A Snapshot Differential Refresh Algorithm

Bruce Lindsay, Laura Haas, C. Mohan,
Hamid Pirahesh, & Paul Wilms
IBM Almaden Research Center

San Jose, CA 95120-6099

Abstract

This article presents an algonthm to refresh the contents of
database snapshots A database snapshot 1s a read-only table whose
contents are extracted from other tables in the database The
snapshot contents can be periodically refreshed to reflect the current
state of the database Snapshots are useful in many applications
as a cost effective substitute for replicated data in a distnbuted
database system

When the snapshot contents are a simple restriction and pro-
jection of a single base table, differential refresh techniques can
reduce the message and update costs of the snapshot refresh op-
eration The algonthm presented annotates the base table to detect
the changes which must be apphed to the snapshot table during
snapshot refresh The cost of maintaining the base table annotations
15 muumal and the amount of data transmitted during smapshot
refresh 1s close to cotimal 1n most circumstances

Introduction

A DBMS provides a mechamism for mamntaiming, accessing,
and updating information representing the current state of some
real world activity or process Application programs can interrogate
the current state of the database and modify the database state to
reflect changes in the real world system bemng modeled by the
database and its apphcations However, many database applications
need to freeze portions of the database state for analysis, planning,
or reporting In order to support applications which require a stable
version of parts of the database state, the relevant data can be
copied mto separate database entries This allows the database state
to continue to evolve to track the real world state while maintaiming
the copied state for those applications that need 1t

Permussion to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by
permussion of the Association for Computing Machinery To copy
otherwise or to republish, requires a fee and/or specific permission

© 1986 ACM 0-89791-191-1/86/0500/0053 $00 75

The notion of a database snapshot was introduced 1n [ADIBA
80] Database snapshots are periodically refreshed, read-only rep-
Licas of selected portions of the database In a relational database,
a snapshot 1s a read-only table whose value 1s defined by a query
over one or more database tables Furthermore, a snapshot can be
refreshed to cause its value to reflect the current (transaction con-
sistent) state of the database tables referenced by the snapshot
query The ability to refresh snapshots allows them to be used mn
place of the base tables from which the snapshot 1s derived when-
ever the apphcation does not require access to the current state
and does not need to update the current state Snapshots are
especially interesting 1n a distrnibuted database as a cost effective
substitute for rephcated data Local snapshots at several sites can
be penodically refreshed from remote base tables Thus approach
allows reads of snapshot data to be local while avoiding the com-
plexity and overhead of maintaining multiple, transaction consistent
replicas

Snapshots capture the (transaction consistent) current state of
some portion of the database for subsequent processmng Once a
snapshot has been defined and mmtiahized, its contents can be
accessed using ordinary queries Indices can be defined on a snap-
shot to accelerate access to its contents and snapshots can serve
as base tables for other snapshots

Periodically, the snapshot can be refreshed to bring 1t up to
date In general, snapshot refresh requires evaluating the query
defining the snapshot and replacing the contents of the snapshot
with the results of the query evaluation If the snapshot 1s denived
from a single base table, it can be refreshed by detecting the
changes to the base table since the last time the snapshot was
refreshed and applying only those changes to the snapshot By
isolating the changes to the base table since the last refresh of the
snapshot, the amount of information transferred to the snapshot
duning the refresh operation can be reduced if the base table has
not changed substantially Also, processing only changes to the
base table reduces the number of (recoverable) updates needed to
bring the snapshot up to date Ths article presents an algonthm
for determiming the base table changes which need to be apphed
to the snapshot when the snapshot 1s dertved from a single base
table When the snapshot 1s derived from several tables, the snap-
shot query must, in general, be re-evaluated to determme the new
snapshot contents We will first discuss the objectives for a differ-
ential snapshot refresh algonthm and consider some alternative
refresh methods Then we will present a stepwise development of
a differential snapshot refresh algonthm We conclude with an
analysis of the effectiveness of the algorithm under varous condi-
tions



Snapshot Refresh Objectives

Snapshot refresh should make the snapshot reflect the current,
transaction consistent state of the base table First, all changes to
the base table, which have occured since the last refresh of the
snapshot and which which affect the snapshot state must be de-
tected and applied to the snapshot At the same time, we wish to
minmimize the mmpact of snapshots upon operations on the base
table Ideally, base table operations (insert, delete, & update) would
be unaffected by the presence of one or more snapshots on the
base table In order to provide efficient support for remote snap-
shots, the refresh algorithm should transmut as httle data as possible
during the refresh operation

The snapshot refresh algonthm should support mulnple snap-
shots on a single base table Each snapshot should be mdependently
refreshable Also, each snapshot should be allowed to specify its
own restrictions and projections on the base table This allows each
(remote) snapshot to extract only needed data from the base table

Alternative Refresh Methods

Several alternatives are available for implementing snapshot
refresh The simplest method 1s to transmut the (restricted & pro-
jected) base table to the snapshot each time the snapshot 1s re-
freshed The snapshot 1s first cleared and then the received data
15 mserted mnto the snapshot This method has the advantage of
mimmal impact on normal base table operations Unless a significant
portion of the base table has been updated since the last refresh
of the snapshot, this simple method will transmut, delete, and msert
many unchanged entries One alternative 1s to transmit changes to
the snapshot(s) as they occur at the base table This method, know
as ASAP (As Soon As Possible) update propagation has several
drawbacks Since the snapshot s, more or less, continuously bemng
updated, 1t no longer captures the base table state as of a specific
refresh ime More senously, if the snapshot 1s remote from the
base table and communication between the base table and the
snapshot is interrupted, the base table changes must be buffered
or rejected Transmutting each base table change to the snapshot
ASAP will increase base table update costs due to the cost of the
communication and snapshot update associated with each ASAP
base table update

Another alternative 1s to buffer the changes to the base table
and transmut relevant buffered changes whenever a snapshot de-
mands to be refreshed This method creates the need to buffer
changes until all snapshots on a given base table have been re-
freshed Multiple changes to the same base table entry will be
buffered and transmutted separately Of course, one could bound
the buffering required and transmut the entire (restricted) base table
if the last refresh of the snapshot precedes the earhiest retaned
changes Operations on the base table might be unaffected if the
database recovery log 1s used as the change buffer Otherwise,
considerable space and time overhead will be required to recoverably
buffer changes to the base table If the recovery log 1s used to
buffer the information needed for snapshot refresh, considerable
effort will be needed to cull the relevant, committed data from the
log Only a small portion of the log will involve updates to the

54

base table for a particular snapshot Unless the values of unchanged
base table fields are written to the log, an access to the base table
1s required to determine whether the updated entry quahfies (or
qualified) for the snapshot and to obtan the values for the all the
snapshot fields Background processing of the recovery log can
support snapshot refresh "as of" a given time Refresh to the
current base table state requires that the log filter "catch up” and
that uncommitted changes be handled very carefully

Instead of ASAP refresh or base table change buffering, one
can annotate the base table to identfy changed entries By judi-
ciously adding information about changes to the base table, the
amount of space used to support snapshot refresh i1s bounded at
the cost of extra work to maintain the annotations As we shall
see, both the space used and the extra work done can be made to
be quite small In addition, multiple snapshots on a single base
table do not require additional annotations and much of the extra
work 1s amortized over the set of snapshots depending upon the
base table

Differential Refresh: A
Simple Solution

We fust present a simple, but impractical, algorithm for dif-
ferential snapshot refresh This simple algorithm will then be -
crementally modified to produce more satisfactory algonthms The
smmple algorithm assumes that the entries of the base table are
embedded 1n a dense, ordered space It i1s useful to think of the
space as an address space in which each element either contamns a
base table entry or 1s marked as empty In addition, each element
of the base table address space 1s extended to contain a rimestamp
field which records the time at which the address space element
was last modified The time stored in the TimeStamp field 1s
assumed to be any local, monotonically increasing value For ex-
ample, the local standard time, or a local, recoverable counter could
serve as the time base for the differential refresh algorithm

The snapshot table itself 1s stored more traditionally The
entries 1 the snapshot table are extended to include a field
(BaseAddr) containing the address of the corresponding entry in
the base table Associated with the snapshot table i1s the (base
table) time at which the snapshot was last refreshed (SnapTime)
In addition, the base table restriction (SmapRestrict) which defines
the contents of the snapshot 1s associated with the snapshot instance
(We shall ignore base table projections to simplify the presentation )

The simple differential refresh algonthm 1s mtiated by sending
the last snapshot refresh time (SnapTime) and snapshot restriction
(SnapRestnct) to the base table Each element of the base table
address space 1s then examuned If the TimeStamp of the element
1s greater than SnapTime, the element must be transmitted to the
snapshot table If the element 1s empty, or if its value does not
satisfy SnapRestnct, only the element address and "empty" status
are transmutted to the snapshot Otherwise, the base table address,
status, and value are sent to the snapshot After scanming the base
table, and transmitting changed elements, the current (base table)
time 1s sent to the snapshot to become the new SnapTime of the
snapshot Figure 1 and Figure 2 illustrate the representation of the
base table and the snapshot The figures also depict refreshing the



Simple Base Table

Time Value
Addr Status Stamp Name Salary
1 ok 300 Bruce 15
2 ok 345 Laura [
3 ok 350 Hamid 15
4 empty 4 00 - -
5 ok 230 Mohan 9
6 ok 200 Paul 8
7 empty 410 - -

Refresh Messages to Snapshot Table

SnapTime = 3 30 BaseTime = 4 30
SnapRestnct = Salary < 10
Base Value
Addr Status Name Salary
2 ok Laura 6
3 empty - -
4 empty - -
7 empty - -

Snapshot Table before Refresh

SnapTime = 3 30
SnapRestrict = Salary < 10
Base Value
Addr Name Salary
3 Hamid 9
4 Jack 6
5 Mohan 9
6 Paul 8
7 Bob 7
Refresh Messages to Snapshot Table
SnapTime = 3 30 BaseTime = 4 30
SnapRestrnict = Salary < 10
Base Value
Addr Status Name Salary
2 ok Laura 6
3 empty - -
4 empty - -
7 empty - -

Figure 1 Simple Base Table and Refresh Messages

snapshot, giving the messages and the before and after images of
the snapshot

At the snapshot, each transmitted element 1s received and
processed If the element status 1s "empty'", the snapshot entry
with the matching BaseAddr 1s deleted from the snapshot table (if
such an element exists) Non-empty elements cause an update if
a matching BaseAddr 1s found Otherwise, a new entry, with the
indicated BaseAddr 1s inserted into the snapshot Clearly, a snapshot
index on BaseAddr will accelerate snapshot refresh processing

This simple refresh algorithm clearly detects all changes to the
base table and faithfully informs the snapshot When the snapshot
restriction reduces the base table, the algorithm sends superfluous
entries to the snapshot When a base table entry which does not
satisfy the snapshot restriction 1s deleted, mserted, or updated, the
entry’s address and status i1s transmutted to the snapshot This 1s
because modified base table entries which do not currently satisfy
the snapshot restriction may have satisfied the restriction before
therr modification (E g, Hamud has had a raise m the example )

Differential Refresh Empty
Regions

The simple refresh algorithm requires an impractical represen-
tation for the base table Entry addresses are usually the offset of

Snapshot Table after Refresh

SnapTime = 4 30
SnapRestnict = Salary < 10
Base Value
Addr Name Salary
2 Laura 6
5 Mohan 9
6 Paul 8

Figure 2 Simple Snapshot Refresh - Before and After

the entry within a file or a page number and index of the entry
within the page Thus, not all addresses have entries and maintaining
a status for every possible address 1s not feasible for most database
storage systems If we assume that the database system does
assign some sort of address for every actual entry in a table, and
that the addresses are totally ordered, then 1t is possible to maintain
summary information about which addresses are not in use For
each unused address region we can store its imits and the time at
which the region was created or changed size As before, actual
base table entries contain a TimeStamp field to record the time of
therr last modification

Mamntaining the information about which regions of the base
table address space are empty will require extra work when base
table entries are mserted or deleted In the simple algonthm only
the TimeStamp and status of the modified base table entry needed
to be updated Now, when an entry 1s mserted or deleted from
the base table, empty regions must be split or coalesced and the
empty region timestamp must be set



The refresh algorithm for empty regions 1s very similar to the
simple refresh algonthm The timestamps on empty regions and
base table entries are compared to the SnapTime If an empty
region has a high timestamp, its boundary addresses are transmitted
to the snapshot and all snapshot entries with BaseAddr 1n the empty
region are deleted from the snapshot Updated and inserted base
table entries are handled as in the simple refresh algonthm If each
empty region specification 1s stored mn an "empty" address of the
regon, then empty regions and actual entries can be processed n
base table address order This allows empty regions which are
separated by entries which do not satisfy the snapshot restriction
to be combined before transmitting the empty region to the snap-
shot (Of course, the combined empty region 1s not transmutted
unless one of the empty regions, or one of the intervening unqual-
ified entries has a timestamp greater than SnapTume )

The lumping together of empty entries reduces the number of
items transmitted to the snapshot because multiple deletions may
create a single empty region Also, by merging empty regions
separated by unqualified entres, a single empty region transmission
"covers' all the base table updates in the combined region

Associating Empty Regions
with Actual Entries

The next step 1n the development of the snapshot differential
refresh algorithm 1s to associate the empty region information with
the base table entry which follows the empty region We shall add
a field (PrevAddr), contamning the address of the preceding base
table entry, to all base table entries All addresses between an
entry and the PrevAddr of the entry are empty

When modifymg the base table, extra effort will be required
when entries are deleted or mserted When an entry is deleted,
the PrevAddr and TimeStamp fields of the succeeding base table
entry must be updated with the PrevAddr from the deleted entry
and the current ime When an entry 1s mserted, the PrevAddr of
the new entry must be set to the value of the PrevAddr from the
next entry i the base table, and the PrevAddr in the next entry
must be set to the address of the new entry The TimeStamp of
the new entry 1s set to the current time, but the TimeStamp of the
next entry does not need to be updated Care must be taken to
avoid anomahies when concurrent updates to the base table are
allowed Concurrent nserts or deletes at neighboring addresses will
require updates to the same successor record and these updates
must be synchromzed carefully with the nsert or delete

The snapshot refresh algorithm remains sumilar to the preceding
version of the algonthm The principal difference 1s that a high
TimeStamp on a base table entry indicates that the preceding empty
region has grown or that the entry has been mserted or updated,
or both As before, empty regions, separated by entries which do
not satisfy the snapshot restriction can be combmed When trans-
mitting an entry to the snapshot we will transmut the address of
the preceding qualified entry and the value of the entry Figure 3
1s a pseudo code representation of the base table refresh algonthm
Figure 4 depicts the snapshot table side of the refresh algonthm

56

BaseRefresh( BaseTable, SnapTime, SnapRestrict )
LastQual = 0, /* Addr last qualified */
Deletion = False, /* Deletions detected? */

/* Scan BaseTable 1n address order */
forever do,
/* Get next BaseTable entry */
<Address, PrevAddr, TimeStamp, Value> = Next( BaseTable )
Next( BaseTable),
1f (End_of_Scan) then
break,
1f (SnapRestrict( Value )) then do,
/* Qualified BaseTable entry */
1f (TimeStamp > SnapTime) | (Deletion) then
/* Updated or preceding deletions */
Xmit( Address, LastQual, Value ),
LastQual = Address,

Deletion = False,
end, /* Qualified BaseTable entry */
else do,

/* Unqualified BaseTable entry */
1f (TimeStamp > Snaptime) then
/* Updated entry ==> may have */
/* qualified before update */
Deletion = True,
end, /* Unqualified BaseTable entry */
end, /* of BaseTable scan */
/* Handle deletions at end of BaseTable */
Xmit{ NULL, LastQual, NULL ),
/¥ Transmit new SnapTime */
Xmit( current_time ),
end, /* of Base Refresh */

Figure 3 Base Table Refresh for Empties Associated with Entnes

SnapRefresh ()
Send( SnapTime, SnapRestrict) to BaseTable,
<Address, PrevAddr, Value> = Receive_from BaseTable,
while (Address 4 NULL) do,
/* Delete empty region from snapshot */
DELETE FROM Snapshot WHERE
(BaseAddr > PrevAddr) AND
(BaseAddr < Address),
/* Insert entry into snapshot */
INSERT INTO Snapshot
<Address, Value>,
<Address, PrevAddr, Value> = Receive_from_BaseTable,
end, /* of while more entries */
/* Delete at end of snapshot */
DELETE FROM Snapshot WHERE
BaseAddr > PrevAddr,
/* Get new SnapTime */
SnapTime = Receive_from_BaseTable,
end, /* of SnapRefresh */

Figure 4 Snapshot Table Refresh for Empties with Entnes



Base

Table before Refresh

Prev Time Value
Addr Addr Stamp Name Salary Comment
1 0 300 Bruce 15 unchanged
2 NULL NULL Laura 6 inserted
3 1 NULL Hamid 15 updated ~ was 9
4 -3~ —2430- —daek— -6 deleted
5 4 2 30 Mohan 9 preceeding delete
6 5 200 Paul 8 unchanged
7 —6- —+00- —Bob- -8 deleted
Refresh Messages to Snapshot Table
SnapTime = 3 30 BaseTime = 4 30
SnapRestrict = Salary < 10
Base Prev Value
Addr Addr Name Salary
2 0 Laura 6
5 2 Mohan 9
NULL 6 NULL NULL
Base Table after Refresh
Prev Time Value
Addr Addr Stamp Name Salary Comment
1 0 300 Bruce 15 unchanged
2 1 4 30 Laura 6 inserted
3 2 430 Hamid 15 updated
5 3 430 Mohan preceeding delete
6 5 200 Paul 8 unchanged

Figure 5 Base Table Fix up - Before & After

Batch Maintenance of

Empty Regions and

Timestamps

The current version of the refresh algonthm has a serious

mpact on operations which msert or delete from the base table
Is 1t possible to reduce the impact on base table operations by
postponing the mamtenance of the PrevAddr and TimeStamp fields
until a snapshot must be refreshed? The answer 1s "Yes, but at
the cost of extra complexity and overhead during snapshot refresh'
However, 1t 1s the snapshot refresh operations which should bear
the costs associated with mamtaining the snapshot First we will
specify how base table operations manage the extra fields Then
we will discuss how the empty region and timestamp fields can be

57

updated to allow refresh to detect the changes which need to be
sent to the snapshot

Let us assume that the DBMS supports the notion of NULL
fields m table entries Delete operations on the base table will be
unaffected by the snapshots - the base table entry 1s simply deleted
Insert operations will set the PrevAddr and TimeStamp fields to
NULL and msert the entry into some empty address of the base
table Update operations will simply set the TumeStamp field to
NULL Ths approach does not require multiple entry updates
during operations on the base table and has little effect upon the
performance and complexity of the base table operations In par-
ticular, the synchromzation problems mentioned wn the previous
section do not anse

Given that base table operations will not maintain the nfor-
mation to track update times or empty region boundaries, we must
define an algorithm which will restore the PrevAddr and TimeStamp
fields to the values needed to support the previously presented
refresh algorithm Given such an algorithm, we can then run the
previous version of the refresh algonthm to isolate the changes



Snapshot Table before Refresh

SnapTime = 3 30
SnapRestrict = Salary < 10
Base Value
Addr Name Salary
3 Hamid 9
4 Jack 6
5 Mohan 9
6 Paul 8
7 Bob 8
Refresh Messages to Snapshot Table
SnapTime = 3 30 BaseTime = 4 30
SnapRestnct = Salary < 10
Base Proev Value
Addr Addr Name Salary
2 [} Laura 6
5 2 Mohan 9
NULL 6 NULL NULL

Snapshot Table after Refresh

SnapTime = 4 30
SnapRestnct = Salary < 10
Base Value
Addr Name Salary
2 Laura 6
5 Mohan 9
6 Paul 8

Figure 6 Snapshot Refresh - Before and After

which will be sent to the snapshot Of course, we would like to
be able to perform both functions (fix up the base table extra
fields and transmut changes) 1n a single pass over the base table
Before combiming the algornithms, let us first examine how the extra
fields can be updated to reflect the current state of the base table

The algorithm to fix up the extra fields will scan the base
table 1 address order Because only snapshot refresh events need
to occur at distinct times, we can use the current (base table) time
to update the TimeStamp field during the fix up process In order
to have a transaction consistent view of the base table during the
fix up process, we must obtain a table Jevel lock on the base table
during the fix up (and refresh) procedures

As the base table 1s scanned, we must detect and reflect all
mnserts, updates, and deletes in the base table since the last time
the fix up algorithm was run An entry with a NULL PrevAddr
was inserted smce the last ime the fix up algonthm was run The
TimeStamp of the mserted entry should be set to the current tume
and the PrevAddr should be set to the address of the previous entry

58

mn the base table An entry with a non-NULL PrevAddr and a
NULL TuneStamp was updated since the last time the fix up algo-
nthm was run The TimeStamp of the updated entry should be set
to the current time

Detecting deleted entnes 1s somewhat more complex If a
non-NULL PrevAddr 1s not equal to the address of the last non-
newly-inserted entry that was encountered, then one or more entries
were deleted between the current entry and the last non-mnserted
entry Both the PrevAddr and the TimeStamp of the current entry
must be updated If the PrevAddr 1s equal to the last non-
newly-inserted entry encountered, but 1s not equal to the address
of the previous (newly mserted) entry, only the PrevAddr of the
current entry needs to be updated The notion of detecting deletions
from the base table by detecting anomalies 1in the empty region
mformation 1n the PrevAddr fields 1s central to the differentsal
refresh algorthm Figure 5 and Figure 6 depict the representation
of the base and smapshot tables and present an example of the
base table fix up and snapshot refresh operations Figure 7 1s a
pseudo code representation of the base table fix up algonthm

The final step in our development of the differential refresh
algorithm 1s to combme the fix up algorithm with the refresh
algonithm of the preceding section The combination 1s straightfor-
ward For each base table entry, we first update the extra fields,
if needed Then, if necessary, the entry is transmitted to the
snapshot It 1s possible to further optimuze the basic differential
refresh algorithm The reader 1s mvited to discover improvements
which reduce the message traffic and the number of updates to the
base table during the fix up phase of the algorithm

Basef1xup( BaseTable )

ExpectPrev = /* Expected PrevAddr */
LastAddr =0, /* Last Address 1n BaseTable */
FixupTime = Now, /* New value for TimeStamp */

/* Scan BaseTable 1n address order */
forever do,
/* Get next BaseTable entry */
<Address, PrevAddr, TimeStamp> =
1f (End_of_Scan) then
break,
1f (PrevAddr = NULL) then
/* Inserted BaseTable entry */
UPDATE CURRENT (PrevAddr = LastAddr, TimeStamp = FixupTime),
else do,
/* non-1nserted entry */
1f (TimeStamp = NULL) then
/* Updated BaseTable entry */
UPDATE CURRENT (TwmeStamp = FixupTime),
1f (PrevAddr & ExpectPrev) then
/* Deleted entry(s) preceding current entry */
UPDATE CURRENT (PrevAddr = LastAddr,
TimeStamp = FixupTime),

Next( BaseTable ),

else
1f (PrevAddr 4 LastAddr) then

/* Entries inserted before current entry */
UPDATE CURRENT (PrevAddr = LastAddr),

ExpectPrev = Address,

end, /* non-inserted entry */

LastAddr = Address,
end, /* of BaseTable scan */
end, /* of Base Fixup */

Figure 7 Base Table Fix Up Algonthm



|II1 .

204 158 Quality

ron

s M Quality
n -

L

-g " « Full 758 Quality
[ — Dtfferential

[ -] - o |deal

n 4

[+]

m

[

(]

»n

1E
# of Changes beiween refreshes os a I of table size

1
3 1E+03

3

1E+00

Figure 8 Companson of % of tuples of the Base table that
need to be sent for the ideal, differential, and full Refresh algo-
nthms The curves are drawn for different % of tuples quabfymg

for snapshot

Analysis of Differential
Refresh Algorithm

The differential snapshot refresh algorithm 1s designed to re-
duce the cost of maintamning (remote) snapshots The differential
refresh algonthm exchanges communication and snapshot update
overhead for base table accesses and updates during refresh When
an efficient method for applying the snapshot restriction 1s available
(e g, an index), the base table sequential scan may be more costly
than simply re-populating the snapshot by executing the snapshot
query The expected costs of differential refresh and full refresh
can be computed when the snapshot 1s defined and the appropnate
refresh method can be selected

How effective 1s the differential refresh method in reducing
the communication and update overhead of snapshot refresh? As
we noted earlier, the notion of empty regions and combining empty
region information with the actual entries of the base table causes
superfluous messages to the snapshot when unqualfied entries are
mserted, deleted, or updated How important 1s this effect? Intu-
ttively, we can see that as the snapshot qualification becomes more
restrictive, the "distance' between qualfied entries will become
larger Any insert, delete, or update between two qualified entries
causes the second entry to be transmutted Therefore, when quahfied
entnies are widely separated, 1t 1s more likely that base table mod-
fications 1n the mnterval will cause an unnecessary message to be
transmitted to the snapshot

In order to quantify the performance of the differential refresh
algonthm, we will compare 1t to an ideal refresh algorthm and to
the full refresh method The ideal algorthm transmuts only actual
base table changes to the (restricted) snapshot and only the most
recent change to each entry (since refresh) The 1deal algorithm
uses old and new values of changed entries to insure that changes

59

-, ’
['s
- - - s Full

ge-n{” Pl == Differsntial

5 - -« |deal
k3 i
[ Y.

1 1 1] 1
1E-01 1E+00 1E+M1 1E+02 1E+83

# of changes betwssn refreshes as a X of Table size

Figure 9 Shows the part of Figure 8 for 1% and 5% of tuples
quabfymng for snapshot Note that the vertical axis 1s n
logonthmic scale

to unqualified entries are not transmitted The full refresh method
simply transfers all quahfied entries to the snapshot where the
recetved entnes replace the previous contents of the snapshot

Two parameters affect the performance of the refresh algo-
rithm the amount of update activity on the base table since the
last refresh, and the degree to which the base table 1s restricted
by the snapshot When there 1s no restriction, the differential
refresh algorithm performs as well as the ideal refresh and 1s
superior to full refresh until the entire base table has been updated

As the snapshot quabfication becomes more restrictive, the
relative number of superfluous messages for the differential refresh
algonithm increases For a given restriction, the percentage of
superfluous messages decreases as the number of base table mod-
ifications increases For restricted snapshots, if few base table
modifications occur between refreshes, few messages are sent
Therefore, we see that the differential refresh algorithm 1s robust
i the sense that 1t 1s most precise when much data needs to be
transmitted to the snapshot When little data needs to be transmutted,
1t 1s less accurate 1n transmitting only necessary information

We have compared the number of messages sent as the re-
striction and the amount of base table update activity are vaned
Both simulation and analysis show that the above hypothesis 1s
true Figure 8 and Figure 9 show the number of messages, as a
percentage of the base table size, which are sent by the ideal
algorithm, the full refresh method, and the differential refresh
algorithm The figures give the message traffic as a function of
the update activity between refreshes for different snapshot restric-
tions Figure 8 shows the message traffic when the snapshot -
cludes more than 25% of the base table Figure 9 shows, on an
expanded scale, the message traffic for more restnctive snapshots



Conclusions

The differential snapshot refresh algomthm has been imple-
mented as part of the R* expenimental, distributed database man-
agement system [HAAS82] R* supports general snapshots in that
any query can be used to define the contents of a snapshot When
the snapshot 1s defined, an analysis of the query determunes whether
the differential refresh algorithm or full refresh 1s to be used to
refresh the snapshot

R* supports query compilation [LOHMANSS5] to allow efficient
execution of queries which are executed repeatedly (like snapshot
refresh) The query compilation process creates an efficiently ex-
ecutable representation of the query which 1s stored in the database,
to be loaded and executed when the query 1s activated During
query compilation, the query optimizer selects an execution strategy
for the query and creates compile time bindings to the objects and
access paths to be used during execution Separation of query
compilation from query execution mn R* amortizes the compilation
and binding cost over multiple executions of the query

The R* implementation for snapshots takes advantage of the
compilation facility to compile the snapshot refresh operations, for
both the full refresh and differential refresh methods It was not
totally straightforward to exploit compilation for snapshots because
the compilation must be done during the execution of the CREATE
SNAPSHOT statement and the execution is m response to a RE-
FRESH SNAPSHOT statement Considerable cleanup of internal
interfaces was necessary to permut the "recursive" activations of
compiler and execution facitities for snapshots

Compilation of the differential refresh algorithm is complicated
by the fact that the algorithm cannot be reduced to a standard
query statement due to the fact that the algonthm uses entry
addresses which are not available at the query language level
Special runtime routines were needed to implement the differential
refresh algorthm On the other hand, the normal distributed query
execution faciities 1n R* block the entries to be transmitted and
the execution of both the full and differential refresh methods take
advantage of the blocking to reduce the cost of the refresh oper-
ation

The differential refresh algorithm also requires extra fields in
the base table In the R* implementation, the extra fields are added
automatically to the base table when the furst snapshot using dif-
ferential refresh 1s created Fortunately, R* already had support
for adding fields to an exising table without accessing all the
entries of the table The extra fields are given "funny" names to
distingwish them from user defined fields while allowing them to
be recorded 1n the system catalogs (schema) Detecting the presence

60

of the "funny'" named fields allows the system to compile the extra
code to manage the fields when entries in the base table are
updated No special efforts were needed to handle deletions and
nsertions to the base table Deletions just delete the entry Inser-
tions, by omutting values for the extra fields, cause them to be set
to NULL, just as for NULLable user fields

The implementation of snapshots in R* was somewhat difficult
A complex modification, to an already quite complex system, was
necessary Paul Wilms, Bruce Lindsay, and Dean Danels imple-
mented the high level controls for snapshot creation and refresh
Laura Haas implemented the changes to the compiler to support
snapshots and C Mohan implemented the runtime support Hamid
Pirahesh provided the performance analysis of the differential re-
fresh algorithm Dale Skeen has given helpful advice on how to
present the differential refresh algonthm The efforts of all who
contributed to the development of the differential refresh algorithm,
1ts implementation, and 1ts presentation are gratefully acknowledged

Bibliography

[ADIBA 80] ME Adba and BG Lindsay, Database
Snapshots, Proceedings 6th International
Conference on Very Large Data Bases, Mon-

treal, Canada (October 1980) pp 86-91

[HAAS 82] LM Haas, Pl Selinger, E Bertino, D
Daniels, B Lindsay, G Lohman, Y
Masunaga, C Mohan, P Ng, P Wilms,
and R Yost, R* A Research Project on
Distributed Relational DBMS, IEEE Data-
base Engineering, Vol 5, No 4 (also avail-
able as IBM Research Report RJ3653, Oc-
tober 1982) (December 1982) pp 28-32

[LOHMAN 85] G Lohman, C Mohan, L Haas, D Dan-

1els, B Lindsay, P Selinger, and P Wilms,
Query Processing in R*, 1n Query Processing
m Database Systems, W Kim, D Reiner,
and D Batory (Eds), Springer-Verlag,
1985 (also available as IBM Research Re-
port RJ4272, Apnl 1984)



