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Cloud computing has made the resources needed to execute large-scale in-memory distributed computations
widely available. Specialized programming models, e.g., MapReduce, have emerged to offer transparent fault
tolerance and fault recovery for specific computational patterns, but they sacrifice generality. In contrast, the
Resilient X10 programming language adds failure containment and failure awareness to a general purpose,
distributed programming language. A Resilient X10 application spans over a number of places. Its formal
semantics precisely specify how it continues executing after a place failure. Thanks to failure awareness, the
X10 programmer can in principle build redundancy into an application to recover from failures. In practice
however, correctness is elusive as redundancy and recovery are often complex programming tasks.

This paper further develops Resilient X10 to shift the focus from failure awareness to failure recovery, from
both a theoretical and a practical standpoint. We rigorously define the distinction between recoverable and
catastrophic failures. We revisit the happens-before invariance principle and its implementation. We shift most
of the burden of redundancy and recovery from the programmer to the runtime system and standard library. We
make it easy to protect critical data from failure using resilient stores and harness elasticity—dynamic place
creation—to persist not just the data but also its spatial distribution.

We demonstrate the flexibility and practical usefulness of Resilient X10 by building several representative
high-performance in-memory parallel application kernels and frameworks. These codes are 10x to 25X larger
than previous Resilient X10 benchmarks. For each application kernel, the average runtime overhead of resiliency
is less than 7%. By comparing application kernels written in the Resilient X10 and Spark programming models
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we demonstrate that Resilient X10’s more general programming model can enable significantly better application
performance for resilient in-memory distributed computations.

ACM Reference Format:

David Grove, Sara S. Hamouda, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya, Josh Milthorpe, Vijay
Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu. 2019. Failure Recovery in Resilient X10.
ACM Trans. Program. Lang. Syst. 41, 3, Article 15 (July 2019), 30 pages. https://doi.org/10.1145/3332372

1 INTRODUCTION

The explosive growth of compute, memory, and network capacity that is economically available in
cloud computing infrastructures has begun to reshape the landscape of Big Data. The design and
implementation of the initial wave of Big Data frameworks such as Google’s MapReduce [Dean and
Ghemawat 2004] and the open-source Hadoop system [Cutting and Baldeschwieler 2007; White
2009] were driven by the need to orchestrate mainly disk-based workflows across large clusters
of unreliable and relatively low-performance nodes. Driven by increasing system capability and
new compute and data intensive workloads, new programming models and frameworks have begun
to emerge focusing on higher performance, in-memory distributed computing. Systems such as
HaLoop [Bu et al. 2010] and M3R [Shinnar et al. 2012] enhanced the performance of MapReduce by
enabling in-memory caching of data in iterative MapReduce workflows. Specialized systems such as
Pregel [Malewicz et al. 2010], GraphLab [Low et al. 2012], MillWheel [Akidau et al. 2013], and
many others were built to optimize the performance and programmability of specific application
domains. More recently, the Apache Spark system [Zaharia et al. 2012] and its underlying Resilient
Distributed Dataset (RDD) abstraction and data-parallel functional programming model have gained
significant traction. The Spark programming model is significantly more general-purpose than prior
Big Data frameworks. However, by design, Spark still presents a heavily restricted programming
model. Spark focuses on functional data-parallel operations over immutable RDDs and declarative
SQL-like operations over DataFrames [Armbrust et al. 2015]. Spark hides scheduling, distribution
and communication decisions from the application programmer, and provides a single built-in
approach to fault tolerance.

While transparent fault tolerance has obvious benefits, the one-size-fits-all approach has drawbacks
too. Many applications can take advantage of domain-specific strategies for fault management that
translate into all kinds of savings, e.g., time, memory, disk, network, power, etc. Some applications
can evaluate or estimate the loss of precision resulting from a fault and decide to accept this loss.
Scientific simulations can often rely on conservation laws—mass, volume—to fill gaps in data sets.
The architecture of an application can also influence the choice of a fault tolerance approach. For
instance, global checkpoints are well suited for bulk synchronous algorithms, whereas MapReduce
workloads are better served by per-task checkpoints.

The Asynchronous Partitioned Global Address Space (APGAS) programming model [Saraswat
et al. 2010] has been demonstrated to enable both scalable high performance [Milthorpe et al. 2015;
Tardieu et al. 2014] and high productivity [Richards et al. 2014] on a variety of High Performance
Computing (HPC) systems and distributed applications. Although originally developed in the context
of the X10 language [Charles et al. 2005], the core concepts of the APGAS programming model
can be found in a number of other HPC programming systems including Chapel [Chapel 2016],
Habanero [Cavé et al. 2011; Kumar et al. 2014], Co-Array Fortran 2.0 [Yang et al. 2013], and
UPC++ [Zheng et al. 2014]. Recent work on Resilient X10 [Crafa et al. 2014; Cunningham et al.
2014] enhanced APGAS with failure containment and failure awareness. An X10 application spans
over a number of places, typically realized as separate operating system processes and distributed
over a network of computers. When places fail, tasks running at surviving places continue to execute.
Lost places and tasks are reported to survivors via software exceptions. Application programmers
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can implement exception handlers to react to place failures and take corrective actions. The order
of execution of the surviving tasks cannot diverge from the failure-free execution, even in case of
orphan tasks, i.e., tasks that have lost their parent task. This happens-before invariance principle is
crucial to preclude races between orphan tasks and failure handling code. But it does not come for
free as it requires the runtime system to maintain its control state using fault-tolerant algorithms and
data structures.

Despite these advances, programming fault tolerance in Resilient X 10 remains challenging. There
is no built-in redundancy outside of the happens-before invariance implementation. Tasks at failed
places cannot be respawned magically. Data at failed places is lost. Lost places are no longer available
to host tasks or data, creating holes in the address space. In short, programming fault tolerance is
rather difficult and error-prone. Moreover, there is little point to the exercise if the resilient code is
significantly slower than the original. In most scenarios, running the non-resilient code repeatedly
until success is a better trade-off. Beyond these practical concerns, there are also foundational issues.
The formal failure model of Resilient X10 is too permissive: all the places can fail at once. The
guarantees of Resilient X10 are formally valid in this scenario. But there is no way for an application
to recover from such a catastrophic failure. While the Resilient X10 programmer can persist data by
using an external data store, this is a priori a recipe for disaster as the happens-before invariance does
not encompass foreign libraries.

In this paper, we revisit Resilient X10 to extend, improve, or revise aspects of the language, its
semantics, and implementation to establish a practical general framework for efficient in-memory
distributed computing with programmable fault tolerance. Our goal is to evolve Resilient X10 so
that it not only enables failure recovery code to exist in theory, but makes the development of
recovery code a rewarding experience. Our work is driven primarily by our experience in porting
existing realistic applications, frameworks, and class libraries to Resilient X10 and in developing
new applications. Our contributions provide dramatic increases to programmers’ productivity and
applications’ performance:

e We rigorously specify resilient data stores and revise the failure model and happens-before
invariance principle to accommodate them. We implement two resilient data stores with
different trade-offs: a resilient store based on Hazelcast [Hazelcast, Inc. 2014], an off-the-shelf
external distributed store, and a resilient store implemented in pure Resilient X10. With these
stores, application programmers can trivially protect from failure application data deemed
critical.

e We augment the language, its semantics, and runtime system to permit the dynamic creation of
places. The combination of dynamic place creation with generalized indirect place addressing
in the standard library enables non-shrinking recovery, that is, after recovery the program will
have access to the same number of places as it did before the failure. This stability in the
number of places significantly reduces the complexity of the application’s failure recovery code
since it avoids the need to redistribute data or otherwise change the program’s communication
topology.

o We identify and address performance bottlenecks in the existing open-source implementation
of the happens-before invariance principle that cause up to 1000x slowdowns on common
code patterns.

e We implement and empirically evaluate a suite of representative Resilient X10 application
kernels including typical Big Data problems from the machine learning domain, scientific
simulations, and global dynamic load balancing. Most are based on pre-existing X10 applica-
tions with small localized code changes for resiliency. These codes comprise a significantly
more realistic corpus of APGAS programs—10x to 25X greater code size—than any prior
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evaluation of Resilient X10. Across all our application kernels, the average overhead imposed
by resiliency on non-failing runs was under 7%, and often well under.'

e Where possible, we compare the performance of the X10 kernels to equivalent kernels written
using the Spark programming model to demonstrate that the additional flexibility provided by
the APGAS programming model can yield significant performance benefits.

Section 2 presents the fundamental capabilities that the Resilient X10 system provides to the
programmer; it includes a brief review of the APGAS programming model to provide necessary
background. Section 3 illustrates how these capabilities can be combined to build resilient applications
and frameworks. Section 4 describes key aspects of our implementation. Section 5 presents some
of the application kernels we built to gain practical experience with Resilient X10 and provides an
empirical evaluation of their performance. Finally, Section 6 covers additional related work and
Section 7 concludes.

2 PROGRAMMING MODEL

This section presents an overview of the Resilient X10 programming model. The base X10 program-
ming model (Section 2.1) and the semantics of resilient control (Section 2.4) are not new contributions
of this paper. The failure model (Section 2.2) follows from prior work but is refined for this paper.
Non-shrinking recovery (Section 2.3) and resilient stores (Section 2.5) are new contributions.

2.1 X10 Background

The X10 programming language [Charles et al. 2005] has been developed as a simple, clean, but
powerful and practical programming model for scale-out computation. Its underlying programming
model, the APGAS (Asynchronous Partitioned Global Address Space) programming model [Saraswat
et al. 2010], is organized around the two notions of places and asynchrony.

Asynchrony is provided through a single block-structured control construct, async S. If S is a
statement, then async S is a statement that executes S in a separate fask (logical thread of control).
Dually, finish S executes S, and waits for all tasks spawned (recursively) during the execution of S
to terminate, before continuing. Exceptions escaping from S or tasks spawned by S are combined
in a MultipleExceptions instance that is thrown by finish upon termination. Constructs are
provided for unconditional (atomic S) and conditional (when (c) S) atomic execution.

A place is an abstraction of shared, mutable data and worker threads operating on the data, typically
realized as an operating system process. A single APGAS computation may consist of hundreds or
potentially tens of thousands of places. The construct at (p) S permits the current task to change its
place of execution to p, execute S at p and return, leaving behind tasks that may have been spawned
during the execution of S. The termination of these tasks is detected by the £inish within which the
at statement is executing. The object graphs reachable from the final variables used in S but defined
outside S are serialized, transmitted to p, and de-serialized to reconstruct a binding environment in
which S is executed. The snippet below shows how finish, async, and at can be combined to print
a message from each place:

val msg = "Hello World";
finish for (p in Place.places())
at (p) async
Console.OUT.println(here+" says "+msg);
Console.OUT.println("GoodBye!");

'This number does not include the application-level checkpointing overhead, which can be decided arbitrarily and should
reflect the expected mean time between failures (MTBF).
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The messages from each place will be printed in an arbitrary order, but £inish ensures they will
appear before "GoodBye! " is printed.

Variables in one place can contain references (global refs) to objects at other places. Calling
GlobalRef(obj) constructs a global ref to obj in the local heap. A global ref can only be derefer-
enced at the place of the target object.

Places are assigned numbers starting from zero. The application main method is invoked at
place zero. The method Place.places() returns the set of places at the time of invocation; here
evaluates to the current place.

2.2 Failure Model

Resilient X10 [Crafa et al. 2014; Cunningham et al. 2014] builds on X10 by exploiting the strong
separation provided by places to provide a coherent semantics for execution in the presence of
failures. It assumes a fail-stop failure model [Schlichting and Schneider 1983] where the unit of
failure is the place.? A place p may fail at any time, with the instantaneous loss of its heap and tasks.
The failure is contained: running tasks and heaps at other places are not affected by the failure of
place p. In particular, if g#p, any at (q) S initiated from place p or any other place before the failure
of place p will execute to completion (see Section 2.4). Surviving tasks are made aware of failed
places as follows. Any at (p) S executing at a place q will throw a DeadPlaceException (DPE).
Any attempt to launch an at (p) S from place q will also throw a DPE. Global refs pointing to objects
hosted at p now “dangle”, but they cannot be dereferenced since an at (p) S will throw a DPE.

While this failure model makes it possible to reason about execution in the presence of failures, we
need more to reason about failure recovery. Obviously an application cannot recover from a scenario
where all places have failed at once, as there is no place left to run recovery code. In other words,
not all failures can be recovered from. We have to draw a line between catastrophic failures and
recoverable failures.

For this work, we extend Resilient X10 with the concept of a resilient data store. A resilient store is
a safe haven for data (see Section 2.5). It is designed to transparently overcome place failures to avoid
data loss. A store fails if and only if it loses data. The condition for a failure depends on the store
implementation (see Section 4.2) and the actual content. For example, a store can be implemented
to tolerate up to n concomitant place failures by maintaining replicas of each data element in n+1
places. A store can survive any number of infrequent failures over time if it rebuilds redundancy after
each place failure. An empty store never fails. A place failure is defined to be catastrophic if it causes
the failure of a resilient store instance.

Execution of an X10 program begins by executing the main method in a single task in place
zero. As a result, X10 programs are typically structured with place zero containing a master task
that coordinates overall execution. Therefore, Resilient X10 treats the failure of place zero as a
catastrophic failure. This model is not unusual; for example Spark can recover from failed executors
but a failure of the driver process (a Spark program’s main) is a catastrophic failure. In Resilient X10
however, there is no requirement that place zero be a master place for all aspects of the execution,
e.g., scheduling tasks, maintaining directories.

Our runtime and resilient store implementations do not assume that place zero cannot fail (see
Section 4). While one of our implementations of the finish construct in Resilient X10 does make this
assumption, we also offer a £inish implementation that can survive the failure of place zero. Except
for this special, opt-in implementation of £inish, the runtime state and resilient data are replicated
and distributed uniformly across all the places to protect from the failure of any place, including

2In a fail-stop failure model, the only failures are crash failures of servers. All non-crashed servers can detect that a crashed
server has failed. Messages between servers are never lost unless either the sender or receiver crashes.
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place zero, and ensure scalability. In principle, when used with the non-place-zero dependent £inish
implementation, our underlying runtime system could support running X10 as a service® where a
failure of place zero is not considered catastrophic. However, we have not experimented with writing
any applications that exploit this capability.

In summary, a place failure is catastrophic if and only if (i) the failed place is place zero or (ii)
the place failure triggers the failure of a resilient store instance (data loss). In the remainder of this
paper, we only consider recoverable, i.e., non-catastrophic, failures. Thanks to this definition, we can
decompose the failure recovery problem into two independent subproblems: avoiding data loss by
means of resilient data store (see Section 2.5 and Section 4.2) and preserving application behavior
assuming no data loss (see Section 3 and Section 5).

2.3 Non-Shrinking Recovery

All problems in computer science can be solved by another level of indirection. —
D. Wheeler

Many APGAS applications contain structured data and structured communication patterns where
places exchange specific data blobs with specific collections of other places. For example, row/column
based broadcasts in distributed matrix operations or boundary data exchange with “neighbors” in a
k-dimensional grid in scientific simulations. Prior work on Resilient X10 [Cunningham et al. 2014]
only supported shrinking recovery. When a place fails, an application can reorganize to continue
running with fewer places. However, for X10 applications with substantial distributed state, this
reorganization often incurred a productivity and a performance cost. The programmer had to code
the data movements explicitly and provide algorithms that work with flexible place counts. Often
these algorithms would only imperfectly tolerate reduced place counts, resulting in imbalance that
degraded future performance. To improve productivity and performance, we add to Resilient X10
support for non-shrinking recovery, i.e., the ability to compensate for lost places with fresh places,
therefore greatly reducing the algorithmic burden for the programmer.

To permit non-shrinking recovery, we have augmented Resilient X10 with elasticity—the ability
to dynamically add places to a running application. Elasticity is also useful by itself in cloud infras-
tructures where the availability and cost of resources vary dynamically. New places may be created
externally, or may be requested internally by the running application via asynchronous invocations
of System.addPlaces(n) or synchronous invocations of System.addPlacesAndWait(n). After
joining is complete, calls to Place.places() will reflect the new place(s). Numeric place ids are
monotonically increasing and dead place ids are not reused. Higher-level abstractions, such as the
PlaceManager described below, use these runtime calls internally to dynamically manage places,
automatically compensating for lost places.

Because numeric place ids are managed by the runtime system and affected by place failures,
they should not be directly targeted by application programmers. Instead, they should use X10
standard library abstractions such as PlaceGroup and Team. The PlaceGroup class represents an
indexed sequence of places and provides methods for enumerating the member places and mapping
between places and their ordinal numbers in the group. The Team class offers MPI-like collective
operations. As a concrete example, a place p’s neighbors in a structured grid are usually computed as
a simple mathematical function of p’s assigned grid id. Instead of using the place’s actual numeric
id, p.1id, a Resilient X10 application should instead define a PlaceGroup pg containing all the
constituent places of the grid and use pg.index0f(p) as the grid id of p. In conjunction with the
PlaceManager facility described below, consistent use of PlaceGroup indices in this way creates a
level of indirection that is sufficient to enable the bulk of the application code to be used unchanged

3X10 as a service accepts and runs X10 tasks submitted to any place belonging the X10 service instance.
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with non-shrinking recovery in Resilient X10. Many prior systems, including Bykov et al. [2011]
and Chuang et al. [2013], have combined elasticity and logical naming to achieve similar high-level
objectives.

The PlaceManager is a new addition to the X10 standard library that encapsulates place manage-
ment for both shrinking and non-shrinking recovery. In essence, it implements a PlaceGroup that
can be adjusted when a place fails. It exposes two primary APIs to higher-level frameworks and appli-
cations. First, it exposes an active PlaceGroup. Second, it has a rebuildActivePlaces () method
that should be invoked when a place failure is detected to rebuild the active PlaceGroup. Depending
on configuration, this method simply purges the dead places from the active PlaceGroup—for
shrinking recovery—or replaces the dead places with fresh places—for non-shrinking recovery.
The PlaceManager for non-shrinking recovery orchestrates the process of elastically requesting
new places from the lower level X10 runtime system when necessary to replace dead places. It can
be configured to keep an optional pool of “hot spare” places ready for immediate use. It uses hot
spares if available (replenishing the pool asynchronously), or if none are available it waits for more
places to be created. Finally, rebuildActivePlaces() returns a description of the places that were
added/removed from the set of active places to enable application-level initialization of newly added
places and updates.

While we could make the PlaceManager automatically react to place failures, in practice we
observed that controlling the exact timing of the rebuildActivePlaces() invocation explicitly
leads to cleaner code and simpler recovery logic than an implicit asynchronous invocation from the
runtime system.

2.4 Resilient Control

X10 permits arbitrary nesting of async/at/finish. Hence when a place p fails it may be in the
middle of running at (q) S statements at other (non-failed) places q. The key design decision in
Resilient X10 is defining how to handle these “orphan” statements. While S has lost its parent place,
it still belongs to enclosing finish and at constructs, e.g.,

finish { ... at(p) { ... at (@) S ... } } T

In a failure-free program, the execution of S happens before the execution of T. Resilient X10
maintains the strong invariant that the failure of a place will not alter the happens-before relationship
between statement instances at the non-failed places. This guarantee permits the Resilient X10
programmer to write code secure in the knowledge that even if a place fails, changes to the heap at
non-failed places will happen in the order specified by the original program as though no failure
had occurred. Failure of a place p will cause loss of data and computation at p but will not affect
the concurrency structure of the remaining code. In this example, if place p fails, S may execute
or not depending on the timing of the failure. If S does execute, it will complete before T executes.
Similarly, if place q fails, S may execute fully, partially, or not at all, but again (any surviving tasks
spawned by) S will finish before T executes.

The operational semantics of X10 and Resilient X10, the happens-before relationship, and the
invariance principle are formalized by Crafa et al. [2014]. Resilient X10 extends the base X10
semantics with transitions to model failures. The happens-before partial order is specified by means
of execution traces: statement s; happens before s; if and only if 51 occurs before s; in any trace
containing s,.* The invariance principle theorem states that if statement s; happens before statement
s viz. X10’s semantics, then s happens before statement s, viz. the semantics of Resilient X10.

#The happens-before relationship of [Crafa et al. 2014] relates activations of dynamic instances of statements in the execution
of a given program and initial heap.
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Cunningham et al. [2014] informally establish the link between the happens-before relationship and
the control-flow constructs of the language. Moreover, they observe that although many constructs
(sequence, conditional, loops, etc.) contribute to the partial order, only finish and at constrain
the order of execution across places. In a sense, a sequence S T is naturally resilient as the loss of
the ordering constraint cannot occur independently of the loss of T, which makes the constraint
irrelevant. Therefore, only finish and at require new implementations for Resilient X10. We
discuss our £inish implementations, i.e., resilient distributed termination detection implementations
in Section 4. The at construct is basically implemented as a £inish with a single task.

Crafa et al. [2014] formalize X10’s partitioned global address space, i.e., the distributed heap.
The invariance principle therefore encompasses heap operations. In particular, a mutation of the
heap is guaranteed to complete before any enclosing finish irrespective of any place shifts and
place failures along the way. On the other hand, invocations of external services are not included
in this formalization. While these invocations could be modeled as asynchronous tasks running at
other places, we believe this would not make sense in practice. External services typically should
not be expected to be aware of and contribute to (Resilient) X10’s termination detection protocols.
In particular, if a place fails just after invoking an external service, Resilient X10 cannot guarantee
that a particular program statement will only happen after the completion of the invocation (whereas
finish can offer this guarantee when dealing with invocations of asynchronous X10 tasks at failed
places). But in practice, recovery code in Resilient X10 can still leverage the invariance principle to
build strong ordering guarantees using mechanisms provided by the external service such as fences,
epochs, transaction logs, etc.

2.5 Resilient Store

In order to enable applications to preserve data in spite of place failures, we extend Resilient X10
with the concept of a resilient data store realized as a distributed, concurrent key-value map. Since
the APGAS programming model enforces strong locality—each object belongs to one specific
place—a resilient data store is also partitioned across places. Invocations of the set (key, value)
and get (key) methods of a resilient store associate a value to a key or return the value for a key for
the current place. Map operations on a given key k at a given place p are linearizable.

Applications may use a resilient store to checkpoint intermediate results or sets of tasks (completed,
in progress, pending). Upon failure, an application is responsible to replace or reconstruct the lost
data using the content of the resilient store.

A resilient store ranges over an active PlaceGroup as defined in the previous section. In non-
shrinking recovery, if a fresh place p replaces a dead place q, the map entries for place q are seamlessly
transferred to place p. In short, the store content for place q survives the failure of place q and place
p takes ownership of this content. For shrinking recovery, we support querying the content of the
store of a dead place from any surviving place via the getRemote(place, key) method.

The resilient store implementations (see Section 4.2) handle the data replication and/or data
movement needed to preserve the data. Using a resilient store is semantically equivalent to transferring
objects across places, i.e., an object retrieved from the store is a deep copy of the object put into the
store.

Resilient stores must obey the happens-before invariance principle (see Section 2.4). Store op-
erations must happen in the order specified by the failure-free program. In particular, an update
operation initiated from a task interrupted by the death of the hosting place must not linger. It must
either mutate the store before any finish waiting for the task completes or never mutate the store.
This property is crucial to ensure that recovery code can be constrained to happen after any store
operations coming from the place whose death triggered execution of the recovery code.
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A resilient store implementation in Resilient X10 can of course build upon async and finish to
achieve happens-before invariance trivially. In contrast, integration of an off-the-shelf in-memory
data grid in Resilient X10 may require some additional work to fulfill the requirement, such as
flushing operation queues before reporting the death of a place to the X10 application.

3 BUILDING RESILIENT APPLICATIONS

This section illustrates how the core programming model concepts of Section 2 can be combined
to define higher-level fault-tolerant application frameworks. We implement non-shrinking check-
point/restart, a well-known technique for transparent fault tolerance in iterative applications. While
Resilient X10 is intended to enable innovation in software fault tolerance, we want to devote this
section to the programming model, not the particulars of an original or atypical fault tolerance
algorithm. Moreover, we will use this algorithm as well as variations of this algorithm to bring fault
tolerance to some of the application kernels presented in Section 5. We briefly discuss a few other
approaches to resilience in Section 3.5.

3.1 Resilient Control
An iterative application typically looks like the following:

while(!app.isFinished()) app.step(Q);

The step and isFinished methods, respectively, specify the loop body and termination condition.
Each step may entail a distributed computation over the active place group of a PlaceManager pm.

Using Resilient X10, we can rewrite this loop to make it fault tolerant. The execute method
below takes an instance of an IterativeApp and executes it resiliently, i.e., using checkpoint/restart
to protect from place failures:

def execute(app:IterativeApp) {
globalCheckpoint (app);
var err:Boolean = false;
var i:Long = 1;
while(true) {
try {
finish {
if(err) { globalRestore(app); i=1; err=false; }
if(app.isFinished()) break;
app.stepQ;
if(i ¥ N == 0) globalCheckpoint(app);
i++;
}} catch(e:MultipleExceptions) {
if(e.isDPE()) err = true; else throw e;
33}

To invoke the execute method, the programmer must provide an instance of an IterativeApp, i.e.,
implement the methods listed in Figure 1. The code for step and isFinished is unchanged from
the original non-fault-tolerant loop. The programmer must specify how to checkpoint and restore
the local state of the application in between iterations. The checkpoint method should insert critical
application data for the current place into a hash table. The restore method does the reverse. The
programmer may also specify initialization code to run on dynamically created places by means of
the remake method. Importantly, none of these methods need to handle data distribution or place
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interface IterativeApp {

def isFinished():Boolean;

def step():void;

def checkpoint():HashMap[K,V];

def remake(changes:ChangeDescription):void; |
def restore(ckptData:HashMap[K,V]):void; :

____________________________ g
| IterativeExecutor |
| ResilientStore | | PlaceManager |

Fig. 1. X10 Resilient Iterative Framework

failures. The globalCheckpoint and globalRestore methods implemented in the next section
orchestrate the invocations of app.checkpoint, app.restore, and app.remake to checkpoint
and restore the global application state.

We now explain how fault tolerance is implemented by the execute method in details. The code
first checkpoints the initial application state. The loop code cannot recover from a place failure before
the completion of this first checkpoint. This invocation of globalCheckpoint is not in the scope of
the try-catch construct. However, the application itself may be capable of replaying its initialization
and invoke execute again.

The loop periodically makes checkpoints based on a configurable checkpointing interval N. It
detects place failures and rolls back to the last checkpoint using a single exception handler. The
handler distinguishes the dead place exceptions (using the i sSDPE helper method) that are transparently
handled from other exceptions that abort the execution. The handler takes care of place failures at
any stage of the loop, not only in app.step or app.isFinished, but also in globalCheckpoint
and globalRestore using the same retry strategy for all failures. For instance, a place failure
during the execution of globalCheckpoint sets err to true, which triggers the invocation of
globalRestore when the while loop is reentered. The globalCheckpoint method implemented
below uses double buffering to guard against incomplete checkpoints.

Together execute, globalCheckpoint, and globalRestore handle any combination of non-
catastrophic place failures past the initial checkpoint. This includes not only failures during
app.step or app.isFinished, but also during globalCheckpoint and globalRestore.

3.2 Resilient Data

The globalCheckpoint and globalRestore methods are implemented using the PlaceManager
pm and a resilient store rs:

def globalCheckpoint(app:IterativeApp) {

val k = key.equals("red") ? "black" : "red";

finish for(p in pm.activePlaces()) at(p) async rs.set(k,
app.checkpoint());

key = k;

}

def globalRestore(app:IterativeApp) {
val changes = pm.rebuildActivePlaces();
rs.recover (changes) ;
app.remake (changes) ;
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finish for(p in pm.activePlaces()) at(p) async app.restore(rs.get(key));
}

The two methods, respectively, invoke app . checkpoint and app.restore in every active place to
extract the local state to checkpoint or restore it. Double buffering defends against failures during
checkpointing. The checkpointing key is mutated only after finishing successfully all the local
checkpoints. If any of the app. checkpoint () invocations fails, the control is transferred from the
enclosing finish to the exception handler, skipping over the key = k assignment. Before attempting
to restore the last checkpoint, the globalRestore method makes sure to rebuild the place group—
replace dead places with fresh places—and reorganizes the resilient store accordingly. It also invokes
app.remake to give the application the opportunity to process the changes, e.g., initialize data
structures at the newly added places.

3.3 Discussion

At first, the fault tolerant loop code may seem daunting. After all, we started from one line of code and
ended up with two dozen lines for execute, globalCheckpoint, and globalRestore combined.
Most of the code however—the checkpointing interval logic, the error flag, the while loop, the
invocations of step, isFinished, globalCheckpoint, and globalRestore—would be similar
in any checkpoint/restart implementation. The logic is subtle but orthogonal to Resilient X10. The
Resilient-X10-specific code follows a single pattern: the try-catch construct and the finish construct
immediately inside of it. This pattern is enough to cover all non-catastrophic failure scenarios.
Because it is so simple, it is easy to write, read, and maintain. In short, it is robust.

Moreover, the loop code in Resilient X10 can be refined or customized easily, whereas oft-the-shelf
checkpoint/restart frameworks typically offer a finite set of configuration flags or parameters. For
instance, the initial checkpoint often has a broader scope than subsequent checkpoints because
of immutable data (see Section 5). The input data may be reloaded or recomputed instead of
checkpointed in memory. The X10 code can be adjusted to account for these variations. In contrast
with off-the-shelf frameworks for transparent fault tolerance, Resilient X10 provides the means to
tailor fault-tolerance schemes to specific workloads or application domains with benefits such as
reduced performance overheads, reduced memory footprint, or improved recovery times. We discuss
one such variant in the next section.

3.4 Resilient lterative Executors

We added this checkpoint/restart framework to X10’s standard library and used it to implement several
application kernels discussed in Section 5. The IterativeExecutor class exposes an execute
method that is essentially the same as the one presented here. We refer to this executor as a global
executor; it can be used for algorithms that perform arbitrary communications as well as regular
SPMD-style computations. For SPMD computations, the step method must start remote tasks at each
active place, each task performing a single iteration. We implement an SPMDIterativeExecutor
to better support this application pattern. This executor distributes the computation over the set of
active places. It creates parallel remote tasks that run multiple iterations (up to the checkpointing
interval) of the isFinished and step methods, which are no longer in charge of distributing the
computation. By doing so, the SPMD executor eliminates the overhead of creating remote tasks at
each step.
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3.5 Other Approaches to Resilience

While bulk synchronous checkpoint/restart is one of the most commonly used techniques today,
many applications can benefit from other approaches to resilience. Resilient X10 makes it possible to
tailor recovery strategies to particular application domains or patterns.

In Section 5.2, we will demonstrate a resilient Unbalanced Tree Search application kernel that
adopts a different approach. In this particular application, the tasks to be executed are highly
unbalanced. Implementations that rely on periodic synchronizations or centralized schedulers perform
poorly. The reference, non-resilient, state-of-the-art implementation uses distributed work-stealing
to achieve high CPU utilization and low communication overheads. Using an iterative framework
such as the one we have just described would require rearchitecting the application code and cripple
performance. Therefore, we make independent checkpointing decisions in each place. A work transfer
due to work stealing requires the synchronous (i.e., transactional) update of only two checkpoints,
rather than updating them all in a bulk synchronous style. While the overhead per steal increases, the
fundamentals of the scheduling scheme are preserved and the performance is good.

Some applications can estimate and possibly tolerate the loss of precision resulting from a fault.
Scientific simulations can often rely on conservation laws—mass, volume—to fill gaps in data sets.
For instance, a shallow water simulation that divides an area of interest into a grid and distributes
grid elements across a compute cluster can reconstruct the water surface at a failed place using (i)
the conservation of mass, (ii) the boundary condition, and (iii) a simple interpolation. Of course, the
latter assumes the water is relatively calm. Resilient X 10 makes it possible to not only implement
such a recovery strategy but also dynamically switch between this strategy for water that is calm
enough vs. a checkpoint-based strategy for water that is not.

4 IMPLEMENTATION HIGHLIGHTS

A feature of the X10 system is that a single X10 program can be compiled for execution on a
wide variety of platforms and network transports with varying performance characteristics. X10
is implemented with two backends. On the managed backend, X10 compiles into Java and runs
on (a cluster of) JVMs; on the native backend, X10 compiles into C++ and generates a native
binary for execution on scale-out systems. X10’s communication layer can use multiple underlying
network transports including TCP/IP sockets, MPI, and PAMI. Resilient execution over MPI is
supported using MPI User Level Failure Mitigation (ULFM) [Hamouda et al. 2016]. This diversity
of implementation is valuable: different combinations are best suited for specific application domains
or deployment scenarios. Therefore, our implementation of Resilient X10 includes both native and
managed X10, three network transports (Java sockets, native sockets, MPI), and full support for
Linux, Windows, and macOS.

The key implementation challenge in providing Resilient X10’s happens-before invariant for
resilient control is making X10’s £inish construct resilient. This entails adjusting the distributed
termination algorithm used by finish to be failure aware and storing its distributed state in a
(potentially specialized) resilient store. Logically, the resilient store used for finish is distinct
from the resilient store used for application data. Three implementations of resilient finish were
described in Cunningham et al. [2014]: one that stored all finish state at place zero, one that used
ZooKeeper [Hunt et al. 2010] as an external resilient store, and one that used a custom resilient
distributed store for finish state implemented in X10. The place zero approach is not scalable to large
place counts. The use of a custom store was motivated by results showing that the ZooKeeper-based
store was impractically slow, but the prototype custom store implementation could only survive a
single place failure.
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In this paper, we revisit the viability of using an off-the-shelf external distributed store. We
implement resilient finish and the resilient store API on top of the Hazelcast in-memory data
grid [Hazelcast, Inc. 2014]. Hazelcast offers a scalable, in-memory data grid which can be embedded
in an X10 application to store control state as well as application data. For Resilient X10, we associate
each compute node with a separate Hazelcast member. As data are backed up on multiple members,
Hazelcast ensures that no data are lost in the event of a node failure.> We instantiate several Hazelcast
distributed fault-tolerant maps to safeguard both the resilient application state and the runtime state
of the resilient finish implementation. At this time, this implementation is only available with the
managed backend.

We also continue to develop a pure X10 implementation of Resilient X10. We improved the place
zero resilient finish performance. We developed a scalable resilient store in X10 that is capable of
rebuilding redundancy on the fly, hence surviving multiple place failures. These artifacts are usable
with both backends. In contrast to the Hazelcast implementation, the place zero finish cannot survive
the failure of place zero. The resilient store, however, has no such limitation when instantiated in
combination with Hazelcast finish.

The remainder of this section describes the major enhancements and extensions we have made
over the system of Cunningham et al. [2014]. All have already been contributed back to the X10
open source project and were included in the X10 2.6.1 release [X10 v2.6.1 2017].

4.1 Resilient Control

All three prior implementations of resilient finish imposed a significant performance penalty on task
creation. As a result, common X10 programming idioms that utilize fine-grained tasks would incur
crippling overheads under Resilient X10 (see Table 1). This greatly reduced the practical usefulness
of resilient finish by preventing the unmodified reuse of existing X10 frameworks and applications.
We developed several optimizations to reduce the cost of task creation; they are presented below in
order of their relative importance.

The most important problem to tackle was to minimize the resiliency imposed overheads on the
very common operation of local task creation and local finishes. We did this by exploiting the insight
that only a subset of the tasks actually need to be tracked resiliently to provide the full Resilient X10
semantics. In particular, the exact number and identity of tasks that were executing in a failed place
is not observable in the surviving places. This insight allows a non-resilient place-local counter to be
used to cheaply track the lifetime of each incoming task and its locally spawned descendants. The
counter starts with a value of one to indicate the liveness of the already started incoming task; it is
incremented when local children are spawned and decremented when tasks it is tracking complete.
Interactions with a resilient store are only required when (i) a new remote task is spawned or (ii) when
a local counter reaches zero, indicating termination of its local fragment of the task tree. Similarly,
the existence of a finish does not need to be resiliently recorded until it (transitively) contains a
non-local task. The combination of these two optimizations virtually eliminates the performance
penalty of resiliency for fine-grained concurrency within a place.

Second, in non-resilient X10, spawning a remote task is mostly asynchronous: the parent task is
not stalled waiting for the remote task to begin executing. More precisely, the parent task continues
its own execution as soon as it has initiated the message send requesting the remote task creation and
recorded the initiation of a remote task in the local portion of the distributed (non-resilient) state of
its controlling finish. In all three original resilient finish implementations, spawning a remote task

SEarlier versions of Hazelcast promised strong consistency, however, starting from version 3.9 Hazelcast promises only
eventual consistency, where a failure to correctly replicate a mutating operation is notified by throwing an exception. At the
Resilient X10 layer, such an exception could be treated as a catastrophic failure of the resilient store.
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entailed synchronous interactions with a resilient store. Synchronization with the store ensured that
the termination of the parent task could not be observed by the resilient store before it observed the
initiation of the remote child task. However, as shown in Table 1 below, the additional synchronization
greatly increased the cost of fan out communication patterns. An important additional benefit of the
local termination optimization described above is that it also provides a simple path to supporting
asynchronous spawning of remote tasks that is independent of the implementation details of the
resilient store. In effect, the X10 runtime system is enhanced to spawn an additional synthetic local
child of the current task that is responsible for an asynchronous interaction with the resilient store.
The presence of the additional local child allows the parent task to continue (and even terminate)
without the possibility of its termination being prematurely reported to the resilient store resulting
in incorrect early exit from the finish (the synthetic child ensures that the value of the local counter
cannot reach zero until the communication with the resilient store has been completed). This recovers
the mostly asynchronous spawning of remote tasks enjoyed by non-resilient X10.

Finally, an additional optimization can be applied to the place zero resilient finish to reduce the
communication traffic during the spawning of a remote task. If the serialized data for the task is
relatively small, the spawning place can send the task and data to place zero, which can update the
resilient finish state and then transmit the task and data to the destination place (2 messages). The
original protocol sent the task data only once directly from the source to destination places, but
required a request/response interaction with place zero by both the source and destination places
to update the resilient finish state (5 messages). We measured the performance of the place zero
resilient finish with and without this optimization on the microbenchmark suite. For benchmarks that
spawned remote tasks, it enabled performance gains ranging from 10% to 33%. It is important to
note that this optimization is not generally applicable to distributed resilient stores because it relies
on the strong invariant that place zero processes each message exactly once.

Table 1. Performance cost of resilient finish for important communication and concurrency patterns at small
and medium scale. Each number is the slowdown vs. non-resilient finish to perform the same operation
with the same number of places (1.0 indicates no slowdown).

Slowdown factor vs. non-resilient finish

Scenario PPoPP’14 place zero | Current place zero | PPoPP’14 distributed Hazelcast

8 places 80 places | 8 places 80 places | 8 places 64 places | 8 places 80 places
Local work 945.4 909.9 1.1 1.1 10.3 19 1.0 1.0
Single remote activity 5.8 6.6 4.0 3.9 5.8 55 17.0 30.8
Fan out, message back 19.2 42.6 3.5 3.9 6.4 4.2 13.5 15.2
Fan out, local work 2011 297.8 3.0 2.6 5.9 4.8 11.4 11.9
Fan out, fan out 9.0 192.9 4.8 2.0 7.7 12.1 10.4 1.2
Tree fan out 6.3 251 3.7 7.6 - - 15.4 191

Using the microbenchmark suite from Figure 6 of Cunningham et al. [2014] as updated in the
X10 2.6.1 release,® we studied the performance and scalability of resilient finish. Table 1 compares
the performance of the PPoPP’ 14 resilient finish implementations as found in X10 2.4.1 (as cited
in Cunningham et al. [2014]) to our current implementations. All the patterns use a single finish to
manage the whole group of spawned tasks, except the tree fan out pattern which creates a binary
tree of finishes each managing two remote tasks at two different places. The first and fourth rows
demonstrate the effectiveness of our enhancements to eliminate resiliency overheads for purely local

Osee x10.dist/samples/resiliency/BenchMicro.x10 from X10 v2.6.1 [2017]
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Fig. 2. Finish microbenchmarks with trivial task bodies. The graphs show the relative worst-case per-
formance of our implementation of non-resilient, place zero, and Hazelcast finishes for four important
concurrency/distribution patterns. The y-axis of each graph is the slowdown relative to non-resilient finish
at 2 places; the x-axis is the number of places. For all but the top left graph, the amount of work increases
with the number of places and the y-axis is logarithmic.

concurrency. Rows three through six show the impact of mostly asynchronous spawning of remote
tasks. Overall the improvements to the place zero finish implementation are substantial, especially as
the number of places increases.

Unfortunately, despite significant effort, we were unable to reproduce the PPoPP’ 14 distributed
resilient finish results using the X10 2.4.1 release. All of the microbenchmarks containing remote
activities failed to run correctly with X10’s 2.4.1 distributed resilient finish implementation. Therefore
the numbers in the PPoPP’ 14 distributed column of Table 1 are taken from the prior paper’s raw
experimental data. Comparing these columns with that of the Hazelcast-based resilient finish suggests
that although there may be modest performance advantage to using a highly customized distributed
store, using a general in-memory resilient store is a viable approach. The PPoPP’14 distributed
resilient finish implementation was later removed in the X10 2.5.0 release, primarily due to lack of
confidence in its correctness and maintainability.

Figure 2 shows the scaling graphs for our enhanced place zero and Hazelcast resilient finishes
compared to non-resilient finish at 2 places. The scaling graphs provide a more detailed view than
Table 1, which only presented data for 8 and 80 places. We expect there to be a cost to resiliency that
depends on the implementation of resilient finish, the number of finish scopes executing concurrently,
and the number of spawned remote tasks per finish. A truly distributed resilient finish implementation
may have increasing overheads with an increasing number of spawned remote tasks, however, it is
expected to provide better scalability than a place zero implementation in patterns that generate a
large number of parallel finish scopes, such as the tree fan out pattern.

The top left graph shows the cost of spawning a single remote task. The message reduction
optimizations for place zero finish enable overhead of less than 4x at all scales; overheads for
Hazelcast increase from 13X to 49x as the number of places increases. The remaining three graphs
represent commonly occurring APGAS work distribution patterns. The ‘fan out’ pattern (top right
in Figure 2) is important as it is commonly used in X10 applications. The amount of termination
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detection work for a ‘fan out’ finish is O(V), where N is the number of places. A typical X10 program
uses a ‘fan out’ finish multiple times, for example to assign work to each of the available places or
to create global data structures that span all places. The ‘fan out, fan out’ pattern (bottom left in
Figure 2) creates a single direct task to each of N places, each of which in turn creates N tasks to
all places. Therefore, the expected complexity of termination detection is O(N?). The ‘tree fan out’
pattern (bottom right in Figure 2) creates a binary tree of tasks at N places, with a complexity of
O(log(N)). Figure 2 shows that, for the three patterns, place zero stays within 10X of the non-resilient
finish and Hazelcast within an additional 2Xx to 5x of the place zero finish. While these numbers
remain high in the absolute, our experimental study demonstrates that they are now good enough to
support the programming model in practice.” The overhead of resiliency including resilient finish but
excluding application-level checkpointing remains below 7% for all applications considered (see
Section 5). We are currently implementing a native distributed finish implementation that is expected
to outperform the Hazelcast implementation and deliver better scalability for task decomposition
patterns that create a large number of parallel finish scopes.

4.2 Resilient Stores

We experimented with a number of approaches and decided to focus on two implementations: a
resilient store based on Hazelcast and a resilient store implemented in X10.

We provide a common store API, so that the store implementation can be decided at application
startup time. The core API consists of the get (key), set(key, value), and getRemote(place,
key) methods discussed in Section 2.5.

4.2.1 Hazelcast-based store. This store is implemented using a distributed Hazelcast map. The
resilient store get and set methods are mapped to Hazelcast’s homonymous methods by appending
the place index in the active place group to the key. Method getRemote also simply maps to
Hazelcast’s get method.

Catastrophic failures depend on the Hazelcast configuration. In our experiments, we configure
Hazelcast with one synchronous backup, i.e., one level of redundancy. The store can survive multiple
place failures as long as the failures are distant enough in time for Hazelcast to rebuild its redundancy
in-between failures.

4.2.2 X10 Resilient Store. We implement a resilient store in X10 by maintaining two replicas
of the data. The key value pairs at place p (master) are transparently replicated at the next place in
the active place group (slave). Store read operations only access the master replica (local). Write
operations require updating both the master and the slave as follows:

1 finish at (slave) async slaveStore.set(key, value);

masterStore.set(key, value);

The resilient finish ensures the slave is updated successfully before the master, thus guaranteeing that
no value can be read from the store before being replicated. If the slave dies before or during the
update, the write fails with a DPE. A lock (not represented) ensures no two writes can overlap.

The store is constructed over the set of active places in a PlaceManager. It has a method
recover (changes) that should be invoked when a process failure is detected. The changes param-
eter is obtained from the PlaceManager; it includes the new set of active places, as well as the set
of added/removed places since the last invocation for the PlaceManager’s updateActivePlaces()

7 As described in more detail by Tardieu et al. [2014], the P1aceGroup class in the X10 standard library provides convenience
methods that compensate for the O(N) complexity of finish by implementing a scalable ‘fan out’ communication pattern with
a dynamically constructed tree of £inish instances. Since they are simply compositions of £inish, these highly scalable
PlaceGroup methods are also available in Resilient X10.
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method. The store replaces each removed place with an added place at the same ordinal location.
Each removed place had previously held a master replica for its own data, and a slave replica for
its left neighbor. These replicas are now lost, however, copies of them are available at other places,
assuming no catastrophic failure happened that caused the loss of two consecutive active places. The
copies are fetched. They provide the initial state of the store at the fresh places.

Like the Hazelcast store, this store can survive any number of place failures, provided failures
happen one at time, with enough time in-between for the store to rebuild the lost replicas. The store
is implemented with less than 500 lines of X10 code, and can be considered an application study in
its own right which demonstrates the expressiveness of the Resilient X10 model. It supports a much
richer API than the core API we discuss in this paper. In particular, it handles local transactions,
where multiple keys are accessed atomically at the same place. A local transaction object, e.g.
tx, can be created at the master replica by calling startLocalTransaction. An activity can
submit a group of get and set operations to the store through the tx object, by calling tx.get (key)
and tx.set(key, value) methods and commits the transaction by calling tx.commit(). The
execution of concurrent local transactions at the same place can result in conflicts if two transactions
are accessing the same key and at least one of them is writing. We currently avoid this scenario by
executing the transactions in order, however, more sophisticated concurrency control mechanisms are
also feasible to implement. During transaction execution, write operations are performed on shadow
copies of the data at the master replica. A transaction log records the updated keys and their new
values. At commit time, the transaction log is applied at the master replica only after successfully
updating the slave. A failed slave results in aborting the transaction at the master replica by discarding
the log and throwing a DeadPlaceException.

4.2.3 Distributed Transactions. One of our applications (see Section 5.2) requires the ability to
atomically update the local store and a remote store. The application is such that no conflicting
updates can ever occur. The X10 resilient store currently lacks support for distributed transactions.
To support this application, we implement the method set2(keyl, valuel, place2, key2,
value2) using a simple transaction log. The transactions in progress (logged) are replayed after
a place failure, before accessing the store to restore the application state. The log itself is also
implemented as a resilient store.

4.3 Elasticity

Enabling elasticity required enhancements to all levels of the X10 implementation stack: the launching
infrastructure that creates the initial processes, the network transports that bind them together, the
core runtime that implements the PGAS abstractions, and a variety of standard library classes that are
built on top of the PGAS abstractions. Additionally, in a cloud environment, acquiring the necessary
computational resources to execute the additional processes that will become the new places requires
negotiation with cluster management software.

Our current implementation fully supports elasticity for Managed X10 including an integration
with the Apache Hadoop YARN [Vavilapalli et al. 2013] cluster resource manager. With a single
additional command line argument, Managed X 10 applications can be launched on a YARN-managed
cluster and the implementation of System.addPlaces(n) will automatically acquire new containers
from YARN and launch the new places within them.

Although much of the runtime implementation is shared by Managed and Native X10, elasticity
support for Native X10 is not yet complete. The primary gap is at the X10RT network layer: none
of Native X10’s X10RT implementations support the dynamic addition of new places after initial
application launch. Adding such support to Native X10’s TCP/IP-based x10rt_sockets transport
could be done with modest development effort.
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5 APPLICATION STUDIES

We developed a number of resilient application kernels to assess the flexibility of the Resilient
X10 programming model and the capabilities of our implementations. Most codes are derived
from existing X10 kernels and frameworks that were extended to make them resilient. All of our
enhancements to the X10 runtime have already been incorporated into the master branch of the main
X10 git repository [The X10 Language 2019], and have been part of the X10 2.6.1 release.

This section presents four such resilient application kernels—Unbalanced Tree Search, KMeans,
PageRank, LULESH——chosen to illustrate how different aspects of the programming model can be
combined to achieve flexible resiliency solutions that best meet application needs. Each subsection
describes the kernel, the design decisions made to make it resilient, and experimental results including
direct comparisons with Spark-based implementations for the first three kernels.

5.1 Experimental Setup

All experiments were conducted on a 23-node compute cluster. Each node contains two quad-core
AMD Opteron 2356 processors and 12 GiB-16 GiB memory. The cluster is connected via a 4xDDR
Infiniband network using IP over IB. The compute nodes run RHEL 6.9 and the cluster is managed
using Apache YARN 2.6.0. For comparisons with Spark, we used Apache Spark 2.0.1 with -master
yarn. Our X10 implementation is a pre-release version of X10 2.6.1, the most recent open source
release of X10. The JVM for both Managed X10 and Spark was Oracle Java HotSpot Server version
1.8.0_101.

For each application, we are primarily interested in three scenarios: non-resilient execution,
failure-free resilient execution, and resilient execution with three place failures during a single run.
Application parameters were chosen to achieve runs lasting approximately five minutes. This gives
sufficient time to amortize application and JVM warmup while being short enough to permit a large
number of runs to be completed. We inject failures by killing processes with a timer to guarantee that
there is no correlation between the failure time and the ongoing computation. Failures are spaced by
at least 30s to ensure no catastrophic failure occurs. Of course, this failure scenario is unrealistic.
Mean time between failures (MTBF) is typically much longer. Our experimental protocol is intended
to stress the runtime system and demonstrate its reliability more effectively than a single-failure
scenario would.

For Resilient Managed X10, we use Hazelcast version 3.7.1 as the underlying store for both
resilient finish and the resilient data store. This represents a scalable solution based on a production-
level fully-distributed store. In the three-failure scenario, Resilient Managed X10 is configured to
maintain one “hot spare” place; the PlaceManager will asynchronously replace the spare place after
each failure to minimize future recovery time. As the Hazelcast-based resilient finish and resilient
store are only implemented for Managed X10, for Resilient Native X 10 we use the place zero resilient
finish and the X10 resilient store of Section 4.2.2. Because Native X10 does not support elasticity,
the three-failure scenario requires starting with three spare places. Therefore, unless otherwise noted,
all experiments use 20 nodes (160 cores) for application execution. For X10, this corresponds to
20 active X10 places, each with X10_NTHREADS=8. For Spark it corresponds to 20 executors,
each with 8 cores. This enables apples-to-apples comparison of application throughput across all
configurations.

Unless otherwise stated, all execution times are the mean of at least 15 runs and the 95% confidence
intervals are less than 1% of the computed averages for X10. Spark performance on 15 runs is less
predictable with 95% confidence intervals ranging from 1% to 7% of the mean.
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5.2 Global Load Balancing: UTS

Lifeline-based global load balancing (GLB [Saraswat et al. 2011; Zhang et al. 2014]) is a technique
for scheduling large irregular workloads over distributed memory systems. The Unbalanced Tree
Search benchmark (UTS [Olivier et al. 2007]) is the canonical benchmark for GLB. An X10
implementation of UTS using the GLB approach has been shown to scale to petaflops systems with
tens of thousands of cores [Tardieu et al. 2014]. Our baseline UTS implementation is similar but
uses multiple threads/workers per place so we can fully utilize a node with a single place. It is only
intended for the managed backend as it uses Java’s MessageDigest API for computing cryptographic
hashes.

UTS measures the rate of traversal of a tree generated on the fly using a splittable random number
generator. A sequential implementation of UTS maintains a queue of pending tree nodes to visit
initialized with the root node. It repeatedly pops a node from the queue, computes and pushes back
the children ids if any, until the queue is empty.

The distributed implementation divides this queue among many worker threads by dynamically
migrating node ids from busy workers to idle workers using a combination of stealing and dealing.
There is no central scheduler. An idle worker can request work from a random peer. The code has a
simple structure. At the top a finish waits for all the workers to terminate. Requests and responses
are implemented with remote tasks. There is more to the load balancing than random work stealing,
but this does not fundamentally affect the fault tolerance problem.

To add resilience to UTS,? the workers checkpoint their progress to a resilient store. Each worker
stores how many nodes it processed so far, as well as the node ids in its queue. The lack of a central
scheduler and global synchronization is important for the performance of the non-resilient algorithm.
We want to preserve this property in the resilient code. Therefore workers independently decide
when to checkpoint based on individual progress and idleness. Before sending work to an idle
worker, the sender updates the checkpoints of both the sender and the receiver in one transaction (see
Section 4.2.3). While the collection of checkpoints is constantly changing and may never reflect
the progress of all workers at one specific point in time, it is always correct, i.e., the aggregated
node count is consistent with the aggregated pending node lists. Upon place failure, all workers
abort (possibly doing a last checkpoint) and fresh workers load the checkpoint and resume the
traversal. The dominant task pattern in UTS is the fan out finish, which is used for initializing the
places, performing the computation-intensive tree generation task at each place, and collecting the
number of traversed nodes by all the places for computing the tree traversal rate. Checkpointing and
work-stealing are performed concurrently at each place using finish constructs that create a maximum
of one remote task. With the distributed Hazelcast store, concurrent handling of these small finishes
has less significant impact on the scalability of the application, therefore, the expected scalability
model for Resilient UTS is O(N), where N is the number of active places.

For comparison purposes, we have implemented UTS in Spark using a map/reduce strategy.
The tree traversal is divided into rounds. In each round the global pending node list is split into p
fragments producing to p independent tasks that can be scheduled in parallel. Each task traverses up
to n tree nodes before returning the updated node counts and lists to the global scheduler. We tuned p
and n to achieve the best performance for our benchmark configuration.

Evaluation. Table 2 compares the execution time and the rate of traversal expressed in million
nodes per second of the sequential X10 code, the distributed non-resilient code, the resilient code
without and with three place failures, and the Spark code. We run with managed X10. At scale, we

8The code for Resilient UTS is in the ResilientUTS directory of the benchmarks repository at [X10 Benchmarks 2019].
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Table 2. UTS execution times (seconds) and throughput (Mnodes/s) using Managed X10 and Spark

Depth  Time Throughput

Sequential X10 14 164.8 6.43
Non-resilient X10 18 267.7 1011.3
Resilient X10 + Ckpt 18 268.4 1008.4
Resilient X10 + Ckpt + 3 Failures 18 277.3 976.1
Spark 18 376.8 718.8

use a tree of about 270M nodes (fixed geometric law with seed 19 and depth 18). For the sequential
code, we reduce the depth to 14. The throughput of the sequential code does not depend on the depth.

The sequential code achieves 6.43Mnodes/s in average. The distributed code, with 160 cores,
achieves 98% of the sequential code efficiency. Adding fault-tolerance adds less than 1% overhead.
Each place lost reduces throughput by about 1.1%. The failure-free resilient execution takes 268.4s in
average. Each loss increases execution time by about 3s. Roughly half of the 3s is taken to detect the
place failure and recover: updating the active place group and initializing the workers. We attribute
the other half to lost work, startup cost, and the cost of rebuilding redundancy. While the spare
place pool mitigates the startup latency, the fresh JVMs have not been trained to run the UTS code.
Hazelcast rebuilds the resilient map redundancy in a few seconds taking resources away from the tree
traversal and increasing the latency of the resilient store. Without a spare place pool, the recovery
time increases to 14s per failure.

In comparison, the Spark implementation only achieves about 70% of the efficiency of the
sequential X10 code (without node failures). This is not surprising. We observe that the generated
tasks complete in anywhere between a few tens of milliseconds to a few seconds leading to a lot of
imbalance. Overdecomposition does not improve this result.

5.3 KMeans Clustering

KMeans clustering is a commonly used kernel for unsupervised learning. We implement a distributed
version of Lloyd’s iterative algorithm [Lloyd 1982] in X10. Our base implementation contains 220
lines of code. Implementing checkpoint/restore, adding resiliency testing scaffolding, and conforming
to the ITterativeApp interface of the global resilient executor framework of Section 3.4 required
modifying 16 existing lines of code and adding 57 new lines. We use KMeans to demonstrate how
the Resilient X10 programming model supports application kernels with substantial immutable
distributed data structures (the input data) and modestly sized but rapidly changing mutable data (the
current estimate of the cluster centroids). Thus, the initial checkpoint must persist GBs of input data
while subsequent checkpoints need only ensure that the current estimate of the cluster centroids can
be recovered. In fact, because the current cluster centroids are broadcast to every active place at the
start of each iteration, it is not necessary to actually checkpoint the centroids. Upon failure, they can
be recovered from any surviving place and the computation can continue with at most the loss of one
iteration of work. Therefore in our X 10 implementation,’ after the initial checkpointing of their input
data, the active places do not actually store any state in response to checkpointing requests from the
iterative framework. KMeans is entirely implemented as a series of fan out finish blocks with local
work at each place, therefore, its expected scalability model is O(N), where N is the number of active
places.

see x10.dist/samples/resiliency/ResilientKMeans.x10 in the X10 git repository [The X10 Language 2019]
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For comparison we use two variants of the KMeans implementation from Spark’s MLLib. The
first is the unchanged MLLib code, which is capable of handling input data containing both sparse or
dense vectors. The second is our manual specialization of the MLLib implementation to only handle
dense vectors, which is a fairer comparison to our X10 implementation. For both Spark variants we
persisted the RDD containing the input data with StorageLevel .MEMORY_ONLY_2 to match X10’s
in-memory persistence strategy for this data.

Table 3. KMeans execution times (seconds)

Total Time Single Step

Managed X10 283.4 5.64
Resilient Managed X10 291.5 5.79
Resilient Managed X10 + Ckpt 318.7 5.79
Resilient Managed X10 + Ckpt + 3 Failures  389.5 5.90
Native X10 195.9 3.90
Resilient Native X10 196.1 3.91
Resilient Native X10 + Ckpt 199.4 3.91
Resilient Native X10 + Ckpt + 3 Failures 229.9 3.90
Spark MLLib 473.6 8.92
Spark DenseVector 368.2 6.81

Evaluation. Table 3 shows the total execution times'® and single step times for 50 steps of the
KMeans algorithm configured to find 300 clusters over an input of 20,000,000 30-dimensional points
represented as dense vectors. When checkpointing is enabled, the initial checkpoint averaged 21.8
seconds for Resilient Managed X10 and 3.1 seconds for Resilient Native X10. Spark averaged 27
seconds to persist the input RDD. Checkpointing time accounts for 27.2 of the 35.3 second gap
between Managed X 10 and Resilient Managed X10 + Ckpt. Runtime overheads, primarily that of the
Hazelcast-based resilient finish, account for the remaining 8.1 seconds (less than 3%) of overhead.

These results also illustrate the advantage of Native X10 for numerically intensive loop-based ker-
nels: it significantly outperforms Managed X10, which in turn outperforms Spark. This performance
difference is primarily attributable to the effectiveness of the underlying compilers in generating
efficient machine code for the computationally intense loop nest that is the heart of the KMeans
computation. The exact same KMeans X10 code is more effectively optimized when it is compiled
to C++ and statically compiled by the platform C++ compiler than when it is compiled to Java and
JIT compiled by the JVM. Similarly, the JVM’s JIT compiler is able to do a better job optimizing the
bytecodes generated from the X10 version of the key loop nest than it does for those generated from
Spark’s Scala version of the loop.

On the runs with three failures, there is an average 70.8 second (23.6 per failure) performance
drop for Resilient Managed X10. As with UTS, approximately 2 seconds can be attributed to failure
detection and recovering the X10 runtime system. Restoring the application state from a checkpoint
averages 13 seconds per failure. We attribute the remaining 9 seconds to lost work (50% of an
iteration is 3 seconds) and JVM warmup of the newly added place (which takes 3-5 iterations to

10For KMeans, the 95% confidence interval for Resilient Managed X10 is 1.5% of the mean and 3.5% for Resilient Managed
X10 with failures.
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reach peak performance). Since KMeans is an SPMD-style algorithm, performance is gated by the
slowest place.

5.4 Global Matrix Library: PageRank

The X10 Global Matrix Library (GML) implements distributed linear algebra operations over matrices
in a variety of dense and sparse formats [Hamouda et al. 2015]. It includes a set of benchmark codes
using common algorithms for data analytics and machine learning. The core GML library consists
of 20,500 lines of X10, 2,100 lines of C++ and 250 lines of Java. To support resilience in GML,
snapshot and restore methods were implemented for the key matrix and vector classes.

We evaluate the cost of resilience for the GML PageRank benchmark!! using the SPMD resilient
executor described in Section 3.4. Approximately 50 lines of codes were added or modified from
the original implementation to conform with the IterativeApp interface. In contrast, Cunningham
et al. [2014] were not able to base their resilient SpMV kernel on the existing GML code base;
they wrote 536 lines of new custom code. We compare with the Spark/GraphX [Xin et al. 2014]
PageRank SynthBenchmark implementation. The expected scalability model of the GML PageRank
benchmark is O(N), where N is the number of active places. It uses the fan out finish pattern, with
complexity of O(N), multiple times for constructing distributed matrices, initializing input data,
and starting an activity at each place to execute the steps of the PageRank algorithm. The steps use
collective operations from the Team class, which organizes the places in a binary tree structure and
has a complexity of O(log(N)).

Table 4. PageRank execution times (seconds)

Total Time Single Step

Managed X10 292.6 9.75
Resilient Managed X10 312.9 10.4
Resilient Managed X10 + Ckpt 440.8 10.4
Resilient Managed X10 + Ckpt + 3 Failures  684.1 14.9
Spark/GraphX 996.8 33.2

Evaluation. We measured the time to compute 30 iterations of PageRank for a randomized link
matrix with 5 million pages and 633 million edges using a log-normal distribution of edges with
p=4and o = 1.3 as per Malewicz et al. [2010]. For Spark/GraphX, the number of edge partitions
numEParts was set to twice the total number of cores.

Table 4 shows the total time and time per iteration.!> The first checkpoint for PageRank is
very slow at 82.0s, as it includes the immutable link matrix (about 10GiB for this problem size).
Subsequent checkpoints are much faster at 5.1s as they only store the mutable PageRank vector
(40MiB). Excluding the checkpointing time, the overhead of resiliency is less than 7% over the
non-resilient execution time.

Using a checkpoint time of 5.1s, we used Young’s formula to approximate the optimum check-
point interval for each problem size: \/2 X fcheckpoint X MTBF, where MTBF is the mean time to
failure [Young 1974]. Assuming a high failure probability—MTBF of 60 seconds for the full
cluster—the optimum checkpoint interval is 24.7s or approximately 3 iterations.

'The code for PageRank and the GML framework it uses are in the main X10 git repository [The X10 Language 2019] in the
directories x10.gml/src and x10.gml/examples/pagerank, respectively.
12For PageRank, the 95% confidence interval is 1.6% of the mean for Resilient X10 and 2.9% for Resilient X10 with failures.
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Resilient Managed X10 is around 2.3x faster than Spark/GraphX. For comparison, Kabiljo et al.
[2016] report an Apache Giraph implementation of PageRank is 2x to 4x faster than Spark/GraphX
(for a large Twitter graph).

On the runs with three failures, there is an average 243.3 second performance drop for Resilient
Managed X10 (81.1s per failure). Approximately 2s per failure can be attributed to failure detection
and recovering the X10 runtime system. Restoring the application-level state from a checkpoint
averages 31.8s per failure. Another 21s is attributable to the loss of an average of two iterations
per failure. We conjecture the significant slowdown of the average iteration time results from the
combination of a cold JVM—GML PageRank is a much larger body of code than, say, KMeans—and
the overhead of the memory management associated with the large amount of resilient data. Even
with 3 failures, Resilient Managed X 10 remains around 30% faster than Spark/GraphX running with
no failures.

5.5 Scientific Simulations: LULESH

The LULESH proxy application [Karlin et al. 2013] simulates shock hydrodynamics on an unstruc-
tured mesh. Each place holds a rectangular block of elements, as well as the nodes that define those
elements. Like the previous applications, the fan out finish pattern is used for creating distributed
data structures and an activity at each place to execute local work for each step of the application. At
each time step, a series of stencil operations are applied to update node-centered kinematic variables
and element-centered thermodynamic variables. As the stencil operations require element- or node-
centered values from a local neighborhood, it is necessary to exchange boundary or ghost regions
between neighboring processes. The ghost region exchange is implemented between neighbors using
global references to pre-arranged communication buffers and pair-wise synchronized one-sided get
and put operations. LULESH also includes a spectrum of intra-place concurrent loops that rely on
local finish/async patterns. Each iteration, all places agree on an adaptive time step using a collec-
tive allreduce operation. The X10 implementation of LULESH exploits both intra- and inter-node
parallelism, and is around 10% faster than the reference implementation using C++/OpenMP/MPI
across a range from 125 to 4,096 places (750 to 24,576 cores) [Milthorpe et al. 2015].

We modified LULESH' to more abstractly specify its communication patterns using P1laceGroups
over subsets of active places, to use the SPMD resilient executor described in Section 3.4, and to add
support for checkpoint/restore of all of its per-place data structures. LULESH contains approximately
4,100 lines of code; supporting resiliency entailed adding 106 new lines and modifying 94 other lines.
Our LULESH code is a significantly more realistic example of a scientific simulation than the 175
line Heat Transfer kernel used in Cunningham et al. [2014].

The overhead of the fan out finish pattern, O(N), is expected to dominate the overhead of the parallel
finish blocks used in exchanging ghost cells, O(1), and collective operations, O(log(XN)), therefore,
LULESH’s scalability model is O(N), where N is the number of active places. However, using the
place zero finish implementation is expected to cause a performance bottleneck for LULESH at large
scales and result in high resilience overhead. We are currently implementing a native distributed
finish implementation, which aims to address this limitation in LULESH and similar applications.

Evaluation. Table 5 shows the execution time in seconds using Native X10. We do not report times
for LULESH on Managed X10 because LULESH heavily relies on stack allocation of worker-local
temporary arrays for performance in its parallel for loops. Since Managed X10 does not support this
Native X10 feature, LULESH performs quite poorly on it.

13The code of LULESH is found in the lulesh2_resilient directory of the applications repository at [X10 Applications
2019].
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Table 5. LULESH execution times (seconds)

Total Time Single Step

Native X10 210.2 0.0875
Resilient Native X10 210.6 0.0875
Resilient Native X10 + Ckpt 216.6 0.0875
Resilient Native X10 + Ckpt + 3 Failures 233.1 0.0890
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Fig. 3. Execution times for all the benchmarks (seconds)

We use a problem size of 35° elements per place running with 8 places.'* At this problem size,
LULESH has an average checkpoint time of 0.097 seconds. Applying Young’s formula and assuming
MTBF of 60 seconds yields an optimal checkpoint interval of 3.4 seconds, which corresponds to
checkpointing every 38 steps. For 8 places and 35° elements per place, the simulation takes a total of
2,402 time steps. Resilient X10 with checkpointing takes 6.4 seconds (3%) longer than non-resilient.
Of this, 6 seconds is checkpointing and 0.4 is attributable to resilient finish (0.2%). On the runs with
three failures, there is an average 16.5 second (5.5 per failure) performance drop. Approximately 1.5
seconds can be attributed to failure detection and recovery of the X10 runtime system, 0.5 seconds to
application-level recovery, and the remaining 3.5 seconds to lost work.

5.6 Summary

Figure 3 and Table 6 summarize the performance results across all the benchmarks and configurations.
We observe that Resilient X10 always outperforms Spark. This confirms two things. First, the
expressivity and level of control offered by the Resilient X10 programming model does not come
at the expense of performance. Even for application kernels for which the Spark programming
model is well suited, e.g., KMeans, Resilient X10 can match or exceed Spark performance. Second,
Resilient X10 can deliver much higher levels of efficiency for applications that are not as well
suited for Spark, e.g., UTS. In UTS, Resilient X10 has an overhead of less than 3% compared the
sequential throughout, Spark is much higher at 30%. Moreover, with X10 there is the opportunity
to go native, and for computationally intensive codes this is often a clear win as illustrated by the
KMeans benchmark.

4 ULESH requires a cubic number of places; to be consistent with our other experiments we run one place per node and thus
have a max of 8 places possible on our 23 node cluster.
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While some applications have higher resiliency overheads that others, these overheads are almost
entirely due to application-level checkpointing. We measured the checkpointing costs for instance
for KMeans between Resilient X10 and Spark and found them to be comparable.

Moreover, the experimental setup we have chosen—3 failures in 5-minute runs—over-emphasizes
the checkpointing costs. First, the initial checkpoint is often very expensive but it is only needed once
(and alternative implementations could be considered such as reloading input data from disk). With
our configuration, the initial checkpoint is not amortized and amounts to a significant fraction of the
execution time. Second, we implemented very frequent checkpoints to optimize for very frequent
failures. With a MTBF of one day instead of one minute, the checkpointing interval (respectively
overhead) would be multiplied (respectively divided) by 38. Concretely, across all four benchmarks,
for a 2-hour long run with a checkpointing interval adjusted for a 24-hour MTBF, the checkpointing
overhead drops below 1%. In short, in real-world use cases, we expect the resilient code to be barely
slower than the non-resilient code.

Finally, we have shown that, across all the benchmarks, the downtime consecutive to a place failure
never exceeds 2 seconds. In other words, 2 seconds after a failure the application code is already
busy restoring data from the resilient store or even computing.

Table 6. Summary of X10 experimental results

Managed Native
UTS KMeans PageRank | KMeans LULESH

X10 267.7s 283.4s 292.6s 195.9s 210.2s
Resilient X10 <268.4s'>  291.5s 3129s | 196.1s  210.6s
Resilient Finish Overhead <0.3% 2.9% 6.9% 0.1% 0.2%
Total Checkpointing Time <0.7s 27.2s 127.9s 3.3s 6.0s
Runtime Recovery (1 failure) 1_5316 2.0s 2.0s 1.5s 1.5s
App Data Recovery (1 failure) 13.0s 31.8s 6.5s 0.5s
Lost Work Recovery (1 failure) 1.5s 3.0s 21.0s 2.0s 3.5s
Slowdown due to Recovery (1 failure)!” 0s 5.6s 26.3s 0s 0s
Total Recovery Time (1 failure) 3s 23.6s 81.1s 10.0s 5.5s
Resilient Application Lines of Code 627 277 319 277 4100
Changed Lines for the lterative Framework N/A 73 50 73 200
% Changed N/A 26% 16% 26% 5%

6 OTHER RELATED WORK

The relationship between Resilient X10 and Big Data frameworks such as MapReduce and Spark
was discussed in Section 1. Previous work on Resilient X10 was covered in Sections 2 and 4. We do
not repeat those discussions here. In the following, we focus mainly on related resilience approaches
for HPC applications and programming models.

15 As the total resiliency overhead for UTS including both resilient finish and checkpointing is 0.7 seconds (0.3%), we did not
separately measure the overheads of just resilient finish for UTS.

160ur UTS code did not separately measure the time for Runtime Recovery and App Data Recovery.

17The additional slowdown is mainly resulting from JVM warmup and memory management of resilient data.
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HPC applications have long relied on coordinated checkpoint/restart both as a mechanism for
resiliency and to decompose long-running applications into more schedulable units of work [Elnozahy
et al. 2002; Sato et al. 2012]. Resilient X10 naturally supports a checkpoint/restart model by
providing a resilient store abstraction and the APGAS control constructs needed to synchronize
checkpoint/restart tasks across all involved Places. The X10 Global Matrix Library is similar to
the Global View Resilience library [Chien et al. 2015] in providing globally identified distributed
arrays, and in creating labelled snapshots of the data at application-controlled times for the purpose
of recovery. GML does not specify special error handling interfaces as in GVR, however, capturing
snapshots of the data along with X10’s failure reporting support can be integrated in a flexible way
for developing different failure recovery methods.

In response to increasing system scale, more loosely synchronized checkpointing approaches
have been explored based on message logging and deterministic replay [Guermouche et al. 2011;
Lifflander et al. 2014]. Message logging can provide a significant performance improvement over
coordinated checkpointing, particularly if knowledge of ordering constraints is used to reduce the
amount of information required to produce a correct replay [Lifflander et al. 2014]; furthermore, it
requires little or no programmer effort to add to an application. However, it is not a flexible approach,
as failures are transparent to the programmer and therefore do not allow the use of application-specific
knowledge to reduce the overhead of resilience.

Approximate computing represents an alternative approach to resiliency that simply suppresses
some failures based on the observation that some computations are inherently approximate or
probabilistic. In some cases, analysis can be applied to obtain bounds on the distortion of discarding
the results of failed tasks [Rinard 2006]. Because Resilient X10 enables the application programmer
to control their fault tolerance and recovery strategies, various approximate computing approaches as
well as algorithmic-based fault tolerance [Bosilca et al. 2009] can be naturally expressed in Resilient
X10 as illustrated in the original Resilient X10 paper [Cunningham et al. 2014].

Designing resilient HPC programming models has been a topic of active research in recent years.
MPI-ULFM (User Level Failure Mitigation) [Bland et al. 2012] is a proposal for adding fault
tolerance semantics to the coming MPI-4 standard. It extends MPI-3 with failure awareness and
additional interfaces for failure detection and recovery. Shrinking recovery is supported by the new
interface MPI_COMM_SHRINK that excludes dead ranks from a given communicator. Because MPI-3
supports dynamic process creation using MPI_COMM_SPAWN, non-shrinking recovery mechanisms can
also be implemented by spawning new ranks to replace dead ranks in a shrunken communicator [Ali
et al. 2014]. Resilient X10 offers the same capabilities within the productive APGAS programming
model. It uses MPI-ULFM as a low-level transport layer for scaling Resilient X10 applications to
supercomputer scale as described by Hamouda et al. [2016].

Transparent recovery of APGAS applications through message logging and task replication has
been recently studied in the context of the Chapel language [Panagiotopoulou and Loidl 2016].
As this work considers only side-effect-free tasks, and as the GASNet communication layer is not
tolerant to process failures, further work is required to provide a complete approach to resilience in
Chapel.

In the family of actor-based programming models, Erlang [Vinoski 2007] has been influential in
the area of fault tolerant concurrent programming. Erlang programs benefit from user-level resilience
by constructing a supervision tree between actors. A parent actor receives notifications when any of
its supervisees fails, and performs the required actions for recovery. The same failure model can be
expressed in Resilient X10 thanks to the nesting flexibility of the async/at/finish constructs and the
provided hierarchical failure propagation through DeadPlaceExceptions. While actor placement is
fixed and user-specified in Erlang, other actor-based programming models such as Charm++ [Acun
et al. 2014; Kalé et al. 2011] and Orleans [Bykov et al. 2011] offer a virtual actor abstraction that hides
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the physical location of the actors from users and enables the runtime system to migrate the actors
transparently for failure avoidance and/or load balancing. Our PlaceManager and ResilientStore
abstractions apply the same virtualization concept to improve the productivity of writing Resilient
X10 programs, however it does not migrate the data transparently in order to maintain the strong
locality feature of the APGAS model. While Resilient X10 adopts a user-level resilience approach
that enables the expression of different fault tolerance techniques at the application level, Charm++
and Orleans handle failure recovery at the runtime level transparently. Charm++ supports transparent
recovery using checkpoint/restart [Zheng et al. 2012]. Orleans integrates multiple mechanisms for
handling failures. It uses in-memory replication for improving the system’s availability, disk-based
checkpointing for restoring lost actors, and resilient transactions for handling atomic actions on
multiple actors.

Partially fault-tolerant X10 implementations of lifeline-based global load balancing and Unbal-
anced Tree Search have been described by Fohry et al. [2015] and Fohry and Bungart [2016]. Whereas
those implementations can fail due to loss of a single place if the failure hits at the worst possible
time, our implementation described in Section 5.2 is resilient to any failure of a single place except
for place zero.

7 CONCLUSIONS

This paper describes the evolution of Resilient X10 into a powerful and practical programming
framework for implementing high performance distributed and resilient applications. While the
Resilient X10 semantics remain the foundation of this work, the lack of data resilience in the original
programming model design drastically limited its usefulness. Conversely in-memory data grids such
as Hazelcast lack a rich tasking model capable of orchestrating parallel and distributed computations.
In this work, we combine the two in a seamless way: the data and control semantics obey the
happens-before invariance principle; heap and resilient stores are organized according to the same
PGAS abstraction.

New capabilities such as elasticity and fully integrated standard library support for non-shrinking
recovery provide powerful new options to the application programmer. These capabilities significantly
reduce the complexity of implementing stateful applications designed to survive failure and preserve
the core productivity and performance benefits of the APGAS programming model.

As further developed in this paper, the Resilient X10 programming model naturally supports Big
Data paradigms such as those supported by MapReduce or Spark. In addition, Resilient X10 also
supports classes of applications with complex distributed communication patterns, shared mutable
distributed state, and dynamic fine-grained work generation. The Resilient X10 model also enables
a spectrum of recovery techniques ranging from checkpoint/restart, to resilient data structures, to
approximate computing and algorithmic fault tolerance. We strongly believe this generality and
flexibility is essential to accelerate the adoption of datacenter-scale computing infrastructure in an
ever-increasing number of application domains.
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