
--

A Snapshot Differential Refresh Algorithm

Bruce Lindsay, Laura Haas, C. Mohan,
Hamid Pirahesh, & Paul Wihns
IBM Almaden Research Center

San Jose, CA 95120-6099

Abstract

Tlus article presents an algonthm to refresh the contents of
database snapshots A database snapshot IS a read-only table whose
contents are extracted from other tables m the database The
snapshot contents can be penodlcally refreshed to reflect the current
state of the database Snapshots are useful m many apphcatlons
as a cost effective substitute for rephcated data m a dlstnbuted
database system

When the snapshot contents are a sunple restnctlon and pro-
jection of a single base table, dtfferentral refresh techmques can
reduce the message and update costs of the snapshot refresh op-
eration The algonthm presented annotates the base table to detect
the changes whch must be apphed to the snapshot table dunng
snapshot refresh The cost of mamtammg the base table annotations
IS muumal and the amount of data transnutted dunng snapshot
refresh is close to c3lmal m most circumstances

Introduction

A DBMS provides a mechamsm for mamtrumng, accessmg,
and updating mformatlon representmg the current state of some
real world actlvlty or process Apphcatlon programs can mterrogate
the cutrent state of the database and m&y the database state to
reflect changes m the real world system being modeled by the
database and Its apphcatlons However, many database apphcatlons
need to freeze portions of the database state for analysis, plannmg,
or reportmg In order to support apphcatlons which reqmre a stable
version of parts of the database state, the relevant data can be
copred mto separate database entnes This allows the database state
to contmue to evolve to track the real world state whde mamtammg
the copted state for those apphcations that need it

PermIssion to copy wlthout fee all or part of this material IS granted
provided that the copies are not made or dlstrlbuted for dxect
commercial advantage, the ACM copyrlght notlce and the title of the
pubhcatlon and its date appear, and notlce IS given that copymg IS by
permIssIon of the Assoclatlon for Computmg Machmery To copy
otherwise or to repubhsh, reqmres a fee and/or specific permissIon

0 1986 ACM 0-89791-191-1/86/05000/0053 $00 75

The notlon of a database snapshot was mtroduced m [ADIBA
801 Database snapshots are penodlcally refreshed, read-only rep-
hcas of selected portions of the database In a relational database,
a snapshot IS a read-only table whose value 1s defined by a query
over one or more database tables Furthermore, a snapshot can be
refreshed to cause Its value to reflect the current (transaction con-
stitent) state of the database tables referenced by the snapshot
query The abfity to refresh snapshots allows them to be used m
place of the base tables from which the snapshot 1s denved when-
ever the apphcatlon does not require access to the current state
and does not need to update the current state Snapshots are
especially mterestmg m a &stnbuted database as a cost effective
substitute for rephcated data Local snapshots at several sites can
be penomcally refreshed from remote base tables Tlus approach
allows reads of snapshot data to be local whde avouimg the com-
plenty and overhead of mamtammg multiple, transaction consistent
rephcas

Snapshots capture the (transaction consistent) current state of
some portion of the database for subsequent processmg Once a
snapshot has been defined and mtmhzed, its contents can be
accessed using ordmary queues Indices can be defined on a snap-
shot to accelerate access to Its contents and snapshots can serve
as base tables for other snapshots

Penodlcally, the snapshot can be refreshed to brmg it up to
date In general, snapshot refresh reqmres evaluatmg the query
defmmg the snapshot and replacmg the contents of the snapshot
with the results of the query evaluation If the snapshot IS denved
from a szngle base table, tt can be refreshed by detectmg the
changes to the base table smce the last tune the snapshot was
refreshed and applying only those changes to the snapshot By
lsolatmg the changes to the base table smce the last refresh of the
snapshot, the amount of mformation transferred to the snapshot
durmg the refresh operation can be reduced d the base table has
not changed substantially Also, processmg only changes to the
base table reduces the number of (recoverable) updates needed to
brmg the snapshot up to date Thus arUcle presents an algorithm
for determmmg the base table changes whch need to be apphed
to the snapshot when the snapshot IS denved from a smgle base
table When the snapshot LS denved from several tables, the snap-
shot query must, m general, be re-evaluated to determme the new
snapshot contents We wdl first &scuss the ObJectives for a tifer-
ential snapshot refresh algonthm and consider some altematlve
refresh methods Then we wdl present a stepwtse development of
a dJfferenha1 snapshot refresh algorithm We conclude vvlth an
analysis of the effectiveness of the algonthm under various con&-
tions

53

Snapshot Refresh Objectives

Snapshot refresh should make the snapshot reflect the current,
transaction consfitent state of the base table Fwt, aN changes to
the base table, which have occured since the last refresh of the
snapshot and which which affect the snapshot state must be de-
tected and apphed to the snapshot At the same time, we Hnsh to
mmlmze the impact of snapshots upon operations on the base
table Ideally, base table operations (msert, delete, & update) would
be unaffected by the presence of one or more snapshots on the
base table In order to provide efficient support for remote snap-
shots, the refresh algonthm should transnut as httle data as possible
durmg the refresh operation

The snapshot refresh algonthm should support multzple snap-
shots on a smgle base table Each snapshot should be mdependently
refreshable Also, each snapshot should be allowed to specify its
own restnctzons and projections on the base table This allows each
(remote) snapshot to extract only needed data from the base table

Alternative Refresh Methods

Several alternatives are avadable for unplementmg snapshot
refresh The simplest method 1s to transnut the (restncted & pro-
jected) base table to the snapshot each time the snapshot IS re-
freshed The snapshot 1s first cleared and then the received data
1s Inserted mto the snapshot This method has the advantage of
mmunal impact on normal base table operations Unless a slgmflcant
potion of the base table has been updated smce the last refresh
of the snapshot, this simple method wdl transnut, delete, and msert
many unchanged entnes One alternative IS to transnut changes to
the snapshot(s) as they occur at the base table l%s method, know
as ASAP (As Soon As Possible) update propagation has several
drawbacks Smce the snapshot IS, more or less, contmuously bemg
updated, it no longer captures the base table state as of a spectiic
refresh time More senously, If the snapshot 1s remote from the
base table and commumcatlon between the base table and the
snapshot IS Interrupted, the base table changes must be buffered
or rejected Transrmttmg each base table change to the snapshot
ASAP wdl mcrease base table update costs due to the cost of the
commumcatlon and snapshot update associated with each ASAP
base table update

Another alternative IS to buffer the changes to the base table
and transnut relevant buffered changes whenever a snapshot de-
mands to be refreshed ms method creates the need to buffer
changes until all snapshots on a gwen base table have been re-
freshed Multiple changes to the same base table entry wdl be
buffered and transnutted separately Of course, one could bound
the buffermg reqmred and transrmt the entire (restncted) base table
d the last refresh of the snapshot precedes the earbest retamed
changes Operations on the base table nught be unaffected If the
database recovery log 1s used as the change buffer Othenwse,
conslderable space and time overhead wdl be reqmred to recoverably
buffer changes to the base table If the recovery log IS used to
buffer the mformation needed for snapshot refresh, considerable
effort wdl be needed to cull the relevant, commztted data from the
log Only a small potion of the log wdl mvolve updates to the

base table for a particular snapshot Unless the values of unchanged
base table fields are wntten to the log, an access to the base table
1s reqmred to determme whether the updated entry quabfes (or
quabfled) for the snapshot and to obtam the values for the all the
snapshot fields Background processmg of the recovery log can
support snapshot refresh “as of” a gven time Refresh to the
current base table state reqmres that the log filter “catch up” and
that uncomnutted changes be handled very carefully

Instead of ASAP refresh or base table change buffering, one
can annotate the base table to ldentiy changed entnes By JU&-

clously addmg mformatlon about changes to the base table, the
amount of space used to support snapshot refresh 1s bounded at
the cost of extra work to mamtam the annotations As we shall
see, both the space used and the extra work done can be made to
be quite small In addmon, multiple snapshots on a smgle base
table do not requue ad&tlonal annotations and much of the extra
work 1s amortued over the set of snapshots dependmg upon the
base table

Differential Refresh: A
Simple Solution

We first present a smple, but unpractical, algonthm for dlf-
ferentlal snapshot refresh m sunple algonthm wdl then be m-
crementally m&led to produce more satrsfactory algonthms The
simple algonthm assumes that the entnes of the base table are
embedded m a dense, ordered space It 1s useful to thmk of the
space as an address space m which each element either contams a
base table entry or IS marked as empty In adktlon, each element
of the base table address space IS extended to contam a tunestamp
field whch records the time at which the address space element
was last m&led The tune stored m the TiiStamp field LS
assumed to be any local, monotomcally mcreasmg value For ex-
ample, the local standard time, or a local, recoverable counter could
serve as the time base for the dlfferentml refresh algonthm

The snapshot table Itself 1s stored more traditionally The
entnes m the snapshot table are extended to mclude a field
(BaseAddr) contammg the address of the correspondmg entry m
the base table Associated wrth the snapshot table 1s the (base
table) tune at which the snapshot was last refreshed @napTime)
In ad&tlon, the base table restncfion (SnapRestrict) which defines
the contents of the snapshot 1s assocmted wth the snapshot mstance
(We shall Ignore base table projections to smpbfy the presentation)

The slmple dlfferentlal refresh algontbm 1s nutiated by sendmg
the last snapshot refresh tie (SnapTime) and snapshot restnctlon
(SnapRestnct) to the base table Each element of the base table
address space IS then exammed If the TiiSbunp of the element
IS greater than SnapTlrae, the element must be transnutted to the
snapshot table If the element 1s empty, or d its value does not
satisfy SnapRestnct, only the element address and “empty” status
are transnutted to the snapshot Other, the base table address,
status, and value are sent to the snapshot After scannmg the base
table, and transnuttmg changed elements, the current (base table)
me Is sent to the snapshot to become the new SnapTii of the
snapshot Figure 1 and Figure 2 Illustrate the representatton of the
base table and the snapshot The figures also depict refreshmg the

54

Simple Base Table

Value

status
ok

ok

ok

emm

ok

ok

empw

6

15

- I -
Mohan 9

Laura

Hamld

Paul
I 8
I -

Refresh Messages to Snapshot Table Refresh Messages to Snapshot Table

Snaplime = 3 30 Baselime = 4 30

SnapRestnot = Salary < 10

Snaplime = 3 30 BaselIme = 4 30

SnapRestnct * Salary < 10

Base Value

All& status Name Salary

2 ok Laura 6

3 empty
4 empty -

7 emrm

<

Snapshot Table before Refresh

Snaplime = 3 30

SnapRestrict = Salary < 10

Bass

’

Value

awry

t 9 6 9 8 7

Fqyre 1 Sunple Base Table and Refresh Messages

Snapshot Table after Refresh

snapshot, gvmg the messages and the before and after unages of
the snapshot

At the snapshot, each transnutted element IS recewed and
processed If the element status IS “empty”, the snapshot entry
wth the matchmg BaseAddr 1s deleted from the snapshot table (d
such an element exists) Non-empty elements cause an update d
a matchmg BaseAddr 1s found Other\Klse, a new entry, with the
mdcated BmeAddr 1s mserted mto the snapshot Clearly, a snapshot
mdex on BaseAddr wdl accelerate snapshot refresh processing

This sunple refresh algonthm clearly detects all changes to the
base table and faIthfully mforms the snapshot When the snapshot
restnctlon reduces the base table, the algonthm sends superfluous
entnes to the snapshot When a base table entry whch does not
satisfy the snapshot restnctlon 1s deleted, mserted, or updated, the
entry’s address and status fs transnutted to the snapshot ms 1s
because modlfied base table entnes which do not currently satisfy
the snapshot restnctlon may have satifled the restnctlon before
their modlficatlon (E g , Hanud has had a raise m the example)

Differential Refresh Empty
Regions

The sunple refresh algonthm reqmres an impractical represen-
tatlon for the base table Entry addresses are usually the offset of

SnapTime = 4 30

SnapRestnct = Salary < 10

Bass Value

Addr Name 1 Salaw

Figure 2 Simple Snapshot Refresh - Before and After

the entry ~thm a file or a page number and mdex of the entry
wthm the page Thus, not all addresses have entnes and mamtammg
a status for every possible address IS not feasible for most database
storage systems If we assume that the database system does
assign some sort of address for every actual entry m a table, and
that the addresses are totally ordered, then it 1s posstble to mamtam
summary mformatlon about which addresses are not m use For
each unused address regon we can store its hnuts and the tune at
whch the regon was created or changed size As before, actual
base table entnes contam a TiieStamp field to record the tie of
their last mod&a&on

Mamtammg the mformatlon about wbch regrons of the base
table address space are empty wdl reqmre extra work when base
table entnes are mserted or deleted In the simple algorithm only
the TGneStamp and status of the modlfied base table entry needed
to be updated Now, when an entry 1s mserted or deleted from
the base table, empty regons must be spht or coalesced and the
empty regon tlmestamp must be set

55

The refresh algonthm for empty regons 1s very smular to the
simple refresh algonthm The tunestamps on empty regons and
base table entnes are compared to the SnapTiie If an empty
regon has a lllgh tunestamp, Its boundary addresses are transrmtted
to the snapshot and all snapshot entnes Hrlth BaseAddr m the empty
regon are deleted from the snapshot Updated and inserted base
table entnes are handled as m the simple refresh algontbm If each
empty reDon speclflcatlon 1s stored m an “empty” address of the
regon, then empty regrons and actual entnes can be processed m
base table address order This allows empty re@ons whch are
separated by entnes wluch do not satisfy the snapshot restnctlon
to be combined before transnuttmg the empty reDon to the snap-
shot (Of course, the combmed empty regon 1s not transnutted
unless one of the empty reaons, or one of the mtervemng unqual-
ified entnes has a tlmestamp greater than SnapTune)

The lumpmg together of empty entnes reduces the number of
items transnutted to the snapshot because multiple deletions may
create a single empty regon Also, by mergmg empty regons
separated by unquabfled entnes, a single empty reaon transrmsslon
“covers” all the base table updates m the combined re@on

Associating Empty Regions
with Actual Entries

The next step m the development of the snapshot dfferentlal
refresh algonthm 1s to associate the empty regon mformatlon with
the base table entry which follows the empty repon We shall add
a field (PrevAddr), contammg the address of the precedmg base
table entry, to all base table entnes All addresses between an
entry and the PrevAddr of the entry are empty

When modlfymg the base table, extra effort wdl be reqmred
when entnes are deleted or mserted When an entry 1s deleted,
the PrevAddr and TiieStamp fields of the succeedmg base table
entry must be updated wth the PrevAddr from the deleted entry
and the current tune When an entry IS mserted, the PrevAddr of
the new entry must be set to the value of the PrevAddr from the
next entry m the base table, and the PrevAddr m the next entry
must be set to the address of the new entry The TuneStamp of
the new entry IS set to the current time, but the TuneStamp of the
next entry does not need to be updated Care must be taken to
avold anomahes when concurrent updates to the base table are
allowed Concurrent mserts or deletes at nelghbormg addresses wdl
reqmre updates to the same successor record and these updates
must be synchromzed carefully with the msert or delete

The snapshot refresh algonthm remams slrmlar to the precedmg
version of the algorithm The prmclpal Mference 1s that a high
Tune& on a base table entry mdlcates that the precedmg empty
reDon has grown or that the entry has been mserted or updated,
or both As before, empty regons, separated by entnes which do
not satisfy the snapshot restnctlon can be combmed When trans-
nuttmg an entry to the snapshot we wdl transnut the address of
the precedmg quahfled entry and the value of the entry Figure 3
IS a pseudo code representation of the base table refresh algonthm
Figure 4 deptcts the snapshot table side of the refresh algonthm

BaseRefresht BaseTable, SnapTIme, SnapRestrict)
LastQua = 0, /* Addr last qualified l /
Deletion = False, /' Oeletlons detected? */
/* Scan BaseTable ln address order l /
forever do,

/* Get next BaseTable entry */
<Address, PrevAddr, TImeStamp, Value, = Next(BaseTable)

Next(BaseTable),
tf (End-of-Scan) then

break,
If (SnapRestnctC Value)) then do,

/' Quallfled BaseTable entry */
If (TimeStamp > SnapTIme) I (Deletion) then

/' Updated or preceding deletions l /
Xmlt(Address, LastQual, Value 1,

LastQua = Address,
Oeletlon = False,
end, /* Qualified BaseTable entry l /

else do,
/* Unquallfled BaseTable entry l /
If (TImeStamp > Snaptime) then

/' Updated entry ==> may have l /
/' quallfled before update l /
Oeletlon = True,

end, /* Unquallfled BaseTable entry */
end, /* of BaseTable scan l /
/* Handle deletions at end of BaseTable '/
Xmlt(NULL, LastQual, NULL),
/' Transmit new SnapTime l /
Xmlt(current-time),

end, /* of Base Refresh '/

Fme 3 Base Table Refresh for Empties Aswaated wtb Entnes

SnapRefresh 0
Send(SnapTIme, SnapRestrict) to BaseTable.
<Address, PrevAddr, Value, = Receive-from_BaseTable,
while (Address 4 NULL) do,

/* Oelete empty region from snapshot */
DELETE FROM Snapshot WHERE

(BaseAddr > PrevAddr) AND
(BaseAddr 5 Address).

/* Insert entry into snapshot */
INSERT INTO Snapshot

<Address, Value>,
<Address, PrevAddr, Value> = Receive-from_BaseTable,

end, /* of while axwe entries */
/* Delete at end of snapshot */
DELETE FROM Snapshot WHERE

BaseAddr > PrevAddr,
/* Get new SnapTIme l /
SnapTime = Receive-from_BaseTable,

end, /* of SnapRefresh */

Fiie 4 Snapshot Table Refresh for Emphes rsltb Entnes

-- -

Base Table before Refresh

Prav

Addr

0

NULL

1

-a-

4

5

-6

Time

Stamp

300

NULL

NULL

T Name

Bruce

Laura

Hamld

2 30 Mohan

200 Paul

VC

15 unchanged

6 Inserted

15 updated - was 9

a deleted

9 preceedlng delete

6 unchanged

8 deleted

Refresh Messages to Snapshot Table

Snapllma = 3 30 BaseTIme = 4 30

SnapRestnct = Salary < 10

Base Prav Value

Addr Addr Name Salary

2 0 Laura 6

5 2 Mohan 9

NULL 6 NULL NULL

Base Table after Refresh

Addr

1

2

3

5

6

Prev

Addr

0

1

2

3

5

Time Value

Stamp Name Salary

300 Bruce 15

4 30 Laura 6

4 30 Hamld 15

4 30 Mohan 9

200 Paul 6

Figure 5 Base Table FIX up - Before & After

Comment

unchanged

Inserted

updated

preceedmg delete

unchanged

Batch Maintenance of
Empty Regions and
Timestamps

The current version of the refresh algonthm has a serious
impact on operations which msert or delete from the base table
Is It possible to reduce the unpact on base table operahons by
postpomng the mamtenance of the PrevAddr and TuneStamp fields
u&l a snapshot must be refreshed? The answer IS “Yes, but at
the cost of extra complexity and overhead durmg snapshot refresh”
However, It IS the snapshot refresh operations which should bear
the costs aasoclated wrth mamtammg the snapshot Fust we wdl
specify how base table operations manage the extra fields Then
we wdl &scuss how the empty regon and tunestamp fields can be

updated to allow refresh to detect the changes which need to be
sent to the snapshot

Let us assume that the DBMS supports the notlon of NULL
fields m table entnes Delete operations on the base table wdl be
unaffected by the snapshots - the base table entry IS sunply deleted
Insert operations wdl set the PrevAddr and TuneStamp fields to
NULL and msert the entry mto some empty address of the base
table Update operations wdl sunply set the TuaeStamp field to
NULL ThLs approach does not reqmre multiple entry updates
durmg operations on the base table and has httle effect upon the
performance and complexlty of the base table operations In par-
ticular, the synchromzatlon problems mentloned m the previous
sectlon do not anse

Given that base table operations wdl not mamtam the mfor-
matlon to track update tunes or empty reDon boundaries, we must
define an algonthm which wdl restore the RevAddr and TiieStamp
fields to the values needed to support the previously presented
refresh algonthm Given such an algonthm, we can then run the
previous version of the refresh algonthm to isolate the changes

57

Snapshot Table before Refresh

I Snaplime = 3 30

SnaDRestnot = Salary < 10

Base

Addr

3

E

4

5

6

7

Value

Name salary

Hamld 9

Jack 6

---I--

I
Mohan 9

Paul 8

Bob 8

1

Refresh Messages to Snapshot Table

Snaplime = 3 30 BaseTIme = 4 30

SnapRestnct = Salary < 10

<

Snapshot Table after Refresh

SnapTIme = 4 30

SnapRestnct = Salary < 10

Base Velue

Addr Name Salary

2 Laura 6

5 Mohan 9

8 Paul 8

me 6 Snapshot Refresh - Before and After

which wdl be sent to the snapshot Of course, we would hke to
be able to perform both functions (fix up the base table extra
fields and transnut changes) m a smgle pass over the base table
Before combmmg the algonthms, let us fust examme how the extra
fields can be updated to reflect the current state of the base table

The algorithm to fix up the extra fields wdl scan the base
table m address order Because only snapshot refresh events need
to occur at Qstmct tnnes, we can use the current (base table) tnne
to update the TieStamp field durmg the fix up process In order
to have a transaction consistent view of the base table dunng the
fur up process, we must obtam a table level lock on the base table
dunng the fix up (and refresh) procedures

As the base table IS scanned, we must detect and reflect all
mserts, updates, and deletes m the base table Since the last tune
the fix up algonthm was run An entry wth a NULL PrevAddr
was Inserted smce the last tune the fix up algonthm was run The
TiieStamp of the mserted entry should be set to the current tme
and the PrevAddr should be set to the address of the previous entry

m the base table An entry with a non-NULL PrevAddr and a
NULL TuneStamp was updated smce the last tme the fix up algo-
nthm was run The TiieStamp of the updated entry should be set
to the current time

Detectmg Mered entnes LS somewhat more complex If a
non-NULL PrevAddr IS not equal to the address of the last non-
newly-rnserted entry that was encountered, then one or more entnes
were deleted between the current entry and the last non-mserted
entry Both the PrevAddr and the TiiStamp of the current entry
must be updated If the RevAd& IS equal to the last non-
newly-mserted entry encountered, but 1s not equal to the address
of the previous (newly mserted) entry, only the PrevAddr of the
current entry needs to be updated The notion of detectmg deletions
from the base table by detectmg anomahes m the empty reDon
mformation m the PrevAddr fields 1s central to the Mferentml
refresh algonthm Figure 5 and Figure 6 depict the representation
of the base and snapshot tables and present an example of the
base table fix up and snapshot refresh operations Figure 7 LS a
pseudo code representation of the base table fix up algonthm

The final step m our development of the differential refresh
algorithm 1s to combme the fix up algorithm Hrlth the refresh
algonthm of the precedmg section The combmation IS straightfor-
ward For each base table entry, we first update the extra fields,
d needed Then, d necessary, the entry IS transnutted to the
snapshot It 1s possible to further optmuxe the basic Mferentml
refresh algonthm The reader 1s mvlted to &cover nnprovements
which reduce the message traffic and the number of updates to the
base table dunng the fix up phase of the algonthm

BaseFlxup(BaseTable)
ExpectPrev = 0 /* Expected PrevAddr */
LastAddr = 0. /* Last Address III BaseTable */
FtxupTw = Now, /' New value for TlmeStamp l /
/* Scan BaseTable tn address order l /
forever do,

/* Get next BaseTable entry */
<Address, PrevAddr, TlmeStamp> = Next(BaseTable 1,
If (End-of-Scan) then

break,
If (PrevAddr = NULL) then

/* Inserted BaseTable entrv '/
GPOATE CURRENT (PrevAddr =-LastAddr, TwseStamp = F~xupTime).

else do,
/* non-inserted entry '/
If (TlmeStamp = NULL) then

/* Updated BaseTable entry l /
UPDATE CURRENT (TuwStamp = F~xupTuw),

If (PrevAddr & ExpectPrev) then
/* Deleted entry(s) preceding current entry */
UPDATE CURRENT (PrevAddr = LastAddr,

TwaeStamp = F~xup'Tuw).
else

If (PrevAddr + LastAddr) then
/' Entries inserted before current entry l /
UPDATE CURRENT (PrevAddr = LastAddr).

ExpectPrev = Address,
end, /* non-inserted entry '/

LastAddr = Address,
end, /' of BaseTable scan '/

end, /* of Base Flxup */

Figure 7 Base Table FIX Up Algorithm

58

‘W. I c+.,
C of Change botwon rofmohoo a0 a 3 of tablo oh

Fme 8 Comparison of % of taples of the Base table that
need to be sent for the Ideal, Mferentmi, and full Refresh algo-
ntbms The corves are drawn for Mferent % of tuples quahfymg

for snapshot

Analysis of Differential
Refresh Algorithm

The differential snapshot refresh algorithm IS deslgned to re-
duce the cost of mamtammg (remote) snapshots The Mferentlal
refresh algonthm exchanges commumcatlon and snapshot update
overhead for base table accesses and updates durmg refresh When
an efficient method for applymg the snapshot restnctlon IS avadable
(e g , an Index), the base table sequential scan may be more costly
than simply re-populatmg the snapshot by executmg the snapshot
query The expected costs of tiferentml refresh and full refresh
can be computed when the snapshot IS defined and the appropnate
refresh method can be selected

How effective IS the Mferentlal refresh method m reducmg
the commumcatlon and update overhead of snapshot refresh? As
we noted earber, the notion of empty regons and combmmg empty
regon mformahon wth the actual entnes of the base table causes
superfluous messages to the snapshot when unquabfled entnes are
mserted, deleted, or updated How important IS tlus effect7 Intu-
dlvely, we can see that as the snapshot quabflcatlon becomes more
restnctwe, the “&tance” between quabfled entnes wdl become
larger Any msert, delete, or update between two quabfled entnes
causes the second entry to be transnutted Therefore, when quahfled
entnes are wdely separated, it IS more bkely that base table mod-
lflcatlons m the mterval wdl cause an unnecessary message to be
transnutted to the snapshot

In order to quantify the performance of the Qfferentlal refresh
algonthm, we wdl compare It to an &al refresh algonthm and to
the full refresh method The ideal algonthm transnuts only actual
base table changes to the (restncted) snapshot and only the most
recent change to each entry (smce refresh) The ideal algonthm
uses old and new values of changed entnes to insure that changes

Figure 9 Shows the part of F&we 8 for 1% and 5% of tupies
quahfymg for snapshot Note tbat the vertxnl axu w m

logontbnuc scale

to unquahfled entnes are not transnutted The full refresh method
sunply transfers all quabfled entnes to the snapshot where the
received entnes replace the previous contents of the snapshot

Two parameters affect the performance of the refresh algo-
nthm the amount of update actlvlty on the base table smce the
last refresh, and the degree to which the base table IS restncted
by the snapshot When there IS no restnctlon, the dlfferentlal
refresh algorithm performs as well as the ideal refresh and IS
supenor to full refresh untd the entire base table has been updated

As the snapshot quahflcation becomes more restnctlve, the
relative number of superfluous messages for the Mferentlal refresh
algonthm Increases For a gven restnctlon, the percentage of
supeffluous messages decreases as the number of base table mod-
lflcatlons increases For restncted snapshots, d few base table
modlficatlons occur between refreshes, few messages are sent
Therefore, we see that the differential refresh algorithm 1s robust
m the sense that it IS most precise when much data needs to be
transnutted to the snapshot When httle data needs to be transnutted,
it is less accurate in transrmttmg only necessary mformation

We have compared the number of messages sent as the re-
stnctlon and the amount of base table update actlvlty are vaned
Both smmlatlon and analysts show that the above hypothesis IS
true Figure 8 and Figure 9 show the number of messages, as a
percentage of the base table size, which are sent by the ideal
algonthm, the full refresh method, and the dlfferentml refresh
algontbm The figures gve the message traffic as a function of
the update actlvlty between refreshes for Mferent snapshot restnc-
tlons Figure 8 shows the message traffic when the snapshot m-
eludes more than 25% of the base table Figure 9 shows, on an
expanded scale, the message traffic for more restnctlve snapshots

59

Conclusions

The dlfferentlal snapshot refresh algonthm has been Imple-
mented as part of the R* expernnental, dlstnbuted database man-
agement system [HAAS82] R* supports general snapshots m that
any query can be used to define the contents of a snapshot When
the snapshot IS defined, an analysis of the query determmes whether
the dlfferentlal refresh algonthm or full refresh IS to be used to
refresh the snapshot

R* supports query comprlatron [LOHMANI(S] to allow efficient
execution of quenes which are executed repeatedly (hke snapshot
refresh) The query compllatlon process creates an efficiently ex-
ecutable representation of the query which IS stored m the database,
to be loaded and executed when the query IS activated Durmg
query compdatlon, the query optmuzer selects an execution strategy
for the query and creates compde tune bmdmgs to the objects and
access paths to be used durmg execution Separation of query
compdatlon from query execution m R* amortizes the compllatton
and bmdmg cost over multiple executions of the query

The R* unplementation for snapshots takes advantage of the
compllatlon factity to compde the snapshot refresh operations, for
both the full refresh and dlfferentlal refresh methods It was not
totally straightforward to exploit compdafion for snapshots because
the compllatlon must be done durmg the executton of the CREATE
SNAPSHOT statement and the execution 1s m response to a RE-
FRESH SNAPSHOT statement Considerable cleanup of internal
mterfaces was necessary to pernut the “recursive” activations of
compder and execution facltltles for snapshots

Compllatlon of the Uferential refresh algorithm LS comphcated
by the fact that the algontbm cannot be reduced to a standard
query statement due to the fact that the algonthm uses entry
addresses whch are not avadable at the query language level
Special runtme routmes were needed to implement the dlfferentlal
refresh algonthm On the other hand, the normal &strtbuted query
execution fachtles m R* block the entnes to be transnutted and
the execution of both the full and dlfferenhal refresh methods take
advantage of the blockmg to reduce the cost of the refresh oper-
ation

The dlfferentlal refresh algonthm also reqmres extra fields m
the base table In the R* unplementatlon, the extra fields are added
automatically to the base table when the first snapshot usmg ti-
ferentml refresh 1s created Fortunately, R* already had support
for adding fields to an exlstmg table without accessmg all the
entnes of the table The extra fields are @ven “funny” names to
dlstmgmsh them from user defined fields while allowmg them to
be recorded m the system catalogs (schema) Detecting the presence

of the “funny” named fields allows the system to compde the extra
code to manage the fields when entnes m the base. table are
updated No special efforts were needed to handle deletions and
msertrons to the base table Deletions just delete the entry Inser-
tions, by onuttmg values for the extra fields, cause them to be set
to NULL, just as for NULLable user fields

The unplementation of snapshots m R* was somewhat tificult
A complex modification, to an already qmte complex system, was
necessary Paul Wdms, Bruce Lindsay, and Dean Damels Imple-
mented the Hugh level controls for snapshot creation and refresh
Laura Haas nnplemented the changes to the compder to support
snapshots and C Mohan implemented the runtnne support Harmd
Plrahesh provided the performance analysis of the dlfferentml re-
fresh algonthm Dale Skeen has gwen helpful advtce on how to
present the tiferentlal refresh algorithm The efforts of all who
contnbuted to the development of the tiferentml refresh algonthm,
its Implementation, and its presentation are gratefully acknowledged

Bibliography

[ADIBA 801

[HAAS 821

[LOHMAN 851

ME A&ba and B G Lmdsay, Database
Snapshots, Proceedmgs 6th lnternatiamal
Conference on Very Large Data Bases, Mon-
treal, Canada (October 1980) pp 86-91

L M Haas, PI Sebnger, E Bertmo, D
Damels, B Lmdsay, G I.&man, Y
Masunaga, C Mohan, P Ng, P Wllms,
and R Yost, R* A Research Protect on
Dmtr&uted Rekztronal DBMS, IEEE Data-
base Englneehg, Vol 5, No 4 (also avad-
able as IBM Research Report RJ3653, Oc-
tober 1982) (December 1982) pp 28-32

G L&man, C Mohan, L Haas, D Dan-
lels, B Lmdsay, P Sehnger. and P Wdms,
Quay Processmg m R ‘, m Query Proeessbtg
m Database Systems, W I(lm, D Remer,
and D Batory (Eds), Spnnger-Verlag,
1985 (also avtiable as IBM Research Re-
port RJ4272, Apnl 1984)

60

