
Eco: A Language Composition Editor

Lukas Diekmann and Laurence Tratt

Software Development Team, Informatics, King’s College London
http://lukasdiekmann.com/ http://tratt.net/laurie/

Abstract. Language composition editors have traditionally fallen into
two extremes: traditional parsing, which is inflexible or ambiguous; or
syntax directed editing, which programmers dislike. In this paper we
extend an incremental parser to create an approach which bridges the
two extremes: our prototype editor ‘feels’ like a normal text editor, but
the user always operates on a valid tree as in a syntax directed editor.
This allows us to compose arbitrary syntaxes while still enabling IDE-like
features such as name binding analysis.

1 Introduction

At its most flexible, language composition gives programmers the ability to use
multiple programming languages within a single file (e.g. in this paper we com-
pose HTML, Python, and SQL). Editing composed programs has previously
required choosing between two extremes: parsing-based approaches are familiar
to programmers, but are either inflexible or prone to ambiguity; whereas SDEs
(Syntax Directed Editors) have neither problem, but are insufferably awkward
to use [13]. Recent work (e.g. [12,18]) has somewhat ameliorated the limitations
of both extremes, but the divide between them, and the inevitable trade-offs,
have long been assumed fundamental.

In this paper, we present a fundamentally new approach to editing composed
programs which aims for the best of both worlds: it has the ‘feel’ of parsing-based
approaches with the generality of syntax directed editors. The core of our ap-
proach is to extend an incremental parser with the new notion of language boxes.1

Incremental parsers parse text as the user types, continuously updating a parse
tree. In our approach, when editing a program in language X, one can insert at
any place a language box for language Y and edit inside the box (in language Y)
or outside the box (in language X). Each box has a separate incremental parser
that maintains its own parse tree. Language boxes thus allow arbitrary syntaxes
to be composed together without the loss of flexibility or ambiguity problems
of traditional text-based approaches. Language boxes may contain any number
of language boxes, and can be nested arbitrarily deep. Unlike syntax directed
editors, our approach provides a user experience that is virtually identical to a
traditional text editor. If only textual languages are used, the only noticeable

1 Our ‘language boxes’ should not be confused with the modular language definition
concept of the same name from [19].

http://lukasdiekmann.com/
http://tratt.net/laurie/

difference while editing – and a small one at that – is when entering or exiting
a language box. The only significant difference from traditional editors is that
Eco has to save files out as a tree structure rather than as a traditional source
file to avoid (re)parsing problems.

Since most programming is currently done in text, our main focus has been on
finding a good solution to the long-standing problem of editing textual programs.
However, language boxes are not restricted to textual languages: each language
box has its own editor which need not be based on parsing – or text – at all.

Our approach is embodied in a prototype language composition editor Eco.
Eco allows users to define composed languages and edit programs against those
composed languages. As well as extending an incremental parser with language
boxes, we have also added the ability to parse indentation based languages,
and to incrementally create ASTs (Abstract Syntax Trees) from parse trees
(allowing to easily implement a simple name binding analysis). The version of
Eco described in this paper can be downloaded from:

http://soft-dev.org/pubs/files/eco/

This paper’s contributions are as follows:

1. We extend an incremental parser with language boxes.
2. We show that the resulting editor is useful for textual language composition.
3. We extend the parser to incrementally parse indentation-based languages.
4. We extend the parser to incrementally create ASTs as well as parse trees.
5. We show that language boxes allow the composition of textual and non-

textual languages.

An earlier version of this work, with a simple version of language boxes only,
was published in workshop form [6]. This paper extends the concept substan-
tially, including new techniques such as incremental parsing of indentation based
languages, and incremental ASTs.

This paper is structured as follows. We first introduce the paper’s running
example (Section 2) before exploring the existing extremes in language composi-
tion editing (Section 3). We then introduce Wagner’s incremental parser and our
implementation of it (Section 5) before introducing language boxes (Section 6).
We then extend the incremental parser to parse indentation-based languages
(Section 7) and to incrementally create ASTs (Section 8). Finally, we briefly
explain how Eco supports name binding and non-textual languages (Section 9).

2 Running example

We use as our running example a composition of HTML, Python, and SQL, lead-
ing to the construction of a flexible system equivalent to ‘pre-baked languages’
like PHP. In essence, we show how a user can take modular languages, compose
them, and use the result in Eco as shown in Figure 1. We outline how this exam-
ple composition is defined and used from the perspective of a ‘normal’ end-user;
the rest of the paper is devoted to explaining the techniques which make this use
case possible, as well as explaining how important corner cases are dealt with.

http://soft-dev.org/pubs/files/eco/

¶

·

¸

H
T

M
L

P
y
th

o
n

S
Q

L

Fig. 1: Eco editing a composed program. An outer HTML document contains
several Python language boxes. Some of the Python language boxes themselves
contain SQL language boxes. Some specific features are as follows. ¶ A high-
lighted (SQL) language box (highlighted because the cursor is in it). · An
unhighlighted (SQL) language box (by default Eco only highlights the language
box the cursor is in, though users can choose to highlight all boxes). ¸ An (inner)
HTML language box nested inside Python.

When an end-user creates a new file in Eco, they are asked to specify which
language that file will be written in. Let us assume that they choose the composed
language named (unimaginatively) HTML+Python+SQL which composes the
modular HTML, Python, and SQL languages within Eco. Although users can
write whatever code they want in Eco, this composed language has the follow-
ing syntactic constraints: the outer language box must be HTML; in the outer
HTML language box, Python language boxes can be inserted wherever HTML
elements are valid (i.e. not inside HTML tags); SQL language boxes can be in-
serted anywhere a Python statement is valid; and HTML language boxes can
be inserted anywhere a Python statement is valid (but one can not nest Python
inside such an inner HTML language box). Each language uses our incremental
parser-based editor.

From the user’s perspective, their typical workflow for a blank document is
to start typing HTML exactly as they would in any other editor: they can add,
alter, remove, or copy and paste text without restriction. The HTML is contin-
ually parsed by the outer language box’s incremental parser and a parse tree
constructed and updated appropriately within the language box. Syntax errors
are highlighted as the user types with red squiggles. The HTML grammar is a
standard BNF grammar which specifies where Python+SQL language boxes are

Fig. 2: Inserting a language box opens up a menu of the languages that Eco
knows about. Languages which Eco knows are valid in the current context are
highlighted in bold to help guide the user.

syntactically valid by referencing a separate, modular Python grammar. When
the user wishes to insert Python code, they press Ctrl + L , which opens a menu
of available languages (see Figure 2); they then select Python+SQL from the lan-
guages listed and in so doing insert a Python language box into the HTML they
had been typing. The Python+SQL language box can appear at any point in the
text; however, until it is put into a place consistent with the HTML grammar’s
reference to the Python+SQL grammar, the language box will be highlighted as
a syntax error. Note that this does not affect the user’s ability to edit the text
inside or outside the box, and the editing experience retains the feel of a normal
text editor. As Figure 3 shows, Eco happily tolerates syntactic errors – including
language boxes in positions which are syntactically invalid – in multiple places.

Typing inside the Python+SQL language box makes it visibly grow on screen
to encompass its contents. Language boxes can be thought of as being similar to
the quoting mechanism in traditional text-based approaches which use brackets
such as J K; unlike text-based brackets, language boxes can never conflict with the
text contained within them. Users can leave a language box by clicking outside
it, using the cursor keys, or pressing Ctrl + Shift + L . Within the parse tree, the
language box is represented by a token whose type is Python+SQL and whose
value is irrelevant to the incremental parser. As this may suggest, conceptually
the top-level language of the file (HTML in this case) is a language box itself.
Each language box has its own editor, which in this example means each has an
incremental parser.

Fig. 3: Editing a file with multiple syntax errors. Lines 6, 8 and 11 contain syntax
errors in the traditional sense, and are indicated with horizontal red squiggles.
A different kind of syntax error has occurred on line 4: the SQL language box is
invalid in its current position (indicated by a vertical squiggle).

At the end of the editing process, assuming that the user has a file with no
syntax errors, they will be left with a parse tree with multiple nested language
boxes inside it as in Figure 1. Put another way, the user will have entered a com-
posed program with no restrictions on where language boxes can be placed; with
no requirement to pick a bracketing mechanism which may conflict with nested
languages; with no potential for ambiguity; and without sacrificing the ability
to edit arbitrary portions of text (even those which happen to span multiple
branches of a parse tree, or even those which span different language boxes).

Eco saves files in a custom tree format so that, no matter what program was
input by the user, it can be reloaded later. In the case of the HTML+Python+SQL
composition, composed programs can be exported to a Python file and then exe-
cuted. Outer HTML fragments are translated to print statements; SQL language
boxes to SQL API calls (with their database connection being to whatever vari-
able a call to sqlite3.connect was assigned to); and inner HTML fragments
to strings. All of the syntactically correct programs in this paper can thus be
run as real programs. For the avoidance of doubt, other syntactic compositions,
and other execution models of composed programs are possible (see e.g. [1]) and
there is no requirement for Eco compositions to be savable as text, nor executed.

3 Parsing and syntax directed editing

In this section we briefly explain the two extremes that bound the overall design
space that we work within.

3.1 Parsing-based approaches

While there are many possible approaches to parsing text, three approaches can
be used as exemplars of the major categories: LR, generalised, and PEG parsing.

Due to Yacc’s predominance, LR-compatible grammars are commonly used to
represent programming languages. Indeed, many programming language gram-
mars are deliberately designed to fit within LR parsing’s restrictions. Unfortu-
nately, composing two LR grammars does not, in general, result in a valid LR
grammar [17]. One partial solution to this is embodied in Copper which, by
making the lexer lazy and context-sensitive, is able to allow many compositions
which would not normally seem possible in an (LA)LR parser [21]. However, this
requires nested languages to be delineated by special markers, which is visually
obtrusive and prevents many reasonable compositions.

Generalised parsing approaches such as [24] can accept any CFG (Context
Free Grammar), including inherently ambiguous grammars. Ambiguity and pro-
gramming language tools are unhappy bedfellows, since the latter can hardly ask
of a user “which parse of many did you intend?” Unfortunately, ambiguity, once
allowed through the door, is impossible to eject. Two unambiguous grammars,
when composed, may become ambiguous. However, we know that the only way
to determine CFG ambiguity is to test every possible input; since most CFGs
describe infinite languages, determining ambiguity is undecidable [4]. Although
heuristics for detecting ambiguity exist, all existing approaches fail to detect at
least some ambiguous grammars [23]. Furthermore, scannerless parsers – those
which intertwine tokenization and parsing, and which are the most obviously
suited for language composition – introduce an additional form of ambiguity
due to the longest match problem [20].

PEGs (Parsing Expression Grammars) are a modern update of a classic pars-
ing approach [8]. PEGs have no relation to CFGs. They are closed under compo-
sition (unlike LR grammars) and are inherently unambiguous (unlike generalised
parsing approaches). Both properties are the result of the ordered choice operator
e1 / e2 which means “try e1 first; if it succeeds, the ordered choice immediately
succeeds and completes. If and only if e1 fails should e2 be tried.” However, this
operator means that simple compositions such as S ::= a / ab fail to work as
expected, because if the LHS matches a, the RHS is never tried, even if it could
have matched the full input sequence. To make matters worse, in general such
problems can not be determined statically, and only manifest when inputs parse
in unexpected ways.

In summary, when it comes to language composition, parsing approaches are
either too limited (LR parsing), allow ambiguity (generalised parsing), or are
hard to reason about (PEG parsing). While approaches such as Copper [21] and

Spoofax [12] have nonetheless been used for some impressive real-world examples,
we believe that such issues might limit uptake.

3.2 Syntax directed editing

SDE works very differently to traditional parsing approaches, always operating
on an AST. AST elements are instantiated as templates with holes, which are
then filled in by the user. This means that programs being edited are always
syntactically valid and unambiguous (though there may be holes with informa-
tion yet to be filled in). This side-steps the flaws of parsing-based approaches,
but because such tools require constant interaction with the user to instantiate
and move between AST elements, the SDE systems of the 70s and 80s (e.g. [22])
were rejected by programmers as restrictive and clumsy [13].

More recently, the MPS editor has relaxed the SDE idiom, making the en-
tering of text somewhat more akin to a normal text editor [18]. In essence, small
tree rewritings are continually performed as the user types, so that typing 2 ,
Space , + , Space , 3 transparently rewrites the 2 node to be the LHS of the
+ node before placing the cursor in the empty RHS box of the + node where 3

can then be entered in. This lowers, though doesn’t remove, one of the barriers
which caused earlier SDEs to disappear from view. Language authors have to
manually specify all such rewritings, a tedious task. Furthermore, the rewritings
only affect the entry of new text. Editing a program still feels very different from
a normal text editor. For example deleting nodes requires great care and special
actions. Similarly, only whole nodes can be selected from the AST. For example,
one can not copy 2 + from the expression 2 + 3 on-screen.

Put another way, MPS is sometimes able to hide that it is a SDE tool, but
never for very long. The initial learning curve is therefore relatively steep and
unpalatable to many programmers.

4 The outlines of a new approach

Our starting hypothesis is that language composition needs an editing approach
which can marry SDE’s flexible and reliable approach to constructing ASTs with
the ‘feel’ of text editing. In part due to MPS’s gradual evolution from a pure
SDE to an approach which partially resembles parsing, we decided to start from
a parsing perspective and try and move towards SDE. Doing so implicitly rules
out any approach which can accept ambiguous grammars. Since the largest class
of unambiguous grammars we can precisely define is the LR(k) grammars [14]
they were the obvious starting point.2 In the following sections, we show how
one can take an incremental parser which accepts LR grammars and extend it
with the notion of language boxes.

2 Though note there are unambiguous grammars that are not contained within LR(k).

5 Incremental parsing in Eco

Traditional parsing is a batch process: an entire file is fed through a parser and
a parse tree created. Incremental parsing, in contrast, is an online process: it
parses text as the user types and continually updates a parse tree. A number
of incremental parsing algorithms were published from the late 70s [9] to the
late 90s, gradually improving efficiency and flexibility [16,7]. The last major
work in this area was by Wagner [25] who defined a number of incremental
parsing algorithms. We use his LR-based incremental parser which has two major
benefits: it handles the full class of LR(k) grammars; and has formal guarantees
that the algorithm is optimal. In this section, we give a brief overview of our
implementation of Wagner’s algorithm.

As with other parsing approaches, our implementation consists of both an
incremental lexer and incremental parser. We represent both lexer and grammar
with notations that are roughly similar to Yacc. Lexer rules are considered in the
order in which they are defined to avoid longest-match ambiguities. Grammars
are defined in BNF notation.

Both the lexer and the parser operate on a parse tree. Parse tree nodes are
either non-terminals (representing production rules in the grammar) or tokens
(representing terminal symbols). Non-terminals are immutable and have zero
or more ordered child nodes. Tokens have an immutable type (e.g. ‘int’) and a
mutable value (e.g. ‘3’). The minimal parse tree consists of three special nodes: a
Root non-terminal; and BOS (Beginning of Stream) and EOS (End of Stream)
terminals (both children of Root). All nodes created from user input are (directly
or indirectly) children of Root and are contained between BOS and EOS.

When the user types, the incremental lexer first either creates, or updates,
tokens in the parse tree. The lexer considers where the cursor is in the tree
(i.e. where the user is typing) and uses look-ahead knowledge stored in the
surrounding tokens to work out the affected area of the change. Newly created
tokens are then merged back into the tree. In the simple case where a token’s
value, but not its type, was changed, no further action is needed. In all other
cases, the incremental parser is then run to update the parse tree correctly. All
nodes on the path from the changed token to the root of the tree are marked
as changed. The incremental parser then starts at the beginning of the tree and
tries to reorder the parse tree. Assuming the user’s input is syntactically valid,
non-terminals are created or removed, as appropriate. The parser tries to reuse
non-changed sub-trees as is. Since non-terminals are immutable, sub-trees which
can’t be reused must be recreated from scratch or cloned from existing nodes.

Syntactically incomplete programs lead to temporarily incorrect parse trees.
In such cases, the incremental parser typically attaches tokens to a single par-
ent. When the user eventually creates a syntactically valid program, the tree is
rewritten (an example for this can be seen in Figure 4).

¶ ·

Fig. 4: Parse trees in the process of editing. Non-terminals are represented by
ellipses with a name. Tokens are represented by ellipses with a horizontal line;
the token’s type is above the line; its value below the line. ¶ A parse tree in
the process of editing and currently syntactically incorrect. The incremental
lexer is able to tell that </htm can not be part of the previous token, but is
currently unsure what the type of this token should be. The parser is thus not
able to order the tokens into a correct tree. · After further editing, the input is
syntactically correct. The incremental lexer has been able to determine the type
of the </html> token and the incremental parser has been able to update the
parse tree, inserting appropriate non-terminals as specified by the grammar.

5.1 Whitespace

In most programming languages, whitespace (which, from this paper’s perspec-
tive, also includes comments) is only important inasmuch as it separates other
tokens. Traditional lexers therefore consume and discard whitespace. This is un-
acceptable in our approach, as we need to maintain whitespace in the parse tree
to accurately render the user’s input (see Section 6.3). We therefore adopt, with
small variations, one of Wagner’s suggestions for whitespace handling.

When an Eco grammar sets the %implicit whitespace=true flag, the gram-
mar is automatically mutated such that references to a production rule ws are
inserted before the first, and after every, terminal in the grammar. Although the
user can define ws to whatever they want, a common example of what is added
to the grammar and lexer is as follows:

ws ::= TABSSPACES
|

TABSSPACES : [\t]+

Note that the user need not handle newlines as Eco handles those separately
(see Sections 6.3 and 7).

Although the resulting parse tree records ws nodes (which are used for ren-
dering and for ensuring cursor behaviour works as expected), they soon clutter
visualizations of parse trees to the point that one can no longer see anything
else. In the rest of this paper, we therefore elide ws nodes from all parse trees.

6 Language boxes

Language boxes allow users to embed one language inside another (see Section 2).
Language boxes have a type (e.g. HTML), an associated editor (e.g. our extended
incremental parser), and a value (e.g. a parse tree). By design, language boxes
only consider their own contents ignoring parent and sibling language boxes.
We therefore define the notion of the CST (Concrete Syntax Tree), which is a
language box agnostic way of viewing the user’s input. Different language box
editors may have different internal tree formats, but each exposes a consistent
interface to the CST. Put another way, the CST is a global tree which integrates
together the internal concrete syntax trees of individual language boxes.

In the rest of this section, we examine the characteristics, and consequences,
of language boxes.

6.1 Language modularity

To make language boxes practical, languages need to be defined modularly. Eco
allows users to define as many languages as they wish. Languages are defined
modularly, and may have several sub-components (e.g. grammar, name binding
rules, syntax highlighting). For example, a language L which uses the incremental
parser editor will contain a BNF grammar which can reference another language
M by adding a symbol <M> to a production rule.

In most cases, we believe that users will want to avoid hard-coding references
to different languages into ‘pure’ grammars. We therefore allow grammars to be
cloned and (during initialisation only) mutated automatically. The most common
mutation is to add a new alternative to a recently loaded grammar. For example,
if we have a reference to python and sql languages, we can create a reference
from Python to SQL by executing python.add alternative("atom", sql).

6.2 Language boxes and incremental parsing

Language boxes fit naturally with the incremental parser because we use a prop-
erty of CFGs which is rarely of consequence to batch-orientated parsers: parsers
only need to know the type of a token and not its value. In our incremental
parser approach, nested language boxes are therefore treated as tokens. When
the user inserts an SQL language box into Python code, a new node of type SQL

is inserted into the parse tree and treated as any other token. From the perspec-
tive of the incremental parser for the Python code, the language box’s value is
irrelevant as is the fact that the language box’s value is mutable. Language boxes
can appear in any part of the text, though, in our example, an SQL language
box is only syntactically valid in places where the Python grammar makes a ref-
erence to the SQL grammar. Nested language boxes which use the incremental
parser have their own complete parse trees, as can be seen in Figure 5.

Fig. 5: An elided example of an SQL language box nested within an outer Python
language box. From the perspective of the incremental parser, the tree stops at
the SQL token. However, we can clearly see in the above figure that the SQL
language box has its own parse tree, which thus forms part of the wider CST.

6.3 Impact on rendering

While language boxes do not have any impact on the incremental parser, they
do have a big effect on other aspects of Eco. One obvious change is that they
break the traditional notion that tokens are n characters wide and 1 line high.
Language boxes can be arbitrarily wide, arbitrarily high, and need not contain
text at all. Eco cannot simply store text ‘flat’ in memory and render it using
traditional text editing techniques. Instead, it must render the CST onto screen.
However, efficiency is a concern. Even a small 19KiB Java file, for example, leads
to a parse tree with almost 19,000 nodes. Rendering large numbers of nodes soon
becomes unbearably time-consuming.

To avoid this problem, Eco only renders the nodes which are currently visible
on screen. Eco treats newlines in the user’s input specially and uses them to
speed up rendering. Similar to Harrison [10], Eco maintains a list of all lines
in the user’s input; whenever the user creates a newline, a new entry is added.
Each entry stores a reference to the first CST node in that line and the line’s
height. Entries are deleted and updated as necessary. Scanning this list allows
Eco to quickly determine which chunks of the CST need to be rendered, and
which do not. Even in our simple implementation, this approach scales to tens
of thousands LoC without noticeable lag in rendering.

6.4 Cursor behaviour

In a normal editor powered by an incremental parser, cursor behaviour can be
implemented as in any other editor and stored as a (line#, column#) pair. We
initially took this approach for Eco, but it has an unacceptable corner-case:
nested language boxes create ‘dead zones’ where it is impossible to place the
cursor and to enter further text.

¹

¸

·

¶

Fig. 6: Eco’s cursor behaviour in a program nesting SQL inside Python inside
HTML. The cursor is stored as a (node, offset) pair. ¶ In normal program editing,
the cursor behaves exactly like any other editor. Typing with the cursor at this
position will enter text into the SQL language box right after the table token. ·
After pressing Ctrl + Shift + L , the cursor attaches itself to the current node’s
language box (<SQL>). Typing with the cursor at this position will insert text
into the Python+SQL language box between the tokens <SQL> and EOS. ¸ After
pressing Ctrl + Shift + L again, typing will insert text into the HTML outer
language box (after the Python+SQL language box, and before the </body>

token). ¹ Assuming the cursor was as in position ¶ and the user pressed → ,
the cursor will be moved to this position.

Our solution is simple: Eco’s cursor is relative to nodes in the CST. In textual
languages, the cursor is a pair (node, offset) where node is a reference to a token
and offset is a character offset into that token. In normal usage, the arrow keys
work as expected. For example, when the cursor is part way through a token,

simply increments offset ; when offset reaches the end of a token, sets
node to the next token in the parse tree and offset to 1. / is slightly more
complex: Eco scans from the beginning of the previous / next line, summing up
the width of tokens until a match for the current x coordinate is found.

At the end of a nested language box, pressing sets node to the next token
after the language box while setting offset to 1 as described above. This means
that if two language boxes end at the same point on screen, Eco will seemingly
skip over the outer of the two boxes, making it impossible to insert text at that

point. If instead the user presses Ctrl + Shift + L , the cursor will be set to the
current language box token itself instead of the first token after the language box
(since language boxes are tokens themselves, this adds no complexity to Eco).
When the user starts typing, this naturally creates a token in the outer language
box. In this way, Eco allows the user to edit text at any point in a program, even
in seemingly ‘dead’ zones (see Figure 6 for a diagrammatic representation).

6.5 Copy and paste

Eco allows users to select any arbitrary fragment of a program, copy it, and
paste it in elsewhere. Unlike an SDE, Eco does not force selections to respect
the underlying parse tree in any way. Users can also select whole or partial
language boxes, and can select across language boxes. Eco currently handles
all selections by converting them into ‘flat’ text and reparsing them when they
are pasted in. This seems to us a reasonable backup solution since it is hard to
imagine what a user might expect to see when a partial language box is pasted in.
However, we suspect that some special-cases would be better handled separately:
for example, if a user selects an entire language box, it would be reasonable to
copy its underlying tree and paste it in without modification.

7 Indentation-based languages

Indentation-based languages such as Python are increasingly common, but re-
quire more support than a traditional lexer and parser offer. Augmenting batch-
orientated approaches with such support is relatively simple, but, to the best of
our knowledge, no-one has successfully augmented an incremental parser before.
In this section we therefore describe how we have extended an incremental parser
to deal with indentation-based languages.

The basic problem can be seen in this simplified Python grammar fragment:

if ::= IF expr : suite
suite ::= NEWLINE INDENT stmts DEDENT
stmts ::= stmts NEWLINE stmt

| stmt

and an example code fragment using it:

if a > 0:
a = 0

print a

We can not simply parse this text and consume all whitespace, as in most lan-
guages. Instead, line 2 should generate NEWLINE and INDENT tokens before the
a token and a DEDENT token after the 0. The process to create these tokens
must be mindful of nesting: if a while statement is nested at the end of an if,
two DEDENT tokens must be generated at the same point. Note that indentation
related tokens are solely for the parser’s benefit and do not affect rendering.
Whitespace is recorded as per Section 5.1 and rendered as normal.

1 def calc_indentl(l):
2 if prev(l) == None:
3 l.indentl = 0
4 elif prev(l).wsl == l.wsl:
5 l.indentl = prev(l).indentl
6 elif prev(l).wsl < l.wsl:
7 l.indentl = prev(l).indentl + 1
8 else:
9 assert prev(l).wsl > l.wsl

10 prevl = prev(prev(l))
11 while prevl != None:
12 if prevl.wsl == l.wsl:
13 l.indentl = prevl.indentl
14 return
15 elif prevl.wsl < l.wsl:
16 break
17 prevl = prev(prevl)
18 mark_unbalanced(l)

Fig. 7: The indentation level calculation algorithm.

7.1 Incrementally handling indentation

Eco lexers that set %indentation=true use our approach to incrementally han-
dling indentation. We insert an additional phase between incremental lexing and
parsing which looks at changed lines and inserts or removes indentation related
tokens as appropriate. To make this possible, we extend the information stored
about each line in Eco (see Section 6.3) to store the leading whitespace level
(i.e. the number of space characters) and the indentation level. These notions
are separated, because the same indentation level in two disconnected parts of a
file may relate to different leading whitespace levels (e.g. in one if statement, 2
space characters may constitute an indentation level; in another, 4 space char-
acters). For example, the following is valid Python:

if x:
y

if a:
b

However, the following fragment is unbalanced (i.e. the file’s indentation is non-
sensical) and should be flagged as a syntax error:

if x:
a

b

For the purposes of this paper, it is sufficient to consider changes to a single
line, though Eco itself generalises this to simultaneous changes on multiple lines.
When a line l is updated, there are two cases. If l’s leading whitespace level
has not changed, no further recalculations are needed. In all other cases, the
indentation level of l, and all lines that depend on it, must be recalculated;
indentation related tokens must then be added or removed to each line as needed.
Dependent lines are all non-empty lines after l up to, and including, the first line
whose leading whitespace level is less than that of l, or to the end of the file, if
no such line exists.

We can define a simple algorithm to calculate the indentation level of an
individual line l. We first define every line to have attributes wsl – its leading

whitespace level – and indentl – its indentation level. prev(l) returns the first
non-empty predecessor line of l in the file, returning None when no such line
exists. The algorithm is shown in Figure 7. There are 4 cases, the first 3 of which
are trivial, though the last is more subtle:

1. Lines 2–3: If prev(l) == None then l is the first line in the file and its
indentation level is set to 0.

2. Lines 4–5: If prev(l).wsl == l.wsl then l is part of the same block as the
previous line and should have the same indentation level.

3. Lines 6–7: If prev(l).wsl < l.wsl then l opens a new block and has an
indentation level 1 more than the preceding line.

4. Lines 9–16: If prev(l).wsl > l.wsl then either l closes a (possibly multi-
level) block or the overall file has become unbalanced. To determine this we
have to search backwards to find a line with the same leading whitespace
level as l. If we find such a line, we set l’s indentation level to that line’s level
(lines 12–14). If no such line is found (line 11), or if we encounter a line with
a lower leading whitespace level (lines 15–16), then the file is unbalanced
and we need to mark the line as such (line 18) to force Eco to display an
error at that point in the file.

In practise, this algorithm tends to check only a small number of preceding lines
(often only 1). The worst cases (e.g. an unbalanced file where the last line is
modified and all preceding lines are checked) are O(n) (where n is the number
of lines in the file).

Each time a line has been affected by this process, we need to check whether
the indentation related tokens in the parse tree match the line’s current state.
If they do not, the tokens in the parse tree need to be updated appropriately
(i.e. the old tokens are removed and replaced). If a line is marked as unbalanced,
it requires a single UNBALANCED token; otherwise, we compare a line with its first
non-blank predecessor and calculate the correct number of INDENT / DEDENT

tokens. Once the parse tree has the correct number of tokens, we rely on the
incremental parser to reorder the tree appropriately.

8 Abstracting syntax trees

Eco’s CST allows it to fully render a program on-screen. Because of this, it
contains details that make analysis of the CST painful. For example, we would
like to define analyses such as the names in scope in a program (which we
can then use to highlight undefined variables, and to code complete names;
see Section 9.1) on a tree which abstracts away irrelevant detail. Eco therefore
maintains an AST which provides a simplified view of the user’s data. Different
language editors map from the CST to the AST in different ways. Since some
editors’ data may be non-abstractable, formally the AST contains a non-strict
subset of the data in the CST.

In this section, we explain how this relates to the incremental parser. Parse
trees in our approach are an extreme example of the pain of a detailed CST:

their nesting is partly dictated by the LR parser, and is often very deep; they
contain irrelevant tokens, which are necessary only for the parser or to make the
language more visually appealing to users; and child nodes are ordered and only
accessible via numeric indices. Instead, one would prefer to work with an AST,
where the tree has been flattened as much as possible, with irrelevant tokens
removed, and with child nodes unordered and addressable by name.

We first describe the simple (relatively standard) rewriting language Eco uses
to create ASTs from parse trees. We then describe the novel technique we have
developed to make AST updates incremental.

8.1 Rewriting language

The simple rewriting language we use to create ASTs from parse trees is in the
vein of similar languages such as TXL [5] and Stratego [3]. In essence, it is a
pure functional language which takes parse trees as input and produces ASTs as
output. Each production rule in a grammar can optionally define a single rewrite
rule. AST nodes have a name, and zero or more unordered, explicitly named,
children. The AST is, in effect, dynamically typed and implicitly defined by the
rewrite rules.3

An elided example from the Python grammar is as follows:

1 print_stmt ::= PRINT {Print(stmts=[])}
2 | PRINT stmt_loop {Print(stmts=#1)}
3

4 stmt_loop ::= stmt_loop stmt {#0 + [#1]}
5 | stmt {[#0]}
6

7 stmt ::= expr {#0}
8 | ...
9

10 expr ::= VAR {Var(name=#0)}
11 | ...

AST constructors are akin to function calls. Expressions of the form #n take the
nth child from the non-terminal that results from a grammar’s production rule.
Referencing a token uses it as-is in the AST (e.g. line 10); referencing a non-
terminal uses the AST sub-tree that the non-terminal points to. For example,
Var(name=#0) means “create an AST element named Var with an edge name

which points to a VAR token” and Print(stmts=#1) means “create an AST
element named Print with an edge stmts which points to the AST constructed
from the stmt loop production rule”. A common idiom is to flatten a recursive
rule (forced on the grammar author by the very nature of LR grammars) into a
list of elements (lines 4 and 5). Note that a rewrite rule can produce more than
one AST node (e.g. line 1 produces both a Print node and an empty list node).

8.2 Incremental ASTs

All previous approaches of which we are aware either batch create ASTs from
parse trees or use attribute grammars to perform calculations as parsing is per-

3 This is not an important design decision; the AST could be statically typed.

¶ ·

¸ ¹

Fig. 8: Incremental AST construction, with the parse tree shown in black and the
AST in green. Subtrees that have been reused are in grey / light green. ¶ After
typing the input x, the incremental parser creates this parse tree fragment. ·
After the expr non-terminal is created, the rewrite language is run on it creating
an ast reference to an AST node Var. ¸ After changing the input to print x,
the incremental parser starts to update the parse tree and the associated AST
as shown in this in-process fragment. The stmt production’s rewrite rule simply
references whatever AST node its child produces, so stmt’s ast reference is the
existing Var node. stmt loop however wraps its contents in a list (the green
circle). ¹ The final parse tree and AST. The print production rule creates a
Print AST element with a child stmts which is a list containing a Var node.

formed (e.g. [2]). In this subsection, we explain how Wagner’s incremental parser
can be easily extended to incrementally create ASTs.

Our mechanism adds a new attribute ast to non-terminals in the parse tree.
Every ast attribute references a corresponding AST node. The AST in turn
uses direct references to tokens in the parse tree. In other words, the AST is a
separate tree from the parse tree, except that it shares tokens directly with the
parse tree. Sharing tokens between the parse tree and the AST is the key to our
approach since it means that changes to a token’s value automatically update
the AST without further calculation. Altering the incremental parser to detect
changes to tokens would be far more complex.

In all other cases, we rely on a simple modification to the incremental parser.
Non-terminals are created by the parser when it reduces one or more elements
from its stack. Every altered subtree is guaranteed to be reparsed and, since
non-terminals are immutable, changed subtrees will lead to fresh non-terminals
being created. We therefore add to the parser’s reduction step an execution of
the corresponding production rule’s rewrite rule; the result of that execution
then forms the ast reference of the newly created non-terminal. We then rely
on two properties that hold between the parse tree and AST trees. First, the
AST only consists of nodes that were created from the parse tree (i.e. we do not
have to worry about disconnected trees within the AST). Second, the rewrite
language cannot create references from child to parent nodes in the AST. With
these two properties, we can then guarantee that the AST is always correct with
respect to the parse tree, since the incremental parser itself updates the AST at
the same time as the parse tree. Figure 8 shows this process in action.

This approach is easy to implement and also inherits Wagner’s optimality
guarantees: it is guaranteed that we update only the minimal number of nodes
necessary to ensure the parse tree and AST are in sync.

9 Other features

9.1 Scoping rules

Modern IDEs calculate the available variable names in a source file for code
completion, and highlight references to undefined names. We have implemented
(a subset of) the NBL approach [15] which defines a declarative language for
specifying such scoping rules. This runs over the AST created by Section 8.
References to undefined variables are highlighted with standard red squiggles.
Users can request code completion on partially completed names by pressing
Ctrl + Space . Code completion is semi-intelligent: it uses NBL rules to only
show the names visible to a given scope (e.g. variables from different methods
do not ‘bleed’ into each other). We needed to make no changes to the core of Eco
to make this work. We suspect that other analyses which only require a simple
AST will be equally easy to implement.

9.2 Non-textual languages

Although this paper’s main focus has been on textual languages, language boxes
liberate us from only considering textual languages. As a simple example of this,
the HTML language we defined earlier can use language boxes of type Image.
Image language boxes reference a file on disk. When an HTML file is saved out,
they are serialised as normal text. However, the actual image can be viewed in
Eco as shown in Figure 9. Users can move between text and image rendering of
such language boxes by double-clicking on them. The renderer correctly handles
lines of changing heights using the techniques outlined in Section 6.3.

As this simple example may suggest, Eco is in some senses closer to a
syntactically-aware word processor than it is a normal text editor. Although

Fig. 9: An example of a non-textual language in Eco.

we have not explored non-textual languages in great detail yet, it is easy to
imagine appropriate editors for such languages being embedded in Eco (e.g. an
image editor; or a mathematical formula editor).

10 Conclusions

In this paper we presented a new approach to editing composed programs, which
preserves the ‘feel’ of normal text editors, while having the power of syntax
directed editors. The core of our approach is a traditional incremental parser
which we extended with the novel notion of language boxes. We showed how an
incremental parser can naturally incrementally create ASTs, allowing us to build
on modern IDE features such as name binding analysis. All this is embodied in
a prototype editor Eco, which readers can download and experiment with.

We divide possible future work into two classes. First are ‘engineering issues’.
For example, the incremental parser stops rewriting the tree after the first syn-
tactic error, which can make editing awkward. Various solutions (e.g. [25,11])
have been proposed, and we intend evaluating and adjusting these as neces-
sary. Second are ‘exploration issues’. For example, we would like to embed very
different types of editors (e.g. spreadsheets) and integrate them into the Eco
philosophy. It is for the most part unclear how this might best be done.

Acknowledgements: This research was funded by Oracle Labs. Edd Bar-
rett, Carl Friedrich Bolz, Darya Kurilova, and Samuele Pedroni gave insightful
comments on early drafts. Michael Van De Vanter gave invaluable advice on
editor technologies.

References

1. Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Unipycation: A case study
in cross-language tracing. In VMIL, pages 31–40, Oct 2013.

2. Marat Boshernitsan. Harmonia: A flexible framework for constructing interac-
tive language-based programming tools. Master’s thesis, University of California,
Berkeley, Jun 2001.

3. Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strat-
ego/XT 0.17. A language and toolset for program transformation. Science of Com-
puter Programming, 72(1–2):52 – 70, 2008.

4. David G. Cantor. On the ambiguity problem of backus systems. J. ACM, 9(4):477–
479, Oct 1962.

5. James R. Cordy. The TXL source transformation language. Science of Computer
Programming, 61(3):190 – 210, 2006.

6. Lukas Diekmann and Laurence Tratt. Parsing composed grammars with language
boxes. In Workshop on Scalable Language Specifications, Jun 2013.

7. Manuel Vilares Ferro and Bernard A Dion. Efficient incremental parsing for
context-free languages. In International Conference on Computer Languages, pages
241–252, 1994.

8. Bryan Ford. Parsing expression grammars: a recognition-based syntactic founda-
tion. In POPL, pages 111–122, Jan 2004.

9. Carlo Ghezzi and Dino Mandrioli. Incremental parsing. ACM Transactions on
Programming Languages and Systems (TOPLAS), 1(1):58–70, 1979.

10. Michael A Harrison and Vance Maverick. Presentation by tree transformation. In
Compcon, pages 68–73, Sep 1997.

11. Fahimeh Jalili and Jean H Gallier. Building friendly parsers. In POPL, pages
196–206, Jan 1982.

12. Lennart C.L. Kats and Eelco Visser. The Spoofax language workbench: Rules for
declarative specification of languages and IDEs. In OOPSLA, pages 444–463, Oct
2010.

13. Amir Ali Khwaja and Joseph E. Urban. Syntax-directed editing environments:
Issues and features. In SAC, pages 230–237, Feb 1993.

14. Donald Knuth. On the translation of languages from left to right. Information
and Control, 8(6):607–639, Dec 1965.

15. Gabriël Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser. Declarative
name binding and scope rules. In SLE, pages 311–331. Oct 2013.

16. Warren X Li. A new approach to incremental LR parsing. J. Prog. Lang., 5(1):173–
188, 1997.

17. Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, Oct 1966.
18. Vaclav Pech, Alex Shatalin, and Markus Voelter. JetBrains MPS as a tool for

extending Java. In PPPJ, pages 165–168, Sep 2013.
19. Lukas Renggli, Marcus Denker, and Oscar Nierstrasz. Language boxes. In SLE,

pages 274–293, Oct 2009.
20. D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of programming

languages. SIGPLAN Not., 24(7):170–178, Jun 1989.
21. August Schwerdfeger and Eric Van Wyk. Verifiable composition of deterministic

grammars. In PLDI, Jun 2009.
22. Tim Teitelbaum and Thomas Reps. The Cornell program synthesizer: a syntax-

directed programming environment. Commun. ACM, 24(9):563–573, Sep 1981.
23. Naveneetha Vasudevan and Laurence Tratt. Detecting ambiguity in programming

language grammars. In SLE, pages 157–176, Oct 2013.
24. Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, University

of Amsterdam, Sep 1997.
25. Tim A. Wagner. Practical Algorithms for Incremental Software Development En-

vironments. PhD thesis, University of California, Berkeley, Mar 1998.

	Eco: A Language Composition Editor

