Design of Object Caching in a CORBA OTM
System

Thomas Sandholm?, Stefan Tai?, Dirk Slama!, and Eamon Walshe!

! TONA Technologies plc
The IONA Building, Shelbourne Road, Dublin 4, Ireland
{tsndhlm, dslama, ewalshe}@iona.com
2 Technische Universitiat Berlin
Sekr. E-N 7, Einsteinufer 17, D-10587 Berlin, Germany
stai@cs.tu-berlin.de

Abstract. CORBA Object Transaction Monitors (OTM) refer to a mid-
dleware technology that enable the building of transactional, object-
oriented information systems running in distributed and heterogeneous
environments. In this paper, we address large-scale OTM-based systems
and focus attention on the important quality factors of system perfor-
mance, system scalability, and system reliability. We develop an object
caching strategy that employs OTM concepts such as distributed trans-
actions and asynchronous event multicast, and show how this strategy
improves an existing distributed CORBA system wrt. performance and
scalability. We further describe our object caching solution as a transfer-
able, reusable architectural abstraction, and demonstrate the application
of software architectural concepts for design modeling of CORBA sys-
tems that introduce object caching.

1 Introduction

Software systems implemented in distributed and heterogeneous environments
are becoming increasingly common as a result of the availability of communica-
tion technologies like the Internet and component technologies like distributed
object middleware. This observation in particular holds for large-scale informa-
tion systems, where data is distributed with software components to different
nodes in a network. An important requirement here is to keep the distributed
data consistent and to guarantee performance of the system.

In this paper, we focus attention on the development of a CORBA Object
Transaction Monitor (OTM)-based system. CORBA OTM refers to an advanced
middleware technology that has been adverted a major trend for next-generation
distributed transaction processing [11]. CORBA OTM consists of the standard
object request broker (ORB) providing mechanisms for remote object invocation
[9], and a set of object services for distributed systems and data management,
including the CORBA Object Transaction Service (OTS) [10].

We develop an object caching strategy that can be introduced to large-scale
CORBA OTM-based systems [12]. The major objective is to improve system per-
formance, while assuring system scalability and system reliability. The caching

M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 2412541 1999.
© Springer-Verlag Berlin Heidelberg 1999



242 Thomas Sandholm et al.

solution is described using the software architectural modeling concept of a con-
nector, and its application is demonstrated with an example scenario that has
been implemented using IONA’s OrbixOTM product [7]. The work presented
has been carried out as part of the project “CORBA Object Transaction Mon-
itor Experimentation”, a cooperation between IONA Technologies Dublin and
Technische Universitat Berlin.

The paper is structured as follows. First, we introduce CORBA OTM and
concepts relevant to improve system performance. Second, we present an object
caching strategy and its implementation and test results for a sample OTM-
based system. Third, we develop the software architectural connector “Object
Caching with Transactional Replication” capturing interfaces and interoperation
patterns of our caching solution, and show how this connector can be used to
describe caching in CORBA OTM-based systems.

2 CORBA OTM

With the Object Management Group’s (OMG) Common Object Request Broker
Architecture (CORBA) 9], a standard middleware technology for the integration
and interoperation of diverse software components in distributed and heteroge-
neous environments has been proposed. CORBA Object Transaction Monitors
address enterprise computing based on CORBA, and provide additional support
for security, transactions, availability, or manageability.

CORBA OTMs comprise a variety of (standard and non-standard) object
management services, of which the CORBA Object Transaction Service (OTS)
and the CORBA Events Service [10] are important examples. The OTS provides
utilities for distributed transaction processing, i.e. for transaction management,
transaction propagation, and for driving the two-phase commit protocol to co-
ordinate different distributed resources, including databases. The Events service
enables loosely coupled, asynchronous messaging between multiple event suppli-
ers and multiple event consumers using event channels (being standard CORBA
objects), based on a publish/subscribe paradigm.

CORBA OTMs can be compared to Transaction Processing (TP) Monitors
of traditional client/server systems, but take the concept of a TP Monitor from
procedural to open distributed object computing. A thorough treatment of en-
terprise computing with CORBA and CORBA OTM can be found in [I4].

3 Improving Scalability and Performance

In large-scale distributed systems, special attention has to be paid to possible
bottlenecks, due to the fact that a large number of concurrent requests have to
be processed. Three main techniques can be used to circumvent this scalability
and performance problem: load balancing, replication, and caching.

Load balancing involves duplicating processing in the system, e.g. by having
many servers offering the same service. The main goal is to increase through-
put, i.e. the number of successfully served requests, when multiple clients send



Design of Object Caching in a CORBA OTM System 243

requests concurrently. In [5], different schemes that can be used for spreading
the load between servers transparently to the clients are demonstrated.

If the servers have state (manage local data), then some techniques have to
be considered regarding how to replicate the data among the distributed servers
[2]. Data can be replicated both to increase availability and to improve perfor-
mance due to service localization. The main problem with replication is how
to keep the replicas mutually consistent. Two main approaches exist here: the
replicas can be updated synchronously, e.g. within a transaction for absolute
consistency, or, the updates can be sent out asynchronously to trade off consis-
tency with performance and scalability. Further, either only one replica can be
updated (master/slave replication), or all replicas can be updated (peer-to-peer
replication).

Object caching in a distributed environment naturally relates to load balanc-
ing and replication, but has as its main goal the improvement of performance,
or user response time. Two important issues here are (a) where to locate caches,
and (b) which objects to put in the caches. A list of possible cache location levels,
e.g. per-process, per-node, and per-node group is presented in [18]. Many differ-
ent cache location levels can coexist for the same object, as shown in [4]. The
decisions taken will influence which clients can share the same objects. Shared
objects must be read frequently and be updated infrequently in order for the
caching to be successful.

Keeping caches accurate and consistent with the source is of predominant
importance when caching objects at distributed servers. The same update ap-
proaches as with replication can be used: asynchronous, or synchronous. The
asynchronous approach can be compared to optimistic locking in the database
field, and must handle the case when two conflicting updates are made concur-
rently. Careful attention has to be paid to what information should be sent with
the updates in order to minimize network traffic, while keeping the caches ac-
curate at all times. Network traffic can also be decreased by using the multicast
protocol for propagating the updates [g].

Further important issues that have to be considered when implementing an
object caching strategy are object faulting and object lifetime (eviction). Object
faulting concerns how to fetch the accurate value from the source and place
it in the cache transparently to the client. This mechanism can, for instance,
be implemented by detecting operating system page faults, as demonstrated in
[8]. The problem with this approach is, however, that pages are cached, but
not objects, which results in non-object-oriented trade-offs in the code. Further,
such an implementation is also very operating system dependent. The object
lifetime policy to choose, i.e. when to evict objects from the cache, is determined
(limited) by the cache memory available. Common lifetime policies are: FIFO,
TTL (Time To Live), LRU (Least Recently Used), transaction based (object
lifetime equals transaction lifetime), and application server based (object lifetime
equals application server lifetime) [, [2].



244 Thomas Sandholm et al.

4 Object Caching Strategy

4.1 Example Scenario

We use a geographically distributed travel agency as a sample CORBA OTM-
based system, which is to be improved with an object caching strategy.

Customer

makeBooking()

Central Office

RESORT

1" confirmBooking()

Sales Office .

¢==.
il

COTTAGE
AVAILABILITY

c ME
ING

Fig. 1. A Distributed Travel Agency

The system architecture of the travel agency is shown in Fig.[[l Customers
can book Cottages residing in Resorts, and browse Cottage, Resort, and
cottage Availability information. Multiple SalesOffices have been intro-
duced to decrease the load on the CentralOffice. Each booking for a cottage
must first be issued on a Sales0ffice; the booking is then confirmed at the
CentralOffice. The CentralOffice manages persistent Resort, Cottage, and
cottage Availability data in a relational database. The Sales0ffice manages
local Customer information, and maintains all Bookings that are made at the
SalesOffice.

We assume that the system has one million Customers, and that one booking
can be made each second in the system. For each booking, multiple queries on
Resort, Cottage, and cottage Availability (Booking) information typically
are issued. We assume that the average booking during peak system load consists
of 12 queries, followed by one update (= a booking session).

4.2 Introducing Caching

The first decision concerns to cache Resort and Cottage objects (as these
are frequently read objects, but updated infrequently) and to replicate cottage
Availability data as Booking data at the distributed SalesOffices. Two dif-
ferent consistency policies are chosen to keep the cached objects and the repli-
cated data consistent with the data in the CentralOffice.

Asynchronous propagation (optimistic approach) is used for keeping the
cached objects accurate and consistent with the source. Asynchronous multi-
cast propagation is selected because of performance and scalability reasons. The
problem of concurrent updates here is handled when confirming bookings at the



Design of Object Caching in a CORBA OTM System 245

CentralOffice. The CentralOffice detects when an inaccurate cache has been
used, and returns an exception that the booking cannot be made.

Synchronous propagation (pessimistic approach) is used for updating the
replicated data (Bookings). When a booking is to be made, a distributed trans-
action is started at the local SalesOffice. Within this transaction, the booking
is confirmed at the CentralOffice, is made persistent in the Availability ta-
ble, and is replicated locally in the Booking table. The data in the two databases
are hence kept synchronous by the two phase commit protocol. This approach
is more time consuming, and does not scale as well as the asynchronous ap-
proach. The approach, however, assures that the local data is always consis-
tent with the source at any point in time. This enables book keeping or in-
voicing tasks, for example, at the local SalesOffices without contacting the
CentralOffice. We use master/slave propagation, i.e. all changes must be made
at the CentralOffice first. By doing so, we avoid conflicts that can occur due
to concurrently propagated updates.

Two different strategies are implemented for updating the caches, once an
update event has arrived at the SalesOffice. The source can be contacted to
get the currently most accurate value, or local updates can be made using ob-
ject information sent with the event. Source updates are safer when concurrent
updates are made. Additionally, if the original transaction aborts after the noti-
fication has been sent away, the caches will still be valid when using the source
update approach, as they will read the source data in a transaction scheduled
after the original one. Local updates have a significant performance advantage,
though.

If an object that is not in the cache is accessed, then it is fetched from the
source transparently to the clients. Once the object is fetched, it remains in the
cache for the lifetime of the SalesOffice servers. When a particular Cottage
is queried, the cache is filled with information for all Cottages in the same
Resort. SalesOffices thus only need to cache some Resorts, which compen-
sates the fact that no direct object eviction is implemented. Furthermore, the
Availability data are decreased (and thereby also the size of the caches) as
more Cottages are booked.

In order to minimize network traffic, a proper event granularity must be
chosen. In our example, we use only one event channel for propagating bookings,
but send object information with the events to enable updates of single cache
entries (for a single object). The SalesOffices are event consumers, and the
CentralOffice is the only event supplier.

The caching strategy is summarized in Table [I]

This object caching strategy has been implemented and tested by simulat-
ing the assumptions about system usage. The relation between the number of
queries, and the number of updates (12 to one) is crucial to the success of the
caching implementation. The more queries that are made, the more does the
caching pay off. The tests were carried out by simulating both peak system load,
and twice that load, in order to measure scalability of the solution. The peak
system load, i.e. one booking session is started every second, was derived from



246 Thomas Sandholm et al.

Table 1. Caching strategy summarized

Problem Solution

Cached Objects Resort and Cottage objects

Cache Location Application server

Replica Consistency Synchronous propagation

Cache Consistency Asynchronous multicast propagation

Update Policy Replication Master/Slave

Update Policy Caches Update from source/local updates

Object Faulting Clients access objects via application servers that
transparently fetch source state

Cache Eviction Application server based

Event Granularity One event channel per class of objects that can be

modified, events carry object level information

assumptions made on how the one million customers use the travel agency sys-
tem. Further, the system was tested before and after the introduction of caching,
and local updates were compared to updates from source. Throughput (reliabil-
ity), i.e. number of successful bookings, and the response time for the bookings
(performance) were measured.

A client test suite was developed for the simulations. Each client in the suite
implemented a booking session as follows: (1) a query to get all Resorts was
made, and one of these Resorts was picked at random; (2) all Cottages for this
Resort were collected in a query, and 10 Cottages in the chosen Resort were
picked randomly; (3) availability data were retrieved for each of these Cottages;
(4) finally a booking was attempted for one week chosen at random from the
retrieved availability data. One of these clients was started asynchronously from
a shell script each second. Information on the time it took for each client to
complete its booking session (user response time), and whether the booking at-
tempt in (4) was successful was traced. Further details on test environment are
available in [I2]. The results are depicted in Fig. 2.

The caching strategy improved reliability, scalability, and performance of the
system compared to the system without caching. The caching strategy using
local updates scaled better than the solution updating from source. Notable
from the tests is that only half of the booking attempts were successful in twice
peak system load when caching wasn’t used.

The caching strategy could further be improved by redirecting clients access-
ing the same Resorts to the same SalesOffice. This functionality could be
combined with a general load-balancing scheme to dynamically spread the load
on the Sales0Office servers by using e.g. OrbixNames [7]. Also, a group of repli-
cated CentralOffice servers could be introduced into the system, so that the
CentralOffice no longer can become a bottleneck and single-point of failure.



Design of Object Caching in a CORBA OTM System 247

Peak System Load

40 @ O ) 100
30 — 80
° Response time per booking 60
© 20 — session (sec) S
Successful bookings (%) 40
10 — 20

Caching — Caching — No Caching
Updating from  Local Updates
Source

Peak System Load x 2

50 100
45 —| — 90

40 — — 80
- Response time per booking

35 — session (sec)

—@— Successful bookings (%)

— 70

30 — — 60

- 50 &
20 — I 40
15 — - 30

10 — — 20

Caching — Caching — No Caching
Updating from  Local Updates
Source

Fig. 2. Object Caching Test Results

5 Software Architectural Design

In the following, we present our object caching solution as a transferable, reusable
connector abstraction for software architectural system design. The notion of
connectors for modeling component collaborations has been mentioned in a va-
riety of work in the area of software architecture [I3], [1].

5.1 Connector “Object Caching with Transactional Replication”

Our particular connector concept has been proposed in [16], and has been exem-
plified for modeling CORBA object services in [15], [3]. Connectors are pattern-
like descriptions of complex component collaborations. A connector comprises
the definition of roles, role interfaces, and interaction protocols.

Fig. [3 depicts the roles of our caching connector. Each role describes a col-
laboration responsibility, which is taken on by components in the software ar-
chitecture of a particular system.

For each role, a set of role interfaces is defined (Fig. H)). These interfaces must
be provided by any particular component playing the role. The role interfaces
are declared using OMG IDL [9]. 0ID in Fig. @l refers to a secondary identifier
of an object, which is not the object reference itself, but an identifier used to



248 Thomas Sandholm et al.

Roles

/I Component responsible for managing the cache
CacheManager

/I Component offering access to cached objects
CachedObject

/I Component responsible for managing the source
SourceManager

/I Component offering access to the source objects
SourceObject

/I Component responsible for event propagation
EventManager

/I Component responsible for distributed transaction processing
TManager

/I Component executing transactional operations
TObject

/I Component using CacheManager and CachedObjects
Client

Fig. 3. Roles

map the object to a unique external entity (e.g. a primary key in a relational
database).

Fig. Bl depicts the interaction protocols of our caching connector. Interac-
tion protocols describe sequences of role interface requests along with pre- and
postconditions. They are described using UML sequence diagrams [19)].

The Cache Initialization and Use interaction describes the basic cache func-
tionality. A component in role of Client sends a request for an object. If there
is a valid object in the cache, it is returned directly by the component in role
of CacheManager. Otherwise, the accurate state of the source object is fetched
from the source. The state is used to create a cached object (cache initialization).
A reference to the CachedObject is returned to the client. The next operation
on the object will use the cache if it hasn’t been invalidated.

The Replicated Data Modification interaction shows how the source data is
kept consistent with the locally stored data. When a client wants to modify a
value, a transaction is started. Within this transaction, a confirmation with the
component in role of SourceManager is done, and the local database is updated.
Since these operations are performed in an “all-or-nothing” fashion, the repli-
cated data is always kept consistent. The confirmation with the SourceManager
serves to detect whether other clients have updated the source concurrently, and
a conflict thereby has occurred. (In our example scenario, such a conflict oc-
curred when two clients selected the same Cottage from the cache, and then
tried to book it concurrently for the same calendar week.) A conflict leads to a
race condition where the first transaction to execute will succeed, and the second
one will roll back.

The interaction Cache Update depicts how caches are updated by using event
notifications. The events are pushed from the component in role of Source-
Manager to the component in role of EventManager when a SourceObject has
changed. The EventManager then pushes the events to the registered Cache-



Design of Object Caching in a CORBA OTM System 249

Role Interfaces

Il CacheManager interfaces /I EventManager interfaces
CacheManager .CacheUser { EventManager .<Registration> {
oneway void update(in any event); 1l corresponds to registration interface of IONA’s OrbixTalk,
Y 11 a product-specific API that wraps the CORBA Events Service
CacheManager .<LocalManager> { CORBA::Object registerTalker
<SourceObject> get(in OID id); (in string subject, in string cacheUserInterface);
void modify(in OID id, in any value); void registerListener
Il for internal use: (in CORBA::Object CacheUser, in string subject);
boolean cachelsValid(); )
<SourceObject> createCache(in OID id, in <SourceObject>State state); EventManager .CacheUser {
void updateCache(in OID id, in <SourceObject>State state); /I corresponds to CORBA Events Service PushConsumer interface,
void convertEvent(in any event, out OID id, out <SourceObject>State state); 1l operation push
void makePersistent(in OID id, in any value); oneway void update(in any event);
h b
Il CachedObject interfaces /I TManager interfaces
CachedObject .<SourceObject> { TManager .CosTransactions::Current {
<SourceObject>State getState(in OID id); /I original OTS interface
. void begin();
Y void commit(in boolean report_heuristics);

Il SourceManager interfaces

void rollback();
oL 1ager .<C IManager> : Cos’ ::TransactionalObject { o

<SourceObject> get(in OID id); ¥
boolean confirmModify(in OID id, in any value): /I TObject interfaces
Il for internal use: TObject .CosTransactions:: TransactionalObject {
void makePersistent(in OID id, in any value); I/ original empty OTS interface
k h

1 SourceObject interfaces
SourceObject .<SourceObject> {
<SourceObject>State getState(in OID id);

<SourceObject>

:CachedObject

<SourceObject>
O :Sour ceObject

<CentralManager>|

ﬂ :Sour ceManager ’—D{ :TObject ‘

:EventMana ger

:Client

CacheUser (P

:CacheManager

<L

O ‘TManager
Current

Fig. 4. Role Interfaces

Managers. The CacheManagers must filter the event to find out whether the
object that has changed is in the cache. If it is in the cache, the value can be
updated in two ways. First, it can be updated by getting the state from the
source. Second, it can be updated locally by using the value passed by the event.
The pros and cons of the two approaches were discussed in section 4.2.

5.2 Modeling the Example Scenario

We describe the software architecture of our example system by using the archi-
tectural framework of components, connectors, abstract architectures, and con-
crete architectures [17].

Components are design-time abstractions of computational system parts.
Components are described using multiple views: the core functionality view, and



250 Thomas Sandholm et al.

Interaction “Cache Initialization and Use”

Pre: SourceManager and CacheManager are initialized, Client has proxy to
CacheManager

Post: Client communicates with CachedObject

(o] =] |

| oot |

Interaction “Cache Update”

Pre: SourceManager has called registerTalker(subject, cacheUserInterface) s
C: has called registerl is,subject) , SourceManager
has performed makePersistent(id,value) in Interaction “Replicated Data
Modification”

Post. Cache is consistent with source.

<someOperation(> |
- T
b _ L __

I I

]

T
e [ R — e [N p—
cachelsValid() I I T T T
L] ! ! \ ! \
| | update(event)
[ \ IR Ij] ‘
alid] <SourceObject> obj. ref. ‘ | — n: 17 - | |
Y I | | (eventd.state) | |
/ ! i [ : \ ‘
/ f
T ————
/ SRS s | ‘ e ‘
| \ <souceoncosue | i
B | [ 0 cacne) \
‘ updateCache(id,state) ‘
\
| \ \
1 ! 1

Data
Pre: Interaction “Cache Initialization and Use”
Post: The Client -initiated data modification has led to a transaction started by the CacheManager involving
the SourceManager . The source data and the locally replicated data are kept consistent.

Cachevanager ] [ — ] Souceanager ]

T T T
modify(d value) |

I
Curtentsbeging |
ke — — — — — ?ﬂ |
| |
‘ [
ahane
I

I
{rodicaton otk N
I
I
I

Current:rolback(

[modification ok]
ePersistent

I
I
I
I
I
I
I
|

Fig. 5. Interaction Protocols

various component collaboration views. The core functionality view models the
domain-oriented component features.

For our travel agency system, we can define the three application components
SalesOffice, CentalOffice, and Customer, and the two service components
Orbix0TS and OrbixTalk (off-the-shelf components implementing the CORBA
OTS and Events Service, respectively) as design-time components. Fig. [6 de-
picts the exported and imported (required) system-level interfaces of the core
functionality view of the SalesOffice component.

An abstract architecture of connector-based component composition is shown
in Fig. [l The components of our particular system are related by means of the
generic connector “Object Caching with Transactional Replication”, i.e. the con-
nector roles are distributed to the components. This describes a requirement on
the components to implement the respective role interfaces, and characterizes



Design of Object Caching in a CORBA OTM System 251

SalesOffice

Export Interfaces

<<IDL Interface>>
SalesOffice

getBranchName(): string
getResorts(): ResortSeq
makeBooking (in Cottage aCottage,

in short fromWeek,

in short toweek,

in Customer client): BookingReference
listBookings(): BookingReferenceSeq

Import Interfaces

<<IDL Interface>>
CentralOffice

getResorts(): ResortSeq
confirmBooking (in CottagelD aCottage,

in short fromweek,

in short toWeek): BookingReference

Fig. 6. Component SalesOffice — Core Functionality View

the component to interact with the other components as specified with the con-
nector interaction protocols. Abstract architectures are software architectural
descriptions on a very high level of abstraction.

Fig. Bl shows the “object caching with transactional replication” view on
the SalesOffice component, i.e. the collaboration view resulting from the ab-
stract architecture of Fig.[[. The caching view exhibits all component features
that have been introduced because of the caching rationale (as opposed to the
core functionality view). The caching functionality is now exposed with new ex-
ported and imported interfaces, such as the provided CacheUser interface, or the
required OTS Current interface to start, commit and abort distributed trans-
actions. The Sales0ffice component now imports and exports the Resort and
Cottage interfaces unchanged.

Fig. Bl also shows the SalesOffice component’s representation and export
and import representation—map@, i.e. the internal realization design and program-
level interfaces of the component. This diagram describes implementation details
of the component as a distributed, transactional CORBA server, and is expressed
using UML class modeling. In the representation part, we can e.g. see that the
cache is structured in a hierarchical containment tree. The Sales0Office contains
a collection of cached Resorts, and each cached Resort contains a collection of
cached Cottages.

The set of all component descriptions of the same (object caching) view is
called a concrete architecture to an abstract architecture. The software architec-
ture of a particular system is thus described on two different levels of abstraction.

1 We adapted the terminology of representation and representation-map from the
ACME ADL [6].



252 Thomas Sandholm et al.

SalesOffice

CacheManager

Customer CachedObject CentralOffice

SourceManager
TObject
SourceObject

Object Caching
with Transactional
Replication

TManager EventManager

OrbixOTS

OrbixTalk

Fig. 7. Abstract Architecture of Travel Agency System

Overall, the architectural framework of design-time components, connectors,
abstract and concrete architectures employs a clear separation of modeling con-
cerns, and enables a pattern-oriented, structured approach to architectural soft-
ware system representation.

6 Conclusion

In this paper, we developed an object caching strategy for CORBA OTM-based
systems which addresses system reliability, system scalability, and, in particular,
system performance. We demonstrated object caching for a sample distributed,
transactional CORBA system, and showed how the caching solution proposed
increased system performance notably. We abstracted the caching functionality
and interoperation patterns into a software architectural connector, which was
used to model the complex component collaborations of our example system, and
also serves as a reusable design solution to object caching that can be applied
to other CORBA OTM-based systems.

The caching solution can be summarized as follows:

Reliability of the solution was assured by asynchronous updates of the caches,
and by synchronous modification of the replicated data. In terms of our connec-
tor, this behavior is captured as follows: the SourceManager sends an update
event through the FventManager to the CacheManagers (interaction protocol
“Cache Update”), and data modified in the database of the SourceManager
is replicated in the CacheManager’s database within a distributed transaction
started by the CacheManager (interaction protocol “Replicated Data Modifica-
tion”).

Scalability was improved by service localization. All queries can be performed
locally because of the caches, which thereby improve load balancing. This is cap-
tured in the connector interaction protocol “Cache Initialization and Use”. The



Design of Object Caching in a CORBA OTM System 253

SalesOffice

Export Interfaces Rep-Map Export

<<Generated C++ Class>>
Cottage

<<Generated C++ Class>>
Resort

<<Generated C++ Class>>
SalesOffice

<<IDL Interface>> <<IDL Interface>>
CacheUser Resort A

<<Generated C++ Class>>, A A
update(in any event): oneway void getDetails(): ResortDetails; CacheUser

getCottages(): CottagSeq; A

]

<<IDL Interface>> <<Generated C++ Class>>

<<IDL Interface>> Cottage ResortBOAImpl
getDescription(): CottageDetails;

SalesOffice A A A
<<Generated C++ Class>>
CacheUserBOAImpI
getAvailability(): Weeklist;
<<C++ Class>> <<C++ Class>>
Import Interfaces CacheUser_i Cottage_i_Cache

<<Generated C++ Class>>
CottageBOAImpI

<<Generated C++ Class>>
SalesOfficeBOAImp!

getID(): CottagelD;

1

<<C#+ Class>>
SalesOffice_i L_

<<IDL Interface>> <<IDL Interface>> <<C++ Class>>
CosTransactions:: Resort Resort_i_Cache
Object

*

getDetails(): ResortDetails;
getCottages(): CottagSeq;

<<C++ Class>>
v‘ ResortsCache
<<IDL Interface>> <<IDL Interface>>
CentralOffice Cottage <<C++ Class>> r\‘
CottagesCache
getiD(): CottagelD:
getDescription(): CottageDetails; <<C++ Function>>
<<IDL Interface>> getAvailability(): Weeklist; main()
CosTrar i
Current
Rep-Map Import <<Ct+ Class>>
PTTSql
<<Generated C++ Class>>
CosTransactions::Current

<<C++ Class>> <<C++ Class>>

Orbix0TS OrbixTalk
Ci++ Class>> Ce++ Class>> C#+ Class>>
CentralOffice Cottage Resort

Fig. 8. Component SalesOffice — Object Caching with Transactional Replication
View

CachedObject offers the same interface as the SourceObject, and the CacheMan-
ager is responsible for localizing the SourceObject, i.e. converts the SourceObject
into a CachedObject. Service localization is also achieved by data replication, as
mentioned previously.

Performance of the system was notably improved through the caches, and has
been addressed in line with system scalability and system reliability. The design
decisions regarding performance are hence documented in all three interaction
protocols of our caching connector.

Acknowledgements. We would like to thank Prof. Herbert Weber, TU Berlin,
and Fiona Hayes, IONA Technologies Dublin, for their continuous project sup-
port. We would also like to thank Prof. Janis Bubenko, University of Stockholm,
for co-supervising the thesis underlying this paper.

References

1. L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. Addison-
Wesley, 1998.



254 Thomas Sandholm et al.

2. P. Bernstein, E. Newcomer. Principles of Transaction Processing. Morgan Kaufman,
1997.

3. S. Busse, S. Tai. Software Architectural Modeling of the CORBA Object Transaction
Service. In Proc. COMPSAC’98, IEEE Computer Society, 1998.

4. A. Chankhunthod, P.B. Danzig, C. Neerdales, M.F. Schwartz, K.J. Worrel. A Hi-
erarchical Object Cache. Technical Report, CU-CS-766-95. University of Colorado,
1994.

5. R. Friedman, D. Mosse. Load Balancing Schemes for High-Throughput Distributed
Fault-Tolerant Servers. Technical Report, TR96-1616, Cornell University, 1996.

6. D. Garlan, R. Monroe, D. Wile. Acme: An Architecture Description Interchange
Language. In Proc. CASCON97, 1997.

7. IONA Technologies. OrbixOTM Guide. IONA Technologies plc., 1998.

8. R. Kordale, M. Ahmad. Object Caching in a CORBA compliant System. Technical
Report, GIT-CC-95-23, Georgia Institute of Technology, 1995.

9. Object Management Group. The Common Object Request Broker: Architecture
and Specification, rev.2.2. OMG, 1998. On-line at http://www.omg.org

10. Object Management Group. CORBAServices: Common Object Services Specifica-
tion. OMG, 1997. On-line at http://www.omg.org

11. R. Orfali, D. Harkey. Client/Server Programming with Java and Corba, 2nd edi-
tion. Wiley, 1998.

12. T. Sandholm. Object Caching in a Transactional, Object-Relational CORBA En-
vironment. Masters Thesis, University of Stockholm, 1998.

13. M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, 1996.

14. D. Slama, J. Garbis, P. Russell. Enterprise CORBA. Prentice-Hall, 1999.

15. S. Tai, S. Busse. Connectors for Modeling Object Relations in CORBA-based Sys-
tems. In Proc. TOOLS 24, IEEE Computer Society, 1997.

16. S. Tai. A Connector Model for Object-Oriented Component Integration. In Proc.
ICSE’98 Workshop on Component-Based Software Engineering, 1998.

17. S. Tai. Constructing Distributed Component Architectures in Continuous Software
Engineering. PhD Thesis, TU Berlin, 1999. to appear.

18. D. Terry. Distributed Name Servers: Naming and Caching in Large Distributed
Computing Environments. Technical Report, CSD-85-228. University of California,
Berkeley, 1985.

19. UML Partners. The Unified Modeling Language, v1.1. OMG, 1997. On-line at
http://www.omg.org



	Introduction
	CORBA OTM
	Improving Scalability and Performance
	Object Caching Strategy
	Example Scenario
	Introducing Caching

	Software Architectural Design
	Connector ``Object Caching with Transactional Replication''
	Modeling the Example Scenario

	Conclusion

