APPROX’23

The (im)possibility of simple
search-to-decision reductions
for approximation problems

Spencer Peters, and

Optimization Problems

* Any optimization problem comes in
(at least!) two flavors.

* |s search (argmin) harder than
decision (min)?

* |In this talk, we’ll consider limited,
black-box access to f.

e Search: find x™ such that

f(x*) = min f(x)

x€{0,1}"

* Decision: compute

min _f(x)

x€{0,1}"

e “Weak Decision”: decide if

' <
eSO 7

A search-to-decision reduction

* Uses only linearly many MIN
queries (2n).

 In fact, linear time!
* “Instance-wise equivalence”

e Applies directly to many NP-
optimization problems, like
ax-SAT.

MIN =5

Boolean
constraints Y

What about approximate Optimization?

* y-Approximation: find x: * y-Estimation: compute r:

f(x) <y -MIN MIN<r <y -MIN

* |Is Approximation harder than Estimation?

The “greedy” reduction

* Let'ssayy = 2.

e Still linear queries and linear
time ©

e What about the
Approximation factor y' we
achieve?

EST=5 EST=4

EST =20

@ EST="7

The “greedy” reduction

 What about the
Approximation factor y' we

achieve?
EST =2 EST =2
* ¥' could be as large as y™!

e Can we do better?
EST = 4

@ EST = 2™

The “greedy” reduction

e k branches rather than 2

e Recurse on the leaf with the
minimal estimate

* Depth is roughly n/log k.
o]/’ -~ yn/ log k

* Pay in increased number of
queriesq = kn /logk

* In the typical case k > n:
)/, - yn/ log q

e Still has applications! [Ste16]
* Question: Is greedy optimal?

Branch-and-bound algorithms

* At a high level, a
generalization of the “greedy”
reduction!

* Practical. (e.g., [MJSE16]).Used
for combinatorial optimization
problems like TSP, MaxCSPs
[BMHW?21, Cook16]

* Question: how powerful are
“black-box” branch-and-
bound algorithms?

Our Model

Let F be a class of functions f: {0,1}"* - R,.

Let § be a class of “estimable” subsets of the domain.

Given an oracle hs: 8 —» R, satisfying mSinf < hf(S) <vy- gnin f,
(and no other access to f!)

how many oracle queries g are needed to find f(x) <y’ {ronli?lf ?

(with constant probability, in the worst case over f and h¢.)

”Black-box branch and bound” model.
* Both weaker and stronger than real-world BB algorithms
* Weaker: only access to f through the oracle
* Stronger: have access to a powerful oracle!

Our Results

* For arbitrary f, greedy is optimal!
* A tight lower bound for the Traveling Salesperson Problem (TSP).
e A strong lower bound for Max-Constraint Satisfaction Problems.

Arbitrary Arbitrary y' =~ y™/logq y;iO(l) () <qg<0n- _)
Traveling Partial tours Y =yn/logq Q((y —1n/logq) <y’ <yn/(log(q) — 1)
Salesperson

Max-CSPs Partial assignments y S1+ /10g(q)/n No nontrivial reductions, unless

q = exp(—0((y — 1)?n))

Useless Oracles

* Idea: Find D € A(F) such that for every S, the min of f < D over S is
overwhelmingly likely to fall in a fixed interval of width y.

* Then, for f « D, a y-estimation oracle hf is useless! You know in
advance what it’s going to tell you.

* How do we make this intuition formal?

Useless Oracles

* Generalizing the intuition from last slide, any oracle O is useless if most of its
answers are predictable!

Useless Oracle Lemma:
* IF predictable:

3 a fixed function g, V x, OPrD[O(x) =gx)| =1 — p,

* THEN useless: V oracle algorithms <A making at most g queries,

dry(A°(0),A9()) < pq.

Useless Estimators

* Goal: Find D € A(F) such that for every S, the min of f « D over S
falls in some interval | zg, Yz | with large probability > 1 — p.

* When it does, can set he(S) = g(S) = y - zs.

* By the useless oracle lemma, any A making < q queries satisfies

dry (A" (), A9() < pg.

* Since AY is independent of f, we're (almost) done!
* Last step: show no fixed x™ independent of f does well.

“Greedy” is optimal

* Goal: Find D € A(F) such that for every S, the min of f « D over S
falls in some interval | zg, yzs | with probability = 1 — p.

* For each x, set f(x) = ¥' independently with some probabilities p;.
* Notice that then the distribution of mSinf only depends on |S]|.

* Carefully choose rapidly increasing p; < 2! so that:

* For each |S]|, there is an i such that
« Very likely to have y* € £(S), but
* Very unlikely to have y* =2 € £(S) (or any smaller value)
e So can almost always set hf(S) = yi independently of f.

Traveling Salesperson

* Problem: Given a complete undirected graph on n nodes along with
edge costs, find a Hamiltonian cycle (complete tour) of (approx.)
minimum weight.

* Model: Queries §,, consist of all tours extending a path p.

* Hard Distribution: For each edge, flip a coin and assign either c(e) = 1
or c(e) = yn/log q. Short paths don’t move the needle, and long paths
have concentrated weight.

* Matching (inefficient) algorithm: Query all paths of length £ ~ log g
and (inefficiently) find the cycle minimizing the sum of path estimates.

Max-Constraint Satisfaction Problems

* Problem: Given constraints from some family on n Boolean variables,
find an assignment that satisfies as many as possible.

* Model: Queries §,, extending a partial assignment w.

* Hard Distribution: Sample independent constraints consistent with a
random planted assignment.

* Exceptions: “Trivially unsatisfiable” families—queries can leak the
instance f.

Open Questions

* The most obvious direction is to study more function classes F.

* Average-case results?

* More interestingly, could we make richer models of branch-and-
bound algorithms that still have provable lower bounds?

Thank youl!

* Feel free to follow up with me at speters@cs.cornell.edu

References

* [BHMW?21]: Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh. Handbook of satisfiability, volume 336. |OS press,
2021.

« [Cook11]: William J. Cook. In pursuit of the traveling salesman.
Princeton University Press, 2011.

* IMJSE16]: David R. Morrison, Sheldon H. Jacobson, Jason J.
Sauppe, and Edward C. Sewell. Branch-and-bound algorithms:
A survey of recent advances in searching, branching, and
pruning. Discrete Optimization, 19:79-102, February 2016.
doi:10.1016/7.disopt.2016.01.005.

 [Ste16]: Noah Stephens-Davidowitz. Search-to-decision
reductions for lattice problems with approximation factors
(slightly) greater than one. In APPROX, 2016

