
Supervised learning of spatial features with STDP and 
homeostasis using Spiking Neural Networks on SpiNNaker

DAVIES, Sergio, GAIT, Andrew, ROWLEY, Andrew and DI NUOVO, 
Alessandro <http://orcid.org/0000-0003-2677-2650>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/34263/

This document is the Published Version [VoR]

Citation:

DAVIES, Sergio, GAIT, Andrew, ROWLEY, Andrew and DI NUOVO, Alessandro 
(2024). Supervised learning of spatial features with STDP and homeostasis using 
Spiking Neural Networks on SpiNNaker. Neurocomputing, p. 128650. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Neurocomputing 611 (2025) 128650 

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Supervised learning of spatial features with STDP and homeostasis using
Spiking Neural Networks on SpiNNaker✩

Sergio Davies a,∗, Andrew Gait b, Andrew Rowley b, Alessandro Di Nuovo c

a Department of Computing and Mathematics, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
b APT group, School of Computer Science, The University of Manchester, IT Building, Oxford Road, Manchester, M13 9PL, United Kingdom
c Department of Computing, Sheffield Hallam University, Cantor Building, 153 Arundel Street, Sheffield, S1 2NU, United Kingdom

A R T I C L E I N F O

Communicated by F. Perez-Pena

Dataset link: 10.23634/MMU.00634935, https:
//github.com/sergiodavies/SpiNNakerSpatialL
earningCodeAndDataset

Keywords:
Spiking Neural Networks
SNN
Spatial pattern
STDP
Spike Timing Dependent Plasticity
Supervised learning

A B S T R A C T

Artificial Neural Networks (ANN) have gained significant popularity thanks to their ability to learn using the
well-known backpropagation algorithm. Conversely, Spiking Neural Networks (SNNs), despite having broader
capabilities than ANNs, have always posed challenges in the training phase. This paper shows a new method
to perform supervised learning on SNNs, using Spike Timing Dependent Plasticity (STDP) and homeostasis,
aiming at training the network to identify spatial patterns. Spatial patterns refer to spike patterns without a
time component, where all spike events occur simultaneously. The method is tested using the SpiNNaker digital
architecture. A SNN is trained to recognise one or multiple patterns and performance metrics are extracted
to measure the performance of the network. Some considerations are drawn from the results showing that,
in the case of a single trained pattern, the network behaves as the ideal detector, with 100% accuracy in
detecting the trained pattern. However, as the number of trained patterns on a single network increases, the
accuracy of identification is linked to the similarities between these patterns. This method of training an SNN
to detect spatial patterns may be applied to pattern recognition in static images or traffic analysis in computer
networks, where each network packet represents a spatial pattern. It will be stipulated that the homeostatic
factor may enable the network to detect patterns with some degree of similarity, rather than only perfectly
matching patterns. The principles outlined in this article serve as the fundamental building blocks for more
complex systems that utilise both spatial and temporal patterns by converting specific features of input signals
into spikes. One example of such a system is a computer network packet classifier, tasked with real-time
identification of packet streams based on features within the packet content.
1. Introduction

The rising popularity of neural networks can be attributed to their
information processing capabilities, despite being regarded as ‘‘black-
box’’ systems due to their emulation of the behaviour of biological
neural networks, rather than relying on established biological struc-
tures [1].

Artificial neural network models draw inspiration from their biolog-
ical counterparts, attempting to mimic how the human brain performs
specific tasks [2]. Based on the computational units (neurons) used
in these networks, we can classify three main categories of neural
networks [3]. Each of these categories is referred to as a ‘‘generation’’

✩ Using STDP and homeostasis on spiking neural networks simulated on SpiNNaker, Davies et al. demonstrate that it is possible for such a network to learn
and recognise spike patterns by presenting the desired pattern to the network only once. The pattern is presented as a set of simultaneous spikes at the input
layer, and the output is produced after a short delay. In addition, the same network is trained with multiple patterns, and the accuracy and other performance
metrics are computed.
∗ Corresponding author.
E-mail address: sergio.davies@mmu.ac.uk (S. Davies).
URL: https://www.mmu.ac.uk/staff/profile/dr-sergio-davies (S. Davies).

of neural networks. Each generation simulates biological processes with
an increasing degree of accuracy.

The first generation of neural networks were dominated by the
McCulloch-Pitts neuron model [4] which allows discrete inputs and
outputs (only ‘‘0’’s or ‘‘1’’s). The next generation (second generation of
neural networks, more commonly known as Artificial Neural Networks)
evolved this model to allow input and output values to be continuous
within a specified range, either [0; 1] or [−1; 1].

In both these generations of neural networks, the output of a neuron
is transferred to the subsequent neuron(s) through weighted connec-
tions. This weight is altered during the training phase by presenting the
https://doi.org/10.1016/j.neucom.2024.128650
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network with an input for the training session, analysing the network
output, and determining the error between the current network output
and the desired output. This error is then used to compute the changes
in synaptic weights throughout the network using the backpropagation
algorithm [5,6].

It is suggested that the popularity of Artificial Neural Networks
(ANNs) can be attributed to the use of the backpropagation training
algorithm [7]. This algorithm has played a pivotal role in enabling
the training of significant ANN models [e.g.: 8–10]. Indeed, back-
propagation has provided an advantage to this type of networks with
a well-known and robust method of training which has now been
embedded in most, if not all, ANN simulation platforms.

However, both the first and the second generations of neural net-
works do not consider one fundamental aspect: biological networks
evolve following biological time. Artificial neural networks perform
their operations in abstract time that does not correspond to biological
time. Even advanced models such as Continuous Timescale Recurrent
Neural Networks (CTRNN) [11] and Multi-Timescale Recurrent Neural
Networks (MTRNN) [12] use the recurrent structure of the neural
network to keep track of the state and its evolution. However, this does
not correspond to biological real-time, but rather follows the number
of iterations in the network.

The third generation of neural networks [3], also known as Spiking
Neural Networks (SNNs), improves the biological realism of previous
generations of neural and synaptic models by introducing the time
variable in the models [13,14]. Indeed, the models proposed for this
generation of neural networks are directly inspired from biology: the
most realistic model is the Hodgkin–Huxley neuron [15], which is
also the most complex to simulate numerically on a computer. Other
models, instead, limit their biological plausibility to reduce their nu-
merical complexity [16]. All of these neuron models are described using
differential equations that depict the evolution of a neuron’s state over
time [e.g. 14,17–19].

The communication between neurons is also inspired from biology:
it is known that neurons interact by means of action potentials, also
known as spikes [19]. Such communications use a wide array of
mechanisms to encode information, as described by Auge et al. [20],
and even more methods could be envisioned.

Similarly, also synapses (the interconnection between neurons) in
second generation neural networks are represented by a single number
that represents its ‘‘strength’’. This value is altered during training using
the backpropagation algorithm. However, from a biological perspec-
tive, this algorithm has raised some skepticism on its plausibility [21].
This is also supported by the fact that biological findings have shown
that signals transmitted through synapses have a time evolution that
may be described through a differential equation [14].

In addition, biology has described a number of mechanisms that
allow biological neural networks to adapt to input stimuli. Among
these we can mention STP — short-term plasticity [22], STDP — Spike
Timing Dependent Plasticity [23,24], homeostasis [25,26], structural
plasticity [27] and evolutionary learning [6]. All these mechanisms, fol-
lowing different processes, alter the architecture of the neural network
by altering the synaptic strength of existing synapses, by creating new
synapses (synaptogenesis), or by removing existing synapses (synaptic
pruning). Despite all the changes imposed by these mechanisms, neu-
rons within the network need to maintain their functional stability,
and the network itself needs to keep a stable behaviour. This happens
through the homeostatic process at two levels: on a neuron scale it
helps to keep a healthy neural activity, while on the network scale
homeostasis helps keeping the network stability [28].

The learning process underlying mechanism was proposed by Hebb
[29], and commonly summarised as ‘‘Cells that fire together wire to-
gether’’. More details of this biological process have emerged in the last
few decades, leading to a number of learning rules which can affect
synapses on a time interval spanning a few milliseconds to a lifetime,

or more, through generations of individuals [30,31].

2 
As a general rule, the longer the learning period, the more perma-
nent the effects are on the neural networks: short-term plasticity affects
quickly the stability of the network, but the effects do not last very
long [32]. On the other hand, long-term plasticity has a stronger impact
on the network, so that it allows the network to self-organise towards a
stable critical regime [30]. Evolutionary learning has an even stronger
impact that allows generation of individuals to behave in a specific way
innately [33].

Such learning rules have been replicated in computer simulations,
and showed their characteristics in applied tasks. In particular, it
is relevant to mention that STDP was successfully applied in many
applications related to the identification of spatio-temporal spike pat-
terns [e.g. 34–37].

A neural network is trained within an environment. On the basis of
this it is possible to classify four learning paradigms [14] depending on
the presence and the structure of the teaching signal: supervised learn-
ing, semi-supervised learning, unsupervised learning and reinforcement
learning. The learning rules introduced before (STP, STDP, etc.) refer to
an unsupervised learning paradigm, where the teaching signal is absent
and the network aims to identify autonomously a pattern in the input
signal.

In this paper we present a novel method of training a spiking neural
network to identify spatial patterns (patterns of spikes presented at
the same time as input to the network) using STDP and homeostasis:
two learning algorithms acting on different time-scales collaborating
to achieve a task. The network is trained initially to identify a single
pattern and the accuracy is then evaluated by testing exhaustively all
the possible input patterns to the network. In a second step, the network
is trained to identify two patterns, and we will show that the accu-
racy of the identification depends strictly on the degree of similarity
between the two patterns on which the network has been trained. This
similarity will be measured by the Hamming Distance between input
patterns. Finally, a more thorough experiment includes training the
network on three patterns and measuring again the detection accuracy,
among other classification metrics.

The experiments are performed on the SpiNNaker digital architec-
ture [38], using the sPyNNaker implementation of the PyNN neural
network language [39–41]. SpiNNaker is a system designed at the Uni-
versity of Manchester: each SpiNNaker chip comprises eighteen very-
low-power ARM986 processors (cores); the main SpiNNaker server,
housed at the University of Manchester, consists of a million cores
built of multiple boards containing multiple chips. Computations in the
brain are inherently parallel and the architecture is designed to mimic
this parallelism. SNNs may be simulated on the machine by submitting
scripts based on the PyNN neural network language. These scripts are
then converted by the software stack into executable files which run on
as many cores as required by the neural network.

The remaining sections of this article encompass a detailed ac-
count of the experiments outlined in the methodology section (Sec-
tion 2). This includes an in-depth exploration of the STDP learning rule
(Section 2.1), training procedures (Section 2.2), and testing methods
(Section 2.3). Subsequently, the results section (Section 3) will shed
light on the research outcomes, involving training the network on a
single pattern (Section 3.1), two patterns (Section 3.2), and multiple
patterns (Section 3.3). In each case, various classification metrics will
be employed to assess the network’s performance in pattern identifi-
cation following the training process. Finally, the conclusion section
(Section 4) will summarise the key findings of this research and its
applicability.

While the architecture of the neural network proposed in this paper
may appear simplistic, it is intentionally designed as such to study
the training process outlined within this research and isolate each

component’s effects on the network’s performance.
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Fig. 1. An example of how weight change (dW) is calculated based on the time
difference between pre- and post-synaptic spikes (dt). In green on the left is the Long
Term Potentiation (LTP) generated by a pre-synaptic and post-synaptic spike sequence.
In blue on the right is the Long Term Depression (LTD) generated by a post-synaptic
and pre-synaptic spike sequence.

2. Methodology

In this paper we refer to spatial patterns of spikes as a set of spikes
that are presented to the network from different source neurons at the
same time, and whose source neuron is meaningful for the pattern.

As spatial patterns relate only to the presence or absence of a spike
from a specific source, this type of patterns can be identified and
encoded with the use of binary numbers, where ‘‘1’’s represent the
presence of a spike, while ‘‘0’’s reflect its absence. These numbers rep-
resented either in their binary or decimal format will also be referred
to as ‘‘code words’’.

The spikes used to transfer information follow two of the possible
encodings suggested by Auge et al. [20], namely:

• Time To First Spike: This is utilised during the network training
phase to ensure that the supervised learning paradigm correctly
triggers the relevant side of the STDP learning rule. Depending
on whether the input spike represents ‘‘0’’ or ‘‘1’’, the generated
spike occurs slightly before or after the training signal.

• Parallel binary encoding: Since spatial patterns only correspond
to the presence or absence of spikes from each source, we can
represent patterns with binary numbers that are presented to the
network. A binary number ‘‘1’’ indicates the presence of a spike
from that source, while ‘‘0’’ represents its absence.

Two related neural networks are designed for this exercise: the first
ne is used to train the relevant synapses, while the second network,
hich is a simplified version of the training network, is used to test and
alidate the model obtained in the first step.

.1. STDP on SpiNNaker

STDP is a form of learning whereby the weight of a synapse between
wo neurons is either potentiated (LTP) or depressed (LTD) dependent
pon whether a post-synaptic spike follows or precedes a pre-synaptic
pike. The size of this change, in general, drops off exponentially as
he time difference between the pre- and post-synaptic spikes gets
arger [42]. This is shown graphically in Fig. 1. In PyNN, STDP is
efined in a modular fashion such that the user may specify which
3 
timing rule (for example, to determine the shape of the exponential
decay) and weight update rule (for example, to indicate whether the
weight update is additive or multiplicative) they wish to use.

This is how the rules are also implemented on SpiNNaker, with one
proviso: due to local memory restrictions on how much data can be held
for parameters, multiple STDP projections to the same target population
must use the same rule with the same parameters.

On SpiNNaker, the plasticity mechanism for STDP is also only acti-
vated when the post-synaptic neuron receives the second (pre-synaptic)
spike: at least two pre-synaptic spikes are, therefore, required for the
calculations to take place. This is because the conventional method for
calculating STDP at every pre-synaptic spike and every post-synaptic
spike is difficult on SpiNNaker due to the synaptic weights being held
in external memory and only copied into local memory when a pre-
synaptic spike arrives. Thus, a deferred event-driven model is used to
postpone the STDP calculation until future spike timings determine
how the pre-synaptic sensitive scheme is applied [43]. Because of
this deferred event-driven model, STDP weight changes can only be
computed when a pre-synaptic spike is received. Therefore, to detect
the effects of the sequence of spikes to the output neuron at the end
of the training phase, a ‘‘save neuron’’ (see Figs. 2 and 3) emits a final
spike whose only effect is to trigger the execution of the STDP learning
rule on plastic synapses.

2.2. Training phase

The training phase relies on the network shown in Fig. 3. This
network consists of two sections: one focused on the ‘‘0’’s on the left,
and, symmetrically, another section dedicated to the ‘‘1’’s on the right.

The ‘‘Spike Source Populations’’ inject spikes according to spe-
cific patterns to train the network. The ‘‘Spike injector’’ populations
comprise leaky integrate-and-fire neurons with delta synapses. These
synapses have the characteristic that the current transferred to the post-
synaptic neuron is applied within a single-millisecond time slot, during
which it receives all the current. The neuron parameters are set to the
default values provided by the PyNN [39] interface to the SpiNNaker
backend simulator [40,41].

Fig. 2 shows the spike times for each neuron in the network in
the case of a ‘‘0’’ on the left and in case of a ‘‘1’’ on the right. The
information is encoded using the ‘‘Time to first spike’’ method: in case
a ‘‘0’’ needs to be presented, the sequence of spikes generated by the
Spike Source Population ‘‘0’’ includes spikes at 6, 36 and 59 ms, while
to encode a ‘‘1’’ the Spike Source Population ‘‘1’’ emits spikes at 1, 26
nd 56 ms. These spikes are propagated through to the output neuron
ollowing the time pattern in Fig. 2. Indeed, the neurons in the ‘‘Spike
njector’’ populations emit a spike for each spike they receive.

The output neuron receives the features of the signal from the
lastic synapses (in blue) which do not contribute to the membrane
otential since their weight is 0. However, they allow the output neuron
o store information to trigger the STDP learning rule. This sequence
f spikes has been designed considering the peculiarities of both the
piNNaker architecture and of the software implementation of the
TDP algorithm [43]. The STDP algorithm employed in this case is
he nearest neighbour spike pair rule, which is only triggered when
t least one pre-synaptic spike and one post-synaptic spike are already
n memory at the point when an new incoming pre-synaptic spike
s received. This is a custom extension for the SpiNNaker backend
imulator in PyNN. The parameters used for the weight update rule are
s follows: 𝜏+ = 5, 𝜏− = 5, 𝐴+ = 1 and 𝐴− = −1. However, later in this
rticle it will be discussed that the specific values of these parameters
ave little relevance on the whole set of experiments.

In the model presented above, the output spike generated by the sig-
al from the teacher neuron (in red) is always received at millisecond
1 and generates an output spike at millisecond 32. This output spike

always falls between at least two pre-synaptic spikes, both in the case
of a ‘‘0’’ and a ‘‘1’’, thus triggering the STDP rule in both cases. This
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Fig. 2. The sequence of spikes in the network used for training.
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Fig. 3. The network used for training. In blue the STDP-enabled synapses.

Fig. 4. The precise timing of the spikes for potentiation and depression. The timing for
both Long Term Potentiation (LTP) and Long Term Depression (LTD) is considered on
the timestep immediately following the outgoing spike value, so the values concerned
here are 5 ms when the ‘‘1’’ is potentiated and the ‘‘0’’ is depressed, and 25 ms when
the ‘‘0’’ is potentiated and the ‘‘1’’ is depressed.

is further detailed in Fig. 4, which shows which elements of the STDP
rule are triggered by each spike in the network.

The precise spike times in this model have been chosen based on
experimentation to ensure that the potentiation and the depression
induced by the STDP rule on the plastic synapses have the same
magnitude but opposite sign. Finally, the save neuron is used to allow
the storage of the newly computed synaptic weight to memory, so that
these can be retrieved at the end of the simulation.

Initially, synapses are set with a weight of zero, emphasising that
the output spike relies solely on the contribution of the teacher neuron.
This underscores that the training process exclusively depends on the
activity of the teacher neuron and the STDP learning rule.

The synaptic weights obtained during this training phase are used

in the testing network in Fig. 5. The input pattern is injected in

4 
Fig. 5. The network used for testing.

this network through the ‘‘Spike Injectors 0’’ and ‘‘Spike Injectors 1’’
populations. In the first population a neuron fires if the corresponding
bit of the input pattern is a ‘‘0’’. On the contrary, if the bit is a ‘‘1’’, then
the corresponding neuron of the ‘‘Spike Injectors 1’’ population fires. In
addition, all synapses are fixed, and the excitatory weights originating
from ‘‘Spike injector 0’’ or ‘‘Spike injector 1’’ to the output neuron mir-
ror the patterns learned by the synapses in the corresponding locations
of the preceding network. In contrast, the inhibitory weights stemming
from ‘‘Spike injector 0’’ to the output neuron are guided by the weights
learned by ‘‘Spike injector 1’’, and conversely, the inhibitory weights
originating from ‘‘Spike injector 1’’ to the output neuron are influenced
by the weights learned by ‘‘Spike injector 0’’. Excitatory synapses
from the ‘‘Spike injector 1’’ population and inhibitory synapses from
‘‘Spike injector 0’’ population have the same weight but opposite sign.
The same applies to excitatory synapses from ‘‘Spike injector 0’’ and
inhibitory synapses from ‘‘Spike injector 1’’ populations.

Following this pattern of connectivity:

𝑊 𝐼
𝑆𝐼0(𝑛) = −𝑊 𝐸

𝑆𝐼1(𝑛)
𝐼
𝑆𝐼1(𝑛) = −𝑊 𝐸

𝑆𝐼0(𝑛)

here:

𝑾 𝑬
𝑺𝑰𝟎(𝒏) represents the weight of the excitatory synapse from the 𝑛th

neuron of the ‘‘Spike injector 0’’ population;
𝑾 𝑰

𝑺𝑰𝟎(𝒏) represents the weight of the inhibitory synapse from the 𝑛th
neuron of the ‘‘Spike injector 0’’ population;
𝑾 𝑬

𝑺𝑰𝟏(𝒏) represents the weight of the excitatory synapse from the 𝑛th
neuron of the ‘‘Spike injector 1’’ population;
𝑾 𝑰

𝑺𝑰𝟏(𝒏) represents the weight of the inhibitory synapse from the 𝑛th
neuron of the ‘‘Spike injector 1’’ population;

This reciprocal relationship between excitatory and inhibitory
eights ensures that the output neuron is able to select the pattern
r patterns to respond to. Indeed, even in the case that the network is
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Table 1
Classification metrics used for the evaluation of the performance of trained networks.

Name Variable Description

Positives 𝑃𝑖 Equals to 1 in case the network emits a
spike associated with the 𝑖th input pattern

Negatives 𝑁𝑖 Equals to 1 in case the network does not
emit a spike associated with the 𝑖th input
pattern

True positives 𝑡𝑝 Number of spikes emitted associated with
patterns learned by the network

True negatives 𝑡𝑛 Number of patterns correctly not identified
by the network

False positives 𝑓𝑝 Number of spikes emitted, but not
associated with patterns learned by the
network

False negatives 𝑓𝑛 Number of patterns on which the network
was trained but that the network failed to
identify

Name Formula Description

Accuracy
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
Proximity of the identification task to the
training. It evaluates the overall
performance of classification

Precision
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
Positive predicted value. This indicates the
reliability of identification

Negative prediction
𝑡𝑛

𝑡𝑛 + 𝑓𝑛
Reliability of classification of distractions

Sensitivity
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
Focuses on how good is the performance in
classifying attention

Specificity
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
Evaluates the performance in classifying
distractions

trained on multiple patterns, the output signal is generated always by
the single output neuron present in the network.

In the cases where the network needs training on multiple patterns,
each pattern will be trained separately, always starting from a network
with plastic synaptic weights set to ‘‘0’’. The final value of the synap-
tic weights will be obtained by summing the weights resulting from
training, synapse-by-synapse. The weights obtained from the previous
step are used as the basis for the homeostatic process. During this
step, after summing all the weights from the various training iterations,
homeostasis is applied. This is modelled as a multiplier factor that re-
scales the synaptic weights to obtain the minimum scaling value for
each training pattern that allows the output neuron to fire exactly once
for each learned pattern. To complete this step, the summed and re-
scaled synaptic weights are applied to the testing network in multiple
iterations, adjusting the homeostatic factor at each iteration. Each
training pattern is injected into this network, obtaining a homeostatic
factor that may differ for each trained pattern. Finally, the maximum
among these factors is selected as the network homeostatic factor.

The search for the re-scaling factor is performed initially through a
binary search in the interval between the values of 0.0001 and 1000,
reducing the interval until the values between the two extremes 𝑥 and

is less than or equal to 0.0001. Then the search becomes linear in
he interval [𝑥−0.00001; 𝑦+0.00001] with a step equal to 0.00001, one
rder of magnitude smaller than the interval. The precision of this step
escends from the precision of the synaptic weights on SpiNNaker. This
recision is determined at runtime based upon the maximum weight
alue possible within the network [44]. For the network described here
he minimum weight that can be represented is 2−11 ≈ 0.0005, so a
inear search with a step size equal to 0.00001 does not reduce the
recision of the network. Once the homeostatic factor is determined to
llow the network to spike once for every pattern presented, the process
oves to the testing and validation phase. Because the homeostatic
rocess re-scales all weights to obtain a specific required result, the
riginal weights obtained through the STDP is of little relevance to the

hole training process. g

5 
.3. Test and validation phase

During this phase, the objective is to validate the methodology for
he training of a spatial feature classifier. To this end, we calculate the
ollowing classification metrics: Accuracy, Precision, Negative Predic-
ion, Sensitivity, and Specificity, as presented in [45]. These metrics
re employed for class identification, as detailed in Table 1.

The network utilised is depicted in Fig. 5. All neurons operate
s leaky integrate-and-fire units with non-plastic delta synapses, as
reviously described.

. Results

.1. Single pattern training

To create a sufficiently broad testing space, the network in Fig. 5
ndergoes testing and validation using 10-bit patterns. These patterns
re represented by numbers in the range [0; 1023], where their binary
epresentation effectively reflects the combination of spikes in the
attern. The initial test focuses on the pattern expressed by the number
9210 = 11111000002 (the subscript numbers represent the base in which
he code word is expressed). Since the network comprises only 10
ynapses per injector population, the details of the weights generated
y the training step are documented fully in Table 2 to provide context
or the discussion.

It is evident that the weights precisely mirror the pattern of ‘‘0’’s
nd ‘‘1’’s in the pattern. Subsequently, homeostasis is applied to the
roup of synapses to ensure that the output neuron fires once when the
attern is presented to the network. The resulting homeostasis factor
s computed as 4.18817, which re-scales the weight values to those
resented in Table 3.

With the weights outlined in the latter table, the network is vali-
ated using all possible combinations of spikes, showing that it pro-
uces only one output spike in response to the input 99210 =
1111000002, in accordance with the training provided, demonstrating
erfect pattern recognition, as shown in Table 4.

.2. Dual pattern training

In addition to the single-pattern testing, a set of two-pattern training
xperiments has been conducted to investigate how training a sin-
le network on multiple patterns influences the recognition process.
uilding upon the previous experiment, this set of experiments aims to
lucidate how the disparity between the two learned patterns impacts
he recognition process. The first experiment aims to train the network
o identify the patterns 99210 = 11111000002 and 96010 = 11110000002.
etween the two patterns there is only one bit difference in position
. Network training takes this difference into account both at STDP
raining stage and at the homeostasis adjustment stage. Indeed, the
ynaptic weights for the plastic synapses to the output neuron achieve
he values presented in Table 5.

At a first glance, two main differences become evident when com-
aring these values with those related to the single-pattern experiment:
n the first instance, weights of neurons 0 to 4 and 6 to 9 are doubled.
his is because the two-pattern experiment sums the corresponding
ynapses trained independently on the two patterns. Therefore these
ynapses are reinforced twice, and their weights are doubled.

In the second instance, it is possible to notice that the weights of the
ynapses from neuron 5 is evenly distributed between the two injector
opulations. This distribution arises from the training process: while
he pattern 99210 = 11111000002 trained the network to detect a 1 in
osition 5, the pattern 96010 = 11110000002 trained the network to
etect a 0 in the same position.

This means that neither of the neurons with ID 5 contributes to the

eneration of the output spike. In the testing network (Fig. 5) both the
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Table 2
Trained synaptic weights for a single pattern expressed by the number 99210 = 11111000002.
Neuron ID 9 8 7 6 5 4 3 2 1 0

Population Injector ‘‘0’’ 0 0 0 0 0 0.367 0.367 0.367 0.367 0.367

Population Injector ‘‘1’’ 0.367 0.367 0.367 0.367 0.367 0 0 0 0 0
Table 3
Re-scaled synaptic weights (after homeostasis).
Neuron ID 9 8 7 6 5 4 3 2 1 0

Population Injector ‘‘0’’ 0 0 0 0 0 1.538 1.538 1.538 1.538 1.538

Population Injector ‘‘1’’ 1.538 1.538 1.538 1.538 1.538 0 0 0 0 0
Table 4
Classification metrics for the network trained with a single pattern.

Metric Formula Value

Homeostatic value 4.18817
Positives 𝑃𝑖 1
Negatives 𝑁𝑖 1023
True positives 𝑡𝑝 1
True negatives 𝑡𝑛 1023
False positives 𝑓𝑝 0
False negatives 𝑓𝑛 0

Accuracy
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
1024
1024

= 1

Precision
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
1

1 + 0
= 1

Negative prediction
𝑡𝑛

𝑡𝑛 + 𝑓𝑛
1023

1023 + 0
= 1

Sensitivity
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
1
1
= 1

Specificity
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
1023
1023

= 1

inhibitory and excitatory synapses from both injector populations have
the same weight:

𝐼5 = 𝑊exc5|Inj0 −𝑊inh5|Inj0 +𝑊exc5|Inj1 −𝑊inh5|Inj1 (1)

= 0.367 − 0.367
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

for a ‘‘0’’
spike

+0.367 − 0.367
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

for a ‘‘1’’
spike

= 0 (2)

Therefore, the input current to the output neuron contributed by
euron 5 in either spike injector population is null. The homeostasis
rocess takes this into account by increasing the overall value of
he other contributing neurons by the same amount of the missing
ynapses. In fact, the homeostatic parameter in this instance is

.32647 ≈ 4.18817
2

× 10
9

(3)

where the value 4.18817 is the homeostatic value from the single
pattern experiment, and 10∕9 represents the fact that one of the synapses
s not contributing to the identification, and therefore all the other
ynapses need to be stronger.

In these conditions, it is possible to evaluate the network perfor-
ance metrics in the detection of the patterns by testing all the possible

ombinations. In this case the network positively identifies only the
wo trained patterns (99210 = 11111000002 and 96010 = 11110000002)
ehaving as the perfect classifier.

As we test the network with patterns increasingly divergent from
he original 99210 = 11111000002 pattern, several general trends become
vident:

• The synapses related to the bits that are different among the two
patterns have weights evenly distributed between the two injector
populations. In this way, the output neuron does not depend on
these inputs, which can be considered ‘‘don’t care’’ synapses or
bits.
6 
• The homeostatic factor increases with the number of ‘‘don’t care’’
bits, to account for the fewer synapses that contribute to the
detection.

• The network’s performance metrics demonstrate a noticeable de-
terioration as the number of dissimilarities between the patterns
learned by the network increases. This degradation in perfor-
mance underscores the sensitivity of the network to discrepancies
among the learned patterns.

• The deterioration in the performance of the pattern recognition
task is related to the Hamming Distance [46,47] between the two
learned patterns: the number of ‘‘don’t care’’ bits in the network
and therefore the number of patterns that the network is able to
identify.

These results can be seen in Table 6. The position of the ‘‘don’t care’’
bits or synapses in the pattern is irrelevant for the purpose of this task.
This can be seen in the cases where the Hamming Distance is 1 to 5:
even though the patterns to learn are different, the classification met-
rics are equal and dependent only on the Hamming Distance between
them.

A special mention should be made for the case of two patterns that
are completely opposite. In our case 99210 = 11111000002 and 3110 =
00000111112 have a Hamming Distance of 10. In this scenario, none of
the synapses in the network would contribute to the identification of
the pattern, and therefore, the output neuron would never spike. Con-
sequently, the homeostatic factor becomes infinite (+∞). As a result,
all the classification metrics become incalculable since no output spike
is generated under any circumstances, and therefore this combination
of patterns is not included as a result in the table.

3.3. Multiple pattern training

Finally, the network was tested with three code words. As discussed
in the previous case, the accuracy of the network relies on the similari-
ties between the various code words, and in particular on the Hamming
Distance across all code words trained.

To ensure the test was conducted with the largest possible set
comprising all 10-bit code words, the Hamming Distance between
all possible combinations of 10-bit numbers was computed, and only
the first occurrence of the code words for each Hamming Distance
was recorded, where the code words were all different. The resulting
combinations of code words is described in Table 9.

The network was trained using the same protocol as in previous
experiments, this time using three code words. The weights obtained
in this way are then re-scaled simulating an homeostatic process so
that, where possible, the network would spike for all three trained
patterns. However, as shown in Table 9, not in all cases this is possible:
with specific combinations of code words it is not possible to have the
positive identification of one or even two code words.

To explain this behaviour we can start considering each training
iteration as providing a synaptic weight unit contribution to the ‘‘0’’
population or to the ‘‘1’’ population. When the code word is then

re-applied during homeostasis, these unit weights contribute to the
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Table 5
Trained synaptic weights for two patterns expressed by numbers 99210 = 11111000002 and 96010 = 11110000002.
Neuron ID 9 8 7 6 5 4 3 2 1 0

Population Injector ‘‘0’’ 0 0 0 0 0.367 0.734 0.734 0.734 0.734 0.734

Population Injector ‘‘1’’ 0.734 0.734 0.734 0.734 0.367 0 0 0 0 0
Table 6
Classification metrics for the network trained with two patterns.

Pattern 1 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210
Pattern 2 100810 101610 102010 102210 102310 96010 89610 76810 51210 010 1610 2410 2810 3010
Hamming distance 1 2 3 4 5 1 2 3 4 5 6 7 8 9
Homeostasis factor 2.3265 2.6177 2.9914 3.4907 4.1875 2.3265 2.6177 2.9914 3.4907 4.1875 5.2354 6.9814 10.4708 20.9415

Positives 2 4 8 16 32 2 4 8 16 32 64 128 256 512
Negatives 1022 1020 1016 1008 992 1022 1020 1016 1008 992 960 896 768 512
True positives 2 2 2 2 2 2 2 2 2 2 2 2 2 2
True negatives 1022 1020 1016 1008 992 1022 1020 1016 1008 992 960 896 768 512
False positives 0 2 6 14 30 0 2 6 14 30 62 126 254 510
False negatives 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Accuracy 1 0.998 0.994 0.986 0.971 1 0.998 0.994 0.986 0.971 0.939 0.877 0.752 0.502
Precision 1 0.5 0.25 0.125 0.0625 1 0.5 0.25 0.125 0.0625 0.03125 0.0156 0.00781 0.00391
Negative prediction 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sensitivity 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Specificity 1 0.998 0.994 0.986 0.971 1 0.998 0.994 0.986 0.971 0.939 0.877 0.751 0.501
Table 7
Trained unit synaptic weights for the three code words ‘‘0’’, ‘‘1’’ and ‘‘2’’.

Population ‘‘0’’
Neuron ID 10 9 8 7 6 5 4 3 2 1

Code word ‘‘0’’ unit synaptic contributions 1 1 1 1 1 1 1 1 1 1
Code word ‘‘1’’ unit synaptic contribution 1 1 1 1 1 1 1 1 1 0
Code word ‘‘2’’ unit synaptic contribution 1 1 1 1 1 1 1 1 0 1

Final unit synaptic weights 3 3 3 3 3 3 3 3 2 2

Population ‘‘1’’
Neuron ID 10 9 8 7 6 5 4 3 2 1

Code word ‘‘0’’ unit synaptic contributions 0 0 0 0 0 0 0 0 0 0
Code word ‘‘1’’ unit synaptic contribution 0 0 0 0 0 0 0 0 0 1
Code word ‘‘2’’ unit synaptic contribution 0 0 0 0 0 0 0 0 1 0

Final unit synaptic weights 0 0 0 0 0 0 0 0 1 1
Table 8
Example of synaptic unit contributions for the three code words ‘‘0’’, ‘‘1’’ and ‘‘2’’,
coloured numbers indicate the source of the corresponding weight from Table 7.

Code word Synaptic contribution Unit weight

‘‘0’’ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 2 + 2−
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1)

26

‘‘1’’ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 2 + 1−
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 2)

24

‘‘2’’ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 1 + 2−
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 1)

24

final weight applied to the output neuron. If the sum of excitatory
and inhibitory unit weights is positive, then the homeostasis finds the
smallest factor for which the network fires for all the code words. In
alternative, one or two code words are ‘‘discarded’’ during this process
and will appear in the ‘‘False Negative’’ count.

For example, in the case of code words ‘‘0’’, ‘‘1’’ and ‘‘2’’, the final
weight unit contribution to the output neuron is described in Table 7:

As for the code word 0 all the neurons in population ‘‘0’’ are spiking,
these neuron contribute to the output neuron by exciting it through
the excitatory ‘‘0’’ synapses and inhibit it through the inhibitory ‘‘1’’
synapses (see Fig. 5). In this case the final contribution is positive
and includes 26 unit weights. If we repeat this process for all the
code words in the example, the synaptic weights contributions are as
7 
described in Table 8, where coloured numbers indicate the source of
the corresponding weight from Table 7.

As all the contributions are positive, in this case applying the
appropriate homeostatic factor to the weights will lead to the output
neuron firing (at least) for the trained code words. Considering the
STDP parameters applied to the network, one synaptic weight unit is
equal to 0.3671875 and the homeostatic factor required for the network
is estimated in this case equal to 1.74513.

The table describing all the combinations of code words, their
Hamming Distance, the synaptic unit weights and homeostasis factors
computed for this case is presented in Table 9.

Table 10 introduces the performance metrics of the test and valida-
tion network, and clearly illustrates two trends: maintaining two code
words constant while progressively increasing the Hamming Distance
of the remaining one from the others results in the deterioration of
synaptic unit weights. These weights reach zero or become negative,
rendering one or more code word(s) no longer positively identifiable
by the network.

Simultaneously, as the synaptic unit weight decreases, the home-
ostatic factor increases to compensate for the limited efficacy of the
incoming excitation. This holds true until the network is no longer able
to detect one of the code words, which is then automatically excluded
from the identification task during the search for a valid homeostatic
factor: indeed the neural network cannot emit a spike in case the output
neuron excitation results in a ‘‘0’’ or even a negative number. The unit
weights for which one or two code words are no longer identifiable are

highlighted in red in Table 9.
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Table 9
Combinations of code words (CW1, CW2 and CW3) trained on the network, their Hamming Distance HD(x,y), the synaptic unit weight, computed as described in the text, and
the resulting homeostatic factor.

CW1 CW2 CW3 HD (1,2) HD (1,3) HD (2,3) Code word 1 Unit weight Code word 2 Unit weight Code word 3 Unit weight Homeostatic factor

0 1 2 1 1 2 26 24 24 1.74513
0 1 6 1 2 3 24 22 20 2.09442
0 1 14 1 3 4 22 20 16 2.61791
0 1 30 1 4 5 20 18 12 3.49203
0 1 62 1 5 6 18 16 8 5.23937
0 1 126 1 6 7 16 14 4 10.47873
0 1 254 1 7 8 14 12 0 3.4907
0 1 510 1 8 9 12 10 −4 4.19016
0 1 1022 1 9 10 10 8 −8 5.23804
0 3 5 2 2 2 22 22 22 1.90382
0 3 12 2 2 4 22 18 18 2.32669
0 3 13 2 3 3 20 20 18 2.32713
0 3 28 2 3 5 20 16 14 2.99203
0 3 29 2 4 4 18 18 14 2.99203
0 3 60 2 4 6 18 14 10 4.18883
0 3 61 2 5 5 16 16 10 4.18618
0 3 124 2 5 7 16 12 6 6.98405
0 3 125 2 6 6 14 14 6 6.98405
0 3 252 2 6 8 14 10 2 21
0 3 253 2 7 7 12 12 2 21
0 3 508 2 7 9 12 8 −2 5.23671
0 3 509 2 8 8 10 10 −2 4.18883
0 3 1020 2 8 10 10 6 −6 6.98139
0 3 1021 2 9 9 8 8 −6 5.23671
0 7 25 3 3 4 18 16 16 2.61791
0 7 56 3 3 6 18 12 12 3.49025
0 7 57 3 4 5 16 14 12 3.49025
0 7 120 3 4 7 16 10 8 5.23582
0 7 121 3 5 6 14 12 8 5.23582
0 7 248 3 5 8 14 8 4 10.47873
0 7 249 3 6 7 12 10 4 10.47873
0 7 504 3 6 9 12 6 0 6.98139
0 7 505 3 7 8 10 8 0 5.23671
0 7 1016 3 7 10 10 4 −4 10.47607
0 7 1017 3 8 9 8 6 −4 6.98139
0 15 51 4 4 4 14 14 14 2.99203
0 15 113 4 4 6 14 10 10 4.18972
0 15 115 4 5 5 12 12 10 4.18972
0 15 240 4 4 8 14 6 6 6.9805
0 15 241 4 5 7 12 8 6 6.9805
0 15 243 4 6 6 10 10 6 6.9805
0 15 496 4 5 9 12 4 2 20.95745
0 15 497 4 6 8 10 6 2 20.95745
0 15 499 4 7 7 8 8 2 20.95745
0 15 1008 4 6 10 10 2 −2 20.95213
0 15 1009 4 7 9 8 4 −2 10.47341
0 15 1011 4 8 8 6 6 −2 6.98139
0 31 227 5 5 6 10 8 8 5.23582
0 31 481 5 5 8 10 4 4 10.47164
0 31 483 5 6 7 8 6 4 10.47164
0 31 992 5 5 10 10 0 0 4.19016
0 31 993 5 6 9 8 2 0 20.94681
0 31 995 5 7 8 6 4 0 10.47341
0 63 455 6 6 6 6 6 6 6.98139
0 63 963 6 6 8 6 2 2 20.94681
0 63 967 6 7 7 4 4 2 20.94681
Comparing Table 9 with Table 10, it is possible to notice that the
alse negatives appear in correspondence to the 0 or negative unit
eights. These classification metrics show that the accuracy is linked

o the Hamming Distance between code words. However, when one
ode word is dropped from identification, the negative prediction and
pecificity parameters receive lower values, but the overall accuracy
mproves, as the number of false positive identifications drastically
educes. However, the precision parameter decreases rapidly as the
umber of false positives increases.

The classification metrics presented in Table 10 are also displayed
raphically in Fig. 6. In these graphs it is possible to notice how the

loser the experiments are to the bottom left corner, the better the

8 
classification metrics that represent the outcome. Indeed, the bottom
left corner represents experiments using three code words whose Ham-
ming Distance among them is minimum. In these graphs the three axis
HD(x,y) indicate the Hamming Distance between the ‘‘x’’ and ‘‘y’’ code
words.

In particular it is possible to notice also how there is an inverse
relation between the homeostatic factor and the overall accuracy of
the identification task. As the distance between code words increases,
the number of synapses with overall contribution ‘‘0’’ (‘‘don’t care’’
synapses) or small (‘‘care little’’ synapses) increases, and these require
a higher homeostatic factor to allow the remaining synapses to trigger

an output spike. However, this also causes the number of false positive
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Table 10
Combinations of code words (CW1, CW2 and CW3) trained on the network, and the corresponding test classification metrics obtained from simulations.

CW1 CW2 CW3 True positives True negatives False positives False negatives Accuracy Precision Negative prediction Sensitivity Specificity

0 1 2 3 1021 0 0 1.000 1.000 1.000 1.000 1.000
0 1 6 3 1017 4 0 0.996 0.429 1.000 1.000 0.996
0 1 14 3 1003 18 0 0.982 0.143 1.000 1.000 0.982
0 1 30 3 963 58 0 0.943 0.049 1.000 1.000 0.943
0 1 62 3 873 148 0 0.855 0.020 1.000 1.000 0.855
0 1 126 3 705 316 0 0.691 0.009 1.000 1.000 0.690
0 1 254 2 1014 7 1 0.992 0.222 0.999 0.667 0.993
0 1 510 2 1013 8 1 0.991 0.200 0.999 0.667 0.992
0 1 1022 2 1012 9 1 0.990 0.182 0.999 0.667 0.991
0 3 5 3 1020 1 0 0.999 0.750 1.000 1.000 0.999
0 3 12 3 1013 8 0 0.992 0.273 1.000 1.000 0.992
0 3 13 3 1013 8 0 0.992 0.273 1.000 1.000 0.992
0 3 28 3 998 23 0 0.978 0.115 1.000 1.000 0.977
0 3 29 3 998 23 0 0.978 0.115 1.000 1.000 0.977
0 3 60 3 963 58 0 0.943 0.049 1.000 1.000 0.943
0 3 61 3 963 58 0 0.943 0.049 1.000 1.000 0.943
0 3 124 3 817 204 0 0.801 0.014 1.000 1.000 0.800
0 3 125 3 817 204 0 0.801 0.014 1.000 1.000 0.800
0 3 252 3 591 430 0 0.580 0.007 1.000 1.000 0.579
0 3 253 3 591 430 0 0.580 0.007 1.000 1.000 0.579
0 3 508 2 977 44 1 0.956 0.043 0.999 0.667 0.957
0 3 509 2 1013 8 1 0.991 0.200 0.999 0.667 0.992
0 3 1020 2 967 54 1 0.946 0.036 0.999 0.667 0.947
0 3 1021 2 1012 9 1 0.990 0.182 0.999 0.667 0.991
0 7 25 3 1008 13 0 0.987 0.188 1.000 1.000 0.987
0 7 56 3 982 39 0 0.962 0.071 1.000 1.000 0.962
0 7 57 3 982 39 0 0.962 0.071 1.000 1.000 0.962
0 7 120 3 922 99 0 0.903 0.029 1.000 1.000 0.903
0 7 121 3 922 99 0 0.903 0.029 1.000 1.000 0.903
0 7 248 3 787 234 0 0.771 0.013 1.000 1.000 0.771
0 7 249 3 787 234 0 0.771 0.013 1.000 1.000 0.771
0 7 504 2 892 129 1 0.873 0.015 0.999 0.667 0.874
0 7 505 2 977 44 1 0.956 0.043 0.999 0.667 0.957
0 7 1016 2 847 174 1 0.829 0.011 0.999 0.667 0.830
0 7 1017 2 967 54 1 0.946 0.036 0.999 0.667 0.947
0 15 51 3 1002 19 0 0.981 0.136 1.000 1.000 0.981
0 15 113 3 957 64 0 0.938 0.045 1.000 1.000 0.937
0 15 115 3 957 64 0 0.938 0.045 1.000 1.000 0.937
0 15 240 3 859 162 0 0.842 0.018 1.000 1.000 0.841
0 15 241 3 859 162 0 0.842 0.018 1.000 1.000 0.841
0 15 243 3 859 162 0 0.842 0.018 1.000 1.000 0.841
0 15 496 3 632 389 0 0.620 0.008 1.000 1.000 0.619
0 15 497 3 632 389 0 0.620 0.008 1.000 1.000 0.619
0 15 499 3 632 389 0 0.620 0.008 1.000 1.000 0.619
0 15 1008 2 637 384 1 0.624 0.005 0.998 0.667 0.624
0 15 1009 2 847 174 1 0.829 0.011 0.999 0.667 0.830
0 15 1011 2 967 54 1 0.946 0.036 0.999 0.667 0.947
0 31 227 3 931 90 0 0.912 0.032 1.000 1.000 0.912
0 31 481 3 767 254 0 0.752 0.012 1.000 1.000 0.751
0 31 483 3 767 254 0 0.752 0.012 1.000 1.000 0.751
0 31 992 1 1021 0 2 0.998 1.000 0.998 0.333 1.000
0 31 993 2 637 384 1 0.624 0.005 0.998 0.667 0.624
0 31 995 2 847 174 1 0.829 0.011 0.999 0.667 0.830
0 63 455 3 893 128 0 0.875 0.023 1.000 1.000 0.875
0 63 963 3 638 383 0 0.626 0.008 1.000 1.000 0.625
0 63 967 3 638 383 0 0.626 0.008 1.000 1.000 0.625
c

n

identifications to increase, which in turn reduces the overall accuracy
of the identification task of the network.

4. Conclusions

This paper presented a method for training a spiking neural network
to identify spatial patterns. Validation results show that a spiking
network trained this way is able to successfully complete this task.
The testing involved training on a single pattern, two patterns and
three patterns, covering all meaningful combinations of code words.
In these experiments, it became evident that specific parameter values
for the STDP learning rule hold little significance. This is because the
homeostatic process plays a crucial role in re-scaling synaptic weights
to elicit spikes from the output neuron under specific conditions.

The results of the experiments show that a network trained with a
single pattern acts as a perfect classifier, which only identifies spatial
 t

9 
patterns that are identical to the trained one. The ability of the network
to select a specific pattern comes from the structure of the network:
while excitatory synapses trigger the output neuron, inhibitory con-
nections perform the selection of the pattern during the testing and
validation phase.

When two or more patterns are trained on a single network, the
accuracy of the identification task depends only on the Hamming
Distance between the code words imprinted in the network.

From the analysis of the classification metrics, it is possible to see
that the negative prediction in the case of one or two trained patterns is
always 1, which highlights how the absence of an output spike always
orrectly identifies that the trained pattern is not present.

On the other hand, positive identification spikes depend on the
umber of ‘‘don’t care’’ and ‘‘care little’’ synapses or bits imprinted in
he network. As the number of ‘‘don’t care’’ or ‘‘care little’’ synapses
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Fig. 6. Statistical classification metrics for the multiple code words training. The axes represent the Hamming Distance between the various code words as indicated in each graph.
increases, the number of false positives increases, and this reduces the
overall accuracy of the identification task.

In the multiple code word experiments, the classification metrics
extracted show that the accuracy is linked to the Hamming Distance
between code words. However, when one code word is dropped from
identification because its Hamming Distance is too high, the negative
prediction and specificity parameters receive lower values, but the
overall accuracy improves because the number of false positive identi-
fications drastically reduces. Overall, precision and sensitivity decrease
rapidly as the number of false positives increases when the Hamming
Distance between code words increases.

This article has presented a method to train a spiking neural net-
work to detect spatial patterns which do not have a temporal com-
ponent. These kind of patterns may be found, for example, in the
analysis of computer network traffic packets, where each single packet
does not have a temporal component, but holds enough information
for a neural network to determine the type of traffic that is car-
ries [e.g. 48,49]. Performing such analysis would require to extract
bits of information from the packet (from the header and/or from the
payload) and encoding such information following the methodology
presented above. Following the training, this methodology allows the
extraction of features ideal for packet classification. Moreover, using
multiple of these classifiers and considering that traffic streams have a
typical sequence of packets in a stream, by using a technique such as
polychronization [50] it would be possible to identify the sequence and
determine to which stream it belongs.
10 
An additional example of spatial pattern is represented by static
images which can be encoded into spikes to allow a spiking neural net-
work to perform pattern matching tasks on trained patterns [e.g. 45].

In these applications, it is conceivable to adjust the homeostatic
factor, calculated during the training phase, to also serve as a similarity
factor in matching the input pattern with the trained pattern. Even
in the case of a single trained pattern, increasing the homeostatic
factor appropriately may enable the network to identify patterns with
a certain degree of similarity, rather than requiring an exact match
between the input and the trained pattern.
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