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Abstract 

Technological advances are increasing the range of applications for artificial intelligence, especially through its 

embodiment within humanoid robotics platforms. This promotes the development of novel systems for au-

tomated screening of neurological conditions to assist the clinical practitioners in the detection of early signs 

of mild cognitive impairments. This article presents the implementation and the experimental validation of 

the first robotic system for cognitive assessment, based on one of the most popular platforms for social ro-

botics, Softbank "Pepper", which administers and records a set of multi-modal interactive tasks to engage the 

user cognitive abilities. The robot intelligence is programmed using the state-of-the-art IBM Watson AI Cloud 

services, which provide the necessary capabilities for improving the social interaction and scoring the tests. 

The system has been tested by healthy adults (N = 35) and we found a significant correlation between the 

automated scoring and the MoCA, one of the most widely used paper-and-pencil tests. We conclude that the 

system can be considered as a screening instrument for cognitive assessment. 

Keywords: Socially Assistive Robotics; Brief Cognitive Testing; Human-Robot Interaction; Neurological 

Screening; Cloud Computing. 
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1 Introduction 

An area of expansion for Artificial Intelligence (AI) and robotics is known as Socially Assistive Robotics[1–3] 

(SAR). In SAR, robots are a physical representation of modern AI, which is often located in the "Cloud", i.e. 

hosted in massively powerful supercomputers that expose computationally intensive state-of-the-art AI algo-

rithms, like the deep learning artificial neural networks, and make them accessible via the internet from low 

power, energy saving clients like robots[4–6]. Cloud services are offered by the major corporations, for instance, 

Amazon, Microsoft, Google, and IBM, which provide a standardized and easily reproducible environment for 

development and testing of Human-Robot Interaction (HRI) applications. Despite being a relatively recent in-

novation, these Cloud services have been utilised in a number of studies in HRI[7]. 

The approach of embedding AI into robots widens the scope of potential applications by “physically” engaging 

and socially interacting with the user, while simplifying the access to the new technologies via a more natural 

and intuitive interface. This provides a means to overcome  the interaction difficulties that can be experi-

enced, particularly  by the elderly in engaging with digital technology, thanks also to the multiple interaction 

multimodalities[8, 9], e.g. audio, video, gestures, touch. As part of SAR research, the integration with service 

robotics and smart environments have been extensively explored too, especially for the elderly who may need 

complex assistive technology to support healthy ageing[10, 11].  

SAR have been increasingly studied for health and clinical applications, leading scholars to suggest a stable 

integration of HRI in healthcare settings[12]. Robots demonstrated potential benefits when employed as ther-

apeutic assistants or caregivers. Indeed, the efficacy of artificial agents has been documented with children[13–

15] as well as with elderly people in a variety of neurological and psychiatric conditions[16]. Recently, initial evi-

dence has been collected on the viability of robotic assessments, for instance in the measurement of Patient 

Reported Outcome[17] and in early diagnosis of Autistic Spectrum Disorder (ASD)[18, 19]. Petric proposed a “ro-

botic autism spectrum disorder diagnostic protocol”, in order to evaluate child’s reaction when called by 

name, his/her symbolic and functional imitative behaviour, his/her joint attention, and his/her ability to 

communicate via multiple channels simultaneously, but the results are not clear and definitive[20]. Another 

diagnostic method for ASD is proposed by Wijayasinghe et al.[21], who consider HRI a way to objectively evalu-

ate imitation deficits. In this case, the robot Zeno performs upper body gestures and it encourages the child to 

imitate them, while the robot automatically assesses the child’s behaviour. However, it seems little work has 

been done regarding other pathologies. Kojima et al.[22], for instance, published some speech recognition ex-

periments with elderly people using the robot PaPeRo, aimed at the development of a computerized cognitive 

assessment system. 

It is evident that robots have the potential to be successful assistants in psychological assessment. Robots can 

be programmed to perform specific, repeatable action, providing the benefit of attainable standardization. 

Therefore, the robotic implementation of quick screening tests could be promising, because they are often 

repetitive and easy to take, but time-consuming for human assessors. A robot-led assessment can provide a 

series of advantages, among others: assessor neutrality, objective measurement of social behaviour, stand-

ardization of the interaction, better acceptance of the robotic platform than a non-embodied computer[23, 24]. 

An example is the observation of developmental history and social skills, where clinicians with different spe-

cialisations often do not agree when evaluating the same patient[25].  

Recently, Desideri et al.[26] presented an interesting study on human-robot interaction for Brief Cognitive 

Testing (BCT), in which they show that participants' emotional reactions toward the human examiner and the 
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humanoid robot NAO did not differ. This study supports the hypothesis that the use of social robots could in-

crease the ecological validity of computerised cognitive testing and decrease distracting stimuli from the in-

terviewer's face, while at the same time would allow the automatic tracking and recording of the examinee's 

behaviours. Meanwhile, Rossi et al.[27] tested a system for psychometric evaluation with a social robot, which 

was a preliminary version to the one presented in this article. The test involved 19 older participants (age 

range = 53–82, mean = 61.16) and investigated the personality factors and technology acceptance showing 

that the Openness to Experience factor along with Anxiety, Trust, and Intention to use, correlate with the 

performance in the psychometric tests. 

However, other than the preliminary examples presented above, robotic psychological assessment is almost 

unexplored, especially with adults. The evidence is limited, the pathologies studied are very few, comparative 

studies (robotic assessment vs human assessment; robotic assessment vs computerized assessment) are often 

not available. It is evident that more research and experimental validation is required. 

With the aim of increasing the experimental knowledge and providing novel evidence of the feasibility of this 

field of application for SAR, the present article demonstrates a novel system, named Cognitive level Assess-

ment via Human-robot Interaction (CATHI), that integrates a social robot and a Cloud AI system as a screening 

tool for Mild Cognitive Impairment (MCI)[14]. MCI was typically associated with cognitive related disorders in 

older people and considered merely as a prodromal stage of dementia, but recent research has recognized 

MCI as a risk factor to develop more severe cognitive deterioration[29, 30]. It is very important to detect the 

so-called predictors of conversion and to determine if a patient may develop dementia, to provide for effi-

cient planning of rapid intervention with adequate treatment, including non-pharmacological rehabilitation 

training[31]. For early detection, the markers to be considered can be both biological and psychometric[32]. 

However, brief psychometric tests are usually preferred for screening, because they are quicker and inexpen-

sive, indeed cognitive deficits are often initially diagnosed in this manner. We would remark that MCI symp-

toms can be found also the younger population as a consequence of psychiatric disorders like schizophrenia 

and depression (see Section 2.1) and therefore an MCI test can useful for their detection[33, 34]. 

There are two main goals in presenting this work: 1) to demonstrate the first version of a brief cognitive test 

for MCI that can be fully administered by an autonomous social robot and scored by a Cloud AI system; 2) to 

investigate the feasibility of performing a cognitive screening through a social robot with a non-clinical popu-

lation. 

The rest of the paper is organised as follows. Section 2 describes the materials used to build the robotic cogni-

tive assessment, i.e. the psychometric cognitive test, and the underpinning technology, and the methodolo-

gies used to experimentally validate the new tool. Section 3 presents and discusses the results of the experi-

mental test of CATHI and the validation of the scores. Section 4 gives our conclusion. 

2 Materials and Methods 

Solutions adopted in this work are informed by previous preliminary experiments with the SoftBank human-

oid social robot Pepper[35], it was found that the score automatically calculated using the robot software often 

failed to provide the correct score because of the failures of the embedded speech and object recognition 

interfaces[23, 36]. To tackle this problem, after thorough consideration of what the market can offer, we select-

ed the IBM AI Cloud services, named “Watson”, which provide a comprehensive set of easy-to-use tools for 

speech recognition (speech-to-text) and production (text-to-speech) and object recognition from picture, 

which definitely improved the robotic system interaction and automated scoring[37]. 
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2.1 The Montreal Cognitive (MoCA) test 

An instrument for BCT is the Montreal Cognitive Assessment, widely known as the MoCA[38], which is freely 

available from the official website[39]. It has been initially validated for 55-85 year olds and translated into 46 

languages and used in more than 100 countries for detecting MCI. 

Importantly, the MoCA test assesses multiple cognitive domains, therefore, it can be a useful screening tool of 

MCI in a variety of neurological conditions that affect both younger and older populations, such as 

dementia[38], brain tumours[40], vascular cognitive impairment[41], schizophrenia[33], early stages of Parkinson's 

disease[42], Huntington's disease[43], sleep behaviour disorder[44] and depression[34]. In the work described in 

this article, the robotic test was inspired by the MoCA Full 7.1 English version, which can be found on the 

MoCA website[39]. The MoCA test is composed of eight subtests with a total of 14 tasks that cover several cog-

nitive domains: 

• Visuospatial/executive, 3 tasks, 5 points: alternating letter/numbers trail making (1 point if correct); cop-

ying a cube (1 point if correct); drawing of the clock, including arrows and numbers (1 point for each ele-

ment up to 3); 

• Naming, 1 task, 3 points: name the three animals in pictures (1 point for each animal, up to 3). 

• Attention, 3 tasks, 5 points: digit span – repeat two sequences of digits (1 point for each if correct); vigi-

lance - react to the letter A (1 point if less than 2 errors), and serial 7 subtraction (up to 3 points); 

• Language, 2 tasks, 3 points: repeat the two sentences (1 point for each if correct); and fluency – name 

words with F (1 point if more than 10 words are named); 

• Abstraction, 1 task, 2 points: tell how 2 pairs of words are connected, e.g. banana and orange are fruits, (1 

point for each pair if correct); 

• Memory and Delayed Recall, 1 task, 5 points: the assessor says 5 words that should be recalled after 5 

minutes (1 point for each word spontaneously recalled without help); 

• Orientation, 1 task, 6 points: tell the full date – date, month, year, day - and the location - place and city – 

(1 point for each correct element). 

When scoring the test, the assessor must compensate for the education level, i.e. one point is added if the 

person has twelve years of education or less. The maximum total score is 30. It is usually considered normal to 

score 26 points or above, while a score of 22 or below may indicate a cognitive problem. A recent study[45] set 

the cut-off score for further examination and MCI diagnosis to 23 to reduce false positives. 

The English version of the MoCA test has two alternative versions, 7.2 and 7.3, equivalent to the main Full 7.1 

version[46]. The 7.2 version was used for validating the robotic cognitive test. 

2.2 Cognitive level Assessment via Human-robot Interaction and IBM Watson AI (CATHI) 

The robotic platform used for building a prototype of CATHI and running our experiments is the humanoid 

“Pepper”[35] manufactured by SoftBank Robotics, the latest commercial product specifically designed for HRI 

and equipped with state-of-the-art interactive interfaces: a touchscreen, human-like movement, pressure 

sensors, object recognition, speech production, and comprehension, age, gender, emotion and face detector. 

We programmed the Pepper robot to lead the administration of a MoCA-like psychometric test, the robot 

gives instructions and collects the data via its multimodal interfaces (video, audio, touch) for the subsequent 

processing and automated scoring by the IBM Watson AI. Indeed, the entire administration session is au-

dio-recorded by the robot’s microphones. The robot also takes pictures of the user drawings for the visuospa-
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tial/executive skills. The robotic cognitive test measures the same areas of the MoCAs, hence the subtests 

have the same names, as shown in the Table 1. 

 

Figure 1. System for the assessment of cognitive skills via human-robot Interaction and IBM Watson AI Services and 

Cloud Computing 

Table 1 presents the technologies used to implement the 7 subtests. These are divided by the Pepper's robot 

embedded sensors and interfaces, i.e. the touchscreen and the pressure sensor on the head, and the three 

IBM Watson AI services described in the following Section 2.3. In addition, the robot was also using the 

non-verbal communication cues to support a more natural HRI, i.e. it was gesturing while speaking, rotating 

the head to demonstrate attention to the user, and changing the eyes' LEDs to show the internal state and 

guide the interaction, e.g. blinking blue when listening. The non-verbal communication cues were explained to 

the user at the beginning of the session. 

Table 1. Technologies used to implement the 7 Subtest of the different cognitive domains 

Subtest 
Native Pepper Robot’s 

sensors/interfaces 

IBM Watson AI Services 

Text-to-speech Speech-to-text Object recognition 

Visuospatial 

Executive 

Task 1: Touchscreen shows characters 

and numbers to connect. 

Task 2: Touchscreen shows the image 

to copy on the tablet 

Task Instructions  
User's 

drawings 

Naming 
The touchscreen shows images to rec-

ognize 
Task Instructions Name of animals  

Attention Head sensor, for the Vigilance task 

Task Instructions, 

sequences of numbers 

to recall 

Numbers  

Language  
Task Instructions, 

sentences to repeat 

Sentences & words 

starting with “F” 
 

Abstraction  
Task Instructions, 

items to categorize 

Connections between 

words 
 

Delayed 

Recall 
 

Task Instructions, 

words to recall 
Words  

Orientation  Instructions 
Full date including 

the day of the week 
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Figure 2 presents two examples of the non-verbal HRI: in Figure 2(a) the participant uses the touchscreen to 

connect letters/numbers in the trail making task; in Figure 2(b) the participant touches the sensor on the head 

to demonstrate attention in the vigilance task. 

  
(a) Visuospatial/Executive: 

Alternating letters/numbers trail making. 

(b) Attention subtest – Vigilance task 

Figure 2. Examples of the human-robot interaction during the robotic administration. 

In summary, Watson text-to-speech was used for both providing test instructions and test dialogue. The digi-

tal speech was generated in advance and stored locally in the robot to avoid the latency associated with ac-

cessing the cloud. Watson speech recognition was used to score: Naming, Attention, Language, Abstraction, 

Delayed Recall, and Orientation. The Watson object recognition system was used to assess Visuospa-

tial/Executive skills by having the user draw a cube and a clock on two sheets of paper, which was also used to 

assess the executive functioning, including manual skills and motor coordination. Speech-to-text and object 

recognition are performed after the administration, the only exception is the orientation subtest, in which the 

robot should recognise the full date, including the day of the week, in real-time and ask for any missing piece 

of information. 

2.3 Integration of the HRI with IBM Watson Cloud AI Services 

IBM Watson is a subset of the IBM Cloud services that focus on providing enhanced artificial intelligence solu-

tions, providing what is referred to by IBM as a cognitive capability which can be embedded into technology 

applications. For the autonomous scoring of the CATHI system, we used the IBM Watson solutions for 

post-processing the data collected from the HRI sessions. We used Watson Assistant (formerly Conversation) 

to organise the workflow of the test, Watson Text to Speech for generating the robot's voice during the ad-

ministration, Watson Speech to Text to perform speech recognition and Watson Visual Recognition to per-

form the analysis of the hand-drawn images. We used NaoQi framework's Python SDK for Pepper robot to 

write Python scripts that ran on the robot and handled its behaviour during the administration. The commu-

nication with the IBM Cloud was implemented as HTTP POST requests, generated by Watson Developer Cloud 

module for Python. Further implementation details are reported in the following subsections. 

2.3.1 Watson Assistant and Text to Speech 

Watson Assistant was used to organising the workflow of the test and storing the robot's instructions for each 

subtest, with some basic analysis of the participant's response. For example, during the Orientation Date sub-

test, based on the response it received, Assistant would ask for missing details, such as day of the week or 

year. Another example would be occasionally addressing the participant by name if provided. We opted for 

using Watson’s British English female voice called ‘Kate’, which is provided as an option in Watson text to 
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speech service, to replace Pepper's default voice, which could be described as childlike and so inappropriate 

for administering a cognitive assessment test. To reduce the latency, the speech was often pre-generated as 

most of the dialogue was fixed because of the standardisation requirement. 

2.3.2 Watson Speech to Text  

Pepper’s default voice recognition system is designed for recognizing individual words, which was not suitable 

for the parts of the test, e.g. the Language assessment, where long sentences must be recognized. Moreover, 

Pepper's recording system would often pick up constant noise coming from the cooling fans located inside the 

robots’ head just below the microphones. This noise had a negative impact on the quality of the audio source, 

which consequently degrades the speech recognition performance. Watson speech-to-text service was able to 

overcome these limitations by supporting the analysis of longer sentences, including context analysis, and the 

customisation of the model with additional samples to embed the noise. 

Considering the language background of participants and the characteristics of audios, we used as a base for 

the customisation the British English model, named “en-GB_BroadbandModel”. Furthermore, to better ex-

plore the characteristics of the Watson service and set-up the parameters, we did not set a confidence 

threshold under which the transcriptions were discarded, and we considered the 10 best alternatives of 

recognition transcription according to the confidence level. 

Utilising these features, the Watson score was calculated via a customised and flexible approach which dras-

tically improved the system performance as reported in our preliminary study [37]. It was customized because 

we used the language customization service, to refine the speech-to-text model for the specific recognition 

requests of our cognitive test. Indeed, we created three customized models by adding specific corpora. One 

model was trained for the recognition of numbers, months and weekdays (Attention and Orientation tasks), 

one for the recognition of all the words starting with B, F and S (Fluency task), and the last one for all the re-

maining tasks. The customization weight was set to 0.9. 

The scoring was also flexible because the calculation accepted a certain percentage of error so that the points 

were given if one of the transcriptions fitted for at least the 70% the target word or string. 

2.3.3 Watson Visual Recognition 

As part of the administration procedure, the robot asked the participants to produce hand-drawing of a cube 

and a clock showing a specific time. The procedure is exemplified in Figure 3. Participants presented these 

pictures so that the robot could take a photo (Figure 3a). The interaction included the robot showing the pic-

ture taken on the tablet asking the participant to check if the drawing was captured correctly and, if not, of-

fering to retake the picture (Figure 3b). 
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(a) acquisition of the picture 

 

(b) confirmation that the drawing has been captured correctly 

Figure 3. Interaction in the drawing of the clock task. 

The pictures were sent to Watson Visual Recognition for analysis. The Watson service generated a general 

class and individual subclass of the object/setting the recognition system deemed as central on the picture. 

We reprocessed the drawings of cubes and clocks made by participants with the default visual recognition. 

The drawings were considered correct and the points were awarded when the cube was recognized as poly-

hedron and the clock as clock or wall clock. For the hours, a point was given when numbers from 1 to 12 were 

recognized. The same applies for the clock hands/arrows. 

2.4 Experimental procedure 

The experimental procedure included two sessions for each participant: the traditional “paper and pencil” 

administration and the robotic administration. Each session was carried out in the same room, within the 

premises of Sheffield Hallam University. The participants were invited to enter the room one by one and 

asked, first of all, to read and sign the forms regarding the processing of personal data. 

The traditional "paper and pencil" session was entirely run by the experimenter and timed as well. In order to 

reduce any learning effect between the two administrations, for the paper and pencil, the 7.2 alternative ver-

sion of the MoCA test was used. Moreover, the two sessions were spaced by at least five days, and the mo-

dality - robotic or paper - experienced first was alternated. 

The session was entirely led by Pepper: the robot gave the instructions and audio-registered the answers. An 

experimenter was present in the room, but he did not interfere with the interaction and maintained a mar-

ginal position. The session was externally video-recorded and timed. After each session, the participants pro-

vided feedback and comments about the experience. 

The robotic administration instructions for the experimental procedure are derived from the English MoCA 

manual. Following the manual, the robot was programmed to perform two interactive tasks: the welcome 

task, at the beginning of the test, and the thank you task at the end. In the welcome task (Figure 4), Pepper 

introduced itself and asked the participant to provide his/her age, gender and years of education. This was 

meant both to collect important information about the person, as well as to train the participant on the in-

teraction modalities. For a more effective interaction[47], the robot engages with the participant by recognizing 

the face and rotating the head to follow. This is a standard HRI procedure that includes also to move the robot 

arms and hands as suggested in the literature for more effective and natural interaction with adults[48]. 
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Figure 4. Example of welcome task that precedes the administration of the cognitive test 

The administration was temporized in such a way that Pepper always performed the same way, and it did not 

react to the participant’s responses. Therefore, if the participant did not complete a task, the session contin-

ued when those internal timers expired. Furthermore, even if the participant asked, instructions were not re-

peated where this is not allowed by the MoCA manual for the corresponding task. The timing of the admin-

istration was regulated by internal timers that were set empirically as the maximum time taken in preliminary 

tests. 

Pepper audio-recorded the whole session and took photos of the second and third tasks’ drawings; moreover, 

it produced a Dialog file with the transcription of the verbal conversation with the participant and a Log file 

containing information about any technical failures that occurred, the automatic score achieved, any wrong 

answers received, and any tasks ignored. This way, a clinical psychologist could fully review the administration 

and re-evaluate for validation. 

Following the procedure described above, the following scores were obtained: 

1. the CATHI Watson score, which is autonomously calculated by the system using the IBM Watson AI 

Cloud services to process the audio and video recorded by the robot; 

2. a Supervised CATHI score, which is the score of the robotic test calculated by a clinical psychologist, who 

re-scored the performance through the recordings of the HRI; 

3. the Paper and Pencil MoCA score, which was calculated via the administration of an alternative version 

of the MoCA test by the clinical psychologist, who calculated the score in order to provide a reference 

score for testing external validity. 

2.5 Statistical methods 

The Cronbach’s Alpha Coefficient and the Spearman-Brown (SB) coefficient are used to analyse the reliability 

of the overall Watson score. The Alpha is a measure of internal consistency, i.e. how closely related the items 

(subtests in our case) are as a single score. We consider acceptable an Alpha value greater than 0.600, with a 

stronger reliability above 0.700, for details see[49]. 

The SB coefficient is another index of internal consistency, known also as split-half reliability because it takes 

the correlation between the two halves of the test for estimating the level of reliability for the full-length test. 
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The SB coefficient is used to predict reliability when the number of items changes, e.g. doubles. Here we use 

the SB coefficient because it relates the reliability with the test length, which should not be excessively long to 

avoid a cognitive overload that can bias the overall result. In practice, a test with SB coefficient equal to 1 can 

be halved without losing efficacy, while below 0.5 can indicate an inconsistency between the two halves and 

may suggest extending the test. 

Spearman correlations were then calculated to explore the relationship among the Watson, the supervised 

and the paper and pencil MoCA scores, the latter represents the external validity for the test. The Spearman 

correlation was chosen for the shape of the distribution and the typology of data. A correlation above 0.5 is 

considered a high effect-size according to Cohen's criteria[50]. 

Following the positive results of the correlations, a multiple linear regression analysis is applied to confirm the 

relations and derive the predictive function which allows deriving MoCA score from the robotic test scores. 

The existence of the linear function that directly relates the subtests scores to the MoCA confirms the validity 

of the robotic test. 

The Multiple linear regression was performed within the scoring modalities to find the proportion of the con-

tribution of each subtest to the overall score. The regression coefficients can give an indication of the amount 

of variance that can be attributed to each test. A similar distribution of the coefficients is expected as the 

subtest covers the same cognitive domains. 

Finally, we conducted a Paired Samples t-test, which is used to determine whether the mean difference be-

tween two sets of observations is zero. In practice, a new set is generated by calculating the paired differ-

ences, then, the t-test is applied to test the null hypothesis on the new set. 

The statistical analyses presented in this section were performed with the SPSS software (version 24). A de-

tailed description of the procedures and detailed formulation can be found in[51, 52]. 

2.6 Participants 

A total of 35 healthy adults voluntarily participated in our experiments, 22 males and 14 females, the age 

range was 19-61, average 26.74 years, and standard deviation of 9.85. Participants were all proficient in 

British English, but only 14 of them were native speakers, i.e. did all their education in the UK. Most foreign 

participants had a distinctive accent according to their native language. All of them completed high school, 

and 26 obtained a university degree, with the average number of years in education equal to 19.5, the 

standard deviation of 4.16. The study received ethical approval from the committee of the Faculty of Arts, 

Computing, Engineering and Science, Sheffield Hallam University. All participants gave informed consent to 

use their data, video/audio recordings and pictures for scientific research purposes.  

3 Results 

Descriptive statistics are presented in Section 3.1 to summarise the experimental results. Section 3.2 reports 

the Alpha and SB coefficients along with the Spearman correlations to evaluate the reliability of the robotic 

test. Section 3.3 presents the correlations between the Supervised and the Watson CATHI scores for each 

subtask to validate the results of the multiple regression. Finally, Section 3.4 simulates a use case study to 

show the practical application of the proposed CATHI system as a screening tool. 

3.1 Descriptive statistics 
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Table 2 presents the descriptive statistics calculated for the Paper-and-Pencil MoCA, the supervised (bench-

mark) and the Watson’s scores: mean, median, standard deviation (Std. Dev.), minimum (Min) and maximum 

(Max). 

Table 2. Descriptive Statistics 

 
Paper and Pencil  

MoCA 

Supervised 

CATHI Score 

CATHI  

Watson Score 

Mean 25.0 21.2 19.4 

Median 25.5 21.0 21.0 

Std. Dev. 2.07 5.22 5.64 

Min 21 10 9 

Max 28 28 27 
 

Table 2 shows that the median score calculated by Watson is the same as the Supervised score while both are 

lower than the MoCA. The standard deviation of the CATHI scores is higher than the MoCA because of some 

non-native participants, who scored very low because difficulties in understanding instructions and some of 

their answers were misunderstood by the Watson speech recognition system. 

To investigate in the detail the cognitive domains, Table 3 reports the descriptive statistics for each subtest 

according to the scoring modality. 

Table 3. Descriptive statistics for Subtest scores 
 

Visuospatial 

Executive 

Naming Attention Language Abstraction Delayed 

Recall 

Orientation 

Paper and Pencil MoCA Score 

Mean 4.50 2.81 4.56 1.75 1.13 4.31 5.94 

Median 5.00 3.00 5.50 1.50 1.00 5.00 6.00 

Std. Dev. 0.73 0.40 1.63 0.86 0.72 1.08 0.25 

Min 3.00 2.00 2.00 1.00 0.00 1.00 5.00 

Max 5.00 3.00 6.00 3.00 2.00 5.00 6.00 

Supervised Score 

Mean 3.03 2.77 4.09 1.45 0.72 3.44 5.38 

Median 4.00 3.00 5.00 1.00 1.00 4.00 6.00 

Std. Dev. 1.72 0.49 1.85 0.97 0.68 1.46 1.18 

Min 0.00 1.00 0.00 0.00 0.00 0.00 1.00 

Max 5.00 3.00 6.00 3.00 2.00 5.00 6.00 

Watson Score 

Mean 3.40 2.40 3.37 1.21 0.63 2.91 3.94 

Median 4.00 3.00 4.00 1.00 1.00 3.00 4.00 

Std. Dev. 1.75 0.85 1.80 1.02 0.66 1.44 1.61 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 5.00 3.00 6.00 3.00 2.00 5.00 6.00 
 

The Supervised CATHI scores are significantly lower (>1 point) for the Visuospatial/Executive and the Delayed 

Recall. The first is mainly due to the draw a clock task: in the case of the paper and pencil, the participant was 

able to see the scoring table and indirectly suggested to draw "contour", "numbers" and "hands", whereas in 

the case of the robot this information is not given and many missed these details and lost up to 2 points. In 

the case of the Delayed Recall we haven't identified a main cause, however, some participants reported that 

the robot was too fast and they failed to memorise the words for this reason. 
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Lower Watson scores are mainly related to speech recognition failures with difficult accents, e.g. the Orienta-

tion task, and the technical solutions, e.g. in the case of the attention task some participants didn't touch long 

enough the robot head and their answer was not recorded. 

3.2 Reliability of the Overall scores and their external validation 

First, to verify the internal consistency and reliability of the overall Supervised and Watson score, the Alpha 

Coefficient and the SB Coefficient were calculated and reported in Table 4. The Alpha Coefficient shows an 

acceptable internal consistency for the Supervise score, while it is good for Watson. According to the SB Coef-

ficient, both Supervised and Watson show a moderate split-half reliability, moreover, the SB Coefficient con-

firms that the length of the test is correct.  

Table 4 presents also the Spearman Correlations of the Supervised and Watson score with respect to the Su-

pervised and the standard “Paper and Pencil” MoCA score. In both cases, we found a strong significant corre-

lation that confirms the reliability of the robotic test for the cognitive skills assessment. 

Table 4.  Measures of Reliability 

 Watson Score Supervised Score 

Cronbach Alpha Coefficient 0.737 0.687 

Spearman-Brown Coefficient 0.769 0.604 

Spearman 

Correlations 

** p < .01; * p < .05 

Supervised score 0.819** - 

Paper and Pencil  

MoCA score 

0.515* 0.637** 

 

The Multiple linear regression analysis was used to build models to confirm the relation between the ro-

bot-administered subtest (predictive variables) and the standard MoCA (dependent variable). Results are in 

Table 5. The models explain almost entirely the dependent variable’s variance, indeed R2 is equal 0.993 and 

0.969 respectively for the Supervised and the Watson, confirming that the tests are directly related as there is 

a linear function that can derive the MoCA from the robotic test. However, while the standard error of the 

estimate is just 2.80 for the Supervised scores, in the case of scores calculated by Watson this is more than 

double at 5.93. However, the standard error for the estimate from the Watson scores was reduced to 1.99 

when the analysis considered native speakers only.  

 

Table 5. Results of the multiple linear regression of the Robot subtest scores to the MoCA overall score 

Model R R2 
Adjusted 

R2 

Std. Error 

of the Estimate 

Supervised subtest scores 0.996 0.993 0.987 2.80 

Watson subtest scores 0.984 0.969 0.944 5.93 
 

Multiple regression was also applied within the scoring modalities to build models that relate the subtests’ 

scores and the overall score. Table 6 reports the regression coefficients, which show a similar order with 

Orientation and Attention always among the strongest contributors and Language and Abstraction being the 

weakest. The regression equation is as follows (1), where xi are the variables (subtests) and coeffients βi are 

reported in Table 6. 
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𝑀𝑜𝐶𝐴 𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝛽𝑖

7

𝑖=1

𝑥𝑖  (1) 

Table 6. Regression variables and coefficients 

i Variables (xi) 
Coefficients (βi) 

MoCA Watson Supervised 

1 Visuospatial Executive 0.182 0.213 0.163 

2 Naming 0.113 0.174 0.129 

3 Attention 0.193 0.192 0.213 

4 Language 0.077 0.081 0.079 

5 Abstraction 0.053 0.046 0.045 

6 Delayed Recall 0.177 0.157 0.171 

7 Orientation 0.237 0.202 0.252 

3.3 Comparison between automated Watson Score and Supervised Score for the robotic test 

The similarities shown by the multiple regression are confirmed by the correlations among the subtests, which 

are reported in Table 7. All correlations with the same subtests are statistically significant (p<0.01) and above 

the high-effect threshold. This confirms the positive reliability of the Watson scoring also for the subtests of 

the single cognitive domains.  

Table 7. Spearman correlations between Supervised and Watson Scores (direct correlations in bold) 

** p < .01; 

* p < .05 

Supervised Scores 

Visuospatial 

Executive 
Naming Attention Language Abstraction 

Delayed 

Recall 
Orientation Overall 

W
at

so
n

 s
co

re
s 

Visuospatial 

Executive 
0.775** 0.061 0.225 0.559** 0.495** 0.320 0.312 0.677** 

Naming 0.315 0.576** 0.430** 0.286 0.537** 0.406* 0.195 0.541** 

Attention 0.188 0.180 0.847** 0.321 0.259 0.080 0.165 0.510** 

Language 0.413* 0.493** 0.489** 0.566** 0.453** 0.603** 0.390* 0.734** 

Abstraction 0.507** 0.489** 0.316 0.458** 0.810** 0.271 0.190 0.616** 

Delayed 

Recall 
0.345 0.247 0.259 0.352* 0.421* 0.641** 0.317 0.607** 

Orientation 0.157 -0.037 -0.041 -0.020 -0.052 0.073 0.515** 0.195 

Overall 0.578** 0.308 0.563** 0.486** 0.608** 0.505** 0.454** 0.819** 

 

To further test the equivalence between the Watson and the Supervised Score, we performed an equivalence 

test following the procedure suggested by Lakens et al.[53]. We set the upper boundary equivalence of smallest 

effect size of interest (SESOI) to 0 and the lower boundary to -3.40. The upper bound is zero because we 

would avoid that higher scores can induce false negatives of MCI. Meanwhile we can accept some false posi-

tives that can be corrected by the human supervisor; therefore we set the lower bound as the 90% of the con-

fidence interval of our benchmark (the Paper MoCA) as suggested for equivalence tests in[53]. The two 

one-sided tests (TOST) procedure indicated that the observed effect size (dz = 0.58) was significantly within 

the equivalent bounds of -3.4 and 0 scale points, (or in Cohen's dz: -1.1 and 0), t(34) = -3.07, p = 0.002. 

3.4 A simulated use case scenario 

This section presents a simulated use case scenario, where CATHI is used as a screening tool to exclude those 

who are very likely to not have MCI from being actually tested by a medical practitioner. To this end, in ab-

sence of normative data and considering Watson lower scores than MoCA, we used the Watson standard er-
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ror in estimate (5.93, Table 5), to derive a cut-off threshold for the Watson score at 20, which is 6 points lower 

than the level considered normal for the MoCA. Applying this threshold, we can potentially exclude 45.71% of 

participants (16/35) from being evaluated by a professional. Table 8 presents the descriptive statistics of these 

participants potentially excluded from a human evaluation, the statistics demonstrate that none would have 

actually required a professional screening, because the minimum score in the Paper MoCA was 23, which 

represent the lower bound cut-off for this test[45]. 

Table 8. Descriptive statistics of participants potentially excluded by Watson (N=16, Watson score ≥20) 

 Paper 

MoCA 

Supervised 

Score 

Watson 

Score 

Mean 25.69 25.25 24.13 

Std. Dev. 1.58 3.02 2.00 

Median 26 27 25 

Minimum 23 18 21 

Maximum 29 28 27 
 

The next step is the human supervision, which could have excluded two more participants from being evalu-

ated in person by conservatively applying the same cut-off score of MoCA (23 points). In total 18 (51.43%) 

participants would avoided going to a clinic and being assessed by a practitioner in person. In fact, if we con-

sider the participants with the higher scores, there is no significant difference (p>0.01) when analysing the 

differences via the Paired Samples t-test. Table 9 reports the results of the 18 participants potentially exclud-

ed with Watson score≥20 and Supervised score≥23. 

Table 9. Paired Samples t-test on the participants potentially excluded from further assessment by Watson or the su-

pervisor (N=18, Watson score≥20 and Supervised score≥23). 

Pair Mean difference Std. Dev. Significance (p) 

Supervised Score – Watson Score 1.13 2.06 .045 

PaperMoCA – WatsonScore 1.56 2.37 .018 

PaperMoCA – SupervisedScore 0.44 3.16 .588 

4 Discussion 

The results show that the CATHI system can be a promising tool for assisting the doctors in the screening of 

cognitive decline. The analysis demonstrates that the system may achieve its objective to significantly reduce 

the human assessment via the automated scoring and to allow remote evaluation thanks to the audio and 

video recordings. The results show that the CATHI system is consistent with the benchmark (MoCA) for the 

participants that performed well and achieved high scores in the paper and pencil test (Table 8), while CATHI 

is amplifying the errors and undervaluing the score for the low performers. Nonetheless, this a limited impact 

on the application as the primary concern is to do not produce false negatives, i.e. to do not recognise poten-

tial cases of MCI. 

However, it should be noted that we tested CATHI on participants who are almost all young and very likely to 

not suffer from any cognitive impairment. Indeed, before the system can be adopted for clinical diagnosis, it 

needs to be validated in future clinical trials with a larger sample, which should better represent the target 

population. It should be also proven in comparison with other forms of computerised self-assessment of cog-

nitive functionalities. 

An additional topic for discussion is the lower performance of the non-native speakers, whose performance 

was significantly lower than the natives despite they were all well-educated and proficient in English. This was 
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expected because MoCA localisations can be different because they are not just translated but also adapted 

to the local culture. Furthermore, being assessed in a secondary language can generate a cognitive overload 

and have a negative effect on the performance[54]. In fact, the non-natives were included in the experiment to 

simulate the MCI and allow a wider range of scores. However, the difficulty was amplified in the case of the 

robotic assessment, causing an unexpected number of extremely low scores. A further negative effect can be 

seen in the case of Watson speech recognition, which failed to recognise words in the case of participants 

with strong accents. We are confident that using appropriate cultural and language localisations, the Watson 

performance can certainly improve.  

However, the CATHI system was in almost all cases providing a lower score than the reference MoCA score, 

which can be also due to the rigid administration procedure, for instance, similar to the MoCA, the robot was 

never repeating the task instructions or cutting the answers if these exceeded the time allocated. Human as-

sessors can be more flexible, e.g. repeat or give more time in case of distraction, even if repeating is explicitly 

forbidden by the test manual. There is also the case of the "draw a clock" task in which the paper-and-pencil 

version indirectly suggests what to draw while the robot doesn't. 

Finally, we would remark that similarly to the MoCA, whose applicability as a screening tool has been ex-

tended to a variety of psychiatric conditions that can affect also the younger population (see Section 2.1), the 

CATHI system could be used for screening the MCI related to schizophrenia and depression. Future studies 

will also address this application. 

5 Conclusion 

This article presented a novel intelligent robotic service, named CATHI, for cognitive assessment via hu-

man-robot interaction with the autonomous scoring system based on the IBM Watson AI cloud services. The 

analyses of the experimental results show that the CATHI system could autonomously administer the cogni-

tive test and calculate a score with an acceptable reliability. Those cases that do not score the minimum 

threshold can be referred to a medical practitioner, who could review the recordings and decide whether to 

prescribe an examination in person with a practitioner. We underline that the system is proposed as a 

screening and data collection tool, therefore, the automatic Watson score should be always revised and vali-

dated by a professional supervisor for clinical use. We envision the robotic administration could favour 

large-scale screening tests of MCI by providing preliminary remote diagnostic information about patients, 

therefore, reducing the workload for human doctors and increase the population that can be screened. The 

screening will favour early detection of neurological disorders associated with older (e.g. dementia) and 

younger population (schizophrenia and depression). To this end, a new psychometric instrument should be 

created and tailored to the artificial intelligence and robotics in order to fully take advantage the opportuni-

ties given by these novel technologies, then its validity should be tested via clinical trials in comparison with 

alternative computerised solutions. 
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