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Abstract

We consider non-convex domains where the valuation of a bundle of objects is given by the maxi-

mum valuation of the objects in that bundle. We show that an allocation rule is implementable if and

only if it satisfies a familiar and simple condition called weak monotonicity or 2-cycle monotonicity.
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1 Introduction

An important research area in mechanism design is to provide simple sufficient conditions for imple-

mentability. An allocation rule is implementable if there exists a payment rule such that truth-telling is

a dominant strategy for the agents in the resulting mechanism. Rochet (1987) shows that an allocation

rule is implementable on any domain (of types) if and only if it satisfies k-cycle monotonicity for ev-

ery integer k ≥ 2 (see also Rockafellar (1970)). k-cycle monotonicity requires that for every sequence of

types t1, . . . , tk, if the outcome of an allocation rule is al when an agent i reports his/her type as tl for all

l = 1, . . . , k (where the types of all other agents are fixed), then t1(a1)+ t2(a2)+ · · ·+ tk−1(ak−1)+ tk(ak) ≥

t1(a2) + t2(a3) + · · ·+ tk−1(ak−1) + tk(a1).

Clearly, checking whether an allocation rule satisfies k-cycle monotonicity for all integers k ≥ 2 is a

tedious job. This raises the question whether this condition can be further simplified for specific domains.

∗The authors would like to gratefully acknowledge Debasis Mishra and Rudolf Muller for their insightful comments. This
article is present on a website and can be accessed on http://www.isid.ac.in/˜epu/acegd2015/papers/SouvikRoy.
pdf. This article is not published nor is under publication elsewhere.

1

http://www.isid.ac.in/~epu/acegd2015/papers/SouvikRoy.pdf
http://www.isid.ac.in/~epu/acegd2015/papers/SouvikRoy.pdf


Myerson (1981) shows that in the single object auction set-up 2-cycle monotonicity is necessary and suffi-

cient for implementation (see also Spence (1974), Mirrlees (1976)). Later, Bikhchandani et al. (2006), Saks

and Yu (2005), Ashlagi et al. (2010) establish the same result for finite dimensional convex domains.

One important objective of mechanism design is to characterize mechanisms that maximize the ex-

pected revenue. Myerson (1981) solves this problem for the sale of a single object, however the same is

not solved for the sale of multiple objects (see a recent take on this topic in Manelli and Vincent (2007),

Hart and Nisan (2012), Hart and Reny (2012), and Daskalakis et al. (2017)). As mentioned by Myerson, it

is very important to have a characterization of implementable allocation rules in order to find the revenue

maximizing mechanism. Therefore, it is worth investigating whether 2-cycle monotonicity characterizes

the implementable rules in a domain or not.

In this paper, we consider a particular type of domains called max domains. A max domain is one

where an agent values a bundle of objects by the object in the bundle that is most valuable for him/her. In

other words, objects are perfectly substitutable in this setting. Max domains can be seen as a special case

of a general class of domains called gross substitute domains (Gul and Stacchetti (1999), Danilov et al.

(2003)). These domains occur in both public and private good allocation problems.

Public good allocation problems: Consider the problem of allocating some identical public goods. For

instance, suppose that the social planner has to choose some locations in a city to build up some schools

(or some hospitals or bus-stops, etc). Since an agent will eventually use his/her most convenient location

for the public good, this leads to a max domain.

Private good allocation problems: Consider an auction where ‘similar’ objects, say computers, laptops,

tabs, etc., are to be sold. Suppose that the designer wants to get rid of the objects due to a shortage of

storage space.1 Note that these objects are substitutes, and hence an agent will practically use exactly one

of these (even if he receives more than one). In other words, agents have unit demand, which leads to a

max domain.

The main contribution of this paper is the result that implementability is equivalent to 2-cycle mono-

tonicity in max domains. Max domains are not new to the literature. Vohra (2011) discusses these do-

mains and shows that 2-cycle monotonicity implies 3-cycle monotonicity when there are exactly two

objects. However, to the best of our knowledge, the question whether 2-cycle monotonicity implies cycle

monotonicity for arbitrary number of objects remained open.

Since max domains are connected, it follows from Chung and Olszewski (2007) that revenue equiv-

alence holds on these domains. By means of this fact, one can characterize the set of payments that

implement a 2-cycle monotone allocation rule.

1This is a common scenario in mechanism design (particularly in case of division problems) where free disposal is not as-
sumed.
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The closest papers to ours are Mishra and Roy (2013) and Mishra et al. (2014). Mishra and Roy

(2013) consider a non-convex domain called rich dichotomous domain and show that 3-cycle monotonic-

ity is sufficient for implementability on that domain, but 2-cycle monotonicity is not sufficient. Mishra

et al. (2014) show that 2-cycle monotonicity is sufficient for implementability on multidimensional single-

peaked domains.

The proof technique of this paper is totally new and flexible. It uses the basic structure of the domains–

not any advanced mathematical tool. We find the proof of the same result for convex domains in Bikhchan-

dani et al. (2006) quite technical. The proof technique in Mishra et al. (2014) for single-peaked domains

relies on the fact that valuations of two particular objects can be changed adequately keeping those of the

other objects intact. However, such flexibility is not there in case of max domains. Recently, Kushnir and

Lokutsievskiy (2019) show that 2-cycle monotonicity implies cycle monotonicity on gross-substitute (and

some other) domains. They use Nerve theorem from algebraic topology to show this. Even though a max

domain is a strict subset of a gross-substitute domain, their result or the proof technique (in particular,

the Nerve theorem) does not apply to max domains. In other words, as in the case of Mishra et al. (2014),

their proof technique too uses the full freedom of gross substitute domains which limits its applicability.

1.1 Related literature

In the context of Bayesian implementation with randomization, Jehiel et al. (1999) provide an integral

condition that is required together with 2-cycle monotonicity in order to ensure implementability. Some

other papers which provide technical conditions for implementability in different environments are Jehiel

et al. (1999), Muller et al. (2007), Archer and Kleinberg (2008), Berger et al. (2010), and Carbajal and

Ely (2013), Rahman (2011). The following papers provide spaces where revenue equivalence result in

Myerson (1981) holds: Krishna and Maenner (2001), Milgrom and Segal (2002), Chung and Olszewski

(2007), Heydenreich et al. (2009), Carbajal (2010), Kos and Messner (2013).

2 Model

We consider a set N = {1, . . . , n} of n agents and a set S = {a1, . . . , am} of m objects. The set of alternatives

A is defined as the set of all subsets of S. Thus, there are 2m alternatives. A type is a vector in R2m
that

specifies the utilities of an agent for all alternatives. A domain is a collection of admissible types. An

allocation rule f is a function from Dn to A.

Definition 2.1 (Max Domain). A domainD is called a max domain ifD = {t ∈ R2m
: t(X) = maxa∈X t({a}) ∀X ∈

A}.
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Thus, in a max domain, the utility of an agent from a bundle of objects is given by the maximum utility

of that agent over the objects in that bundle.

Notation. For ease of presentation, we introduce the following notation: τ(X, ti) = {x ∈ X : ti(x) ≥

ti(y) for all y ∈ X} where X ⊆ S and ti ∈ R2m
.

Definition 2.2. An allocation rule f : Dn → A satisfies k-cycle monotonicity for some integer k ≥ 2 if for

all i ∈ N, all t1, t2, . . . , tk ∈ D, and all t−i ∈ Dn−1, we have

k

∑
j=1

tj( f (tj, t−i))− tj( f (tj+1, t−i)) ≥ 0,

where tk+1 ≡ t1.

An allocation rule is said to satisfy weak monotonicity if it satisfies 2-cycle monotonicity.

Definition 2.3. An allocation rule f : Dn → A is implementable (quasi-linear utility environment) if there

exists a payment function p : Dn → R such that for all i ∈ N, all ti, t′i ∈ D, and all t−i ∈ Dn−1

ti ( f (ti, t−i))− p(ti, t−i) ≥ ti
(

f (t′i, t−i)
)
− p(t′i, t−i).

3 Results

In this section we present the main result of this paper. First, we present a theorem due to Rockafellar

(1970) that states that k-cycle monotonicity for all integers k ≥ 2 is necessary and sufficient for imple-

mentability.

Theorem 3.1. [Rockafellar (1970)] An allocation rule f is implementable if and only if it is k-cycle monotone for

all integers k ≥ 2.

The main result in this paper says that if an allocation function on a max domain satisfies 2-cycle

monotonicity, then it will satisfy k-cycle monotonicity for all integers k ≥ 2. In view of Theorem 3.1, this

implies that 2-cycle monotonicity is necessary and sufficient for implementability in max domains.

Theorem 3.2. Weak monotonicity is sufficient for implementability in max domain.

The proof of the theorem follows from the following lemma.

Lemma 3.1. Let k ≥ 3 be an integer and let D be a max domain. If an allocation rule f : Dn → A satisfies

(k− 1)-cycle monotonicity, then it satisfies k-cycle monotonicity.
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Proof. Suppose not. Then there exists an allocation rule f : Dn → A, k ≥ 3 types t1, . . . , tk ∈ D of an agent

i ∈ N, and a type profile t−i ∈ Dn−1 of all agents except i such that f violates k-cycle monotonicity over

the type profiles (t1, t−i), . . . , (tk, t−i). Let f (tj, t−i) = Aj for all j = 1, . . . , k. To simplify the presentation

of the proof, we assume that tl(A1) = α for all l = 1, . . . , k. Note that this does not affect the logic of our

proof since constant terms can cancel from both sides of the (in)equations that we consider here.

Applying (k− 1)-cycle monotonicity to the types t1, . . . , tk−1 and using the assumption that t1(A1) =

tk−1(A1), we have

t2(A2) + t3(A3) + · · ·+ tk−1(Ak−1) ≥ t1(A2) + t2(A3) + · · ·+ tk−2(Ak−1). (1)

Again, applying (k− 1)-cycle monotonicity to the types t2, . . . , tk, we have

t2(A2) + t3(A3) + · · ·+ tk(Ak) ≥ t2(A3) + · · ·+ tk−1(Ak) + tk(A2). (2)

Since f violates k-cycle monotonicity over the types t1, . . . , tk and t1(A1) = tk(A1) by our assumption, we

have

t2(A2) + t3(A3) + · · ·+ tk(Ak) < t1(A2) + t2(A3) + · · ·+ tk−1(Ak). (3)

Note that if tk(Ak) ≥ tk−1(Ak), then (1) contradicts (3). Moreover, if tk(A2) ≥ t1(A2), then (2) contradicts

(3). Suppose τ(A2, t1) = τ(Ak, tk−1). This means τ(A2, t1) ∈ Ak, and hence we have t1(Ak) ≥ t1(A2).

Similarly, we have tk−1(A2) ≥ tk−1(Ak). Now, applying 2-cycle monotonicity to the types t1 and tk, we

obtain tk(Ak) ≥ t1(Ak). This, along with the fact that t1(Ak) ≥ t1(A2), implies tk(Ak) ≥ t1(A2). Applying

(k− 2)-cycle monotonicity to the types t2, . . . , tk−1, we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) ≥ t2(A3) + . . . + tk−2(Ak−1) + tk−1(A2). (4)

Using the facts that tk−1(A2) ≥ tk−1(Ak) and tk(Ak) ≥ t1(A2) in (4), we have

t2(A2) + t3(A3) + · · ·+ tk−1(Ak−1) + tk(Ak) ≥ t1(A2) + t2(A3) + · · ·+ tk−1(Ak),

which violates (3). Note that if k = 3, then we do not need (4) to arrive at this contradiction.

Now, we consider the case where the following conditions are satisfied. Note that this is the only

remaining case.

tk−1(Ak) > tk(Ak), (5)

t1(A2) > tk(A2), and (6)
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τ(A2, t1) 6= τ(Ak, tk−1). (7)

Take b, c ∈ S such that b 6= c, b ∈ τ(A2, t1) and c ∈ τ(Ak, tk−1). Note that such a choice is possible by

assumption (7). Consider the type tk+1 such that

tk+1({b}) = t1({b})− ε,

tk+1({c}) = tk(Ak) + ε, and

tk+1({x}) = tk({x}) for all x ∈ S \ {b, c}

where ε > 0 is arbitrarily small.

To help the reader, we illustrate the construction of tk+1 for k = 3 by means of the following example.

The circled numbers in Table 3 indicate the fact that when agent i has the type given in the corresponding

row (where other agents have some fixed types), the outcome is the alternative at the corresponding

column. Here, ε is chosen as 0.3 for t4.

a b c max(ab) max(bc) max(ca) max(abc)

t1 1 3 2 3 3 1 3

t2 5 3 2 5 3 5 5

t3 4 1 2 4 2 4 4

t4 4.3 2.7 2 4.3 2.7 4.3 4.3

Table 1: Construction of tk+1 for k = 3

Claim 3.1. For the type tk+1

tk+1(X) ≥ tk(X) for all X ∈ A. (8)

Proof. By the construction of tk+1, it is enough to show that tk+1({c}) > tk({c}) and tk+1({b}) > tk({b}).

Because c ∈ Ak, we have tk(Ak) ≥ tk({c}), and hence tk+1({c}) = tk(Ak) + ε > tk({c}). Since b ∈

τ(A2, t1), we have t1({b}) = t1(A2). Hence, by (6), we have t1({b}) > tk(A2) ≥ tk({b}). Here, the

last inequality follows from the fact that b ∈ A2. Since ε is arbitrarily small, we obtain tk+1({b}) =

t1({b})− ε > tk({b}), which completes the proof of Claim 3.1.

Claim 3.2. It must be that tk+1(A1) = α.

Proof. Note that by the construction of tk+1, tk+1(A1) = tk(A1) = α if b, c 6∈ A1. We first show that b 6∈

τ(A1, tk+1). If b 6∈ A1, then there is nothing to prove. Suppose b ∈ A1. This means either t1(A1) ≥ t1({b})

or t1(A1) > t1({b})− ε = tk+1({b}). Since t1(A1) = tk(A1) = α, Claim 3.1 implies tk+1(A1) ≥ tk(A1) >

tk+1({b}). This proves that b 6∈ τ(A1, tk+1).
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Now, we show c 6∈ τ(A1, tk+1). As before, if c 6∈ A1, then there is nothing to prove. Suppose c ∈ A1.

This means tk−1(A1) ≥ tk−1({c}). Since c ∈ τ(Ak, tk−1), we have tk−1({c}) = tk−1(Ak). This implies

tk−1(A1) ≥ tk−1(Ak). Using (5), this yields tk−1(A1) > tk(Ak). Since ε is arbitrarily small, we have

tk−1(A1) > tk(Ak) + ε = tk+1(c). Moreover, as tk−1(A1) = tk(A1) = α, we have tk(A1) > tk+1(c). Now,

using Claim 3.1, we get tk+1(A1) ≥ tk(A1) > tk+1({c}). This proves c 6∈ τ(A1, tk+1), completing the proof

of Claim 3.2.

We now complete the proof of Lemma 3.1 by showing that f violates (k− 1) or lower cycle monotonic-

ity for every possible outcome at tk+1. Note that for any alternative X ∈ A,

tk+1(X) = tk(X) if b, c 6∈ τ(X, tk+1), and

tk+1(X) ∈ {t1(A2)− ε, tk(Ak) + ε} otherwise.

In what follows, we consider all the above possibilities case by case.

Case 1. Consider an alternative X such that tk+1(X) = tk(X). Suppose f (tk+1, t−i) = X. Note that since

c ∈ Ak, we have tk+1(Ak) ≥ tk+1({c}) = tk(Ak) + ε > tk(Ak), and hence

tk+1(X) + tk(Ak) < tk(X) + tk+1(Ak).

However, this implies that f violates 2-cycle monotonicity over the types tk and tk+1, a contradiction.

Case 2. Consider an alternative X such that tk+1(X) 6= tk(X). Note that then tk+1(X) is either t1(A2)− ε

or tk(Ak) + ε. We distinguish the two cases based on whether t1(A2)− ε 6= tk(Ak) + ε or t1(A2)− ε =

tk(Ak) + ε.

Case 2.1. Suppose t1(A2)− ε 6= tk(Ak) + ε.

Suppose further that tk+1(X) = t1(A2)− ε. This implies b ∈ X. As b ∈ τ(A2, t1), we have t1(X) ≥

t1(A2). Suppose f (tk+1, t−i) = X. Then,

tk+1(X) + t1(A1) < t1(A2) + tk+1(A1) ≤ t1(X) + tk+1(A1),

which implies that f violates 2-cycle monotonicity over t1 and tk+1.

Now, suppose tk+1(X) = tk(Ak) + ε. This means c ∈ X. Applying (k− 1)-cycle monotonicity to the

types t2, . . . , tk−1, tk+1, we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) + tk+1(X) ≥ tk+1(A2) + t2(A3) + . . . + tk−1(X). (9)
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As b ∈ τ(A2, t1), we have tk+1(A2) ≥ tk+1({b}) = t1({b}) − ε = t1(A2) − ε. Moreover, as c ∈ X and

c ∈ τ(Ak, tk−1), we have tk−1(X) ≥ tk−1(c) = tk−1(Ak). Using all these observations in (9), we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) + tk(Ak) + ε ≥ t1(A2)− ε + t2(A3) + . . . + tk−1(Ak).

Since ε is arbitrarily small, this violates (3), a contradiction.

Case 2.2. Suppose that tk+1(X) = t1(A2)− ε = tk(Ak) + ε. This implies either b or c is in X. Hence, by

Case 2.1, we have f (tk+1, t−i) 6= X .

Thus, it follows that f violates (k− 1) or lower cycle monotonicity for every possible outcome at tk+1,

which violates the assumption of Lemma 3.1. This completes the proof of Lemma 3.1. �

Remark 1. (Revenue equivalence). An allocation rule f : Dn → A satisfies revenue equivalence if for all

payment rules p, q that implement f , there exists a constant α ∈ R such that for all t ∈ Dn, p(t) = q(t) + α.

Since max domain is a connected subset of R2m
, it follows from Chung and Olszewski (2007) that the

revenue equivalence property holds in these domains. There are standard methods in the literature to

construct a payment function p for an allocation function f so that p implements f .

4 Conclusion

We have considered a particular type of non-convex domains which we call max domains. These domains

occur in both public and private good settings. We have shown that 2-cycle monotonicity is necessary and

sufficient for implementability in these domains. An important open problem in this area is to explore

the cycle-monotonicity property of domains that are not convex but union of several convex domains.
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