
The (im)possibility of simple
search-to-decision reductions
for approximation problems

Spencer Peters, and

APPROX’23

Optimization Problems

• Any optimization problem comes in
(at least!) two flavors.

• Is search (argmin) harder than
decision (min)?

• In this talk, we’ll consider limited,
black-box access to 𝑓.

• Search: find 𝑥∗ such that

 𝑓 𝑥∗ = min
"∈{%,'}!

𝑓(𝑥)

• Decision: compute

min
"∈{%,'}!

𝑓(𝑥)

• “Weak Decision”: decide if
min

"∈{%,'}!
𝑓(𝑥) ≤ 𝑟

A search-to-decision reduction
• Uses only linearly many MIN

queries (2𝑛).
• In fact, linear time!
• “Instance-wise equivalence”
• Applies directly to many NP-

optimization problems, like
Max-SAT.

*

0… 1…

10… 11...

…

10…1

MIN = 3

MIN = 5 MIN = 3

MIN = 3

MIN = 3

Boolean
constraints 𝜓

𝜓’s with
𝑥! ↦ 0

𝜓’s with
𝑥! ↦ 1

What about approximate Optimization?

• 𝛾-Approximation: find 𝑥:

 𝑓 𝑥 ≤ 𝛾 ⋅ MIN

• 𝛾-Estimation: compute 𝑟:

MIN ≤ 𝑟 ≤ 𝛾 ⋅ MIN

• Is Approximation harder than Estimation?

The “greedy” reduction

*

0… 1…

10… 11...

…

10…1

EST = 3

EST = 5 EST = 4

EST = 20EST = 8

EST = ?

• Let’s say 𝛾 = 2.
• Still linear queries and linear

time J
• What about the

Approximation factor 𝛾) we
achieve?

The “greedy” reduction

*

0… 1…

10… 11...

…

10…1

EST = 1

EST = 2 EST = 2

EST = 4EST = 4

EST = 2"

• What about the
Approximation factor 𝛾) we
achieve?

• 𝛾′ could be as large as 𝛾*!
• Can we do better?

The “greedy” reduction

…

…

…

• 𝑘 branches rather than 2
• Recurse on the leaf with the

minimal estimate
• Depth is roughly 𝑛/ log 𝑘.	
• 𝛾) ≃ 𝛾*/ ,-. /

• Pay in increased number of
queries 𝑞 = 𝑘	𝑛	/ log 𝑘

• In the typical case 𝑘 ≫ 𝑛:
𝛾′ ≃ 𝛾*/ ,-. 0

• Still has applications! [Ste16]
• Question: Is greedy optimal?

Branch-and-bound algorithms

• At a high level, a
generalization of the “greedy”
reduction!

• Practical. (e.g., [MJSE16]).Used
for combinatorial optimization
problems like TSP, MaxCSPs
[BMHW21, Cook16]

• Question: how powerful are
“black-box” branch-and-
bound algorithms?…

…

Our Model
Let ℱ be a class of functions 𝑓: 0, 1 * → ℝ1%.
Let 𝒮 be a class of “estimable” subsets of the domain.
Given an oracle ℎ2: 𝒮 → ℝ1% satisfying min

3
𝑓 ≤ ℎ2 𝑆 ≤ 𝛾 ⋅ min

4
𝑓,

(and no other access to 𝑓!)
how many oracle queries 𝑞 are needed to find 𝑓 𝑥 ≤ 𝛾) min

{%,'}!
𝑓 ?

(with constant probability, in the worst case over 𝑓 and ℎ2 .)
”Black-box branch and bound” model.
• Both weaker and stronger than real-world BB algorithms
• Weaker: only access to 𝑓 through the oracle
• Stronger: have access to a powerful oracle!

Our Results
• For arbitrary 𝑓,	greedy is optimal!
• A tight lower bound for the Traveling Salesperson Problem (TSP).
• A strong lower bound for Max-Constraint Satisfaction Problems.

Class ℱ Queries 𝒮 Rough tradeoff Precise bounds*

Arbitrary Arbitrary 𝛾# ≃ 𝛾"/ %&' (𝛾# = 𝛾
!
ℓ±*(,) ⇒ 𝑂 .ℓ

ℓ
≤ 𝑞 ≤ 𝑂(𝑛 ⋅ .

ℓ

ℓ
)

Traveling
Salesperson

Partial tours 𝛾# ≃ 𝛾𝑛/ log 𝑞 Ω(𝛾 − 1 𝑛/ log 𝑞) ≤ 𝛾# ≤ 𝛾𝑛/ (log(𝑞) − 1)

Max-CSPs Partial assignments 𝛾 ≲ 1 + log(𝑞)/𝑛 No nontrivial reductions, unless
𝑞 ≥ exp(−𝑂 𝛾 − 1 .𝑛)

Useless Oracles

• Idea: Find 𝒟 ∈ Δ(ℱ) such that for every 𝑆, the min of 𝑓 ← 𝒟 over 𝑆 is
overwhelmingly likely to fall in a fixed interval of width 𝛾.

• Then, for 𝑓 ← 𝒟, a 𝛾-estimation oracle ℎ2 is useless! You know in
advance what it’s going to tell you.

• How do we make this intuition formal?

Useless Oracles
• Generalizing the intuition from last slide, any oracle 𝒪 is useless if most of its

answers are predictable!
Useless Oracle Lemma:
• IF predictable:

∃ a fixed function 𝑔, ∀ 𝑥, Pr
𝒪←𝒟

[𝒪 𝑥 = 𝑔(𝑥)] ≥ 1 − 𝑝,

• THEN useless: ∀ oracle algorithms 𝒜 making at most 𝑞 queries,

𝑑89 𝒜𝒪(),𝒜:() ≤ 𝑝𝑞.

Useless Estimators

• Goal: Find 𝒟 ∈ Δ(ℱ) such that for every 𝑆, the min of 𝑓 ← 𝒟 over 𝑆
falls in some interval 𝑧3 , 𝛾𝑧3 with large probability ≥ 1 − 𝑝.

• When it does, can set ℎ2 𝑆 = 𝑔 𝑆 ≔ 𝛾 ⋅ 𝑧3 .
• By the useless oracle lemma, any 𝒜 making ≤ 𝑞 queries satisfies

𝑑89 𝒜;"(),𝒜:() ≤ 𝑝𝑞.

• Since 𝒜: is independent of 𝑓, we’re (almost) done!
• Last step: show no fixed 𝑥∗ independent of 𝑓 does well.

“Greedy” is optimal

• Goal: Find 𝒟 ∈ Δ(ℱ) such that for every 𝑆, the min of 𝑓 ← 𝒟 over 𝑆
falls in some interval 𝑧3 , 𝛾𝑧3 with probability ≥ 1 − 𝑝.

• For each 𝑥, set 𝑓 𝑥 = 𝛾< independently with some probabilities 𝑝<.
• Notice that then the distribution of min

3
𝑓 only depends on 𝑆 .

• Carefully choose rapidly increasing 𝑝< ∝ 2< so that:
• For each 𝑆 , there is an 𝑖 such that
• Very likely to have 𝛾@ ∈ 𝑓(𝑆), but
• Very unlikely to have 𝛾@ AB ∈ 𝑓 𝑆 (or any smaller value)
• So can almost always set ℎC 𝑆 = 𝛾@ independently of 𝑓.

Traveling Salesperson

• Problem: Given a complete undirected graph on 𝑛 nodes along with
edge costs, find a Hamiltonian cycle (complete tour) of (approx.)
minimum weight.

• Model: Queries 𝑆= consist of all tours extending a path p.
• Hard Distribution: For each edge, flip a coin and assign either 𝑐 𝑒 = 1

or 𝑐 𝑒 ≃ 𝛾𝑛/ log 𝑞. Short paths don’t move the needle, and long paths
have concentrated weight.

• Matching (inefficient) algorithm: Query all paths of length ℓ ≃ log 𝑞
and (inefficiently) find the cycle minimizing the sum of path estimates.

Max-Constraint Satisfaction Problems

• Problem: Given constraints from some family on n Boolean variables,
find an assignment that satisfies as many as possible.

• Model: Queries 𝑆> extending a partial assignment 𝑤.
• Hard Distribution: Sample independent constraints consistent with a

random planted assignment.
• Exceptions: “Trivially unsatisfiable” families—queries can leak the

instance 𝑓.

Open Questions

• The most obvious direction is to study more function classes ℱ.
• Average-case results?
• More interestingly, could we make richer models of branch-and-

bound algorithms that still have provable lower bounds?

Thank you!

• Feel free to follow up with me at speters@cs.cornell.edu

References

• [BHMW21]: Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh. Handbook of satisfiability, volume 336. IOS press,
2021.

• [Cook11]: William J. Cook. In pursuit of the traveling salesman.
Princeton University Press, 2011.

• [MJSE16]: David R. Morrison, Sheldon H. Jacobson, Jason J.
Sauppe, and Edward C. Sewell. Branch-and-bound algorithms:
A survey of recent advances in searching, branching, and
pruning. Discrete Optimization, 19:79–102, February 2016.
doi:10.1016/j.disopt.2016.01.005.

• [Ste16]: Noah Stephens-Davidowitz. Search-to-decision
reductions for lattice problems with approximation factors
(slightly) greater than one. In APPROX, 2016

