize for very frequent
failures. With a MTBF of one day instead of one minute, the checkpointing interval (respectively
overhead) would be multiplied (respectively divided) by 38. Concretely, across all four benchmarks,
for a 2-hour long run with a checkpointing interval adjusted for a 24-hour MTBF, the checkpointing
overhead drops below 1%. In short, in real-world use cases, we expect the resilient code to be barely
slower than the non-resilient code.

Finally, we have shown that, across all the benchmarks, the downtime consecutive to a place failure
never exceeds 2 seconds. In other words, 2 seconds after a failure the application code is already
busy restoring data from the resilient store or even computing.

Table 6. Summary of X10 experimental results

Managed Native
UTS KMeans PageRank | KMeans LULESH

X10 267.7s 283.4s 292.6s 195.9s 210.2s
Resilient X10 <268.4s'> 291.5s 3129s | 196.1s 210.6s
Resilient Finish Overhead <0.3% 2.9% 6.9% 0.1% 0.2%
Total Checkpointing Time <0.7s 27.2s 127.9s 3.3s 6.0s
Runtime Recovery (1 failure) 1_5316 2.0s 2.0s 1.5s 1.5s
App Data Recovery (1 failure) 13.0s 31.8s 6.5s 0.5s
Lost Work Recovery (1 failure) 1.5s 3.0s 21.0s 2.0s 3.5s
Slowdown due to Recovery (1 failure)!” 0s 5.6s 26.3s 0s 0s
Total Recovery Time (1 failure) 3s 23.6s 81.1s 10.0s 5.5s
Resilient Application Lines of Code 627 277 319 277 4100
Changed Lines for the lterative Framework N/A 73 50 73 200
% Changed N/A 26% 16% 26% 5%

6 OTHER RELATED WORK

The relationship between Resilient X10 and Big Data frameworks such as MapReduce and Spark
was discussed in Section 1. Previous work on Resilient X10 was covered in Sections 2 and 4. We do
not repeat those discussions here. In the following, we focus mainly on related resilience approaches
for HPC applications and programming models.

15 As the total resiliency overhead for UTS including both resilient finish and checkpointing is 0.7 seconds (0.3%), we did not
separately measure the overheads of just resilient finish for UTS.

160ur UTS code did not separately measure the time for Runtime Recovery and App Data Recovery.

17The additional slowdown is mainly resulting from JVM warmup and memory management of resilient data.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:26 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

HPC applications have long relied on coordinated checkpoint/restart both as a mechanism for
resiliency and to decompose long-running applications into more schedulable units of work [Elnozahy
et al. 2002; Sato et al. 2012]. Resilient X10 naturally supports a checkpoint/restart model by
providing a resilient store abstraction and the APGAS control constructs needed to synchronize
checkpoint/restart tasks across all involved Places. The X10 Global Matrix Library is similar to
the Global View Resilience library [Chien et al. 2015] in providing globally identified distributed
arrays, and in creating labelled snapshots of the data at application-controlled times for the purpose
of recovery. GML does not specify special error handling interfaces as in GVR, however, capturing
snapshots of the data along with X10’s failure reporting support can be integrated in a flexible way
for developing different failure recovery methods.

In response to increasing system scale, more loosely synchronized checkpointing approaches
have been explored based on message logging and deterministic replay [Guermouche et al. 2011;
Lifflander et al. 2014]. Message logging can provide a significant performance improvement over
coordinated checkpointing, particularly if knowledge of ordering constraints is used to reduce the
amount of information required to produce a correct replay [Lifflander et al. 2014]; furthermore, it
requires little or no programmer effort to add to an application. However, it is not a flexible approach,
as failures are transparent to the programmer and therefore do not allow the use of application-specific
knowledge to reduce the overhead of resilience.

Approximate computing represents an alternative approach to resiliency that simply suppresses
some failures based on the observation that some computations are inherently approximate or
probabilistic. In some cases, analysis can be applied to obtain bounds on the distortion of discarding
the results of failed tasks [Rinard 2006]. Because Resilient X10 enables the application programmer
to control their fault tolerance and recovery strategies, various approximate computing approaches as
well as algorithmic-based fault tolerance [Bosilca et al. 2009] can be naturally expressed in Resilient
X10 as illustrated in the original Resilient X10 paper [Cunningham et al. 2014].

Designing resilient HPC programming models has been a topic of active research in recent years.
MPI-ULFM (User Level Failure Mitigation) [Bland et al. 2012] is a proposal for adding fault
tolerance semantics to the coming MPI-4 standard. It extends MPI-3 with failure awareness and
additional interfaces for failure detection and recovery. Shrinking recovery is supported by the new
interface MPI_COMM_SHRINK that excludes dead ranks from a given communicator. Because MPI-3
supports dynamic process creation using MPI_COMM_SPAWN, non-shrinking recovery mechanisms can
also be implemented by spawning new ranks to replace dead ranks in a shrunken communicator [Ali
et al. 2014]. Resilient X10 offers the same capabilities within the productive APGAS programming
model. It uses MPI-ULFM as a low-level transport layer for scaling Resilient X10 applications to
supercomputer scale as described by Hamouda et al. [2016].

Transparent recovery of APGAS applications through message logging and task replication has
been recently studied in the context of the Chapel language [Panagiotopoulou and Loidl 2016].
As this work considers only side-effect-free tasks, and as the GASNet communication layer is not
tolerant to process failures, further work is required to provide a complete approach to resilience in
Chapel.

In the family of actor-based programming models, Erlang [Vinoski 2007] has been influential in
the area of fault tolerant concurrent programming. Erlang programs benefit from user-level resilience
by constructing a supervision tree between actors. A parent actor receives notifications when any of
its supervisees fails, and performs the required actions for recovery. The same failure model can be
expressed in Resilient X10 thanks to the nesting flexibility of the async/at/finish constructs and the
provided hierarchical failure propagation through DeadPlaceExceptions. While actor placement is
fixed and user-specified in Erlang, other actor-based programming models such as Charm++ [Acun
et al. 2014; Kalé et al. 2011] and Orleans [Bykov et al. 2011] offer a virtual actor abstraction that hides

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Failure Recovery in Resilient X10 15:27

the physical location of the actors from users and enables the runtime system to migrate the actors
transparently for failure avoidance and/or load balancing. Our PlaceManager and ResilientStore
abstractions apply the same virtualization concept to improve the productivity of writing Resilient
X10 programs, however it does not migrate the data transparently in order to maintain the strong
locality feature of the APGAS model. While Resilient X10 adopts a user-level resilience approach
that enables the expression of different fault tolerance techniques at the application level, Charm++
and Orleans handle failure recovery at the runtime level transparently. Charm++ supports transparent
recovery using checkpoint/restart [Zheng et al. 2012]. Orleans integrates multiple mechanisms for
handling failures. It uses in-memory replication for improving the system’s availability, disk-based
checkpointing for restoring lost actors, and resilient transactions for handling atomic actions on
multiple actors.

Partially fault-tolerant X10 implementations of lifeline-based global load balancing and Unbal-
anced Tree Search have been described by Fohry et al. [2015] and Fohry and Bungart [2016]. Whereas
those implementations can fail due to loss of a single place if the failure hits at the worst possible
time, our implementation described in Section 5.2 is resilient to any failure of a single place except
for place zero.

7 CONCLUSIONS

This paper describes the evolution of Resilient X10 into a powerful and practical programming
framework for implementing high performance distributed and resilient applications. While the
Resilient X10 semantics remain the foundation of this work, the lack of data resilience in the original
programming model design drastically limited its usefulness. Conversely in-memory data grids such
as Hazelcast lack a rich tasking model capable of orchestrating parallel and distributed computations.
In this work, we combine the two in a seamless way: the data and control semantics obey the
happens-before invariance principle; heap and resilient stores are organized according to the same
PGAS abstraction.

New capabilities such as elasticity and fully integrated standard library support for non-shrinking
recovery provide powerful new options to the application programmer. These capabilities significantly
reduce the complexity of implementing stateful applications designed to survive failure and preserve
the core productivity and performance benefits of the APGAS programming model.

As further developed in this paper, the Resilient X10 programming model naturally supports Big
Data paradigms such as those supported by MapReduce or Spark. In addition, Resilient X10 also
supports classes of applications with complex distributed communication patterns, shared mutable
distributed state, and dynamic fine-grained work generation. The Resilient X10 model also enables
a spectrum of recovery techniques ranging from checkpoint/restart, to resilient data structures, to
approximate computing and algorithmic fault tolerance. We strongly believe this generality and
flexibility is essential to accelerate the adoption of datacenter-scale computing infrastructure in an
ever-increasing number of application domains.

ACKNOWLEDGMENTS

The Resilient X10 research was funded in part by the U. S. Air Force Office of Scientific Research
under Contract No. FA8750-13-C-0052. Work on the LULESH application was supported by the
U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research under

Award Number DE-SC0008923. Source code line counts were generated using David A. Wheeler’s
‘SLOCCount’.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:28 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

REFERENCES

Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon, Eric Mikida, Xiang Ni, Michael Robson, Yanhua
Sun, Ehsan Totoni, Lukasz Wesolowski, and Laxmikant Kalé. 2014. Parallel programming with migratable objects:
Charm++ in practice. In Proc. International Conference for High Performance Computing, Networking, Storage and
Analysis (SC14). IEEE, 647-658.

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam McVeety, Daniel Mills,
Paul Nordstrom, and Sam Whittle. 2013. MillWheel: Fault-tolerant stream processing at Internet scale. Proc. VLDB
Endowment 6, 11 (Aug. 2013), 1033-1044. https://doi.org/10.14778/2536222.2536229

Md Mohsin Ali, James Southern, Peter Strazdins, and Brendan Harding. 2014. Application level fault recovery: Using
fault-tolerant Open MPI in a PDE solver. In 2014 International Parallel & Distributed Processing Symposium Workshops.
IEEE, 1169-1178.

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: relational data processing in Spark. In Proc. 2015
ACM SIGMOD International Conference on Management of Data (SIGMOD ’15). 1383-1394. https://doi.org/10.1145/
2723372.2742797

Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and Jack J Dongarra. 2012. An evaluation
of user-level failure mitigation support in MPL. In Proc. Recent Advances in Message Passing Interface — 19th European
MPI Users’ Group Meeting (EuroMPI ’12). Springer, 193-203.

George Bosilca, Rémi Delmas, Jack Dongarra, and Julien Langou. 2009. Algorithm-based fault tolerance applied to high
performance computing. J. Parallel Distrib. Comput. 69, 4 (April 2009), 410-416. https://doi.org/10.1016/j.jpdc.2008.12.
002

Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. 2010. HaLoop: Efficient iterative data processing on
large clusters. Proc. VLDB Endowment 3, 1-2 (2010), 285-296.

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: cloud computing
for everyone. In Proc. 2nd ACM Symposium on Cloud Computing (SOCC ’11). ACM, New York, NY, USA, Article 16,
14 pages. https://doi.org/10.1145/2038916.2038932

Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011. Habanero-Java: The new adventures of old X10. In
Proc. 9th International Conference on Principles and Practice of Programming in Java (PPPJ ’11). 51-61. https:
//doi.org/10.1145/2093157.2093165

Chapel 2016. Chapel Language Specification version 0.982. Technical Report. Cray Inc.

Philippe Charles, Christian Grothoft, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster computing. In Proc. 20th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA ’05). 519-538.
https://doi.org/10.1145/1094811.1094852

Andrew Chien, Pavan Balaji, Peter Beckman, Nan Dun, Aiman Fang, Hajime Fujita, Kamil Iskra, Zachary Rubenstein, Ziming
Zheng, Rob Schreiber, et al. 2015. Versioned distributed arrays for resilience in scientific applications: Global View
Resilience. Procedia Computer Science 51 (2015), 29-38.

Wei-Chiu Chuang, Bo Sang, Sunghwan Yoo, Rui Gu, Milind Kulkarni, and Charles Killian. 2013. EventWave: programming
model and runtime support for tightly-coupled elastic cloud applications. In Proc. 4th Annual Symposium on Cloud
Computing (SOCC ’13). ACM, New York, NY, USA, Article 21, 16 pages. https://doi.org/10.1145/2523616.2523617

Silvia Crafa, David Cunningham, Vijay Saraswat, Avraham Shinnar, and Olivier Tardieu. 2014. Semantics of (Resilient)
X10. In Proc. 28th European Conference on Object-Oriented Programming. 670-696. https://doi.org/10.1007/
978-3-662-44202-9_27

David Cunningham, David Grove, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya, Hiroki Murata, Vijay Saraswat,
Mikio Takeuchi, and Olivier Tardieu. 2014. Resilient X10: efficient failure-aware programming. In Proc. 19th ACM
SIGPLAN Symposium on Principles and Practice Of Parallel Programming (PPoPP 2014). ACM, 67-80. https://doi.org/
10.1145/2555243.2555248

Doug Cutting and Eric Baldeschwieler. 2007. Meet Hadoop. In O’Reilly Open Software Convention. Portland, OR.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In Proc. 6th Conference
on Symposium on Operating Systems Design & Implementation (OSDI’04). 10-10.

E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Survey 34, 3 (2002), 375-408.

Claudia Fohry and Marco Bungart. 2016. A robust fault tolerance scheme for lifeline-based taskpools. In 45th International
Conference on Parallel Processing Workshops (ICPPW). 200-209. https://doi.org/10.1109/ICPPW.2016.40

Claudia Fohry, Marco Bungart, and Jonas Posner. 2015. Towards an efficient fault-tolerance scheme for GLB. In Proc. ACM
SIGPLAN Workshop on X10 (X10 °15). ACM, New York, NY, USA, 27-32. https://doi.org/10.1145/2771774.2771779

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

https://doi.org/10.14778/2536222.2536229
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1016/j.jpdc.2008.12.002
https://doi.org/10.1016/j.jpdc.2008.12.002
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/2093157.2093165
https://doi.org/10.1145/2093157.2093165
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/2523616.2523617
https://doi.org/10.1007/978-3-662-44202-9_27
https://doi.org/10.1007/978-3-662-44202-9_27
https://doi.org/10.1145/2555243.2555248
https://doi.org/10.1145/2555243.2555248
https://doi.org/10.1109/ICPPW.2016.40
https://doi.org/10.1145/2771774.2771779

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Failure Recovery in Resilient X10 15:29

Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and Franck Cappello. 2011. Uncoordinated checkpointing
without domino effect for send-deterministic MPI applications. In Proc. IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 989-1000.

Sara S. Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, and Olivier Tardieu. 2016. Resilient X10 over MPI User
Level Failure Mitigation. In Proc. ACM SIGPLAN Workshop on X10 (X10 ’16). https://doi.org/10.1145/2931028.2931030

Sara S. Hamouda, Josh Milthorpe, Peter E Strazdins, and Vijay Saraswat. 2015. A resilient framework for iterative linear
algebra applications in X10. In Proc. 16th IEEE International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC 2015). https://doi.org/10.1109/IPDPSW.2015.14

Hazelcast, Inc. 2014. Hazelcast 3.4. https://hazelcast.com/

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010. ZooKeeper: wait-free coordination for
internet-scale systems. In Proc. 2010 USENIX Annual Technical Conference. 11-11.

Maja Kabiljo, Dionysis Logothetis, Sergey Edunov, and Avery Ching. 2016. A comparison of state-of-the-art
graph processing systems. Technical Report. Facebook. https://code.facebook.com/posts/319004238457019/
a-comparison-of-state-of-the-art- graph-processing-systems/

Laxmikant V. Kalé, Anshu Arya, Abhinav Bhatele, Abhishek Gupta, Nikhil Jain, Pritish Jetley, Jonathan Lifflander, Phil
Miller, Yanhua Sun, Ramprasad Venkataraman, Lukasz Wesolowski, and Gengbin Zheng. 2011. Charm++ for Productivity
and Performance: A Submission to the 2011 HPC class II challenge. Technical Report. Parallel Programming Laboratory.

ITan Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes. Technical Report LLNL-TR-641973.

Vivek Kumar, Yili Zheng, Vincent Cavé, Zoran Budimli¢, and Vivek Sarkar. 2014. HabaneroUPC++: A compiler-free PGAS
library. In Proc. 8th International Conference on Partitioned Global Address Space Programming Models. Article 5.

Jonathan Lifflander, Esteban Meneses, Harshitha Menon, Phil Miller, Sriram Krishnamoorthy, and Laxmikant V Kalé.
2014. Scalable replay with partial-order dependencies for message-logging fault tolerance. In Proc. IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, Madrid, Spain, 19-28.

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28, 2 (March 1982), 129-137. https:
//doi.org/10.1109/TIT.1982.1056489

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012. Distributed
GraphLab: A framework for machine learning and data mining in the Cloud. Proc. VLDB Endowment 5, 8 (April 2012),
716-7217.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
2010. Pregel: A system for large-scale graph processing. In Proc. 2010 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’10). 135-146. https://doi.org/10.1145/1807167.1807184

Josh Milthorpe, David Grove, Benjamin Herta, and Olivier Tardieu. 2015. Exploring the APGAS programming model using
the LULESH proxy application. Technical Report RC25555. IBM Research.

Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan, and Chau-Wen Tseng. 2007. UTS: an unbalanced
tree search benchmark. In Proc. 19th International Conference on Languages and Compilers for Parallel Computing
(LCPC’06). Springer-Verlag, Berlin, Heidelberg, 235-250.

Konstantina Panagiotopoulou and Hans-Wolfgang Loidl. 2016. Transparently resilient task parallelism for Chapel. In 2016
International Parallel & Distributed Processing Symposium Workshops. IEEE, 1586—1595.

John T. Richards, Jonathan Brezin, Calvin B. Swart, and Christine A. Halverson. 2014. A decade of progress in parallel
programming productivity. Commun. ACM 57, 11 (Oct. 2014), 60—66. https://doi.org/10.1145/2669484

Martin Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks. In Proc. 20th Annual
International Conference on Supercomputing (ICS "06). 324-334.

Vijay Saraswat, Gheorghe Almasi, Ganesh Bikshandi, Calin Cascaval, David Cunningham, David Grove, Sreedhar Kodali,
Igor Peshansky, and Olivier Tardieu. 2010. The Asynchronous Partitioned Global Address Space Model. In Proc. First
Workshop on Advances in Message Passing (AMP’10).

Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and Sriram Krishnamoorthy. 2011. Lifeline-based
global load balancing. In Proc. 16th ACM Symposium on Principles and Practice of Parallel Programming (PPoPP ’11).
201-212. https://doi.org/10.1145/1941553.1941582

Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de Supinski, and Satoshi Matsuoka.
2012. Design and modeling of a non-blocking checkpointing system. In Proc. International Conference for High
Performance Computing, Networking, Storage and Analysis 2012 (SC ’12).

Richard D. Schlichting and Fred B. Schneider. 1983. Fail-stop processors: an approach to designing fault-tolerant computing
systems. ACM Trans. Comput. Syst. 1, 3 (Aug. 1983), 222-238. https://doi.org/10.1145/357369.357371

Avraham Shinnar, David Cunningham, Benjamin Herta, and Vijay Saraswat. 2012. M3R: Increased performance for
in-memory Hadoop jobs. In Proc. VLDB Endowment (VLDB ’12).

Olivier Tardieu, Benjamin Herta, David Cunningham, David Grove, Prabhanjan Kambadur, Vijay Saraswat, Avraham Shinnar,
Mikio Takeuchi, and Mandana Vaziri. 2014. X10 and APGAS at Petascale. In Proc. 19th ACM SIGPLAN Symposium on

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

https://doi.org/10.1145/2931028.2931030
https://doi.org/10.1109/IPDPSW.2015.14
https://hazelcast.com/
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2669484
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1145/357369.357371

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

David Grove, Sara S. Hamouda, Benjamin Herta, Arun lyengar, Kiyokuni Kawachiya, Josh
15:30 Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

Principles and Practice Of Parallel Programming (PPoPP 2014). ACM, 53-66.

The X10 Language 2019. Git Repository. git@github.com:x10-lang/x10.git

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas Graves,
Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and
Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource Negotiator. In Proc. 4th Annual Symposium on
Cloud Computing (SOCC ’13). Article 5, 16 pages. https://doi.org/10.1145/2523616.2523633

Steve Vinoski. 2007. Reliability with Erlang. Internet Computing, IEEE 11, 6 (2007), 79-81.

Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O’Reilly Media, Inc.

X10 Applications 2019. Git Repository. git@github.com:x10-lang/x10-applications.git

X10 Benchmarks 2019. Git Repository. git@github.com:x10-lang/x10-benchmarks.git

X10v2.6.12017. X10 2.6.1 Release. https://doi.org/10.5281/zenod0.822471

Reynold S Xin, Daniel Crankshaw, Ankur Dave, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2014. GraphX:
Unifying data-parallel and graph-parallel analytics. arXiv preprint arXiv:1402.2394 (2014).

Chaoran Yang, Karthik Murthy, and John Mellor-Crummey. 2013. Managing asynchronous operations in Coarray Fortran 2.0.
In Proc. IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1321-1332.

John W Young. 1974. A first order approximation to the optimum checkpoint interval. Commun. ACM 17,9 (1974), 530-531.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In Proc. 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12). USENIX Association,
15-28.

Wei Zhang, Olivier Tardieu, David Grove, Benjamin Herta, Tomio Kamada, Vijay Saraswat, and Mikio Takeuchi. 2014.
GLB: Lifeline-based global load balancing library in X10. In Proc. First Workshop on Parallel Programming for Analytics
Applications (PPAA "14). ACM, New York, NY, USA, 31-40. https://doi.org/10.1145/2567634.2567639

Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé. 2012. A scalable double in-memory checkpoint and restart scheme towards
exascale. In Proc. IEEE/IFIP 42nd International Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE, 1-6.

Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and Katherine Yelick. 2014. UPC++: A PGAS extension for
C++. In Proc. IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1105-1114.

ACM Trans. Program. Lang. Syst., Vol. 41, No. 3, Article 15. Publication date: July 2019.

git@github.com:x10-lang/x10.git
https://doi.org/10.1145/2523616.2523633
git@github.com:x10-lang/x10-applications.git
git@github.com:x10-lang/x10-benchmarks.git
https://doi.org/10.5281/zenodo.822471
https://doi.org/10.1145/2567634.2567639

	Abstract
	1 Introduction
	2 Programming Model
	2.1 X10 Background
	2.2 Failure Model
	2.3 Non-Shrinking Recovery
	2.4 Resilient Control
	2.5 Resilient Store

	3 Building Resilient Applications
	3.1 Resilient Control
	3.2 Resilient Data
	3.3 Discussion
	3.4 Resilient Iterative Executors
	3.5 Other Approaches to Resilience

	4 Implementation Highlights
	4.1 Resilient Control
	4.2 Resilient Stores
	4.3 Elasticity

	5 Application Studies
	5.1 Experimental Setup
	5.2 Global Load Balancing: UTS
	5.3 KMeans Clustering
	5.4 Global Matrix Library: PageRank
	5.5 Scientific Simulations: LULESH
	5.6 Summary

	6 Other Related Work
	7 Conclusions
	Acknowledgments
	References

