
Symbolic Analysis via Semantic Reinterpretation

Junghee Lim1, Akash Lal1, and Thomas Reps1,2

1 University of Wisconsin; Madison, WI; USA.{junghee,akash,reps}@cs.wisc.edu
2 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. The paper presents a novel technique to create implementations of the
basic primitives used in symbolic program analysis:forward symbolic evaluation,
weakest liberal precondition, andsymbolic composition. We used the technique
to create a system in which, for the cost of writing justonespecification—an in-
terpreter for the programming language of interest—one obtains automatically-
generated, mutually-consistent implementations of allthree symbolic-analysis
primitives. This can be carried out even for languages with pointers and address
arithmetic. Our implementation has been used to generate symbolic-analysis prim-
itives for x86 and PowerPC.

1 Introduction

The use of symbolic-reasoning primitives forforward symbolic evaluation, weakest
liberal precondition(WLP), andsymbolic compositionhas experienced a resurgence
in program-analysis tools because of the power that they provide when exploring a
program’s state space. The semantics of such operations areeasy to state; for instance,
if τ(σ, σ′) is a formula that represents the semantics of an instruction, thenWLP(τ, φ)
is ∀σ′.(τ(σ, σ′) ⇒ φ(σ′)). However, this formula uses quantification over states—i.e.,
second-order quantification—whereas SMT solvers, such as Yices and Z3, support only
quantifier-free first-orderlogic. Hence, such a formula cannot be used directly.

For a simple language that has onlyint-valued variables, it is easy to recast mat-
ters in first-order logic. For instance, theWLP of postconditionϕ with respect to an
assignment statementvar = rhs; can be obtained by substitutingrhs for all (free) oc-
currences ofvar in ϕ: ϕ[var← rhs]. For real-world programming languages, however,
the situation is more complicated. For instance, for languages with pointers, Morris’s
rule of substitution [11] requires taking into account all possible aliasing combinations.

The standard approach to implementing each of the symbolic-analysis primitives for
a programming language of interest (which we call thesubjectlanguage) is to create
hand-writtentranslation procedures—one per symbolic-analysis primitive—that con-
vert subject-language commands into appropriate formulas. With this approach, a sys-
tem can contain subtle inconsistency bugs if the different translation procedures adopt
different “views” of the semantics. Such bugs are easy to introduce because each trans-
lation procedure must encode the subject language’s semantics; however, the encodings
for symbolic execution,WLP, and symbolic composition have different flavors.

Our own interest is in analyzing machine code, such as x86 andPowerPC.
Unfortunately, machine-code instruction sets have hundreds of instructions, as well

as other complicating factors, such as the use of separate instructions to set flags
(based on the condition that is tested) and to branch according to the flag val-
ues; the ability to perform address arithmetic and dereference computed addresses;
etc. To appreciate the need for tool support for creating symbolic-analysis prim-
itives for real machine-code languages, consult Section 3.2 of the Intel manual
(http://download.intel.com/design/processor/manuals/253666.pdf), and imagine writ-
ing three separate encodings of each instruction’s semantics to implement symbolic ex-
ecution,WLP, and symbolic composition. Some tools (e.g., [7, 3]) need aninstruction-
set emulator, in which case a fourth encoding of the semantics is also required.

To address these issues, this paper presents a way to automatically obtain mutually-
consistent, correct-by-construction implementations ofsymbolic primitives, bygener-
ating them from a specification of the subject language’s concretesemantics. More pre-
cisely, we present a method to obtain quantifier-free, first-order-logic formulas for (a)
symbolic execution of a single command, (b)WLP with respect to a single command,
and (c) symbolic composition for a class of formulas that express state transformations.
The generated implementations are guaranteed to be mutually consistent, and also to
be consistent with an instruction-set emulator (for concrete execution) that is generated
from the same specification of the subject language’s concrete semantics.

Primitives (a) and (b) immediately extend to compound operations over a given
program path for use in forward and backwards symbolic execution, respectively; see
§6. (The design of client algorithms that use such primitivesto perform state-space
exploration is an orthogonal issue that is outside the scopeof this paper.)

Semantic Reinterpretation. Our approach is based on factoring the concrete seman-
tics of a language into two parts: (i) aclient specification, and (ii) a semanticcore. The
interface to the core consists of certain base types, function types, and operators, and
the client is expressed in terms of this interface. Such an organization permits the core
to be reinterpretedto produce an alternative semantics for the subject language. The
idea of exploiting such a factoring comes from the field of abstract interpretation [4],
where semantic reinterpretation has been proposed as a convenient tool for formulating
abstract interpretations [12, 10] (see§2).

Achievements and Contributions. We used the approach described in the paper to
create a “Yacc-like” tool for generating mutually-consistent, correct-by-construction
implementations of symbolic-analysis primitives for instruction sets (§7). The input
is a specification of an instruction set’s concrete semantics; the output is a triple of
C++ functions that implement the three symbolic-analysis primitives. The tool has
been used to generate such primitives for x86 and PowerPC. Toaccomplish this, we
leveraged an existing tool,TSL [9], as the implementation platform for defining the
necessary reinterpretations. However, we wish to stress that the ideas presented in the
paper are notTSL-specific; other ways of implementing the necessary reinterpretations
are possible (see§2).

The contributions of this paper lie in the insights that wentinto defining the specific
reinterpretations that we use to obtain mutually-consistent, correct-by-construction im-
plementations of the symbolic-analysis primitives, and the discovery thatWLP could
be obtained by using two different reinterpretations working in tandem. The paper’s
other contributions can be summarized as follows:

2

– We present a new application for semantic reinterpretation, namely, to create imple-
mentations of the basic primitives for symbolic reasoning (§4 and§5). In particular,
two key insights allowed us to obtain the primitives forWLP and symbolic compo-
sition. The first insight was that we could apply semantic reinterpretation in a new
context, namely, to the interpretation function of alogic (§4). The second insight
was to define a particular form of state-transformation formula to be a first-class
notion in the logic, which allows such formulas (i) to be reinterpreted, and (ii) to
serve as a replacement domain in various reinterpretations(§4).

– We show how reinterpretation can automatically create aWLP primitive that im-
plements Morris’s rule of substitution for a language with pointers [11] (§4).

– We conducted an experiment on real x86 code using the generated primitives (§7).
For expository purposes, simplified languages are used throughout. Our discussion of
machine code (§3.3 and§5) is based on a greatly simplified fragment of the x86 in-
struction set; however, our implementation (§7) works on code from real x86 programs
compiled from C++ source code, including C++ STL, using Visual Studio.

Organization. §2 presents the basic principles of semantic reinterpretation by means
of an example in which reinterpretation is used to create abstract transformers for ab-
stract interpretation.§3 defines the logic that we use, as well a simple source-code
language (PL) and an idealized machine-code language (MC).§4 discusses how to use
reinterpretation to obtain the three symbolic-analysis primitives for PL. §5 addresses
reinterpretation for MC.§6 explains how other language constructs beyond those found
in PL and MC can be handled.§7 describes our implementation and the experiment
carried out with it.§8 discusses related work. App. A presents correctness proofs.

2 Semantic Reinterpretation for Abstract Interpretation

This section presents the basic principles of semantic reinterpretation in the context of
abstract interpretation. We use a simple language of assignments, and define the con-
crete semantics and an abstract sign-analysis semantics via semantic reinterpretation.

Example 1.[Adapted from [10].] Consider the following fragment of a denotational
semantics, which defines the meaning of assignment statements over variables that hold
signed 32-bitint values (where⊕ denotes exclusive-or):

I ∈ Id E ∈ Expr ::= I | E1 ⊕ E2 | . . .
S ∈ Stmt::= I = E; σ ∈ State= Id→ Int32

E : Expr→ State→ Int32
EJIKσ = σI

EJE1 ⊕ E2Kσ = EJE1Kσ ⊕ EJE2Kσ

I : Stmt→ State→ State
IJI = E;Kσ = σ[I 7→ EJEKσ]

The specification given above can be factored into client andcore specifications by
introducing a domainVal, as well as operatorsxor, lookup, andstore. The client speci-
fication is defined by
xor : Val→ Val→ Val lookup: State→ Id→ Val store: State→ Id→ Val→ State

E : Expr→ State→ Val
EJIKσ = lookupσ I

EJE1 ⊕ E2Kσ = EJE1Kσ xor EJE2Kσ

I : Stmt→ State→ State
IJI = E;Kσ = storeσ I EJEKσ

3

(a)
s1: x = x⊕ y;
s2: y = x⊕ y;
s3: x = x⊕ y;

(b)
t1: ∗px = ∗px⊕ ∗py;
t2: ∗py = ∗px⊕ ∗py;
t3: ∗px = ∗px⊕ ∗py;

Before After

px:

py:

0:

&py

&py

v

px:

py:

0:

&py

v

v

[1] mov eax, [ebp−10]
[2] xor eax, [ebp−14]
[3] mov [ebp−10], eax
[4] mov eax, [ebp−10]
[5] xor eax, [ebp−14]
[6] mov [ebp−14], eax
[7] mov eax, [ebp−10]
[8] xor eax, [ebp−14]
[9] mov [ebp−10], eax

(c) (d)

Fig. 1. (a) Code fragment that swaps twoints; (b) code fragment that swaps twoints
using pointers; (c) possible before and after configurations for code fragment (b): the
swap is unsuccessful due to aliasing; (d) x86 machine code corresponding to (a).

For the concrete (or “standard”) semantics, the semantic core is defined by

v ∈ Valstd = Int32
Statestd = Id→ Val

lookupstd = λσ.λI.σI

storestd = λσ.λI.λv.σ[I 7→ v]
xorstd = λv1.λv2.v1 ⊕ v2

Different abstract interpretations can be defined by using the same client semantics, but
giving a different interpretation of the base types, function types, and operators of the
core. For example, for sign analysis, assuming thatInt32values are represented in two’s
complement, the semantic core is reinterpreted as follows:3

v ∈ Valabs = {neg, zero, pos}>

Stateabs = Id→ Valabs

lookupabs = λσ.λI.σI

storeabs = λσ.λI.λv.σ[I 7→ v]

xorabs = λv1.λv2.

v2

neg zero pos>

neg > neg neg>
v1 zero neg zero pos>

pos neg pos > >
> > > > >

For the code fragment shown in Fig. 1(a), which swaps twoints, sign-analysis reinter-
pretation creates abstract transformers that, given the initial abstract stateσ0 = {x 7→
neg, y 7→ pos}, produce the following abstract states:

σ0 := {x 7→ neg, y 7→ pos}
σ1 := IJs1 : x = x⊕ y;Kσ0 = storeabs σ0 x (neg xorabs pos) = {x 7→ neg, y 7→ pos}
σ2 := IJs2 : y = x⊕ y;Kσ1 = storeabs σ1 y (neg xorabs pos) = {x 7→ neg, y 7→ neg}
σ3 := IJs3 : x = x⊕ y;Kσ2 = storeabs σ2 x (neg xorabs neg) = {x 7→ >, y 7→ neg}.

Semantic Reinterpretation Versus Standard Abstract Interpretation. Semantic
reinterpretation [12, 10] is a form of abstract interpretation [4], but differs from the
way abstract interpretation is normally applied: in standard abstract interpretation, one
reinterprets the constructs of eachsubject language; in contrast, with semantic reinter-
pretation one reinterprets the constructs of themeta-language. Standard abstract inter-
pretation helps in creating semantically soundtools; semantic reinterpretation helps in
creating semantically soundtool generators. In particular, if you haveN subject lan-
guages andM analyses, with semantic reinterpretation you obtainN×M analyzers by
writing justN +M specifications: concrete semantics forN subject languages andM

3 For the two’s-complement representation,pos xorabs neg= neg xorabs pos= negbecause, for
all combinations of values represented byposandneg, the high-order bit of the result is set,
which means that the result is always negative. However,pos xorabs pos= neg xorabs neg= >
because the concrete result could be either0 or positive, andzerot pos= >.

4

reinterpretations. With the standard approach, one must writeN ×M abstract seman-
tics.

Semantic Reinterpretation Versus Translation to a Common Intermediate Rep-
resentation. The mapping of a client specification to the operations of thesemantic
core that one defines in a semantic reinterpretation resembles a translation to a com-
mon intermediate representation (CIR) data structure. Thus, another approach to obtain-
ing “systematic” reinterpretations that are similar to semantic reinterpretations—in that
they apply to multiple subject languages—is to translate subject-language programs to
a CIR, and then create various interpreters that implement different abstract interpreta-
tions of the node types of the CIR data structure. Each interpreter can be applied to (the
translation of) programs in any subject languageL for which one has defined anL-to-
CIR translator. Compared with interpreting objects of a CIRdata type, the advantages
of semantic reinterpretation (i.e., reinterpreting the constructs of themeta-language)
are
1. The presentation of our ideas is simpler because one does not have to introduce an

additional language of trees for representing CIR objects.
2. With semantic reinterpretation, there is no explicit CIRdata structure to be inter-

preted. In essence, semantic reinterpretation removes a level of interpretation, and
hence generated analyzers should run faster.

To some extent, however, the decision to explain our ideas interms of semantic reinter-
pretation is just a matter of presentational style. The goalof the paper isnot to argue
the merits of semantic reinterpretationper se; on the contrary, the goal is to presentpar-
ticular interpretations that yield three desirable symbolic-analysis primitivesfor use in
program-analysis tools. Semantic reinterpretation is used because it allows us to present
our ideas in a concise manner. The ideas introduced in§4 and§5 can be implemented
using semantic reinterpretation—as we did (see§7); alternatively, they can be imple-
mented by defining a suitable CIR datatype and creating appropriate interpretations of
the CIR’s node types—again using ideas similar to those presented in§4 and§5.

3 A Logic and Two Programming Languages

3.1 L: A Quantifier-Free Bit-Vector Logic with Finite Functions

The logicL is quantifier-free first-order bit-vector logic over a vocabulary of constant
symbols (I ∈ Id) and function symbols (F ∈ FuncId). Strictly speaking, we work with
various instantiations ofL, denoted byL[PL] andL[MC], in which the vocabularies of
function symbols are chosen to describe aspects of the values used by, and computations
performed by, the programming languages PL and MC, respectively.

We distinguish the syntactic symbols ofL from their counterparts in PL (§2 and§3.2)
by using boxes aroundL’s symbols.

c ∈ CInt32 = {0, 1, . . .} op2L ∈ BinOpL = { + , - , ⊕ , . . .}

bopL ∈ BoolOpL = { && , || , . . .} ropL ∈ RelOpL = { = , 6= , < , > , . . .}

The rest of the syntax ofL[·] is defined as follows:

5

const : CInt32→ Val
condL : BVal→ Val→ Val→ Val

lookupId : LogicalStruct→ Id→ Val
binopL : BinOpL → (Val× Val→ Val)
relopL : RelOpL → (Val× Val→ BVal)

boolopL : BoolOpL → (BVal× BVal→ BVal)
lookupFuncId: LogicalStruct→ FuncId→ (Val→ Val)

access: (Val→ Val)× Val)→ Val
update : ((Val→ Val)× Val× Val)→ (Val→ Val)

T : Term→ LogicalStruct→ Val
T JcKι = const(c)
T JIKι = lookupIdι I

T JT1 op2L T2Kι = T JT1KιbinopL(op2L) T JT2Kι
T Jite(ϕ, T1, T2)Kι = condL(FJϕKι, T JT1Kι, T JT2Kι)

T JFE(T1)Kι = access(FEJFEKι, T JT1Kι)

F : Formula→ LogicalStruct→ BVal

FJ T Kι = T

FJ F Kι = F

FJT1 ropL T2Kι = T JT1Kι relopL(ropL) T JT2Kι
FJ ¬ ϕ1Kι = ¬FJϕ1Kι

FJϕ1 bopL ϕ2Kι = FJϕ1KιboolopL(bopL)FJϕ2Kι

FE : FuncExpr→ LogicalStruct→ (Val→ Val)
FEJF Kι = lookupFuncIdι F

FEJFE1[T1 7→ T2]Kι = update(FEJFE1Kι, T JT1Kι, T JT2Kι)

U : StructUpdate→ LogicalStruct→ LogicalStruct
UJ({Ii ←↩ Ti}, {Fj ←↩ FEj})Kι = ((ι↑1)[Ii 7→ T JTiKι], (ι↑2)[Fj 7→ FEJFEjKι])

Fig. 2.The factored semantics ofL.

I ∈ Id, T ∈ Term, ϕ ∈ Formula, F ∈ FuncId, FE ∈ FuncExpr, U ∈ StructUpdate

T ::= c | I | T1 op2L T2 | ite(ϕ, T1, T2) | FE(T)

ϕ ::= T | F | T1 ropL T2 | ¬ ϕ1 | ϕ1 bopL ϕ2

FE ::= F | FE1[T1 7→ T2]
U ::= ({Ii ←↩ Ti}, {Fj ←↩ FEj})

A FuncExprof the formFE1[T1 7→ T2] denotes afunction-update expression. An ex-
pression of the form({Ii ←↩ Ti}, {Fj ←↩ FEj}) is called astructure-update expression.
The subscriptsi andj implicitly range over certain index sets, which will be omitted
to reduce clutter. To emphasize thatIi andFj refer to next-state quantities, we some-
times write structure-update expressions with primes:({I ′i ←↩ Ti}, {F ′

j ←↩ FEj}).
{I ′i ←↩ Ti} specifies the updates to the interpretations of the constantsymbols and
{F ′

j ←↩ FEj} specifies the updates to the interpretations of the functionsymbols (see
below). Thus, a structure-update expression({I ′i ←↩ Ti}, {F ′

j ←↩ FEj}) can be thought
of as a kind of restricted2-vocabulary (i.e.,2-state) formula

∧

i(I
′
i = Ti) ∧

∧

j(F
′
j =

FEj). We defineUid to be({I ′ ←↩ I | I ∈ Id}, {F ′ ←↩ F | F ∈ FuncId}).

Semantics ofL. The semantics ofL[·] is defined in terms of alogical structure, which
gives meaning to theId andFuncIdsymbols of the logic’s vocabulary.

ι ∈ LogicalStruct= (Id→ Val)× (FuncId→ (Val→ Val))

(ι↑1) assigns meanings to constant symbols, and(ι↑2) assigns meanings to function
symbols. ((p↑1) and(p↑2) denote the1st and2nd components, respectively, of a pairp.)

The factored semantics ofL is presented in Fig. 2. Motivated by the needs of
later sections, we retain the convention from§2 of working with the domainVal rather
thanInt32. Similarly, we also useBVal rather thanBool. The standard interpretations
of binopL, relopL, andboolopL are as one would expect, e.g.,v1 binopL(⊕) v2 =
v1 xorv2, etc. The standard interpretations forlookupIdstd and lookupFuncIdstd select
from the first and second components, respectively, of aLogicalStruct: lookupIdstdι I =

6

v ∈ Val
l ∈ Loc = Val
σ ∈ State= Store× Env

const : CInt32→ Val
cond : BVal→ Val→ Val→ Val

lookupState: State→ Id→ Val
lookupEnv: State→ Id→ Loc

lookupStore: State→ Loc→ Val
updateStore: State→ Loc→ Val→ State

E : Expr→ State→ Val
EJcKσ = const(c)
EJIKσ = lookupStateσ I
EJ&IKσ = lookupEnvσ I
EJ∗EKσ = lookupStoreσ (EJEKσ)

EJE1 op2E2Kσ = EJE1Kσ binop(op2) EJE2Kσ
EJBE ? E1 : E2Kσ = cond(BJBEKσ, EJE1Kσ, EJE2Kσ)

B : BoolExpr→ State→ BVal
BJTKσ = T

BJFKσ = F

BJE1 ropE2Kσ = EJE1Kσ relop(rop) EJE2Kσ
BJ¬BE1Kσ = ¬BJBE1Kσ

BJBE1 bop BE2Kσ = BJBE1Kσ boolop(bop) BJBE2Kσ

I : Stmt→ State→ State
IJI = E;Kσ = updateStoreσ (lookupEnvσ I) (EJEKσ)
IJ∗I = E;Kσ = updateStoreσ (EJIKσ) (EJEKσ)
IJS1 S2Kσ = IJS2K(IJS1Kσ)

Fig. 3.The factored semantics of PL.

(ι↑1)(I) andlookupFuncIdstdι F = (ι↑2)(F). The standard interpretations foraccess
andupdateselect from, and store to, a map, respectively.

Let U = ({Ii ←↩ Ti}, {Fj ←↩ FEj}). BecauseUJUKι retains fromι the value of
each constantI and functionF for which an update is not defined explicitly inU (i.e.,
I ∈ (Id−{Ii}) andF ∈ (FuncId−{Fj})), as a notational convenience we sometimes
treatU as if it contains an identity update for each such symbol; that is, we say that
(U↑1)I = I for I ∈ (Id− {Ii}), and(U↑2)F = F for F ∈ (FuncId− {Fj}).

3.2 PL : A Simple Source-Level Language

PL is the language from§2, extended with some additional kinds ofint-valued expres-
sions, an address-generation expression, a dereferencingexpression, and an indirect-
assignment statement. Note that arithmetic operations canalso occur inside a deref-
erence expression; i.e., PL allows arithmetic to be performed on addresses (including
bitwise operations on addresses: see Ex. 2).

S ∈ Stmt, E ∈ Expr, BE∈ BoolExpr, I ∈ Id, c ∈ CInt32

c ::= 0 | 1 | ...
S ::= I = E; | ∗I = E; | S1 S2

E ::= c | I | &I | ∗E | E1 op2E2 | BE? E1 : E2

BE ::= T | F | E1 rop E2 | ¬BE1 | BE1 bop BE2

Semantics of PL. The factored semantics of PL is presented in Fig. 3. The semantic
domainLoc stands forlocations(or memory addresses). We identifyLoc with the set
Val of values. A stateσ ∈ Stateis a pair(η, ρ), where, in the standard semantics,
environmentη ∈ Env = Id → Loc maps identifiers to their associated locations and
storeρ ∈ Store= Loc→ Val maps each location to the value that it holds.

The standard interpretations of the operators used in the PLsemantics are

7

const: CInt32→ Val
storereg : State→ register→ Val→ State

lookupreg : State→ register→ Val
storeflag : State→ flagName→ BVal→ State

lookupflag : State→ flagName→ BVal

cond : BVal→ Val→ Val→ Val
storemem : State→ Val→ Val→ State

lookupmem : State→ Val→ Val
storeeip : State→ State
storeeip = λσ.storereg(σ,EIP,RJEIPKσ binop(+) 4)

R : reg→ State→ Val
RJrKσ = lookupreg(σ, r)

K : flagName→ State→ BVal
KJZFKσ = lookupflag(σ,ZF)

O : src operand→ State→ Val
OJIndirect(r, c)Kσ = lookupmem(σ,RJrKσ binop(+) const(c))
OJDirectReg(r)Kσ = RJrKσ
OJImmediate(c)Kσ = const(c)

I : instruction→ State→ State
IJMOV(Indirect(r, c), so)Kσ = storeeip(storemem(σ,RJrKσ binop(+) const(c),OJsoKσ))
IJMOV(DirectReg(r), so)Kσ = storeeip(storereg(σ, r,OJsoKσ))

IJCMP(do, so)Kσ = storeeip(storeflag(σ,ZF,OJdoKσ binop(−)OJsoKσ relop(=) 0))
IJXOR(do:Indirect(r, c), so)Kσ = storeeip(storemem(σ,RJrKσ binop(+) const(c),OJdoKσ binop(⊕)OJsoKσ))
IJXOR(do:DirectReg(r), so)Kσ = storeeip(storereg(σ, r,OJdoKσ binop(⊕)OJsoKσ))

IJJZ(do)Kσ = storereg(σ,EIP, cond(KJZFKσ,RJEIPKσ binop(+) 4,OJdoKσ))

Fig. 4.The factored semantics of MC.

BValstd = BVal
Valstd = Int32
Locstd = Int32

η ∈ Envstd = Id→ Locstd

ρ ∈ Storestd = Locstd→ Valstd

condstd = λb.λv1.λv2. (b ? v1 : v2)
lookupStatestd = λ(η, ρ).λI.ρ(η(I))
lookupEnvstd = λ(η, ρ).λI.η(I)

lookupStorestd = λ(η, ρ).λl.ρ(l)
updateStorestd = λ(η, ρ).λl.λv.(η, ρ[l 7→ v])

3.3 MC: A Simple Machine-Code Language

MC is based on the x86 instruction set, but greatly simplifiedto have just four registers,
one flag, and four instructions.

r ∈ register, do ∈ dst operand, so ∈ src operand, i ∈ instruction

r ::= EAX | EBX | EBP | EIP
flagName::= ZF

do ::= Indirect(r, Val) | DirectReg(r)
so ::= do ∪ Immediate(Val)

instruction::= MOV(do, so) | CMP(do, so) | XOR(do, so) | JZ(do)

Semantics of MC. The factored semantics of MC is presented in Fig. 4. It is similar
to the semantics of PL, although MC exhibits two features notpart of PL: there is an
explicit program counter (EIP), and MC includes the typical feature of machine-code
languages that a branch is split across two instructions (CMP . . . JZ). An MC state
σ ∈ Stateis a triple(mem, reg, flag), wherememis a mapVal → Val, reg is a map
register→ Val, andflag is a mapflagName→ BVal. We assume that each instruction
is 4 bytes long; hence, the execution of aMOV, CMP or XORincrements the program-
counter registerEIP by 4.CMP sets the value ofZF according to the difference of the
values of the two operands;JZ updatesEIP depending on the value of flagZF.

4 Symbolic Analysis for PL via Reinterpretation

A PL state(η, ρ) can be modeled inL[PL] by using a function symbolFρ for storeρ,
and a constant symbolcx ∈ Id for each PL identifierx. (To reduce clutter, we will use
x for such constants instead ofcx.) Givenι ∈ LogicalStruct, the constant symbols and

8

their interpretations inι correspond to environmentη, and the interpretation ofFρ in ι
corresponds to storeρ.

Symbolic Evaluation. A primitive for forward symbolic-evaluation must solve the
following problem:Given the semantic definition of a programming language, together
with a specific statements, create a logical formula that captures the semantics ofs.
The following table illustrates how the semantics of PL statements can be expressed as
L[PL] structure-update expressions:

PL L[PL]

x = 17; (∅, {F ′

ρ ←↩ Fρ[x 7→ 17]})
x = y; (∅, {F ′

ρ ←↩ Fρ[x 7→ Fρ(y)]})
x = ∗q; (∅, {F ′

ρ ←↩ Fρ[x 7→ Fρ(Fρ(q))]})

To create such expressions automatically using semantic reinterpretation, we use for-
mulas of logicL[PL] as a reinterpretation domain for the semantic core of PL. Thebase
types and the state type of the semantic core are reinterpreted as follows (our convention
is to mark each reinterpreted base type, function type, and operator with an overbar):
Val = Term, BVal = Formula, andState= StructUpdate. The operators used in PL’s
meaning functionsE , B, andI are reinterpreted over these domains as follows:

– The arithmetic, bitwise, relational, and logical operators are interpreted as syntactic
constructors ofL[PL] Terms andFormulas, e.g.,binop(⊕) = λT1.λT2.T1 ⊕ T2.

Straightforward simplifications are also performed; e.g.,0 ⊕ a simplifies toa, etc.
Other simplifications that we perform are similar to ones used by others, such as
the preprocessing steps used in decision procedures (e.g.,the ite-lifting and read-
over-write transformations for operations on functions [5]).

– condresiduates anite(·, ·, ·) Termwhen the result cannot be simplified to a single
branch.

The other operations used in the PL semantics are reinterpreted as follows:

lookupState: StructUpdate→ Id→ Term lookupState= λU.λI.((U↑2)Fρ)((U↑1)I)

lookupEnv: StructUpdate→ Id→ Term lookupEnv= λU.λI.(U↑1)I
lookupStore: StructUpdate→ Term→ Term lookupStore= λU.λT.((U↑2)Fρ)(T)

updateStore : StructUpdate→ Term→ Term→ StructUpdate
updateStore= λU.λT1.λT2.((U↑1), (U↑2)[Fρ 7→ ((U↑2)Fρ)[T1 7→ T2]])

By extension, this produces functionsE , B, andI with the following types:

Standard Reinterpreted
E : Expr→ State→ Val E : Expr→ StructUpdate→ Term
B: BoolExpr→ State→ BVal B: BoolExpr→ StructUpdate→ Formula
I: Stmt→ State→ State I: Stmt→ StructUpdate→ StructUpdate

FunctionI translates a statements of PL to a phrase in logicL[PL].

Example 2.The steps of symbolic execution of Fig. 1(b) via semantic reinterpretation,
starting with anStructUpdatethat corresponds to Fig. 1(c) are shown in Fig. 5. The
StructUpdateU4 can be considered to be the 2-vocabulary formulaF ′

ρ = Fρ[0 7→
v][px 7→ py][py 7→ v], which expresses a state change that does not usually perform a
successful swap.

9

U1 = (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ py])

IJ∗px = ∗px ⊕ ∗py;KU1 = (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (EJ∗pxKU1 ⊕ EJ∗pyKU1)])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (py ⊕ py)])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ 0]) = U2

IJ∗py = ∗px ⊕ ∗py;KU2 = (∅, Fρ ←↩ Fρ[0 7→ (EJ∗pxKU2 ⊕ EJ∗pyKU2)][px 7→ py][py 7→ 0])

= (∅, Fρ ←↩ Fρ[0 7→ (0 ⊕ v)][px 7→ py][py 7→ 0])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ 0]) = U3

IJ∗px = ∗px ⊕ ∗py;KU3 = (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (EJ∗pxKU3 ⊕ EJ∗pyKU3)])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (0 ⊕ v)])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ v]) = U4

Fig. 5. Symbolic execution of Fig. 1(b) via semantic reinterpretation, starting with an
StructUpdatethat corresponds to the “Before” column of Fig. 1(c).

WLP. WLP(s, ϕ) characterizes the set of statesσ such that the execution ofs starting
in σ either fails to terminate or results in a stateσ′ such thatϕ(σ′) holds. For a language
that only hasint-valued variables, theWLP of a postcondition (specified by formula
ϕ) with respect to an assignment statementvar = rhs; can be expressed as the formula
obtained by substitutingrhs for all (free) occurrences ofvar in ϕ: ϕ[var← rhs].

For a language with pointer variables, such as PL, syntacticsubstitution is not ade-
quate for findingWLP formulas. For instance, suppose that we are interested in finding
a formula for theWLP of postconditionx = 5 with respect to∗p = e;. It is not correct
merely to perform the substitution(x = 5)[∗p ← e]. That substitution yieldsx = 5,
whereas theWLP depends on the execution context in which∗p = e; is evaluated:

– If p points tox, then theWLP formula should bee = 5.
– If p does not point tox, then theWLP formula should bex = 5.

The desired formula can be expressed informally as((p = &x) ? e : x) = 5.
For a program fragment that involves multiple pointer variables, theWLP formula

may have to take into account all possible aliasing combinations. This is the essence
of Morris’s rule of substitution [11]. One of the most important features of our ap-
proach is its ability to create correct implementations of Morris’s rule of substitution
automatically—and basically for free.

Example 3.In L[PL], such a formula would be expressed as shown below on the right.
(This formula will be created using semantic reinterpretation in Ex. 4.)

Informal L[PL]

Query WLP(∗p = e, x = 5) WLP(∗p = e, Fρ(x) = 5)

Result ((p = &x) ? e : x) = 5 ite(Fρ(p) = x, Fρ(e), Fρ(x)) = 5

To create primitives forWLP and symbolic composition via semantic reinterpreta-
tion, we again useL[·] as a reinterpretation domain; however, there is a trick: in contrast
with what is done to generate symbolic-evaluation primitives, we use theStructUpdate
type ofL[·] to reinterpret the meaning functionsU , FE , F , andT of L[·] itself! By
this means, the “alternative meaning” of aTerm/Formula/FuncExpr/StructUpdateis a
(usually different)Term/Formula/FuncExpr/StructUpdatein which some substitution
and/or simplification has taken place. The general scheme isoutlined in the following
table:

10

Meaning function(s) Type reinterpreted Replacement type Function created
I, E ,B State StructUpdate Symbolic evaluation
F , T LogicalStruct StructUpdate WLP
U ,FE ,F , T LogicalStruct StructUpdate Symbolic composition

In §3.1, we defined the semantics ofL[·] in a form that would make it amenable
to semantic reinterpretation. However, one small point needs adjustment: in§3.1, the
type signatures ofLogicalStruct, lookupFuncId, access, update, andFE include occur-
rences ofVal → Val. This was done to make the types more intuitive; however, for
reinterpretation to work, an additional level of factoringis necessary. In particular, the
occurrences ofVal→ Val need to be replaced byFVal. The standard semantics ofFVal
is Val→ Val; however, for creating symbolic-analysis primitives,FVal is reinterpreted
asFuncExpr.

The reinterpretation used forU , FE , F , andT is similar to what was used for
symbolic execution of PL programs:

– Val = Term, BVal= Formula, FVal = FuncExpr, andLogicalStruct= StructUpdate.
– The arithmetic, bitwise, relational, and logical operators are interpreted as syntactic

Term and Formula constructors ofL (e.g.,binopL(⊕) = λT1.λT2.T1 ⊕ T2)
although straightforward simplifications are also performed.

– condL residuates anite(·, ·, ·) Termwhen the result cannot be simplified to a single
branch.

– lookupIdandlookupFuncIdare resolved immediately, rather than residuated:
• lookupId({Ii ←↩ Ti}, {Fj ←↩ FEj}) Ik = Tk

• lookupFuncId({Ii ←↩ Ti}, {Fj ←↩ FEj}) Fk = FEk.
– accessandupdateare discussed below.

By extension, this produces reinterpreted meaning functionsU , FE , F , andT .
Somewhat surprisingly, we do not need to introduce an explicit operation of sub-

stitution for our logic becausea substitution operation is produced as a by-product
of reinterpretation. In particular, in the standard semantics forL, the return types of
meaning functionT and helper functionlookupIdof the semantic core are bothVal.
However, in the reinterpreted semantics, aVal is a Term—i.e., somethingsymbolic—
which is used in subsequent computations. Thus, whenι ∈ LogicalStructis reinter-
preted asU ∈ StructUpdate, the reinterpretation of formulaϕ via FJϕKU substitutes
Terms found inU intoϕ: FJϕKU callsT JT KU , which may calllookupIdU I; the latter
would return aTermfetched fromU , which would be a subterm of the answer returned
by T JT KU , which in turn would be a subterm of the answer returned byFJϕKU .

To create a formula forWLP via semantic reinterpretation, we make use of both
F , the reinterpreted logic semantics, andI, the reinterpreted programming-language
semantics. TheWLP formula forϕ with respect to statements is obtained by perform-
ing the following computation:

WLP(s, ϕ) = FJϕK(IJsKUid).

For a proof of correctness of this method, see App. A.2.
To understand how pointers are handled during theWLP operation, the key rein-

terpretations to concentrate on are the ones for the operations of the semantic core of
L[PL] that manipulateFVals (i.e., arguments of typeVal→ Val)—in particular,access
andupdate. We wantaccessandupdateto enjoy the following semantic properties:

11

T Jaccess(FE0, T0)Kι = (FEJFE0Kι)(T JT0Kι)

T Jupdate(FE0, T0, T1)Kι = (FEJFE0Kι)[T JT0Kι 7→ T JT1Kι]

Note that these properties require evaluating the results of accessandupdatewith re-
spect to an arbitraryι ∈ LogicalStruct. As mentioned earlier, it is desirable for rein-
terpreted base-type operations to perform simplificationswhenever possible, when they
constructTerms,Formulas,FuncExprs, andStructUpdates. However, because the value
of ι is unknown,accessandupdateoperate in an uncertain environment.

To use semantic reinterpretation to create aWLP primitive that implements Mor-
ris’s rule, simplifications are performed byaccessandupdateaccording to the defini-
tions given below, where≡, 6=, and

.
= denoteequality-as-terms, definite-disequality,

andpossible-equality, respectively.
access(F, k1) = F (k1)

access(FE[k2 7→ d2]), k1) =







d2 if (k1 ≡ k2)
access(FE, k1) if (k1 6= k2)
ite(k1 = k2, d2, access(FE, k1)) if (k1

.
= k2)

update(F, k1, d1) = F [k1 7→ d1]

update(FE[k2 7→ d2], k1, d1) =







FE[k1 7→ d1] if (k1 ≡ k2)

update(FE, k1, d1)[k2 7→ d2] if (k1 6= k2)
FE[k2 7→ d2][k1 7→ d1] if (k1

.
= k2)

(The possible-equality tests, “k1
.
= k2”, are really “otherwise” cases of three-pronged

comparisons.) The possible-equality case foraccessintroducesite terms. As illustrated
in Ex. 4, it is theseite terms that cause the reinterpreted operations to account for pos-
sible aliasing combinations, and thus are the reason that the semantic-reinterpretation
method automatically carries out the actions of Morris’s rule of substitution [11].

Example 4.We now demonstrate how semantic reinterpretation producesthe L[PL]
formula forWLP(∗p = e, x = 5) claimed in Ex. 3.

U := IJ∗p = eKUId

= updateStore(UId, EJpKUId, EJeKUId)

= updateStore(UId, lookupState(UId,p), lookupState(UId,e)

= updateStore(UId, Fρ(p), Fρ(e))
= ((UId↑1), Fρ ←↩ Fρ[Fρ(p) 7→ Fρ(e)])

WLP(∗p = e, Fρ(x) = 5) = FJFρ(x) = 5KU

= T JFρ(x)KU = T J5KU

= access(FEJFρKU, T JxKU) = 5

= access(lookupFuncId(U, Fρ), lookupId(U,x)) = 5
= access(Fρ[Fρ(p) 7→ Fρ(e)],x) = 5
= ite(Fρ(p) = x, Fρ(e), access(Fρ, x)) = 5
= ite(Fρ(p) = x, Fρ(e), Fρ(x)) = 5

Note how the case foraccessthat involves a possible-equality comparison causes anite
term to arise that tests “Fρ(p) = x”. The test determines whether the value ofp is the
address ofx, which is the only aliasing condition that matters for this example.

Symbolic Composition. The goal of symbolic composition is to have a method that,
given two symbolic representations of state changes, computes a symbolic representa-
tion of their composed state change. In our approach, each state change is represented in

12

logic L[·] by anStructUpdate, and the method computes a newStructUpdatethat rep-
resents their composition. To accomplish this,L[·] is used as a reinterpretation domain,
exactly as forWLP. Moreover,U turns out to be exactly the symbolic-composition
function that we seek. In particular,U works as follows:

UJ({Ii ←↩ Ti}, {Fj ←↩ FEj})KU = ((U↑1)[Ii 7→ T JTiKU], (U↑2)[Fj 7→ FEJFEjKU])

Example 5.For the swap-code fragment from Fig. 1(a), we can demonstrate the ability
of U to perform symbolic composition by showing that

IJs1; s2; s3KUid = UJIJs3KUidK(IJs1; s2KUid).
First, consider the left-hand side. It is not hard to show that IJs1; s2; s3KUid = ({x′ ←↩
y,y′ ←↩ x}, ∅). Now consider the right-hand side. LetU1,2 andU3 be

U1,2 = IJs1; s2KUid = ({x′ ←↩ x ⊕ y,y′ ←↩ x}, ∅)

U3 = IJs3KUid = ({x′ ←↩ x ⊕ y,y′ ←↩ y}, ∅).

We want to compute
UJU3KU1,2 = UJ({x′ ←↩ x ⊕ y,y′ ←↩ y}, ∅)KU1,2

= ((U1,2↑1)[x 7→ T Jx ⊕ yKU1,2, y 7→ T JyKU1,2], ∅)

= ((U1,2↑1)[x 7→ ((x ⊕ y) ⊕ x),y 7→ x], ∅)

= ((U1,2↑1)[x 7→ y,y 7→ x], ∅)
= ({x′ ←↩ y,y′ ←↩ x}, ∅)

Therefore,IJs1; s2; s3KUid = UJU3KU1,2.

5 Symbolic Analysis for MC via Reinterpretation

To obtain the three symbolic-analysis primitives for MC, weuse a reinterpretation
of MC’s semantics that is essentially identical to the reinterpretation for PL, modulo
the fact that the semantics of PL is written in terms of the combinatorslookupEnv,
lookupStore, and updateStore, whereas the semantics of MC is written in terms of
lookupreg, storereg, lookupflag, storeflag, lookupmem, andstoremem.

The base types are redefined asBVal = Formula, Val = Term,
State = StructUpdate, where the vocabulary for LogicalStructs is
({ZF,EAX,EBX,EBP,EIP}, {Fmem}). Lookup and store operations for MC, such as
lookupmem andstoremem, are handled the same way thatlookupStoreandupdateStore
are handled for PL.

Example 6.Fig. 1(d) shows the MC code that corresponds to the swap code in Fig. 1(a):
lines 1–3, lines 4–6, and lines 7–9 correspond to lines 1, 2, and 3 of Fig. 1(a), respec-
tively. For the MC code in Fig. 1(d),IMCJswapKUid produces theStructUpdate

(

{EAX′←↩Fmem(EBP - 14)},
{F ′

mem←↩Fmem[EBP - 10 7→ Fmem(EBP - 14)][EBP - 14 7→ Fmem(EBP - 10)]}

)

Fig. 1(d) illustrates why it is essential to be able to handleaddress arithmetic: an access
on a source-level variable is compiled into machine code that dereferences an address
in the stack frame computed from the frame pointer (EBP) and an offset. This example
shows thatIMC is able to handle address arithmetic correctly.

13

[1] void foo(int e, int x, int* p) {
[2] ...
[3] *p = e;
[4] if(x == 5)
[5] goto ERROR;
[6] }

[1] mov eax, p;
[2] mov ebx, e;
[3] mov [eax], ebx;
[4] cmp x, 5;
[5] jz ERROR;
[6] ...
[7] ERROR: ...

(a) (b)
Fig. 6. (a) A simple source-code fragment written in PL; (b) the MC code for (a).

To create a formula for theWLP of ϕ with respect to instructioni via semantic
reinterpretation, we use the reinterpreted MC semanticsIMC, together with the reinter-
pretedL[MC] meaning functionFMC, whereFMC is created via the same approach used
in §4 to reinterpretL[PL].WLP(i, ϕ) is obtained by performingFMCJϕK(IMCJiKUid).

Example 7.Fig. 6(a) shows a source-code fragment; Fig. 6(b) shows the corresponding
MC code. (To simplify the MC code, source-level variable names are used.) In Fig. 6(a),
the largest set of states just before line[3] that cause the branch toERROR to be taken
at line[4] is described byWLP(∗p = e, x = 5). In Fig. 6(b), an expression that char-
acterizes whether the branch toERROR is taken isWLP(s[1]-[5], (EIP = c[7])),
wheres[1]-[5] denotes instructions[1]–[5] of Fig. 6(b), andc[7] is the address of
ERROR. Using semantic reinterpretation,FMCJ(EIP = c[7])K(IJs[1]-[5]KUid) pro-
duces the formula(ite((Fmem(p) = x), Fmem(e), Fmem(x)) - 5) = 0, which, translit-
erated to informal source-level notation, is(((p = &x) ? e : x)− 5) = 0.

Even though the branch is split across two instructions,WLP can be used to re-
cover the branch condition.WLP(cmp x,5; jz ERROR, (EIP = c[7])) returns the
formulaite(((Fmem(x) - 5) = 0), c[7], c[6]) = c[7] as follows:

IJcmp x,5KUid = ({ZF′ ←↩ (Fmem(x) - 5) = 0}, ∅) = U1

IJjz ERRORKU1 = ({EIP′ ←↩ ite(((Fmem(x) - 5) = 0), c[7], c[6])}, ∅) = U2

FMCJEIP = c[7]KU2 = ite(((Fmem(x) - 5) = 0), c[7], c[6]) = c[7]

Becausec[7] 6= c[6], this simplifies to(Fmem(x) - 5) = 0—i.e., in source-level terms,
(x− 5) = 0.

6 Other Language Constructs

Branching. Ex. 7 illustrated aWLP computation across a branch. We now illustrate
forward symbolic execution across a branch.

Suppose that an if-statement is represented byIfStmt(BE, Int32, Int32), whereBE is
the condition and the twoInt32s are the addresses of the true-branch and false-branch,
respectively. Its factored semantics would specify how thevalue of the program counter
PCchanges:

IJIfStmt(BE, cT , cF)Kσ = updateStoreσ PC cond(BJBEKσ, const(cT), const(cF)).

In the reinterpretation for symbolic evaluation, theStructUpdateU obtained by
IJIfStmt(BE, cT , cF)KUid would be({PC′ ←↩ ite(ϕBE, cT , cF)}, ∅), whereϕBE is the
Formulaobtained forBEunder the reinterpreted semantics. To obtain the branch condi-
tion for a specific branch, say the true-branch, we evaluateFJPC = cT KU . The result

14

FormulaObtainPathConstraintFormula(Pathπ) {

Formulaϕ = T ; // Initial path-constraint formula
StructUpdateU = Uid; // Initial symbolic state-transformer
let [PC1 : i1, PC2 : i2, . . . , PCn : in, PCn+1 : skip] = π in
for (k = 1; k ≤ n; k++) {

U = IJikKU ; // Symbolically executeik
if (ik is a branch instruction)

ϕ = ϕ && FJPC = PCk+1KU ; // Conjoin the branch condition forik
}
return ϕ;
}

Fig. 7.An algorithm to obtain a path-constraint formula that characterizes which initial
states must follow pathπ.

is (ite(ϕBE, cT , cF) = cT), which (assuming thatcT 6= cF) simplifies toϕBE. (A sim-
ilar formula simplification was performed in Ex. 7 on the result of theWLP formula.)

Loops. One kind of intended client of our approach to creating symbolic-analysis prim-
itives is hybrid concrete/symbolic state-space exploration [6, 13, 7, 3]. Such tools use a
combination of concrete and symbolic execution to generateinputs that increase cov-
erage. In such tools, a program-level loop is executed concretely a specific number of
times as some pathπ is followed. The symbolic-execution primitive for a singlein-
struction is applied to each instruction ofπ to obtain symbolic states at each point ofπ.
A path-constraint formulathat characterizes which initial states must followπ can be
obtained by collecting the branch formulaϕBE obtained at each branch condition by the
technique described above; the algorithm is shown in Fig. 7.

X86 String Instructions. X86 string instructions can involve actions that perform an
a priori unbounded amount of work (e.g., the amount performed is determined by the
value held in registerECX at the start of the instruction). This can be reduced to the
loop case discussed above by giving a semantics in which the instruction itself is one of
its two successors. In essence, the “microcode loop” is converted into an explicit loop.

Procedures. A call statement’s semantics (i.e., how the state is changedby the call ac-
tion) would be specified with some collection of operations.Again, the reinterpretation
of the state transformer is induced by the reinterpretationof each operation:

– For a call statement in a high-level language, there would bean operation that
creates a new activation record. The reinterpretation of this would generate a fresh
logical constant to represent the location of the new activation record.

– For a call instruction in a machine-code language, registeroperations would change
the stack pointer and frame pointer, and memory operations would initialize fields
of the new activation record. These are reinterpreted in exactly the same way that
register and memory operations are reinterpreted for otherconstructs.

Dynamic Allocation. Two approaches are possible:
– The allocation package is implemented as a library. One can apply our techniques

to the machine code from the library.
– If a formula is desired that is based on a high-level semantics, a call statement that

callsmalloc ornew can be reinterpreted using the kind of approach used in other
systems (a fresh logical constant denoting a new location can be generated).

15

7 Implementation and Evaluation

Implementation. Our implementation uses theTSL system [9]. (TSL stands for
“TransformerSpecificationLanguage”.) TheTSL language is a strongly typed, first-
order functional language with a datatype-definition mechanism for defining recursive
datatypes, plus deconstruction by means of pattern matching. Writing a TSL specifi-
cation for an instruction set is similar to writing an interpreter in first-order ML. For
instance, the meaning functionI of §3.3 is written as aTSL function

state interpInstr(instruction I, state S) {...};

whereinstruction andstate are user-defined datatypes that represent the syn-
tactic objects (in this case, instructions) and the semantic states, respectively.

We usedTSL to (1) define the syntax ofL[·] as a user-defined datatype; (2) create
a reinterpretation based onL[·] formulas; (3) define the semantics ofL[·] by writing
functions that correspond toT ,F , etc.; and (4) apply reinterpretation (2) to the meaning
functions ofL[·] itself. (We already hadTSL specifications of x86 and PowerPC.)

TSL’s meta-language provides a fixed set of base-types; a fixed set of arithmetic,
bitwise, relational, and logical operators; and a facilityfor defining map-types. Each
TSL reinterpretation is defined over themeta-language constructs, by reinterpreting the
TSL base-types, base-type operators, map-types, and map-typeoperators (i.e.,access
andupdate). When semantic reinterpretation is performed in this way,it is independent
of any given subject language. Consequently, now that we have carried out steps (1)–
(4), all three symbolic-analysis primitives can be generated automatically for a new
instruction setIS merely by writing aTSL specification ofIS, and then applying the
TSL compiler. In essence,TSL act as a “Yacc-like” tool for generating symbolic-analysis
primitives from a semantic description of an instruction set.

To illustrate the leverage gained by using the approach presented in this paper, the
following table lists the number of (non-blank) lines of C++that are generated from the
TSL specifications of the x86 and PowerPC instruction sets. The number of (non-blank)
lines ofTSL are indicated in bold.

TSL C++

IJ·K FJ·K ∪ T J·K ∪ FEJ·K ∪ UJ·K IJ·K FJ·K ∪ T J·K ∪ FEJ·K ∪ UJ·K

x86 3,524 1,510 23,109 15,632
PowerPC 1,546 (already written) 12,153 15,632

The C++ code is emitted as a template, which can be instantiated with different inter-
pretations. For instance, instantiations that create C++ implementations ofIx86J·K and
IPowerPCJ·K (i.e., emulators for x86 and PowerPC, respectively) can be obtained triv-
ially. Thus, for a hybrid concrete/symbolic tool for x86, our tool essentially furnishes
23,109 lines of C++ for the concrete-execution component and 23,109 lines of C++ for
the symbolic-execution component. Note that the 1,510 lines of TSL that definesFJ·K,
T J·K, FEJ·K, andUJ·K needs to be written only once.

In addition to the components for concrete and symbolic execution, one also obtains
an implementation ofWLP—via the method described in§4—by calling the C++
implementations ofFJ·K andIJ·K:WLP(s, ϕ) = FJϕK(IJsKUid). By Thm. A2,WLP
is guaranteed to be consistent with the components for concrete and symbolic execution
(modulo bugs in the implementation ofTSL).

16

Evaluation. Some tools that use symbolic reasoning employ formula transformations
that are not faithful to the actual semantics. For instance,SAGE [7] uses an approximate
x86 symbolic execution in which concrete values are used when non-linear operators
or symbolic pointer dereferences are encountered. As a result, its symbolic execution
of a path can produce an “unfaithful” path-constraint formula ϕ; that is,ϕ can be un-
satisfiable when the path is executable, or satisfiable when the path is not executable.
Both situations are called adivergence[7]. Because the intended use of SAGE is to
generate inputs that increase coverage, it can be acceptable for the tool to have a sub-
stantial divergence rate (due to the use of unfaithful symbolic techniques) if the cost of
performing symbolic operations is lowered in most circumstances.

However, if we eventually hope to model check x86 machine code, implementations
of faithful symbolic techniques will be required. Using faithful symbolic techniques
could raise the cost of performing symbolic operations because faithful path-constraint
formulas could end up being a great deal more complex than unfaithful ones. Thus,
our experiment was designed to answer the question “What is the cost of using exact
symbolic-execution primitives instead of unfaithful ones?”

It would have been an error-prone task to implement a faithful symbolic-execution
primitive for x86 machine code manually. UsingTSL, however, we were able to gen-
erate a faithful symbolic-execution primitive from an existing, well-testedTSL specifi-
cation of the semantics of x86 instructions. We also generated an unfaithful symbolic-
execution primitive that adopts SAGE’s approximate approach. We used these to create
two symbolic-execution tools that perform state-space exploration—one that uses the
faithful primitive, and one that uses the unfaithful primitive.

Although the presentation in earlier sections was couched in terms of simplified core
languages, the implemented tools work with real x86 programs. Our experiments used
six C++ programs, each exercising a single algorithm from the C++ STL, compiled
under Visual Studio 2005. We compared the two tools’ divergence rates and running
times (see Tab. 1). On average, the approximate version had5.2X fewer constraints in

Name # |Trace| # Faithful Approximate
(STL) Tests#instrsbranch CE SE SMT |ϕ| Div. C+SESMT |ϕ| Div. Dist.
search 18 770 28 0.26 8.68 0.26 10.5 0% 9.13 0.10 4.8 61% 55%

randomshuffle 48 1831 51 0.59 21.6 0.17 27.3 0% 21.9 0.03 1.0 95% 93%
copy 5 1987 57 0.69 55.0 0.15 5.4 0% 55.8 0.03 1.0 60% 57%

partition 13 2155 76 0.72 26.4 0.43 35.2 0% 27.4 0.02 1.0 92% 58%
max element 101 2870 224 0.94 17.0 3.59 153.0 0% 18.0 2.90 78.483% 6%

transform 11 10880 476 4.22720.8 1.12 220.6 0% 713.6 0.03 1.0 82% 89%

Table 1.Experimental results. We report the number of tests executed, the average length of the
trace obtained from the tests, and the average number of branches in the traces. For the faithful
version, we report the average time taken for concrete (CE) and symbolic executions (SE). In
the approximate version, these were done in lock step and their total time is reported in (C+SE).
(All times are in seconds.) For each version, we also report the average time taken by the SMT
solver (Yices), the average number of constraints found (|ϕ|), and the divergence rate. For the
approximate version, we also show the average distance (in %of the total length of the trace)
before a diverging test diverged.

17

ϕ, had a79% divergence rate, and was about2X faster than the faithful version; the
faithful version reported no divergences.

8 Related Work

Symbolic analysis is used in many recent systems for testingand verification:
– Hybrid concrete/symbolic tools [6, 13, 7, 3] use a combination of concrete and sym-

bolic execution to generate inputs that increase coverage.
– WLP can be used to create new predicates that split part of a program’s abstract

state space [1, 2].
– Symbolic composition is useful when a tool has access to a formula that summa-

rizes a called procedure’s behavior [14]; re-exploration of the procedure is avoided
by symbolically composing a path formula with the procedure-summary formula.

However, compared with the way such symbolic-analysis primitives are implemented
in existing program-analysis tools, our work has one key advantage: it creates the core
concrete-execution and symbolic-analysis components in away that ensures by con-
struction that they aremutually consistent. We are not aware of existing tools in which
the concrete-execution and symbolic-analysis primitivesare implemented in a way that
guarantees such a consistency property. For instance, in the source code for B2 [8] (the
next-generation Blast), one finds symbolic execution (post) andWLP implemented
with different pieces of code, and hence mutual consistencyis not guaranteed.WLP is
implemented via substitution, with special-case code for handling pointers.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate abstraction of C
programs. InPLDI, 2001.

2. N. Beckman, A. Nori, S. Rajamani, and R. Simmons. Proofs from tests. InISSTA, 2008.
3. D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. Poosankam, D. Song, and H. Yin. Au-

tomatically identifying trigger-based behavior in malware. InBotnet Analysis and Defense.
Springer, 2008.

4. P. Cousot and R. Cousot. Abstract interpretation. InPOPL, 1977.
5. V. Ganesh and D. Dill. A decision procesure for bit-vectors and arrays. InCAV, 2007.
6. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. InPLDI,

2005.
7. P. Godefroid, M. Levin, and D. Molnar. Automated whiteboxfuzz testing. InNDSS, 2008.
8. R. Jhala and R. Majumdar. B2: Software model checking for C, 2009.

www.cs.ucla.edu/∼rupak/b2/.
9. J. Lim and T. Reps. A system for generating static analyzers for machine instructions. In

CC, 2008.
10. K. Malmkjær.Abstract Interpretation of Partial-Evaluation Algorithms. PhD thesis, Dept.

of Comp. and Inf. Sci., Kansas State Univ., 1993.
11. J. Morris. A general axiom of assignment. In M. Broy and G.Schmidt, editors,Theor. Found.

of Program. Methodology. Reidel, 1982.
12. A. Mycroft and N. Jones. A relational framework for abstract interpretation. InPADO, 1985.
13. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. InFSE,

2005.
14. Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using Boolean satis-

fiability. TOPLAS, 29(3), 2007.

18

A Appendix

In this section, we give correctness proofs for our generated primitives for symbolic
execution,WLP , and symbolic composition. These apply to the language PL (§3.2)
and reinterpretation given in§4; the proofs for MC differ only slightly.

As a notational convenience, we do not distinguish between aState and a
LogicalStruct. A LogicalStructι corresponds to theState: ((ι↑1), (ι↑2)Fρ). Because,
for PL, logical structures only contain the single functionFρ, there is a one-to-one cor-
respondence with states. Hence, whenever necessary (e.g. in the applications ofEJ.K,
BJ.K, andIJ.K), we assume that that aLogicalStructι is coerced to((ι↑1), (ι↑2)Fρ).

A.1 Correctness of the Symbolic-Execution MethodI

Lemma 1 (Relationship ofE to E andB to B).

(1) T JEJEKU Kι = EJEK(UJUKι)
(2) FJBJBEKUKι = BJBEK(UJUKι)

Proof. The two lemmas are simultaneously proved using structural induction onE and
BE, as shown below. LetU be({Ii ←↩ Ti}, {Fj ←↩ FEj}).

Note that the standard interpretations ofbinop, relop, and boolop coincide
with those of binopL, relopL, and boolopL. Thus, reasoning steps of the form
binopL(op2L) ; binop(op2) are shorthands for reasoning about each case, such as
binopL(+) ; binop(+), etc.

(1) (i)
T JEJcKU Kι = T Jconst(c)Kι = T JcKι = const(c) = EJcK(UJUKι)

(ii)

lhs : T JEJIKUKι = T JlookupStateU IKι = T J((U↑2)Fρ)((U↑1)I)Kι
rhs : EJIK(UJUKι)

= EJIK((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJ(U↑2)FjKι)
= lookupState((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJ(U↑2)FjKι)I
= ((ι↑2)[Fj 7→ FEJ(U↑2)FjKι) (T J(U↑1)IKι)
= (FEJ(U↑2)FρKι) (T J(U↑1)IKι)
= access(FEJ(U↑2)FρKι, T J(U↑1)IKι)
= T J((U↑2)Fρ)((U↑1)I)Kι

(iii)
lhs : T JEJ&IKUKι = T JlookupEnvU IKι = T J(U↑1)IKι
rhs : EJ&IK(UJUKι)

= EJ&IK((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJ(U↑2)FjKι)
= lookupEnv((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJ(U↑2)FjKι)I
= T J(U↑1)IKι

19

(iv)
lhs : T JEJ∗EKUKι = T JlookupStoreU (EJEKU)Kι = T J((U↑2)Fρ)(EJEKU)Kι
rhs : EJ∗EK(UJUKι)

= EJ∗EK((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJ(U↑2)FjKι)
= lookupStore((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJ(U↑2)FjKι)(EJEK(UJUKι))
= (FEJ(U↑2)FρKι) (EJEK(UJUKι))
= (FEJ(U↑2)FρKι) (T JEJEKU Kι) // by ind. via(1)
= access(FEJ(U↑2)FρKι, T JEJEKU Kι)
= T J((U↑2)Fρ)(EJEKU)Kι

(v) T JEJE1op2E2KUKι
= T JEJE1KU op2L EJE2KU Kι
= T JEJE1KUKι binopL(op2L) T JEJE2KU Kι
= EJE1K(UJUKι) binop(op2) EJE2K(UJUKι) // by ind. via(1)
= EJE1 op2E2K(UJUKι)
(vi) T JEJBE? E1 : E2KUKι
= T Jite(BJBEKU, EJE1KU, EJE2KU)Kι
= condL(FJBJBEKUKι, T JEJE1KUKι, T JEJE2KUKι)
= FJBJBEKUKι ? T JEJE1KUKι : T JEJE2KU Kι
= BJBEK(UJUKι) ? EJE1K(UJUKι) : EJE2K(UJUKι) // by ind. via(1) and(2)
= EJBE ? E1 : E2K(UJUKι)
(2) (i) FJBJTKU Kι = FJTKι = T = BJTK(UJUKι)

(ii) FJBJFKUKι = FJFKι = F = BJFK(UJUKι)

(iii) FJBJE1 ropE2KUKι
= FJEJE1KU ropL EJE2KUKι
= T JEJE1KUKι relopL(ropL) T JEJE2KUKι
= EJE1K(UJUKι) relop(rop) EJE2K(UJUKι) // by ind. via(1)
= BJE1 ropE2K(UJUKι)

(iv) FJBJ¬BE1KUKι = FJ ¬ BJBE1KUKι = ¬FJBJBE1KUKι
= ¬BJBE1K(UJUKι) // by ind. via(2)
= BJ¬BE1K(UJUKι)

(v) FJBJBE1 bop BE2KU Kι
= FJBJBE1KU bopL BJBE2KUKι
= FJBJBE1KU Kι boolopL(bopL) FJBJBE2KUKι
= BJBE1K(UJUKι) boolop(bop) BJBE2K(UJUKι) // by ind. via(2)
= BJBE1 bop BE2K(UJUKι)

Theorem A1 For all ι ∈ LogicalStruct, evaluatingUJIJsKU Kι is equivalent to running
I ons with an input state obtained fromUJUKι; that is,

UJIJsKUKι = IJsK(UJUKι).

20

Proof.

(i) UJIJI = E;KUKι
= UJupdateStoreU (lookupEnvU I) (EJEKU)Kι
= UJupdateStoreU ((U↑1)I) (EJEKU)Kι
= UJ((U↑1), (U↑2)[Fρ 7→ ((U↑2)Fρ)[(U↑1)I 7→ EJEKU]])Kι
= ((UJUKι↑1), (UJUKι↑2)[T J(UJUKι)IK 7→ T JEJEK(UJUKι)]K)
= ((UJUKι↑1), (UJUKι↑2)[(UJUKι↑1)I 7→ EJEK(UJUKι)]) // by Lem. 1(1)
= updateStore(UJUKι) (lookupEnv(UJUKι) I) (EJEK(UJUKι))
= IJI = E;K(UJUKι)

(ii) UJIJ∗I = E;KUKι
= UJupdateStoreU (EJIKU) (EJEKU)Kι
= UJ((U↑1), (U↑2)[Fρ 7→ ((U↑2)Fρ)[EJIKU 7→ EJEKU]])Kι
= ((UJUKι↑1), (UJUKι↑2)[T JEJIK(UJUKι)K 7→ T JEJEK(UJUKι)]K)
= ((UJUKι↑1), (UJUKι↑2)[EJIK(UJUKι) 7→ EJEK(UJUKι)]) // by Lem. 1(1)
= updateStore(UJUKι) (EJIK(UJUKι)) (EJEK(UJUKι))
= IJ∗I = E;K(UJUKι)

(iii) (UJIJS1S2KUKι)
= (UJIJS2K(IJS1KU)Kι)
= IJS2K(UJIJS1KUKι) // by induction
= IJS2K(IJS1K(UJUKι)) // by induction
= IJS1S2K(UJUKι)

A.2 Correctness ofWLP

AlthoughWLP is sometimes confused with the formula-manipulation operations used
to obtain a formula that expresses it, or with the formulaψ that results,WLP is really
a semantic notion—the set of statesdescribedby ψ. For example, for any statement
s: var = rhs; in a language that only hasint-valued variables, and postcondition
formulaϕ, the formulaϕ[var ← rhs] obtained by substitution is not the only formula
that expressesWLP(s, ϕ). In fact, there are an infinity of acceptable formulas. We
characterize what constitutes an acceptable formula as follows:

Definition 1 (AcceptableWLP Formula.).ψ is anacceptableformula forWLP(s, ϕ)
iff, for all ι ∈ LogicalStruct,

FJψKι = FJϕK(IJsKι).

That is,ψ holds in the pre-state structureι exactly whenϕ holds in the post-state struc-
ture(IJsKι).

Lemma 2 (Relationship ofT to T , F to F , FE to FE).

(1) T JT JT KUKι = T JT K(UJUKι)
(2) FJFJϕKU Kι = FJϕK(UJUKι)

(3) FEJFEJFEKUKι = FEJFEK(UJUKι)

21

Proof. The three lemmas are simultaneously proved using structural induction onT ,ϕ,
andFE, as shown below. LetU be({Ii ←↩ Ti}, {Fj ←↩ FEj}). (Thus,Ti = (U↑1)Ii
andFEj = (U↑2)Fj .) Let f be(ι↑2)[Fj 7→ FEJFEjKι].
(1) (i) T JT JcKUKι = T JcKι = const(c) = T JcK(UJUKι)
(ii)
lhs = T JT JIKU Kι = T JlookupIdU IKι = T J(U↑1)IKι
rhs = T JIK(UJUKι) = T JIK((ι↑1)[Ii 7→ T JTiKι], f)

= lookupId((ι↑1)[Ii 7→ T JTiKι], f) I
= T J(U↑1)IKι

(iii) T JT JT1 op2L T2KUKι
= T JT JT1KU op2L T JT2KUKι
= T JT JT1KUKι binopL(op2L) T JT JT2KUKι
= T JT1K(UJUKι) binopL(op2L) T JT2K(UJUKι) // by ind. via(1)
= T JT1 op2L T2K(UJUKι)

(iv) T JT Jite(ϕ, T1, T2)KUKι
= T Jite(FJϕKU, T JT1KU, T JT2KU)Kι
= condL(FJFJϕKU Kι, T JT JT1KUKι, T JT JT2KUKι)
= FJFJϕKU Kι ? T JT JT1KU Kι : T JT JT2KUKι
= FJϕK(UJUKι) ? T JT1K(UJUKι) : T JT2K(UJUKι) // by ind. via(1) and(2)
= FJϕ ? T1 : T2K(UJUKι)

(v) T JT JFE(T)KUKι
= T JFEJFEKU(T JT KU)Kι
= (FEJFEJFEKU Kι)(T JT JT KUKι)
= (FEJFEK(UJUKι))(T JT K(UJUKι)) // by ind. via(3)
= T JFE(T)K(UJUKι)

(2) (i) FJFJ T KU Kι = FJ T Kι = T = FJ T K(UJUKι)
(ii) FJFJ F KUKι = FJ F Kι = F = FJ F K(UJUKι)
(iii) FJFJT1 ropL T2KUKι

= FJT JT1KU relopL(ropL) T JT2KUKι
= T JT JT1KUKι relopL(ropL) T JT JT2KUKι
= T JT1K(UJUKι) relopL(ropL) T JT2K(UJUKι) // by ind. via(1)
= FJT1 ropL T2K(UJUKι)

(iv) FJFJ ¬ ϕ1KUKι
= FJ ¬ FJϕ1KUKι
= ¬FJFJϕ1KUKι
= ¬FJϕ1K(UJUKι) // by ind. via(2)
= FJ ¬ ϕ1K(UJUKι)

(v) FJFJϕ1 bopL ϕ2KUKι
= FJFJϕ1KU boolopL(bopL) FJϕ2KU Kι
= FJFJϕ1KUKι boolopL(bopL) FJFJϕ2KUKι
= FJϕ1K(UJUKι) boolopL(bopL) FJϕ2K(UJUKι) // by ind. via(2)
= FJϕ1 bopL ϕ2K(UJUKι)

22

(3) (i)
lhs = FEJFEJF KUKι = FEJlookupIdU F Kι = FEJ(U↑2)F Kι
rhs = FEJF K(UJUKι)

= FEJF K((ι↑1)[Ii 7→ T JTiKι], f)
= lookupFuncId((ι↑1)[Ii 7→ T JTiKι], f) F
= FEJ(U↑2)F Kι

(ii) FEJFEJFE0[T1 7→ T2]KUKι
= FEJ(FEJFE0KU)[T JT1KU 7→ T JT2KU]Kι
= FEJ(FEJFE0KU)Kι[T JT JT1KUKι 7→ T JT JT2KUKι]
= FEJFE0K(UJUKι)[T JT1K(UJUKι) 7→ T JT2K(UJUKι)] // by ind. via(1)
= FEJFE0[T1 7→ T2]K(UJUKι)

Theorem A2 For any Stmts and Formulaϕ, ψ := FJϕK(IJsKUid) is an acceptable
WLP formula forϕ with respect tos.

Proof. For all ι ∈ LogicalStruct,

FJψKι = FJFJϕK(IJsKUid)Kι
= FJϕK(UJIJsKUidKι) // by Lem. 2
= FJϕK(IJsK(UJUidKι)) // by Thm. A1
= FJϕK(IJsKι)

and therefore, by Defn. 1,FJϕK(IJsKUid) is an acceptableWLP formula forϕ with
respect tos.

A.3 Correctness of the Symbolic-Composition MethodU

Theorem A3 For all U1, U2 ∈ StructUpdate andι ∈ LogicalStruct,UJUJU2KU1Kι =
UJU2K(UJU1Kι).

Proof. LetU2 = ({Ii ←↩ Ti}, {Fj ←↩ FEj}). Let Ik andFm range overId andFuncId,
respectively.

UJUJU2KU1Kι
= UJ((U1↑1)[Ii 7→ T JTiKU1], (U1↑2)[Fj 7→ FEJFEjKU1])Kι
= U

s(

{Ik 7→ ((U1↑1)[Ii 7→ T JTiKU1])Ik},
{Fm 7→ ((U1↑2)[Fj 7→ FEJFEjKU1])Fm}

){
ι

= ((ι↑1)[Ik 7→ T J((U1↑1)[Ii 7→ T JTiKU1])IkKι],
(ι↑2)[Fm 7→ FEJ((U1↑2)[Fj 7→ FEJFEjKU1])FmKι])

= ((ι↑1)[Ik(6=i) 7→ T J(U1↑1)IkKι][Ii 7→ T JT JTiKU1Kι],
(ι↑2)[Fm(6=j) 7→ FEJ(U1↑2)FmKι][Fj 7→ FEJFEJFEjKU1]Kι)

= // by Lem. 2
((ι↑1)[Ik(6=i) 7→ T J(U1↑1)IkKι][Ii 7→ T JTiK(UJU1Kι)],
(ι↑2)[Fm(6=j) 7→ FEJ(U1↑2)FmKι][Fj 7→ FEJFEjK(UJU1Kι)])

= (((UJU1Kι)↑1)[Ii 7→ T JTiK(UJU1Kι)],
((UJU1Kι)↑2)[Fj 7→ FEJFEjK(UJU1Kι)])

= UJU2K(UJU1Kι)

23

