
Response to topical editor and referees: Miniaturised visible

and near-infrared spectrometers for assessing soil health

indicators in mine site rehabilitation by Shen et al.

We thank the topical editor and referees for reviewing our manuscript and for

contributing to the public discussion. Below we provide our responses indicating the

changes we made in the revision, in separate sections for each reviewer and (in blue

text, preceded by Authors:).

Topical Editor: Comments to the author

Please, provide an improved version of the manuscript following all the critics and

comments of reviewers, in line with your responses, to better assess the suitability for

publication. Reviewers have been highly critical of the manuscript.

Authors: We have revised the manuscript according to the comments made in

the open discussion with the referees. In the public discussion, we uploaded our

author comments, which address, point-by-point, all of the reviewer’s comments and

criticisms. When we thought that a comment was unfair or inaccurate, or when we

disagreed with it, we explained why and provided reason, justification, and where

possible, evidence for our argument. For all other comments and criticism, we

proposed how we might revise. In our responses here, we do not repeat points that

we have already addressed in the public discussion. Here, we only address to the

comments, suggestions and criticisms that we proposed to revise.

Referee 1

We addressed the most critical comments from referee 1 in the public discussion.

Below, we address comments that relate directly to our revision. They can be

summarised as follows: (1) emphasise the research gap, originality and clarify aims,

(2) improve description of the sampling and experimental design, (3) provide a

rationale for using the different algorithms for the modelling, (4) enrich the discussion
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by describing the limitations of the predictive models, (5) improve overall readability

of the manuscript. Below we describe the revisions made.

Research gap, aims and originality

Authors: We improved the Introduction to clarify and highlight the research gap as

follows (P3 L84): “As a result, there is growing interest in using miniaturised

spectrometers for characterising soil properties (Tang et al., 2020; Ng et al., 2020;

Sharififar et al., 2019). They provide a unique opportunity to develop a portable and

cost-efficient soil health diagnostic capacity for mine site rehabilitation. However,

these spectrometers have narrower spectral ranges and lower resolutions than

portable or research-grade spectrometers, which are more commonly used to model

various soil properties (Stenberg et al., 2010; Soriano-Disla et al., 2014). A narrower

spectral range and reduced spectral resolution might detriment a miniaturised

spectrometer’s capacity for estimating soil properties and developing a cost-effective

soil health diagnostic solution. Therefore, we must thoroughly assess these

spectrometers, the repeatability of their measurements and their capacity to

accurately estimate a wide range of soil physical, chemical, and biological properties

deemed to be indicators of soil health. We have not found any published reports on

such assessments in the literature.”

We revised the last paragraph in the Introduction to more clearly state our aims,

as follows (P4 L93): “Thus the objective of our study was to assess various

commercially available miniaturised visible and NIR spectrometers (both

independently and in combination) and one portable research-grade spectrometer for

the capacity to estimate a wide range of soil chemical, physical and biological

properties typically used to assess soil health in Australian mine site soil

rehabilitation. Specifically, the aims were to:

– evaluate the repeatability of the spectroscopic measurements with each

spectrometer,

– evaluate the modelling of 29 soil physical, chemical, and biological properties
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using the spectra from each spectrometer and combinations of the visible and a NIR

spectrometer with seven statistical and machine learning algorithms,

– quantify the accuracy of the model estimates and the effect of repeatability on

the estimates, and

– derive an overall score for each spectrometer and combinations tested, which

accounts for their accuracy and repeatability.

The many soil properties, spectrometers and the assessment of repeatability and

accuracy from modelling with various algo- rithms provide a comprehensive

evaluation of spectroscopy for mine site soil rehabilitation.”

To further clarify that the aims and scope of our study does not pertain to direct

assessments of soil health, but rather the assessment of spectrometers for their

capacity to estimate soil properties that are indicators of soil health in mine site

rehabilitation, we revised the Discussion as follows (P22 L351): “We used

miniaturised spectrometers to estimate 29 soil physical, chemical, and biological soil

properties. Amongst these, soil organic carbon, K, P, pH, EC, B, Cu, Zn, Mn, Fe, Ca,

Mg, Na, Al, sand, silt, clay, soil respiration (CO 2 ), available N (ammonium and

nitrate) and BD are tier 1 soil health indicators in routine soil testing programs

(Karlen et al., 2019; Bünemann et al., 2018). Although less commonly included in

soil health assessment frameworks, microbial community composition is an

under-utilised yet valuable metric for soil health assessment (Fierer et al., 2021).

Changes in soil microbial communities are associated with processes that are

important for soil health, such as changes in P availability (Hermans et al., 2017), soil

pH (Delgado-Baquerizo et al., 2018), labile organic carbon pools (Ramı́rez et al.,

2020), and soil moisture levels (Isobe et al., 2020). Our aim was not to derive detailed

interpretations of the soil health indicators or an overall soil health index or score.

Instead, we tested 29 soil properties commonly used as key indicators of soil health

and used the spectra from a range of miniaturised and portable spectrometers to

model them. The spectroscopic models accurately estimated 24 out of 29 soil
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properties (Table 5). Therefore, the spectra from the miniaturised spectrometers can

accurately estimate soil properties that are key indicators of soil health. These

estimates can could then inform the assessment and diagnosis of soil health. These

findings suggest using miniaturised spectrometers to develop a cost-effective soil

health diagnostic capacity for mine site soil rehabilitation. In a future study, we

might investigate the derivation of soil health index based on the spectra or the

predicted soil properties.”

The originality of our study pertains to (i) the testing of many miniaturised

spectrometers in the context of mine site soil rehabilitation. Other studies consider

mainly agricultural soils (Ng et al., 2020; Sharififar et al., 2019; Tang et al., 2020); (ii)

we extended the assessment to include the visible range and combined miniaturised a

visible spectrometer with the NIR systems because the visible range provides unique

spectral information; (iii) we considered the repeatability of the spectroscopic

measurements and its effect on the models’ estimates of the soil properties; (iv) we

evaluated the inaccuracy (both bias and imprecision) of the model estimates, using

seven statistical and machine learning algorithms, and derived an overall performance

score considering repeatabiliy and accuracy of the estimates. In the Discussion we

summarised the originality as follows (P23 L382): “Some studies have evaluated

miniaturised NIR spectrometers for characterising soil properties (Tang et al., 2020;

Ng et al., 2020; Sharififar et al., 2019) in agricultural and natural environments.

However, our study presents the most comprehensive assessment. We tested a diverse

range of soil properties, considered key indicators of soil health; many spectrometers

(one visible, three NIR, three combinations and a portable spectrometer); a range of

statistical and machine learning algorithms; evaluated the repeatability of the

measurements and their effect on the models’ estimates, and the accuracy of the

models. Our study also extends the application of miniaturise spectrometers for mine

site soil rehabilitation.”

4



Sampling and experimental design

Authors: The soil sampling design aimed to characterise different mining contexts,

commodity types, climates, soil types, and vegetation assemblages, not ‘vertical

spatial variability’. Therefore, we collected stockpiled and undisturbed reference soil

samples from seven mine sites (Table 1), with widely ranging soil property values

(Table 3). Note that vertical variability in the stockpiles is less important because

these are disturbed soils. We have revised Section 2.1 to better explain the rationale

for the sampling design as follows (P5 L112). “We designed the sampling effort to

cover a broad range of mining contexts. We sampled top-layer stockpiled and

undisturbed reference soil samples from seven mines with differing soil types,

climates, vegetation assemblages and commodity.”, and clarified that samples

collected at depth 50–70 cm also correspond to top-layer soils as follows (P6 L118):

“At the youngest stockpile at each mine, five additional samples were taken from the

50–70 cm depth,, which correspond roughly to the top layer of the original soil before

stockpiling.”

To better explain the experimental design, we included a new figure that

summarises the data collection and experiments performed. The flow diagram

provides a high-level description of the study design. See P8 Fig. 2.

Rationale for using different algorithms

Authors: To clarify the use of multiple algorithms in our assessments we have added

text to Section 2.4.1 as follows (P8 L174): “Multivariate modelling is fundamental for

assessing the performance of spectrometers to predict soil properties. This type of

modelling, and particularly machine learning, is largely dependent on the data set

and there is no single ‘best’ method for all contexts and applications. Using a single

algorithm could lead to inaccurate conclusions. To prevent both over- or understating

the capability of these spectrometers, we used seven statistical and machine learning

algorithms that have been reported for soil spectroscopic modelling (Viscarra Rossel
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and Behrens, 2010; Liu et al., 2016; Yang et al., 2022; Song et al., 2021). These were

partial least square regression (PLSR) (Wold et al., 2001), random forest (RF)

(Breiman, 2001), support vector machines (SVM) (Vapnik, 1999), Cubist (Quinlan et

al., 1992) extreme gradient boosting (XGBoost) (Chen et al., 2015), and Gaussian

process regression with linear (GPRL) and polynomial (GPRP) kernels (Rasmussen,

2003). They account for linear responses (PLSR) to more complex, non-linear

responses (e.g. SVM), and the bases of the algorithms are fundamentally differently:

statistical (PLSR), tree-based (cubist, RF, XGBoost), Gaussian process-based (GPRL

and GPRR), and support vector methods (SVM). Viscarra Rossel and Behrens (2010)

described these algorithms and their implementation in soil spectroscopic modelling.”

Limitations of predictive models

Authors: In the revision, we discussed the limitations of deriving soil health using

the estimated soil properties from the predictive models and the accuracy and

repeatability of the sensors as follows (P23 L366):

“Some soil properties (bacterial richness and diversity, P, and Zn and

ammonium-N) could not be well estimated with any of the spectrometers or

combinations (Fig. 5). Therefore, it might be necessary to investigate other methods

to measure them. Although we could estimate 24 soil properties with moderate or

higher accuracy (ρc ≥ 0.65), the estimates are outcomes from empirical models, which

possess error ((Table 5). However, the advantage of the spectroscopic method,

compared to the more accurate conventional analytical measurements, is that

spectroscopy is rapid and cost effective (Li et al., 2022), allowing an order of

magnitude more (spatial and temporal) measurements, which on the whole might

serve to better assess and monitor soil health. Another advantage of spectroscopy is

that a single spectrum can be used to estimate many soil properties. These make soil

spectroscopy well suited for increasingly large-scale soil rehabilitation where large

volumes of observation data are needed but overly expensive and time-consuming to

obtain via conventional soil analysis.”
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“The accuracy of the estimates of electrical conductivity and most of the soil

chemical properties from the A350–830 spectrometer was markedly poorer than the

NIR spectrometers (Fig. 5), indicating that the 350–830 nm range does not hold

sufficient chemical information to produce stable models for estimating those soil

properties. The poor repeatability of the A350–830 spectrometer’s measurements in the

350–500 nm range (Fig. 3) also affected the precision of the spectrometer

combinations (reduced Repeatability score of the combinations in Table 4). With a

more repeatable visible spectrometer, the spectrometer performance score, e, of the

combined spectrometers would improve.”

Overall readability of the manuscript

Authors: In the revision, we provide a new Fig. 2 (P8) to help readers better

understand the experiments that we performed. We also restructured subsection 2.4

Spectroscopic modelling (P7), and section 3 Results (P11) and improved the headings

to help readers better understand the experiments conducted and connect

experiments to corresponding results. We have reorganised the discussion slightly and

included subheadings to better guide readers. Finally, we edited the manuscript

heavily to reduce wordiness, improve grammar and its readability.

Referee 2

We responded to all the comments from referee 2 in the public discussion. Below, we

describe the revisions that we made, which are summarised as follows: (1) better

explain the spectra in Fig. 3 (Fig. 2 in the original manuscript), (2) improve

description of the experimental design, (3) improve explanation of the validation

procedure with 56 samples; (4) define Lin’s concordance correlation, (5) improve the

analysis of prediction errors and emphasise the implications.
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Explanation of spectra in Figure 3

Authors: We re-drew this figure and labelled each column for easier referencing. We

also revised the caption of Fig.3 (P14) to better explain what the figure shows:

“Mean and difference spectra of the spectral replicates of the data from the 56

sampling plots. (a) average reflectance spectra of the two replicates (Fig. 2). (b)

difference between the two replicates calculated using Equation (1). (c) combined

average reflectance spectra from (a).”

Experimental design

Authors: We revised the manuscript to improve the clarity of our experimental

design in response to an earlier comment from referee 1. We drew a new figure to

illustrate and explain the experiments with a flow diagram, which also links the

methods to our results (See P8 new Fig. 2). For further explanation please see our

response to referee 1 on sampling and experimental design.

Validation procedure

Authors: Our results are based on both modelling of the 56 data from plots and

modelling on all 280 data from subplots. Except that the modelling on the 280 data

from subplots was performed using a 10-fold-leave-plot-out cross validation and using

only the best algorithm and spectrometers and combinations from modelling of the

56 data. We had shown that the best algorithm and spectrometers performed

similarly on the 56 plot samples and on the 280 subplot samples (original MS, P18

L301). There are two reasons for using the aggregated 56 plot samples rather than all

280 subplot samples for the the spectroscopic modelling: 1) soil samples from a single

plot were fairly similar because they were sampled from a 5 m × 5 m subplots (see

Methods: Sampling Design) ; 2) the eight spectrometers and combinations, seven

algorithms, 29 soil properties and the replicates, and validation with 10-fold cross

validation, meant that the experiments were complex and needed significant

computation. Therefore, for computational efficiency, we opted for using the
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aggregated plot data. Even then we needed to run the experiments on a super

computer (Pawsey, https://pawsey.org.au/) using 100 CPU cores. We revised the

description of the experimental design in Section 2.4 as follows (P7 L169): “Given the

large number of soil properties, spectrometers, algorithms, and the assessment of

both spectrometer repeatability and model accuracy, the experiments became

extremely complex and computationally intensive. To improve the computational

efficiency of the study, we aggregated the data from the 280 subplots into 56 plots by

averaging the spectra and soil properties (Fig. 2). Subplot samples were similar and

we assumed that aggregating them would not seriously affect the variability in the

data and the modelling. Conclusions drawn from the results of the 56 plot data were

compared to results from the 280 subplot data, but using only the best spectrometers

and algorithm (see below, subsection ‘Assessment on data from subplots’).”

Lin’s concordance correlation coefficient

Authors: Of course, we did cite the original paper by Lin et al., but in the revision

we now also include the definition of concordance correlation coefficient at its first

occurrence (P9, L207) as follows: “The ρc is a unit invariant coefficient that measures

the difference between the measured and estimated values and their deviation from a

45-degree line of perfect agreement, evaluating both precision and bias. It ranges

from -1 to 1, with 1 denoting perfect agreement.”

Analysis and implications of prediction errors

Authors: Please note we used suitable statistical metrics to evaluate the models and

their estimation errors: the concordance correlation coefficient (ρc), the root mean

squared error (RMSE), mean error (ME), and standard deviation of the error (SDE).

We only used ρc as the main metric for analysing the prediction errors, because ρc is

unit invariant, ranges from -1 to 1, and measures both bias and imprecision, making

the comparison across the 29 soil properties (with different units) possible. We also

assigned levels of accuracy based the ρc values (poor for ρc < 0.65, moderate for 0.65
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≤ ρc < 0.8, substantial for 0.8 ≤ ρc < 0.9, and near-perfect for 0.9≤ ρc < 1.0) and

used them in the assessments (Fig.4, 5, 7 and Table 5). In the revision we further

clarified the usage of ρc as follows (P9 L210): “... The ρc was used as the main metric

for the assessments because it allows the comparison across soil properties with

different units possible.”

The RMSE, ME and SDE are, of course, unit variant, making direct comparisons

between properties impossible. But for a single property, ME measures bias, SDE

measures imprecision, and RMSE measures inaccuracy. The relationship is: RMSE2

= ME2 + SDE2. In the revision we further explained our use of these statistics as

follows (P10 L221): “Because RMSE, ME, and SDE are unit variant, they are not

suitable for comparing errors across soil properties with differing units. They were

used to quantify the overall inaccuracy (RMSE), the bias (ME), and the imprecision

(SDE) of the estimates for each soil property.” We have a table in the manuscript

(Table 5) which shows the RMSE, ME, SDE and ρc for the spectrometers (or

combinations) that had the best overall performance (e). We now explain the overall

results with relation to these metrics, as follows (P19 L317): “The inaccuracy of the

soil property estimates, quantified with the RMSE, was largely due to imprecision

(SDE) and not bias (ME).”
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