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Multi-Objective Evolutionary Fuzzy Clustering for
High-Dimensional Problems

Alessandro G. Di Nuovo, Maurizio Palesi, Vincenzo Catania

Abstract— This paper deals with the application of un-
supervised fuzzy clustering to high dimensional data. Two
problems are addressed: groups (clusters) number discovery
and feature selection without performance losses. In particular
we analyze the potential of a Genetic Fuzzy System, that is
the integration of a multi-objective evolutionary algorithm with
a fuzzy clustering algorithm. The main characteristic of the
integrated approach is the ability to handle the two problems
at the same time, suggesting a Pareto set of trade-off solutions
which could have a better chance of matching the real needs.
We exhibit the high quality clustering and features selection
results by applying our approach to a real-world data set.

I. INTRODUCTION

Clustering methods provide a useful tool to explore data.
They aim at discovering groups (clusters) in a set of patterns
such that the similarity among patterns in the same group is
higher than that of patterns belonging to different clusters.
Clustering algorithms are traditionally divided into three
main groups: Hierarchical, Partitioning, and Distance-Based.
Details of these and all other types of clustering are to be
found in [1].Hierarchical clustering algorithms construct hier-
archies of clusters in a top-down (agglomerative) or bottom-
up (divisive) fashion. Hierarchical clustering algorithms have
proved to yield high-quality results especially for applica-
tions involving clustering text collections. Nonetheless, their
high computational requirements usually limit their use in
some real-life applications, where the number of samples and
their dimension is typically high (the cost is the square of the
number of samples). Partitioning clustering algorithms start
from an initial clustering (that can be randomly formed) and
create partitioning by iteratively adjusting the clusters based
on the distance between the data points and a representative
member of the cluster. The most commonly used partitioning
clustering algorithm is k-means. This algorithm initializes K
centers and iteratively assigns each data point to the cluster
whose centroid minimizes the Euclidean distance from the
data point. Algorithms of this type can give good clustering
results at a low cost, since their running time is proportional
to KN , where N is the number of patterns present in the
dataset. However, their results rely heavily on their initializa-
tion and they can converge to arbitrary local optima. Distance
based clustering algorithms create a partitioning by consider-
ing neighbors of data points. Clusters are considered as high
density neighborhoods of data points. Although the density
parameter is critical for the successful application of distance
based algorithms, recently proposed heuristics appear to yield
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high quality results. A recent trend in cluster analysis is
evolutionary clustering, based on well-known evolutionary
algorithms (EAs), which have shown the potential to achieve
high partitioning accuracy. In fact, EAs have proved to be
widely applicable with success by choosing the right criterion
to optimize, whereas classical clustering approaches are often
good only for certain problems. Let us consider, for example,
a high-dimensionality dataset, where dimensionality is equal
to the number of features a pattern can have. Often a larger
number of features is needed to describe the characteristics
and classify the pattern better. Many clustering approaches
suffer from being applied in high-dimensional spaces. For
instance, in K-means (KM) clustering, based on iteratively
computing distances and cluster averages, increasing the
data space dimensionality may introduce a large number of
sub-optimal solutions (local minima). A further problem is
related to distances in high space dimensionality. Defining
clusters on the basis of distance requires that distances can
be estimated. However, there are results [2] stating that
when the space dimensionality is high the distance from
a point to its farthest neighbor and to its nearest neighbor
tend to become equal. Therefore the evaluation of distances,
and the concept of ”nearest neighbor” itself, become less
and less meaningful with growing dimensions. To tackle
this problem a number of algorithms able to reduce the
dimensionality of the space before or during the clustering
process have been presented [3]. Evolutionary clustering also
suffers from these problems, but it has the ability to solve
them via a dimensionality reduction (i.e. feature selection)
directly during its evolution [4], [5]. This practice often
leads to better solutions, but, if abused, it could lead to
less accurate results. In this paper we want to avoid this
drawback thanks to the use of multi-objective optimization,
with the two aims of reducing dimensionality and preserving
an acceptable level of clustering accuracy. In many practical
problems, the actual number of clusters is not known a
priori, thus in our proposal we take this into account where
neither reference classification nor the number of clusters
are previously known. For this reason, we chose to assess the
performance of the partitioning by means of a cluster validity
index. In this paper we use the Xie-Beni (XB) [6] cluster
validity index as the underlying optimizing criterion since
it has been shown to outperform other indexes in several
experiments [7]. The rest of the paper is organized as follows.
In Section II, we recall some related works on evolutionary
clustering and feature selection. Next, in Sections III and
IV we briefly describe the fuzzy clustering, the XB index
and the evolutionary algorithms which are the pillars of our



approach. The proposed approach is described in Section V.
In Section VI we apply the proposed approach to a real case
study. Finally the paper ends with concluding remarks in
Section VII.

II. PREVIOUS WORK

Several works have been proposed in the literature which
make use of Evolutionary Algorithms (EAs) for fuzzy clus-
tering, some of them are devoted to improve the performance
of FCM-type algorithms [8] using the GA to optimize pa-
rameters of these algorithms, others are designed to directly
create a fuzzy partition of data. The fuzzy systems, which
use GA to learn their structure from examples and to improve
their performances, are called Genetic Fuzzy Systems (GFSs)
[9]. The use of GAs to optimize the parameters of a FCM-
type algorithm generates two different kinds of GFSs. A
first group of genetic approaches are based on directly
solving the fuzzy clustering problem without interaction with
any FCM-type algorithm. These techniques have shown the
potential to achieve high partitioning accuracy results [10],
[11]. Prototype-based algorithms encode the fuzzy cluster
prototypes and evolve them by means of a GA guided by any
centroid-type objective function [12], while fuzzy partition-
based algorithms encode, and evolve, the fuzzy membership
matrix [13]. A second possibility is to use the GA to define
the distance norm of an FCM-type algorithm. The system
considers an adaptive distance function and employs a GA
to learn its parameters to obtain an optimal behavior of the
FCM-type algorithm [14]. Good results were also obtained
through these hybrid approaches with classical clustering
algorithms, especially the ones which integrate clustering
and evolutionary algorithms to exploit the flexibility and
adaptability of the EA together with the scalability and
accuracy of classification algorithms. As said before, the in-
creasingly high-dimensional data sets from many application
domains have posed unprecedented challenges to clustering
techniques, which are a fundamental step in the process
of mining knowledge from data. To solve this problem,
reducing the dimensionality of the space, the feature se-
lection have become the focus of much research in areas
of application improving the classification performances of
the algorithms, providing both faster and more cost-effective
predictors, as well as a better understanding of the underlying
generation process. The aim of feature selection is to reduce
the dimensionality of the problem, by eliminating irrelevant
and redundant features, while simultaneously maintaining or
enhancing classification accuracy. Many search algorithms
have been used for feature selection for classification and
clustering [15], [16]. Among these, EAs have proven to be
an effective computational method, especially in situations
where the search space is uncharacterized (mathematically),
not fully understood, or/and highly dimensional. There are
two kinds of feature selection algorithms [17], [3]:

• Filter feature selection algorithms, which remove the
irrelevant characteristics without using a learning al-
gorithm. They are efficient processes but the feature

subsets obtained may not be the best ones for a specific
learning process.

• Wrapper feature selection algorithms. This kind of fea-
ture selection algorithm selects feature subsets using the
precision of a classification algorithm to evaluate each
candidate subset. Their problem is inefficiency, since
they have to execute the classification algorithm for each
evaluation.

One particular application of these methods not only selects
features but also assigns them weights according to their
importance for the analysis to be performed [18]. In par-
ticular in [19] authors show that an appropriate assignment
of feature-weight can improve the performance of fuzzy c-
means clustering. The weight assignment is given by learning
according to the gradient descent technique. All the methods
presented give just a single solution, which often it is not the
best trade-off solution for the specific problem addressed. In
facts several of the results presented in [20] show that some
of the feature sets identified for different feature cardinalities
are closely related. Given this structure in the decision space,
the identification of all solutions in a single run should be
more efficient than using individual runs of a single-objective
optimization method. Therefore a more effective approach
may be the consideration of clustering as a multi-objective
optimization problem, as suggested by [21]. Usually no sin-
gle best solution for this optimization task exists, but instead,
the framework of Pareto optimality is embraced, where the
algorithm gives a set of trade-off solutions, called Pareto set,
among which it is possible to choose the one that is suitable
for a specific work. In situations where the best solution
corresponds to a trade-off between the different objectives
only the multi-objective clustering algorithm will be able
to find it. In literature there are some recent works about
crisp multi-objective clustering. In [22] authors presented a
novel evolutionary multi-objective local selection algorithm
for unsupervised feature selection, called ELSA, to search
for possible combination of features and numbers of clusters,
with the guidance of two representative clustering algorithms.
Morita et al. [23] make use of a multi-objective genetic
algorithm where the minimization of the number of features
and a validity index that measures the quality of clusters have
been used to guide the search towards the more discriminant
features and the best number of clusters. Recently Handl
et al. in [24] presented MOCK, a multi-objective clustering
algorithm with automatic determination of the number of
clusters (K). In this work authors discussed the conceptual
advantages of multi-objective clustering and demonstrated
that these translate into a performance advantage in practice:
the proposed evolutionary approach has been shown to
outperform traditional single-objective clustering techniques
and an ensemble method across a diverse range of benchmark
data sets.

III. FUZZY CLUSTERING: A BRIEF OVERVIEW

In clustering (also known as exploratory data analysis), a
set of patterns, usually vectors in a multi-dimensional space,



are organized into coherent and contrasted groups, such as
that patterns in the same group are similar in some sense and
patterns in different groups are dissimilar in the same sense.
Given a data set of N patterns X = {x1, ..., xi, ..., xN}, the
purpose of any clustering technique is to evolve a partition
matrix U(X) of the given data set X so as to find a number,
say R, of clusters ({U1, ..., UR}). The partition matrix U(X)
of size R × n may be represented as U = [uij ], j = 1, .., R
and i = 1, ..., n, where uij is the membership of pattern xi

to cluster Uj . In crisp partitioning of the data, the following
condition holds: uij = 1 if xi ∈ Uj , otherwise uij = 0.
In the case of fuzzy clustering, the purpose is to evolve an
appropriate partition matrix U = [uij ] where uij ∈ [0, 1],
such that uij denotes the degree of membership of the i-th
pattern to the j-th cluster.

In pattern recognition fuzzy models and algorithms have
been widely studied and applied [25], [26], [27]. In partic-
ular one of the major techniques in pattern recognition is
fuzzy clustering, that attracts attention because it has been
successful in a variety of substantive areas [28], [29], [30],
[31] including image recognition, signal processing, business,
health, aerospace, and so on.

The Fuzzy C-Means (FCM) is the most famous fuzzy
clustering algorithm, which proposes to minimize the fol-
lowing objective function with respect to fuzzy memberships
U = [uij ] and cluster centroids C = [cj ]:

J(U, C; X) =
K∑

j=1

N∑
i=1

um
ij · d(xi, cj) (1)

where cj is the prototype of the j-th cluster and d(•, •) is a
distance metric appropriately chosen from the pattern space,
xi is the i-th pattern, uij is the degree of truth of the i-
th pattern in the j-th cluster, raised to the ”fuzzyfier” m.
K and N are the number of clusters and the number of
patterns respectively. m is a parameter on which the degree
of fuzzyfication depends: as its value increases, so does the
degree of uncertainty, until it settles at uij = 1/K ∀ i, j,
whereas when it gets close to 1 the result is an hard
partitioning (i.e. uij becomes a binary variable which is equal
to 1 if the i-th pattern belongs to the j-th group, otherwise
it is 0).

As distance measure a weighted Euclidean distance was
used in this work:

d(x,y) = 2

√√√√ D∑
k=1

w2
k(xk − yk)2 (2)

where D is the size of the space of features and wk is
the weight assigned to the k-th feature, which is inserted as
a parameter to be estimated by the GA. The data is also to
be normalized so as to remove any numerical differences
between the features and allow the algorithm to estimate
their weights more efficiently. The normalization method we
applied in this work was division by the maximum number:
Xnorm = X / Xmax.

The procedure of evaluating the results of a clustering
algorithm is known under the term cluster validity. One of
the most effective cluster validity measure is the XB index,
that is defined as the ratio of compactness σ/N of the total
variation to the minimum separation sep of the clusters,
where σ and sep can be written as

σ(U, C, X) =
K∑

j=1

N∑
i=1

um
ijd(xi − cj) (3)

and

sep(C) = min
j �=k

{d(cj − ck)} (4)

d(•, •) is (2). The XB index is then defined as

XB(U, C, X) =
σ(U, C, X)
N · sep(C)

(5)

Note that, when the partitioning is compact and good,
the value of σ should be low, while sep should be high.
Therefore, the XB index should have a low value when the
data has been appropriately clustered. The presence of m
in σ, that is defined as suggested in [7], assures that it has
not bias due variability of m. We remark that by definition
the XB index has no dimensionality bias too, because it is
sigma divided to sep and σ, sep ∝ d then the XB index is
not proportional to d.

IV. MULTI-OBJECTIVE OPTIMIZATION: THE

NONDOMINATED SORT GENETIC ALGORITHM II

The multi-objective optimization problem is a problem of
minimization or maximization of multiple evaluation criteria
that conflict with each other. It is difficult to say that
the solution that is an optimum for one criterion is the
optimal solution for multi-objective optimization, because the
multiple criteria have trade-off relationships with each other.
Therefore, in multi-objective optimization, the concept of a
Pareto-optimal solution is used in the search. In a Pareto
optimal solution, there are multiple, or sometimes an infinite
number of solutions. In multi-objective optimization, as it is
mentioned, getting a Pareto-optimal solution is one of the
goals and an approach to obtain a wide range of Pareto
optimal solutions at equal intervals is required. Evolutionary
algorithms are well-suited for multi-objective optimization as
their use of a population enables the whole Pareto front to
be approximated in a single algorithm run.

NSGA [32] is a popular non-domination based genetic
algorithm for multi-objective optimization. It is a very ef-
fective algorithm but has been generally criticized for its
computational complexity, lack of elitism and for choosing
the optimal parameter value for sharing parameter σshare.
A modified version, NSGA-II [33] was developed, which
has a better sorting algorithm, incorporates elitism and no
sharing parameter needs to be chosen a priori. NSGA-
II varies from the NSGA (Non-dominated sorting genetic



algorithm) in three main things. It is more efficient com-
putationally, since the ranking of solutions is performed
by an O(ωM2) algorithm, instead than O(ωM3), where
ω is the number of objectives and M is the population
size; it significantly prevents the loss of good solutions
once they have been found (elitism); it does not need any
parameter specification. Because of its simplicity, availability
of a freely downloadable computer code, and demonstrated
superiority over other existing methods, NSGA-II has been
extensively used in many studies. Because of its broad-based
applicability in academia and practice, NSGA-II has been,
since its publication, either used as a baseline algorithm to
compare with other methods or has been applied to new
problems. NSGA-II is a computationally efficient algorithm
implementing the idea of a selection method based on
classes of dominance of all the solutions. It uses a fast non-
dominated ranking algorithm and a parameter-less sharing
mechanism for solutions diversification. In this paper, the
normalization of the objectives has also allowed to efficiently
compare each objective or constraint contribution during
crowded comparison and selection as it is detailed in the
following. The population is initialized as usual. Once the
population in initialized the population is sorted based on
non-domination into each front. The first front being com-
pletely non-dominant set in the current population and the
second front being dominated by the individuals in the first
front only and the front goes so on. Each individual in the
each front are assigned rank (fitness) values or based on front
in which they belong to. Individuals in first front are given
a fitness value of 1 and individuals in second are assigned
fitness value as 2 and so on. Before selection is performed,
the population is ranked on the basis of an individual’s
non-domination level and, to allow the diversification, a
crowding factor is calculated for each solution. The crowding
distance is a measure of how close an individual is to its
neighbors. Large average crowding distance will result in
better diversity in the population. Then a binary tournament
selection operator is used to select the offspring population,
whereas crossover and mutation operators remain as usual.

V. PROPOSED APPROACH

We propose the use of a hybrid system, which simul-
taneously performs data clustering and feature selection,
while it is searching for the suitable number of clusters. It
uses a closed-loop control mechanism in which the FCM
classification algorithm is controlled by NSGA-II by means
of a feedback loop. NSGA-II provides the FCM with the
optimal parameters that will ensure the best trade-off between
the objectives and assigns weights to each feature. When a
feature is irrelevant or redundant its weight will be 0; in
this way it will be neglected during the clustering process.
The chromosome of the GA is defined with as many genes
as there are free parameters and each gene will be coded
according to the set of values it can take. In our case study,
both the parameters of the FCM and the feature weights are
mapped onto a chromosome whose genes are real coded
(see Figure 1). The chromosome genes are: the number

Fig. 1. Example of the structure of a chromosome

Fig. 2. Systemic representation of the proposed approach.

of clusters K , the FCM fuzzyfier m, and the D feature
weights. A systemic representation is given in Figure 2. It
should be pointed out that integrated implementation of the
two algorithms causes some problems: the FCM algorithm
requires random initialization every time it is executed, on
which the result depends. It is obviously not possible to
operate in this way with the genetic algorithm, because the
fitness value would vary from one generation to another. A
way to solve this problem is to insert the initial values of the
matrix U (0) among the variables of the GA. Hall et al. [34]
studied the effects of this strategy, concluding that use of a
GA caused an increase in computing time of two orders of
magnitude as compared with normal execution. The authors
proved that in normal conditions it is therefore preferable to
execute the algorithm several times, starting from different
initial values, which gives similar, if not identical, results.
In our work we chose to run the FCM algorithm ten times
for each number of cluster allowed, m = 2 and the feature
weights equal to 1, then we select the K (e.g. one for
each number of cluster allowed) U (0) matrixes which are
associated with the highest value of the objective function.
The U (0) matrixes selected are used to initialize the FCM
during the generations of the GA.

To summarize, the algorithm is as follows:

1) Initialize the K centroid matrixes by running the FCM
10 times for each number of clusters allowed.

2) Execute NSGA-II to optimize the FCM and to weight
the features.

3) Choose the solution most suitable for the problem from
the Pareto set solutions.

VI. NUMERICAL RESULTS

The dataset employed is the publicly available Leukemia
dataset [29]. This dataset is a particularly difficult testbench
because it contains a very low number of patterns while it
has a very high number of features. The leukemia problem
consists of characterizing two forms of acute leukemia.
Acute Lymphoblastic Leukemia (ALL) and Acute Mieloid
Leukemia (AML). The original work proposed both a su-
pervised classification task (”class prediction”) and an unsu-
pervised characterization task (”class discovery”). Here we
obviously focus on the latter, but we exploit the diagnostic
information on the type of leukemia to assess the goodness of



the clustering obtained. The dataset contains 38 examples for
which the expression level of 7129 genes has been measured
with the DNA microarray technique. Of these samples 27
are cases of ALL and 11 are cases of AML. Often, the ALL
class is divided into 2 subclasses: the T-lineage and the B-
Lineage. For this reason, the suitable number of classes K
for this post-genomic dataset is two or three. In this work
we use data from [35], where after a series of standard
preprocessing steps, the 100 genes with the largest variation
across samples were selected, and the remaining expressions
are log-transformed. The resulting dataset of size 38×100 is
subject to our cluster analysis. The population for the genetic
algorithm were set as 200 individuals, using a crossover
probability of 0.8 and a mutation probability of 0.1. The
stop criterion used for the FCM was the achievement of a
maximum variation lower than 0.01 or 15 iterations, whereas
for NSGA-II it was 200 generations. The two objectives are
the number of features and the XB index, which are both
to be minimized. Table I summarizes the parameters search
space.

TABLE I

PARAMETERS SEARCH SPACE

Parameter Parameter Space Notes

K [2,10] integer values
m [1.01,5.0]

w1...wD [0.0,1.0] We have forced the probability to as-
sign 0.0 to 50% in order to have the
same chances either to select or to
erase a feature.

Figure 3 shows the values of the Pareto set obtained,
which can be divided into two distinct parts: the one on
the left that has all the points with K = 3 and the one on
the right that has all the points with K = 2. The results
given in Figure 3 confirm that the most suitable number of
classes is 2 or 3, because there are no points with K > 3
in the Pareto set. The results also suggest that the number
of features conflicts not only with performance, but also
with the suitable number of clusters. Therefore the 2-class
partitioning requires a lower dimensionality but clusters are
less compact and separated than in the 3-class partitioning,
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Fig. 3. Pareto set obtained. Points on the left have K = 3, while points
on the right have K = 2.

which vice versa requires a higher dimensionality. However,
looking only to XB index, it indicates the higher quality
of the three-cluster solution, as reported in the literature.
In fact, this three-cluster solution corresponds to an almost
perfect separation of the samples of acute leukemia into those
arising from myeloid precursors (AML), and two sub-classes
arising from lymphoid precursors (T-lineage ALL and B-
lineage ALL). m values are only related to the number of
clusters, therefore m is in the range [1.01,1.05] for the Pareto
points with K = 2, while m is in the range [1.28,1.33] for
K = 3.

To evaluate the quality of the partitioning using an external
criterion, we built a reference partition using labels of the
data, then we derived the crisp (hard) partitions from the
optimal fuzzy partitions by assigning each pattern to the
group with which it has a higher numerical affinity. These
hardened partitions were compared with the reference ones,
yielding a maximum classification accuracy of 97% with 34
features and 2 classes and 95% with 44 features and 3 classes.
These results are better both in classification accuracy and
feature selection than the ones in the original work [36], in
which a Self Organizing Map (SOM) is constructed with
the GENECLUSTER software [36], that reported 89% of
accuracy with 2 classes and 95% with 3 classes with 6817
features .

TABLE II

PARTITION ACCURACY COMPARISON (AVERAGES OVER 21 RUNS)

Method K = 2 K = 3
Features AdjRand Features AdjRand

NSGA-II & FCM 34 0.96 44 0.93
GENECLUSTER
& SOM [36]

6817 0.81 6817 0.93

MOCK & SOTA
[35]

100 0.63 100 0.93

MOCK & SOM
[35]

100 0.60 100 0.93

MOCK & K-
Means [35]

100 0.59 100 0.93

MOCK & Aver-
age Link [35]

100 0.52 100 0.93

Note that in [35] no further feature selection was performed, for this
reason the number of features is always 100.

In Table II the performance of the proposed approach is
compared to the one of the MOCK approach [35], which was
ran with various clustering algorithms: self-Organizing Tree
Algorithm (SOTA), Self Organizing Maps (SOM), K-Means
and the agglomerative hierarchical algorithm based on the
average link criteria. In accordance with [35], the Adjusted
Rand Index (AdjRand) [37], is used as external criterion for
the partition quality assessment. The AdjRand index has to
be maximized and it can take values in the range [0, 1]. Table
II shows the average over 21 runs of the number of features
needed to achieve the best value for the AdjRand index. In
the two cluster scenario the approach proposed gives the best
result both in feature selection and in partition quality. In the
three cluster scenario all the approaches compared produces
a partition with the same quality, but our approach needs
less features than others. Note that both GENECLUSTER



and MOCK does not assign weight to the features, this is
the reason of their lower performance.

VII. CONCLUSION

The aim of this paper has been to explore the potential of
a fuzzy evolutionary clustering approach based on NSGA-
II, integrated with the Fuzzy C-Means algorithm. The new
approach presented has proved to be a useful tool for mining
knowledge from high-dimensional sets, even in the presence
of small sample data. The strength of the proposed algorithm
is, therefore, the possibility to discover the best number of
groups, which yields the best clustering performance, without
a reference classification, while pruning the features in order
to reduce the dimensionality of the database. Numerical
results confirmed that the right choice of pattern features
is a critical issue to achieve high-quality partitioning; in
fact growing dimensionality leads to less distinguishability
between the groups, but in the meantime a small number
of features is not enough to successfully cluster the data. It
was also demonstrated that the suitable number of clusters
depends on the number of features selected to represent the
characteristics of the patterns.
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