Symbolic Analysis via Semantic Reinterpretation

Junghee Lim, Akash Lal, and Thomas Repg

! University of Wisconsin; Madison, WI; USAj unghee, akash, reps}@s. wi sc. edu
2 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. The paper presents a hovel technique to create implemamgaif the
basic primitives used in symbolic program analy&sward symbolic evaluatign
weakest liberal preconditigrandsymbolic compositianWVe used the technique
to create a system in which, for the cost of writing josespecification—an in-
terpreter for the programming language of interest—onainbtautomatically-
generated, mutually-consistent implementations ofttatte symbolic-analysis
primitives. This can be carried out even for languages witinters and address
arithmetic. Our implementation has been used to generatbaic-analysis prim-
itives for x86 and PowerPC.

1 Introduction

The use of symbolic-reasoning primitives ffmrward symbolic evaluationveakest
liberal precondition(WWLP), andsymbolic compositiohas experienced a resurgence
in program-analysis tools because of the power that theyiggovhen exploring a
program'’s state space. The semantics of such operatioessaydo state; for instance,
if 7(o,0’) is a formula that represents the semantics of an instrudtiemV LP (7, ¢)
isVo'.(1(0,0") = ¢(0’)). However, this formula uses quantification over states—i.e
second-order quantificatierwhereas SMT solvers, such as Yices and Z3, support only
quantifier-free first-ordetogic. Hence, such a formula cannot be used directly.

For a simple language that has onlgt -valued variables, it is easy to recast mat-
ters in first-order logic. For instance, th&LP of postconditiony with respect to an
assignment statemewar = rhs; can be obtained by substitutimgs for all (free) oc-
currences ofar in o: p[var « rhs|. For real-world programming languages, however,
the situation is more complicated. For instance, for laggsawvith pointers, Morris’s
rule of substitution [11] requires taking into account abpible aliasing combinations.

The standard approach to implementing each of the symbalidysis primitives for
a programming language of interest (which we call shbjectlanguage) is to create
hand-writtentranslation procedures-one per symbolic-analysis primitive—that con-
vert subject-language commands into appropriate formWith this approach, a sys-
tem can contain subtle inconsistency bugs if the diffenartdlation procedures adopt
different “views” of the semantics. Such bugs are easy tothice because each trans-
lation procedure must encode the subject language’s sesamiwever, the encodings
for symbolic executionyy £LP, and symbolic composition have different flavors.

Our own interest is in analyzing machine code, such as x86 RowerPC.
Unfortunately, machine-code instruction sets have husldgd instructions, as well

as other complicating factors, such as the use of separsiridtions to set flags
(based on the condition that is tested) and to branch acuprti the flag val-
ues; the ability to perform address arithmetic and derefsrecomputed addresses;
etc. To appreciate the need for tool support for creatingbsficranalysis prim-
itives for real machine-code languages, consult Secti@h d. the Intel manual
(http://download.intel.com/design/processor/man@aR666.pdf), and imagine writ-
ing three separate encodings of each instruction’s seosaietimplement symbolic ex-
ecution WLP, and symbolic composition. Some tools (e.qg., [7, 3]) neeisinuction-
set emulator, in which case a fourth encoding of the senmistialso required.

To address these issues, this paper presents a way to aigelimatotain mutually-
consistent, correct-by-construction implementationsyshbolic primitives, bygener-
atingthem from a specification of the subject language’s consmtgantics. More pre-
cisely, we present a method to obtain quantifier-free, &rder-logic formulas for (a)
symbolic execution of a single command, {LP with respect to a single command,
and (c) symbolic composition for a class of formulas thatrezp state transformations.
The generated implementations are guaranteed to be mutwalsistent, and also to
be consistent with an instruction-set emulator (for cotecexecution) that is generated
from the same specification of the subject language’s comsmmantics.

Primitives (a) and (b) immediately extend to compound ofi@na over a given
program path for use in forward and backwards symbolic ei@turespectively; see
86. (The design of client algorithms that use such primitit@perform state-space
exploration is an orthogonal issue that is outside the sobds paper.)

Semantic Reinterpretation. Our approach is based on factoring the concrete seman-
tics of a language into two parts: (i)céient specification, and (ii) a semantiore The
interface to the core consists of certain base types, fumdyipes, and operators, and
the client is expressed in terms of this interface. Such gardration permits the core

to bereinterpretedto produce an alternative semantics for the subject larguBige
idea of exploiting such a factoring comes from the field oftedus interpretation [4],
where semantic reinterpretation has been proposed as ardenttool for formulating
abstract interpretations [12, 10] (s¢B.

Achievements and Contributions. We used the approach described in the paper to
create a “Yacc-like” tool for generating mutually-consist, correct-by-construction
implementations of symbolic-analysis primitives for imsttion sets 7). The input
is a specification of an instruction set's concrete semgntie output is a triple of
C++ functions that implement the three symbolic-analysimijives. The tool has
been used to generate such primitives for x86 and PowerP@cdomplish this, we
leveraged an existing tool;sL [9], as the implementation platform for defining the
necessary reinterpretations. However, we wish to streggltle ideas presented in the
paper are not sL-specific; other ways of implementing the necessary rginggations
are possible (sef?).

The contributions of this paper lie in the insights that wiatt defining the specific
reinterpretations that we use to obtain mutually-conststmrrect-by-construction im-
plementations of the symbolic-analysis primitives, areldiscovery thatVLP could
be obtained by using two different reinterpretations wogkin tandem. The paper’s
other contributions can be summarized as follows:

— We present a new application for semantic reinterpretatiamely, to create imple-
mentations of the basic primitives for symbolic reasoni#gnds5s). In particular,
two key insights allowed us to obtain the primitives ¥, and symbolic compo-
sition. The first insight was that we could apply semantintegpretation in a new
context, namely, to the interpretation function olbgic (§4). The second insight
was to define a particular form of state-transformation fdarto be a first-class
notion in the logic, which allows such formulas (i) to be tempreted, and (ii) to
serve as a replacement domain in various reinterpretatidis

— We show how reinterpretation can automatically creat® &P primitive that im-
plements Morris’s rule of substitution for a language withinters [11] ¢4).

— We conducted an experiment on real x86 code using the gexdgramitives §7).
For expository purposes, simplified languages are useddhiaut. Our discussion of
machine code§@.3 and§5) is based on a greatly simplified fragment of the x86 in-
struction set; however, our implementati@idY works on code from real x86 programs
compiled from C++ source code, including C++ STL, using ¥is8tudio.

Organization. §2 presents the basic principles of semantic reinterpogtdly means

of an example in which reinterpretation is used to creatératistransformers for ab-
stract interpretation§3 defines the logic that we use, as well a simple source-code
language (PL) and an idealized machine-code language (M@liscusses how to use
reinterpretation to obtain the three symbolic-analysimjtives for PL. §5 addresses
reinterpretation for MC§6 explains how other language constructs beyond those found
in PL and MC can be handled7 describes our implementation and the experiment
carried out with it.§8 discusses related work. App. A presents correctnessgroof

2 Semantic Reinterpretation for Abstract Interpretation

This section presents the basic principles of semanti¢engiretation in the context of
abstract interpretation. We use a simple language of assigts, and define the con-
crete semantics and an abstract sign-analysis semargisewiantic reinterpretation.

Example 1.[Adapted from [10].] Consider the following fragment of ardational
semantics, which defines the meaning of assignment stateimesr variables that hold
signed 32-bit nt values (whered denotes exclusive-or):
Ield EcExpru=1|E1®E2|...
SesStmt:=1=FE; o € State= Id — Int32

& : Expr — State— Int32

Ello =0l

g[[E1 (&) EQHU = g[[E1]]0’ &) S[[Ez]]o’
The specification given above can be factored into client @oré specifications by
introducing a domaiwval, as well as operatossr, lookup andstore The client speci-
fication is defined by

xor : Val — Val — Val lookup: State— Id — Val store: State— Id — Val — State

7 : Stmt— State— State
I[I = Es]o = o[l — E[E]o]

& : Expr — State— Val
E[I]o = lookupo I
5[[E1 &) EQ]]U = gﬂElﬂU xor gﬂEgﬂU

7 : Stmt — State — State
Il = E;]o = storeo I E[E]o

[1] nov eax, [ebp—10]

s1:x=xDY; Before After [2] xor eax, [ebp—14]

@) s2:y=zdy; [3] nmov [ebp-10], eax
szix =z DY; 0: o: [4] nov eax, [ebp—10]

) 2 [5] xor eax, [ebp—14]

1 xpr = xpx @ +py; | OO Py px: [&py [6] nov [ebp—14], eax

. — . . 7] nov eax, [ebp-10
©) 1y = & | o oy L8] xor omx. Lebpo1d]
31 *p P PY; [9] nov [ebp-10], eax

© (d)

Fig. 1. (a) Code fragment that swaps twat s; (b) code fragment that swaps twot s
using pointers; (c) possible before and after configuration code fragment (b): the
swap is unsuccessful due to aliasing; (d) x86 machine codesjonding to (a).

For the concrete (or “standard”) semantics, the semantiisalefined by

v € Vals = Int32 lookupy = Ao.Al.cl XOfstd = AV1.AV2.V1 @ v2

Statew = Id — Val storew = Ao AL v.o[l — v]
Different abstract interpretations can be defined by udiegaime client semantics, but
giving a different interpretation of the base types, fumctiypes, and operators of the
core. For example, for sign analysis, assuming @2 values are represented in two’s
complement, the semantic core is reinterpreted as folfows:

T v2
v € Valaws = {neg zerq pos} neg zero posT
Stateps = Id — Val
Qbs abs XOFabs = Av1.A\va. neg||T neg negT
lookup,,s = Ao Al.ol v1 |zerd|neg zero posT

pos||neg pos T T
TI|T T T T

For the code fragment shown in Fig. 1(a), which swapsitwbs, sign-analysis reinter-
pretation creates abstract transformers that, given ttialiabstract statey = {z —
neg y — pos}, produce the following abstract states:

oo :={x — negy — pos}

o1:=1[s1: 2 =z P y;]oo = Storews oo x (N€g XOkps POS) = {x — neg y — pos}

02:=TI[s2:y =z ® y;]o1 = Storewso1 y (Neg X0kws Pos) = {z — negy — neg}

03 :=ZI[s3 : x =z P y;Jo2 = Storews o2 = (N€g Xoksneg = {z — T,y — neg}.

storews = Ao Al \v.o[l — v]

Semantic Reinterpretation Versus Standard Abstract Intepretation. Semantic
reinterpretation [12, 10] is a form of abstract interpretat[4], but differs from the
way abstract interpretation is normally applied: in staddebstract interpretation, one
reinterprets the constructs of easibject languagdn contrast, with semantic reinter-
pretation one reinterprets the constructs ofrieta-languageStandard abstract inter-
pretation helps in creating semantically sodadls semantic reinterpretation helps in
creating semantically sourtdol generatorsin particular, if you haveV subject lan-
guages and/ analyses, with semantic reinterpretation you obfdir M analyzers by
writing just V 4+ M specifications: concrete semantics fisubject languages ardd

% For the two’s-complement representatipps x0k»s Neg= neg X0kns POS= negbecause, for
all combinations of values representedgnsandneg the high-order bit of the result is set,
which means that the result is always negative. Howe@s X0kns POS= neg XokpsnNeg= T
because the concrete result could be either positive, andzeroLl pos= T.

reinterpretations. With the standard approach, one must Wr x M abstract seman-
tics.

Semantic Reinterpretation Versus Translation to a Common htermediate Rep-
resentation. The mapping of a client specification to the operations ofsmantic
core that one defines in a semantic reinterpretation regsnebtranslation to a com-
mon intermediate representation (CIR) data structuresTdmother approach to obtain-
ing “systematic” reinterpretations that are similar to s@iic reinterpretations—in that
they apply to multiple subject languages—is to translatgesi-language programs to
a CIR, and then create various interpreters that impleméeteht abstract interpreta-
tions of the node types of the CIR data structure. Each intéggpcan be applied to (the
translation of) programs in any subject langudgfr which one has defined air+to-
CIR translator. Compared with interpreting objects of a @HRa type, the advantages
of semantic reinterpretation (i.e., reinterpreting thestoaucts of thameta-language
are

1. The presentation of our ideas is simpler because one dodswve to introduce an
additional language of trees for representing CIR objects.

2. With semantic reinterpretation, there is no explicit G&a structure to be inter-
preted. In essence, semantic reinterpretation remove®bdginterpretation, and
hence generated analyzers should run faster.

To some extent, however, the decision to explain our ideteyins of semantic reinter-
pretation is just a matter of presentational style. The gb#he paper iswot to argue
the merits of semantic reinterpretatipar se on the contrary, the goal is to preseat-
ticular interpretations that yield three desirable symibednalysis primitivegor use in
program-analysis tools. Semantic reinterpretation isl bgeause it allows us to present
our ideas in a concise manner. The ideas introducéd ands5 can be implemented
using semantic reinterpretation—as we did (§&g alternatively, they can be imple-
mented by defining a suitable CIR datatype and creating @piptte interpretations of
the CIR’s node types—again using ideas similar to thosespites ing4 ands5.

3 A Logic and Two Programming Languages

3.1 L: A Quantifier-Free Bit-Vector Logic with Finite Functions

The logic L is quantifier-free first-order bit-vector logic over a vouldyy of constant
symbols { € Id) and function symbolsH € Funcld. Strictly speaking, we work with
various instantiations af, denoted byl.[PL] and L[MC], in which the vocabularies of
function symbols are chosen to describe aspects of thesratezl by, and computations
performed by, the programming languages PL and MC, resdgti

We distinguish the syntactic symbolsibfrom their counterpartsin P52 ands3.2)
by using boxes arounf’'s symbols.

c € Cnz2 = {07 1,.. } OpZL € BinOpL = {7 Bv 7 e }
bop, € BoolOp, = {,m,...} rop, € RelOp, = {E,,,,...}

The rest of the syntax df[-] is defined as follows:

const: Cingz — Val
cond, : BVal— Val — Val — Val
lookupld : LogicalStruct— Id — Val
binop, : BinOp, — (Val x Val — Val)
relop; : RelOp, — (Val x Val — BVal)
boolop, : BoolOp, — (BVal x BVal — BVal)
lookupFuncld: LogicalStruct— Funcld— (Val — Val)
access: (Val — Val) x Val) — Val
update: ((Val — Val) x Val x Val) — (Val — Val)

7T : Term— LogicalStruct— Val F : Formula— LogicalStruct— BVal
T[c]e = constc) FITe =T
T[]+ = lookupld: T FF.=F

T[Ty 0p2, To]e = T[T1]ebinop, (0p2,)) T[T2]e F[Tyrop, T»]e = T[Ti]erelopy (ropy) T[T]e
TTite(p, T1, To)]e = cond, (Fe]e, T[T1]e, T [T2]e) Fl[=]e1le = ~Flea]e
T[FE(T1)]e = acces§FE[FE]:, T[T1]:) Flp1 bop;, pa]t = Fle1]boolop, (bop,) Fles]:

FE : FuncExpr— LogicalStruct— (Val — Val)
FE[F]¢ = lookupFuncld F
FE[FELT, — Ty]]e = updatéFE[FE, e, T[T1]e, T[T2])

U : StructUpdate— LogicalStruct— LogicalStruct
UL T = Ti} {F; < FE; D] = (D)L = T[Ti]el, (12)[Fy = FEIFE;]L)

Fig. 2. The factored semantics &f.
I €ld,T € Term ¢ € Formula F' € Funcld FE € FuncExpt U € StructUpdate

T:=c | I | Ti0p2; 1> | ite(tp, T1,T2) | FE(T) FE ::= F | FEl[Tl — TQ]

RS | | Tyrop, Tz | [=] | 1 bop;, @2 U u= ({Li < T}, {F; < FE;})

A FuncExprof the formFE; [T; — T3] denotes dunction-update expressioAn ex-
pression of the formi{I; < T;}, {F; <« FE;}) is called astructure-update expression
The subscriptg andj implicitly range over certain index sets, which will be oted
to reduce clutter. To emphasize thatand F; refer to next-state quantities, we some-
times write structure-update expressions with prinigé; «— T7;},{F; < FE;}).
{I! «— T;} specifies the updates to the interpretations of the constanbols and
{Fj < FE;} specifies the updates to the interpretations of the funsjonbols (see
below). Thus, a structure-update expressipff < 7;}, {F/ <= FE;}) can be thought
of as a kind of restricted-vocabulary (i.e.2-state) formulg/\,(I; = T:) A \;(Fj =
FE;). We defindligtobe({I' — I | I € ld},{F’ «— F | F € Funcld}).

Semantics ofL.. The semantics of[] is defined in terms of bbgical structure which
gives meaning to thiel andFuncldsymbols of the logic’s vocabulary.
¢ € LogicalStruct= (Id — Val) x (Funcld— (Val — Val))

(111) assigns meanings to constant symbols, anid) assigns meanings to function
symbols. (p71) and(p12) denote the Stand2" components, respectively, of a pai)

The factored semantics df is presented in Fig. 2. Motivated by the needs of
later sections, we retain the convention fréghof working with the domairval rather
thanInt32. Similarly, we also us®Val rather tharBool. The standard interpretations
of binop;, relop,, andboolop, are as one would expect, e.gl,binopL() vy =
v1 XOrve, etc. The standard interpretations fookupld,y andlookupFuncld, select
from the first and second components, respectivelylaigacalStructlookupldy¢ I =

& : Expr— State— Val
E[c]o = constc)

v € Val E[I]o = lookupStater I
l € Loc= Val E[&I]o = lookupEnw I
o € State= Storex Env E[+E]o = lookupStorer (£[E]o)

E[E1 0p2 Es]lo = E[E1]o binoplop2) E[Eq]o
E[BE? Ey : Es]o = cond B[BE]o, E[E1]o, E[E2]0)

const: Cinse — Val B : BoolExpr— State— BVal
cond: BVal — Val — Val — Val B[T]ec =T
lookupState: State— Id — Val B[F]o =TF
lookupEnv: State— Id — Loc B[E, rop Ex]o = E[E1]o relop(rop) E[Es]o
lookupStore: State— Loc — Val B[-BE,]o = —-B[BE,]o

updateStore State— Loc — Val — State B[BE; bop BE]o = B[BE;]c boologbop) B[BE;]o

7 : Stmt— State— State
I[I = E;]o = updateStorer (lookupEnw I) (£[E]o)
I[+I = E;Jo = updateStore (£[I]o) (E[E]o)
I[[Sl 52]]0' = I[[SQ]](I[[Slﬂa)

Fig. 3. The factored semantics of PL.

(.11)(I) andlookupFuncldyt F = (:12)(F). The standard interpretations faccess
andupdateselect from, and store to, a map, respectively.

LetU = ({I; « T;},{F; < FE;}). Becausé{[U]. retains from: the value of
each constant and functionf” for which an update is not defined explicitly &n (i.e.,
I € (Id—{I;}) andF € (Funcld— {F};})), as a notational convenience we sometimes
treatU as if it contains an identity update for each such symbol ihave say that
(UT)I =IforlIe (Id—{L}), and(U12)F = F for F € (Funcld— {F}}).

3.2 PL: A Simple Source-Level Language

PL is the language frorgR, extended with some additional kinds aft -valued expres-
sions, an address-generation expression, a dereferesqimgssion, and an indirect-
assignment statement. Note that arithmetic operationsatssmoccur inside a deref-
erence expression; i.e., PL allows arithmetic to be peréation addresses (including
bitwise operations on addresses: see Ex. 2).

S € Stmt E € Expr,BE € BoolExpr, I € Id, ¢ € Cinz2

cx=0]1].. E:=c|I|&I|+«E| E10p2E; |BE? E;: E»
Su=I=FE;|+[=E;| S S» BE:=T|F|EropE> | -BE: | BE bop BE

Semantics of PL. The factored semantics of PL is presented in Fig. 3. The stan
domainLoc stands folocations(or memory addresses). We identlfgc with the set
Val of values. A stater € Stateis a pair (), p), where, in the standard semantics,
environment; € Env = Id — Loc maps identifiers to their associated locations and
storep € Store= Loc — Val maps each location to the value that it holds.

The standard interpretations of the operators used in theeRlantics are

const: Cinzz — Val cond : BVal — Val — Val — Val

storgeg : State— register— Val — State storgnem : State— Val — Val — State
lookup,, : State— register— Val lookupnen : State— Val — Val
storeiag : State— flagName— BVal — State storey, : State— State
lookup,,q : State— flagName— BVal storep = Ao.Storgeg(o, EIP, R[EIP]o binop(+) 4)
R : reg — State— Val O : src.operand— State— Val
R[r]o = lookupey(c,7) OllIndirect(r, ¢)]Jo = lookupen{c, R[r]o binop(+) constc))

O|[DirectRedr)]o = R[r]o

K : flagName— State— BVal OJimmediatéc)]o = constc)

K[ZF]o = lookupg(o, ZF)

T : instruction— State— State
Z[MOV(Indirect(r, c), so)Jo = storesip(Storanen{o, R[r]o binop+-) constc), O[so]o))
Z[MOV(DirectRedr), so)]o = storesyp(storgeg(c, r, O[so]o))

Z[CMP(do, so)]o = storesp(storaag(c, ZF, O[do]o binop(—) O[so]o relop(=) 0))
Z[XOR(do:Indirect(r, ¢), so)|o = storesip(storanen{c, R[r]o binop(+) cons(c) Oldo]lo binop(®) O[so]o))
Z[XORdo:DirectRedr), so)Jo = storesp(storgeg(o, 7, O[do]o binop(@) O[so]o))

(

Z[JZ(do)]o = storgeg(c, EIP, cond K[ZF]o, R[EIP]o binop(+) 4, O[do]o))
Fig. 4. The factored semantics of MC.

Bvaktd = BVal COﬂCLtd = Ab.A\v1.A\vs. (b YR ’Uz)
Valsg = Int32 lookupStatg, = A(n, p).A.p(n(I))
LocGsig = Int32 lookupEny,y = A(n, p).A.n(I)

n € Eng = 1d — LOGsd lookupStorg, = A(n, p).Al.p(1)
p € Storey = LoGsig — Valsi updateStorg, = A(n, p). M. v.(n, p[l — v])

3.3 MC: A Simple Machine-Code Language

MC is based on the x86 instruction set, but greatly simplifeedave just four registers,
one flag, and four instructions.

r € register, do € dstoperand so € src.operandi € instruction

r := EAX| EBX| EBP| EIP do ::= Indirect(r, Val) | DirectRedr)
flagName:= ZF so ::= do U ImmediatéVal)

instruction::= MOV(do, so) | CMP(do, so) | XOR(do, so) | 3Z(do)
Semantics of MC. The factored semantics of MC is presented in Fig. 4. It islaimi
to the semantics of PL, although MC exhibits two featurespaot of PL: there is an
explicit program countergIP), and MC includes the typical feature of machine-code
languages that a branch is split across two instructiGMK ... JZ). An MC state
o € Stateis a triple(memreg, flag), wherememis a mapVal — Val, reg is a map
register — Val, andflag is a mapflagName— BVal We assume that each instruction
is 4 bytes long; hence, the execution dfi®V, CMP or XORincrements the program-
counter registeEIP by 4. CMP sets the value afF according to the difference of the
values of the two operand3Z update<€IP depending on the value of flatf-.

4 Symbolic Analysis for PL via Reinterpretation

A PL state(n, p) can be modeled ii.[PL] by using a function symba¥), for storep,
and a constant symbe). € Id for each PL identifier:. (To reduce clutter, we will use
x for such constants instead @f.) Given. € LogicalStruct the constant symbols and

their interpretations im correspond to environment and the interpretation df, in ¢
corresponds to store

Symbolic Evaluation. A primitive for forward symbolic-evaluation must solve the
following problem:Given the semantic definition of a programming languages ttoer
with a specific statemerst create a logical formula that captures the semantics.of
The following table illustrates how the semantics of PLestants can be expressed as
L[PL] structure-update expressions:

PL L[PL]
z = 17|(0, {F}, < F,[x — 17]})
r=y; |(0,{F, < F,[x — F,(y)]})
x = *q;) (0, {F) < Fp[x — F,(F,(a))]})
To create such expressions automatically using semarititergretation, we use for-
mulas of logicL[PL] as a reinterpretation domain for the semantic core of PL bEse
types and the state type of the semantic core are reintegoastfollows (our convention
is to mark each reinterpreted base type, function type, @edador with an overbar):
Val = Term BVal = Formula, andState= StructUpdate The operators used in PL’s
meaning functiong, B, andZ are reinterpreted over these domains as follows:

— The arithmetic, bitwise, relational, and logical operatare interpreted as syntactic

constructors ofL[PL] Terns andFormulss, e.g. binop(®) = AT1.\T2. T} Tg.

Straightforward simplifications are also performed; eﬁa simplifies toa, etc.
Other simplifications that we perform are similar to onesdusg others, such as
the preprocessing steps used in decision procedurestfedte-lifting and read-
over-write transformations for operations on function§.[5
— condresiduates aite(-, -, -) Termwhen the result cannot be simplified to a single
branch.
The other operations used in the PL semantics are reintetpas follows:

lookupState StructUpdate— |d — Term lookupState= A\U.AI.((U12)F,)((UT1)I)
lookupEnv: StructUpdate— Id — Term lookupEnv= AU.AI.(U11)I
lookupStore StructUpdate— Term— Term lookupStore= AUAT.((U12)F,)(T)
updateStore: StructUpdate— Term— Term— StructUpdate
updateStore= \UNT1 \T>.((UT1), (U12)[F, — ((U12)E,)[T1 — T2]])

By extension, this produces functiofisB, andZ with the following types:

Standard Reinterpreted

&: Expr — State— Val &: Expr— StructUpdate— Term

B: BoolExpr— State— BVal | B: BoolExpr— StructUpdate— Formula
7: Stmt— State— State Z: Stmt— StructUpdate— StructUpdate

FunctionZ translates a statemenbf PL to a phrase in logi& [PL].

Example 2.The steps of symbolic execution of Fig. 1(b) via semantiotegpretation,
starting with anStructUpdatethat corresponds to Fig. 1(c) are shown in Fig. 5. The
StructUpdatel, can be considered to be the 2-vocabulary formiifa= F,[0 —
v][pX — py][py — v], which expresses a state change that does not usually ipeafor
successful swap.

Uy

~ = (0, F, — F,[0— v][px — py][py — py])
I[*px = *px*py;]]Ul =

,F, > F,[0 = v][px — py][py — (E[+pa]Us[&]E[+py]U1)])
5[0 — v][px — py][py — (py[@]py)])
_ p[0 = v][px — py][py — 0]) =
I[#py = *px|® |*+py;]Us b[0— (Eﬂ*pxﬂUz.E[[*py]]Uz)][PX — py][py ~ 0])
F — F,[0— (0[&]v)][px — py][yHO])
\E, < [0 v][pxX — py][py — 0]) =
5[0 = v][px = py][py — (€ [[*pzl]Us.S [+py]Us)])
— 0 F, < F,J0— o]lpx — py|lpy o[@]v)]
= (0, F, < F,[0— v][px — py][py — v]) = U4

Tlxpx = spx|& [+py;]Us =

Fig. 5. Symbolic execution of Fig. 1(b) via semantic reinterprietatstarting with an
StructUpdatehat corresponds to the “Before” column of Fig. 1(c).

WLP. WLP(s,) characterizes the set of statesuch that the execution efstarting
in o either fails to terminate or results in a statesuch thaty(¢’) holds. For a language
that only has nt -valued variables, they £LP of a postcondition (specified by formula
) with respect to an assignment statemert= rhs; can be expressed as the formula
obtained by substitutindhs for all (free) occurrences ofar in ¢: p[var < rhsg|.

For a language with pointer variables, such as PL, syntaabstitution is not ade-
quate for finding/V LP formulas. For instance, suppose that we are interestediimén
a formula for the/V LP of postcondition: = 5 with respect to«p = e;. Itis not correct
merely to perform the substitutioqfx = 5)[*p < e]. That substitution yields = 5,
whereas théV L P depends on the execution context in whigh= e; is evaluated:

— If p points tox, then theWW LP formula should be = 5.
— If p does not point ta;, then theV LP formula should be: = 5.
The desired formula can be expressed informallf{as= &z) 7 e :) = 5.

For a program fragment that involves multiple pointer Vialéa, the/yV £LP formula
may have to take into account all possible aliasing comlainat This is the essence
of Morris’s rule of substitution [11]. One of the most impamt features of our ap-
proach is its ability to create correct implementations afrhé’s rule of substitution
automatically—and basically for free.

Example 3.In L[PL], such a formula would be expressed as shown below on the right
(This formula will be created using semantic reinterpietain Ex. 4.)

Informal L[PL]
Query | WLP(xp = e,x = 5) WLP(*p =e, F,(x E|5)
Result| ((p=&xz)?e:2) =5 | ite(F,(p)[=]x, F,(e), F,(x))[=]5

To create primitives fo”) LP and symbolic composition via semantic reinterpreta-
tion, we again usé[-] as a reinterpretation domain; however, there is a trickointiast
with what is done to generate symbolic-evaluation primeiiwve use th8tructUpdate
type of L[] to reinterpret the meaning functiots FE, F, and7 of L[] itself! By
this means, the “alternative meaning” offarm/FormulaFuncExprfStructUpdateds a
(usually different)TermFormulalFuncExpfStructUpdaten which some substitution
and/or simplification has taken place. The general schemetimed in the following
table:

10

Meaning function(s) Type reinterpreted Replacement typ@ckon created
7,E,B State StructUpdate Symbolic evaluation
F, T LogicalStruct StructUpdate WCLP

U,FEF,T LogicalStruct StructUpdate ~ Symbolic composition

In §3.1, we defined the semantics bf-] in a form that would make it amenable
to semantic reinterpretation. However, one small pointdsesdjustment; ir33.1, the
type signatures dfogicalStructlookupFuncldaccessupdate andF € include occur-
rences ofVal — Val. This was done to make the types more intuitive; however, for
reinterpretation to work, an additional level of factorisghecessary. In particular, the
occurrences o¥al — Val need to be replaced Byval. The standard semanticse¥al
is Val — Val; however, for creating symbolic-analysis primitiv€a/al is reinterpreted
asFuncExpr

The reinterpretation used féf, 7€, F, and7 is similar to what was used for
symbolic execution of PL programs:

— Val = Term BVal = Formula FVal = FuncExpr andLogicalStruct= StructUpdate
— The arithmetic, bitwise, relational, and logical operatare interpreted as syntactic
Term and Formula constructors ofZ (e.g.,binopL() = M \L.Th TQ)

although straightforward simplifications are also perfedn

— cond;, residuates aite(-, -, -) Termwhen the result cannot be simplified to a single
branch.
— lookupldandlookupFuncldare resolved immediately, rather than residuated:
o |OOkUp|d({IZ «— TZ}, {FJ «— FEJ}) I, =T}
o lookupFuncld{I; < T;},{F; <« FE;}) F}, = FE;.
— accesandupdateare discussed below.

By extension, this produces reinterpreted meaning funstio 7€, F, and7.
Somewhat surprisingly, we do not need to introduce an ekplpgeration of sub-
stitution for our logic becausa substitution operation is produced as a by-product

of reinterpretation In particular, in the standard semantics farthe return types of
meaning functioriZ and helper functiomookupld of the semantic core are botfal.
However, in the reinterpreted semanticd/a is a Term—i.e., somethingymbolie—
which is used in subsequent computations. Thus, whenLogicalStructis reinter-
preted ad/ € StructUpdatethe reinterpretation of formula via F[o]U substitutes
Terms found inU into o: F[]U callsT [T]U, which may callookupldU I; the latter
would return alermfetched fromlJ, which would be a subterm of the answer returned
by T[T]U, which in turn would be a subterm of the answer returnedy]U.

To create a formula forWV LP via semantic reinterpretation, we make use of both
F, the reinterpreted logic semantics, ahdthe reinterpreted programming-language
semantics. Th&V LP formula fory with respect to statemeais obtained by perform-
ing the following computation:

WLP(s,¢) = Flel(Z[s]Ui).
For a proof of correctness of this method, see App. A.2.
To understand how pointers are handled duringlh€P operation, the key rein-
terpretations to concentrate on are the ones for the opasatif the semantic core of

L[PL] that manipulaté&-Vals (i.e., arguments of typeal — Val)—in particular,access
andupdate We wantaccessandupdateto enjoy the following semantic properties:

11

TﬂmsFEmTo)ﬂL = (fgﬂFEo]]L)(TﬂToﬂb)
T [updateFEo, To, T1)]e = (FE[FE])[T [Tole — T[T1]:]
Note that these properties require evaluating the restiEE@essaandupdatewith re-
spect to an arbitrary € LogicalStruct As mentioned earlier, it is desirable for rein-
terpreted base-type operations to perform simplificatwnsnever possible, when they
construcfTerns, Formulas, FuncExps, andStructUpdate. However, because the value
of ¢ is unknownaccesandupdateoperate in an uncertain environment.

To use semantic reinterpretation to creal@/aP primitive that implements Mor-
ris’s rule, simplifications are performed @gcessandupdateaccording to the defini-
tions given below, wheres, #, and = denoteequality-as-termsdefinite-disequality
andpossible-equalityrespectively.

accessl, k1) = F(ki)
dz If (k1 =](32)
ACCESEFE[ky — da)), k1) = { acces$FE, k1) if (k1 # k2)
ite(k1 EIICQ, d27m$FE7 k1)) if (k1 =](32)

update(F, k‘1, dl) = F[k}l — dl]

FE[k‘1 — d1] if (k‘1 = kg)
UpdatQFE[k‘Q — dg]7 k‘l, d1) = update(FE, k‘1, dl)[k‘z — dg] if (k‘1 75 k?g)
FE[k‘Q [ad d2][k1 (g d1] If (k‘l = kz)

(The possible-equality testski' = k5", are really “otherwise” cases of three-pronged
comparisons.) The possible-equality caseaforessntroduceste terms. As illustrated
in EX. 4, it is thesate terms that cause the reinterpreted operations to accoupo#s
sible aliasing combinations, and thus are the reason tkaggmantic-reinterpretation
method automatically carries out the actions of Morrislg f substitution [11].

Example 4.We now demonstrate how semantic reinterpretation prodtiees [PL]
formula forWWLP (xp = e,z = 5) claimed in Ex. 3.
U := f[[*p = e]Uq
= updateStoreUi, £[p]Uia, €[] Uia)
= updateStorfliq, lookupStatélUq, p), lookupStatélUq, e)
= updateStor@lUi, F,,(p), F,(e))
= (Uall), Fp <= Fp[Fp(p) — Fp(e)])

WLP(xp = e, F,(X)[=]5) = F[F,(x)[=]5]U

= T[F,()]U=]T[5]U

= accessFE[F,]U, T[x]U)[=]5

= accesglookupFuncldU, F,), lookupld U, x)) [=5

= aCcCessl, [F,(p) — Fu(e)],X)[=]5

= ite(F,(p)[=]x, F,(e),accessF,, x))[=]5

= ite(F,(p)[Z]x. Fy(e), Fo(x))[=]5
Note how the case f@ccesghat involves a possible-equality comparison causédtean
term to arise that testd”,(p)[=]x". The test determines whether the valugpads the
address ok, which is the only aliasing condition that matters for thismple.

Symbolic Composition. The goal of symbolic composition is to have a method that,
given two symbolic representations of state changes, cas@usymbolic representa-
tion of their composed state change. In our approach, eatthcdtange is representedin

12

logic L[-] by anStructUpdateand the method computes a n8ivuctUpdatethat rep-
resents their composition. To accomplish tHi§] is used as a reinterpretation domain,
exactly as forlWWLP. Moreover,{ turns out to be exactly the symbolic-composition
function that we seeln particularZ/ works as follows:

UI{T = T} {F; < FE DU = (UT)IL: = T[TV, (UT2)[F; — FE[FE;]U)

Example 5.For the swap-code fragment from Fig. 1(a), we can demoestratability
of U to perform symbolic composition by showing that
Tls1; s2; 83]Uia = U[Z[s3]Uia] (Z[[51; 52] Vi)
First, consider the left-hand side. It is not hard to show T{a; ; so; s3]Uia = ({X’ <
y,y’ < x},0). Now consider the right-hand side. Liét , andUs be
U2 = Tﬂsl;sﬂ]Uid = ({Xl —X yvy/ - X}v 0)
Us = I[ss]Uia = (X' —=x|a]y,y <y}, 0).
We want to compute
UUs[Us > = U[{X < x[@]y,y’ <y}, 0)]U12
= ((U121)[x — T[[XY}]Ul,%y = T[y]Us2],0)
(U1 21D = (x[@]y)[@]%),y = x],0)
((Ul,QTl)[X =Y,y — X]7 0)
= (X' <y,y <x}0)
ThereforeZ[[sy; sa; 83]Uia = U[U3] U1 2.

5 Symbolic Analysis for MC via Reinterpretation

To obtain the three symbolic-analysis primitives for MC, wse a reinterpretation
of MC’s semantics that is essentially identical to the miptetation for PL, modulo
the fact that the semantics of PL is written in terms of the bioratorslookupEny
lookupStore and updateStorewhereas the semantics of MC is written in terms of
Iookupeg, Storgeg, Iookuplag, StOr@lag, I00KUR e ANAStOr&nem

The base types are redefined &val = Formula Val = Term
State = StructUpdate where the vocabulary for LogicalStrucs is
({ZF,EAX EBX EBP, EIP}, { Finem}). LoOkup and store operations for MC, such as
[00KURherm @nd Storenem are handled the same way thadkupStoreand updateStore
are handled for PL.

Example 6.Fig. 1(d) shows the MC code that corresponds to the swap odelg.il(a):
lines 1-3, lines 4-6, and lines 7-9 correspond to lines 1n@ 3a0f Fig. 1(a), respec-
tively. For the MC code in Fig. 1(d¥uc[swagdUig produces th&tructUpdate

{EAX — Frned EBP[-] 14)},

{ Fneme Fner{EBP[=] 10 — Finer{EBP[-] 14)][EBP[-] 14 > Fien{EBP[-] 10)]}
Fig. 1(d) illustrates why it is essential to be able to haradidress arithmetic: an access
on a source-level variable is compiled into machine codedbeeferences an address
in the stack frame computed from the frame poinEBE) and an offset. This example
shows thafZc is able to handle address arithmetic correctly.

13

[1] void foo(int e, int x, int*x p) { [1] nov eax, p;
[2] - [2] nmov ebx, e;
[3] *p = e; [3] nmov [eax], ebx;
[4] if(x == 5) [4] cmp X, 5;
[5] got o ERROR; [5] jz ERROR
[6] } [6] ...

[7] ERROR:

(b

(a))
Fig. 6. (a) A simple source-code fragment written in PL; (b) the Mdedor (a).

To create a formula for th®VLP of ¢ with respect to instruction via semantic
reinterpretation, we use the reinterpreted MC semaffiigs together with the reinter-
pretedZ [MC] meaning functioFyc, whereFyc is created via the same approach used
in §4 to reinterpref [PL]. WLP (i,) is obtained by performinguc [¢](Zwc[i]Uid)-

Example 7.Fig. 6(a) shows a source-code fragment; Fig. 6(b) showsdtresponding
MC code. (To simplify the MC code, source-level variable earare used.) In Fig. 6(a),
the largest set of states just before I that cause the branch ERRORto be taken
atline[4] is described bYWLP(xp = e,z = 5). In Fig. 6(b), an expression that char-
acterizes whether the branch ERROR is taken iSWLP (s 1151, (EIP[=]¢(71)),
wheresy1;-151 denotes instructions1] - 5] of Fig. 6(b), andc 7} is the address of
ERROR. Using semantic reinterpretatioftuc [(EIP[=]c;71)](Z[s{11-51 JUia) pro-
duces the formuléite((Fmer(P)[=]X), Fmen(€), Fmen{X))[-]5)[=]0, which, translit-
erated to informal source-level notation{{gp = &x) ?e: z) — 5) = 0.

Even though the branch is split across two instructiog;? can be used to re-
cover the branch conditio®VLP(cnp X, 5; j z ERROR, (EIP[=]¢(7])) returns the
formulaite(((Fmen(X)[-]5)[=]0), 1715 161) [=] 1 71 as follows:

Z[enp x, 5]Uia = ({ZF < (Fmen(x)[-]5)[=]0},0) =U;
Z[j z ERROR|U: = ({EIP" — ite(((Fmen(X)[-]5)[=]0), 171, c161)},0) = Uz
Fuc[EIP[=]er7n Uz = ite(((Fmen(X) [-]5) [Z]0), 171, crer) [Z] a7
Because; 71 # c[¢] , this simplifies tQ Finen{X) [- |5)[=]0—i.€., in source-level terms,
(x —5)=0.

6 Other Language Constructs

Branching. Ex. 7 illustrated &V LP computation across a branch. We now illustrate
forward symbolic execution across a branch.

Suppose that an if-statement is representeld$iyn{ BE, Int32, Int32), whereBE s
the condition and the twtnt32s are the addresses of the true-branch and false-branch,
respectively. Its factored semantics would specify howtilae of the program counter
PCchanges:

Z[IfStm{(BE, c7, c¢r)]o = updateStorer PC condB[BE]c, constcr), conster)).

In the reinterpretation for symbolic evaluation, tB&ructUpdatel/ obtained by
Z[fStm{BE, cr, cr)]Uiq would be({PC < ite(¢gg, cr, cr)}, 1), wherepge is the
Formulaobtained fo:BE under the reinterpreted semantics. To obtain the branati-con
tion for a specific branch, say the true-branch, we eval&dRC[=|cr]U. The result

14

FormulaObtainPathConstraintFormuRth) {
Formulay = ; // Initial path-constraint formula
StructUpdatd/ = Uig; // Initial symbolic state-transformer
let [PC; : i1,PC; : 4, ..., PC, iy, PCyyq : SKip] =7 in
for (k=1,k < mn; k++){
U =T[ix]U; I/ Symbolically executé
if (ix is a branch instruction)
p=¢ F[PC=PCy1]U; /I Conjoin the branch condition fag,

return o;

}

Fig. 7. An algorithm to obtain a path-constraint formula that cletegzes which initial
states must follow path.

is (ite(pBE, cr, cr) [=]cr), Which (assuming thaty # cr) simplifies topge. (A sim-
ilar formula simplification was performed in Ex. 7 on the résifithe W.LP formula.)

Loops. One kind of intended client of our approach to creating sylikamnalysis prim-
itives is hybrid concrete/symbolic state-space exploraf6, 13, 7, 3]. Such tools use a
combination of concrete and symbolic execution to geneangets that increase cov-
erage. In such tools, a program-level loop is executed ebelgra specific number of
times as some path is followed. The symbolic-execution primitive for a single
struction is applied to each instructionoto obtain symbolic states at each pointwof

A path-constraint formuldhat characterizes which initial states must follevean be
obtained by collecting the branch formutge obtained at each branch condition by the
technique described above; the algorithm is shown in Fig. 7.

X86 String Instructions. X86 string instructions can involve actions that perform an
a priori unbounded amount of work (e.g., the amount performed isaated by the
value held in registeECX at the start of the instruction). This can be reduced to the
loop case discussed above by giving a semantics in whicim#ftieiction itself is one of
its two successors. In essence, the “microcode loop” isead into an explicit loop.

Procedures. A call statement’s semantics (i.e., how the state is chabgeke call ac-
tion) would be specified with some collection of operatiohgain, the reinterpretation
of the state transformer is induced by the reinterpretaifa@ach operation:

— For a call statement in a high-level language, there would®peration that
creates a new activation record. The reinterpretationisfitlould generate a fresh
logical constant to represent the location of the new atitimaecord.

— For a call instruction in a machine-code language, regigierations would change
the stack pointer and frame pointer, and memory operatiangdanitialize fields
of the new activation record. These are reinterpreted ictxthe same way that
register and memory operations are reinterpreted for aihrestructs.

Dynamic Allocation. Two approaches are possible:
— The allocation package is implemented as a library. One paly @ur techniques
to the machine code from the library.
— If aformula is desired that is based on a high-level semgngicall statement that
callsmal | oc ornewcan be reinterpreted using the kind of approach used in other
systems (a fresh logical constant denoting a new locatiorbeagenerated).

15

7 Implementation and Evaluation

Implementation. Our implementation uses the&sL system [9]. TsSL stands for
“TransformerSpecificationLanguage”.) Thél'sL language is a strongly typed, first-
order functional language with a datatype-definition madtra for defining recursive
datatypes, plus deconstruction by means of pattern magckiniting a TSL specifi-
cation for an instruction set is similar to writing an integger in first-order ML. For
instance, the meaning functi@nof §3.3 is written as d sL function

state interplnstr(instruction |, state S) {...}
wherei nst ruct i on andst at e are user-defined datatypes that represent the syn-
tactic objects (in this case, instructions) and the seroatdies, respectively.

We usedTsL to (1) define the syntax dk[-] as a user-defined datatype; (2) create
a reinterpretation based di-| formulas; (3) define the semantics bf-] by writing
functions that correspond B, F, etc.; and (4) apply reinterpretation (2) to the meaning
functions ofL[-] itself. (We already ha@sL specifications of x86 and PowerPC.)

TSL's meta-language provides a fixed set of base-types; a fixeof sgithmetic,
bitwise, relational, and logical operators; and a facifity defining map-types. Each
TsL reinterpretation is defined over theeta-language constructsy reinterpreting the
TSL base-types, base-type operators, map-types, and mapygpators (i.e.access
andupdatg. When semantic reinterpretation is performed in this way,independent
of any given subject language. Consequently, now that we baxried out steps (1)—
(4), all three symbolic-analysis primitives can be geretautomatically for a new
instruction setS merely by writing aTsL specification oflS, and then applying the
TsL compiler. In essenc@&sL act as a “Yacc-like” tool for generating symbolic-analysis
primitives from a semantic description of an instructionh se

To illustrate the leverage gained by using the approactepted in this paper, the
following table lists the number of (non-blank) lines of Cthat are generated from the
TsL specifications of the x86 and PowerPC instruction sets. Thaxer of (hon-blank)
lines of TsL are indicated in bold.

TsL C++
Z[] |FIIV TV FELT VUL ZI] |FITUTJUFE[JUUL]
x86 3,524 1,51Q| 23,109 15,632
PowerP({ 1,544 (already writtenh 12,153 15,637

The C++ code is emitted as a template, which can be instadtiaith different inter-
pretations. For instance, instantiations that create @iptementations ofygs[-] and
Ipowerprd] (i-e., emulators for x86 and PowerPC, respectively) canbiainoed triv-
ially. Thus, for a hybrid concrete/symbolic tool for x86,rdool essentially furnishes
23,109 lines of C++ for the concrete-execution componed287109 lines of C++ for
the symbolic-execution component. Note that the 1,51Glofd sL that definesF[-],
T[], FE[-], andi/[-] needs to be written only once.

In addition to the components for concrete and symbolicetxee, one also obtains
an implementation oV £LP—via the method described ifd—by calling the C++
implementations of [-] andZ[-]: WLP (s, ¢) = Fl¢](Z[s]Uia). By Thm. A2, WLP
is guaranteed to be consistent with the components for etanand symbolic execution
(modulo bugs in the implementation ©6L).

16

Evaluation. Some tools that use symbolic reasoning employ formula fioanmations
that are not faithful to the actual semantics. For instaB&&E [7] uses an approximate
x86 symbolic execution in which concrete values are usechwiom-linear operators
or symbolic pointer dereferences are encountered. As #, rgswsymbolic execution
of a path can produce an “unfaithful” path-constraint folany; that is, can be un-
satisfiable when the path is executable, or satisfiable winepath is not executable.
Both situations are called divergencd7]. Because the intended use of SAGE is to
generate inputs that increase coverage, it can be acceftalthe tool to have a sub-
stantial divergence rate (due to the use of unfaithful syiinlbechniques) if the cost of
performing symbolic operations is lowered in most circlanses.

However, if we eventually hope to model check x86 machinecmdplementations
of faithful symbolic techniques will be required. Usingtfdul symbolic techniques
could raise the cost of performing symbolic operations beedaithful path-constraint
formulas could end up being a great deal more complex thaaitbffl ones. Thus,
our experiment was designed to answer the question “Whatisast of using exact
symbolic-execution primitives instead of unfaithful ofies

It would have been an error-prone task to implement a fdithfmbolic-execution
primitive for x86 machine code manually. UsifigL, however, we were able to gen-
erate a faithful symbolic-execution primitive from an diig, well-testedT'sL specifi-
cation of the semantics of x86 instructions. We also geedrah unfaithful symbolic-
execution primitive that adopts SAGE’s approximate apphhoslVe used these to create
two symbolic-execution tools that perform state-spacdagation—one that uses the
faithful primitive, and one that uses the unfaithful priiwvét

Although the presentation in earlier sections was couamggtims of simplified core
languages, the implemented tools work with real x86 progrddur experiments used
six C++ programs, each exercising a single algorithm fromm@++ STL, compiled
under Visual Studio 2005. We compared the two tools’ divecgerates and running
times (see Tab. 1). On average, the approximate version.BXdiewer constraints in

Name # |[Tracd| # Faithful Approximate
(STL) Tests#instrgbranch| CE| SE [SMT| |¢| [Div.|C+SHSMT]| |¢] | Div. |Dist.
search 18 | 770 | 28 ||0.26 8.68|0.26| 10.5|0% | 9.13|0.10| 4.8(61%|55%
randomshufflg 48 | 1831| 51 |{0.59 21.6(0.17|27.3{0% | 21.9|0.03| 1.0 {95%]93%
copy 5 |1987| 57 ||0.6955.0/0.15| 5.4 0% | 55.8|0.03| 1.0 {60%|57%)
partition 13 | 2155| 76 ||0.72 26.4|0.43| 35.2|0% | 27.4|0.02| 1.0{92%|58%
maxelement| 101| 2870 | 224 ||0.94 17.0|3.59/153.00% | 18.0|2.90|78.483%| 6%
transform | 11 | 10880 476 |{4.22720.8 1.12/220.60% |713.6/0.03| 1.0 {82%|89%
Table 1. Experimental results. We report the number of tests exdgtiie average length of the
trace obtained from the tests, and the average number oftEarnn the traces. For the faithful
version, we report the average time taken for concrete (@H)sgmbolic executions (SE). In
the approximate version, these were done in lock step amdtthal time is reported in (C+SE).
(All times are in seconds.) For each version, we also reperaverage time taken by the SMT
solver (Yices), the average number of constraints foupd),(and the divergence rate. For the
approximate version, we also show the average distance (@ e total length of the trace)
before a diverging test diverged.

17

v, had a79% divergence rate, and was ab@X faster than the faithful version; the
faithful version reported no divergences.

8 Related Work

Symbolic analysis is used in many recent systems for teatidgverification:

— Hybrid concrete/symbolic tools [6, 13, 7, 3] use a combimratf concrete and sym-
bolic execution to generate inputs that increase coverage.

— WLP can be used to create new predicates that split part of agrdgabstract
state space [1, 2].

— Symbolic composition is useful when a tool has access torauta that summa-
rizes a called procedure’s behavior [14]; re-exploratibiine procedure is avoided
by symbolically composing a path formula with the procedsmenmary formula.

However, compared with the way such symbolic-analysis tikies are implemented
in existing program-analysis tools, our work has one keyaathge: it creates the core
concrete-execution and symbolic-analysis componentsvilayathat ensures by con-
struction that they armutually consistentWe are not aware of existing tools in which
the concrete-execution and symbolic-analysis primitaresimplemented in a way that
guarantees such a consistency property. For instanceg sotlrce code for B2 [8] (the
next-generation Blast), one finds symbolic executipss{) and W.LP implemented
with different pieces of code, and hence mutual consisteniegt guaranteedy LP is
implemented via substitution, with special-case code &ordting pointers.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Autatic predicate abstraction of C
programs. IrPLDI, 2001.

2. N. Beckman, A. Nori, S. Rajamani, and R. Simmons. Proaisfrests. INSSTA 2008.

3. D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. PoosankantSong, and H. Yin. Au-
tomatically identifying trigger-based behavior in maleaitn Botnet Analysis and Defense
Springer, 2008.

. P. Cousot and R. Cousot. Abstract interpretatiorP@PL, 1977.

. V. Ganesh and D. Dill. A decision procesure for bit-vestand arrays. IICAV, 2007.

. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed an&ted random testing. PLDI,
2005.

7. P. Godefroid, M. Levin, and D. Molnar. Automated whiteljoxz testing. I'lNDSS 2008.
8. R. Jhala and R. Majumdar. B2: Software model checking for 2ZD09.
www.cs.ucla.edutrupak/b2/.
9. J. Lim and T. Reps. A system for generating static anayfmrmachine instructions. In
CC, 2008.
10. K. Malmkjeer. Abstract Interpretation of Partial-Evaluation AlgorittenPhD thesis, Dept.
of Comp. and Inf. Sci., Kansas State Univ., 1993.
11. J. Morris. A general axiom of assignment. In M. Broy ané€hmidt, editorsTheor. Found.
of Program. MethodologyReidel, 1982.
12. A. Mycroft and N. Jones. A relational framework for abstrinterpretation. II?PADO, 1985.
13. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit tegtengine for C. InFSE
2005.
14. Y. Xie and A. Aiken. Saturn: A scalable framework for erdetection using Boolean satis-
fiability. TOPLAS 29(3), 2007.

o 01

18

A Appendix

In this section, we give correctness proofs for our gendrptémitives for symbolic
execution WLP, and symbolic composition. These apply to the language§BL2)
and reinterpretation given i#; the proofs for MC differ only slightly.

As a notational convenience, we do not distinguish betweeBtae and a
LogicalStruct A LogicalStruct. corresponds to th8tate ((:11), (+12)F),). Because,
for PL, logical structures only contain the single functigy there is a one-to-one cor-
respondence with states. Hence, whenever necessaryn(étg applications of[.],
B[.], andZ[.]), we assume that thatlagicalStruct is coerced tq(¢:11), (¢12)F),).

A.1 Correctness of the Symbolic-Execution Method

Lemma 1 (Relationship of€ to £ and B to B).

(1) TE?[[E]]U]]L = E[ENUU])
(2) F[B[BE]U]: = B[BEJ(UU[U]+)

Proof. The two lemmas are simultaneously proved using structndaldtion onE and
BE, as shown below. Ly be ({I; « T;}, {F; < FE;}).
Note that the standard interpretations lifhop relop, and boolop coincide
with those of binop,, relop,, and boolop,. Thus, reasoning steps of the form
binop; (0p2;) ~ binop(op2) are shorthands for reasoning about each case, such as

binop, ((+]) ~ binop(+), etc.
(1) (4)
T[E[)U]e = T[conste)]e = T [c]e = conste) = E[c](U[U]e)
I(hs) . T[E[I]U]. = T [lookupState/] = T[((U12)E,)(UT1))].
rhs = E[I]U[U]e)
EMN(I VL = TIUTH L], (12)[F) — FE[(UT2)F;])
= lookupStat&(e11)[1; — T[(UTL)L]e], (:12)[F; — FEN(UT2)F;]e)I
= ((12)[F; — FE[(U12)F3]) (TIUTI]e)
(FENUT2)Fp]e) (TIUINI]e)
acces8FE[(UT2)F,]e, T[(UT1)I]e)
= T((U12)F,)(UT)D)]e
I(hs); TIE[&IU]: = T[looKupERU 1] = T[(UT1)1]e
rhs : E[&IN(U[U]e)
= E[&I)((DL — T(UT1)L]
= lookupEny(¢:11)[1; — T[(UT1
TIUTHI]

, (L12)[F; — FE[(UT2)Fy]e
VL], (12)[Fy = FE[(UT2) Fi]) I

19

(iv)
lhs : T[E[+E]U]. = TlookupStord/ (E[EJU)]e = T[(U12)E,)(E[E]V)].
rhs : E[xE)(U[U])
= ELEN(I) L — TIUTDLL, (12)[F; — FELUT2F])
lookupStoré(1 [, — T[(U TV L], (12)[F; — FE(UI2)E) E[EJUUT)
(FE(UT2)F,]e) (E[ENU[U]L))
(FENUT2)F,0) (TETEIUL) // by ind. via(1)
acces8FE[(UT2)F,]e, T[E[E]U]L)
= TI((UT2)F,)(E[EIU)].
(’U) TH§HE10D2E2]]U_HL
= T[E[EJU op2, E[E:]U]:
= T[E[E1]U]e binop, (op2;,) T[E[E]U]¢
= E[E1]U]U]e) binoplop2) E[E2](U[U]e) // by ind. via(1)
(vi) T[E[BE? Ey : E2]U]e
T [ite(B[BEJU, E[EA[U, E[E-]U)]«
cond, (F[BIBEJU), T[E[EL]U]e, T[E[E2]U:)
FIB[BE]U]: ? TIETEL]U]e : T[E[E]JU]e
BIBE|U[U]) ? E[EJUU]) : E[E]WU[U:) // by ind. via(1) and(2)
E[BE? By : B]J(U[UTL)
(2) (1) FIB[T]U]e = F[T]. = T = B[T)U[U]:)

(ii) F[B[F)U]e = F[F]c = F = B[F}(U[U]¢)

(#7i) F[B[E1 rop Ex]U]e
= F[E[EL]U rop;, E[E]U]e
= T[E[E]U]: relop, (rop,) T[E[EU]e
= E[EL]U[U]e) relop(rop) E[E](U[U]e) // by ind. via(1)
= B[E: rop Ex(U[U]e)

(iv) FIB[-BE U] = F[=]BIBE]U]: = ~F[B[BE JU
= —B[BE|(U[U]) // by ind. via(2)
= B[-BE[U[U]:)

(v) F[B[BEy bop BEJUT:
= F[B[BE.JU bop, B[BE:]U].
= F[B[BE;]U]: boolop, (bop;) F[B[BE:]U]:
= B[BE;](U[U]) boologbop) B[BE:](U[U]¢) // by ind. via(2)
= B[BE; bop BE]U[U])

Theorem Al Forall . € LogicalStruct, evaluatingy[Z[s] U] is equivalent to running
7 on s with an input state obtained frotd[U]:; that is,

U[Z[s]U]e = Z[s]U[U]e)-

20

Proof.

() UIZL = EJUL)
= U[updateStoré/ (lookupEnvJ I) (E[E]U)].
= U[updateStoré/ (U11)I) (E[E]U)]: B
= U[((UT1), (UT2)[F, = (UT2)F,)[(UT)I — E[EJU]])]e
= (U] 1), UIUTA)TLUUT)I] — TEEJUIUT)
= (UU]eTD), U[UL2)[U[U])] — E[EJU[UT)]) // by Lem. 1(1)
= updateStorél/[U]:) (lookupEnU[U]e) I) (E[ENUU]L))
= I[I = EJU[U]e)

(1) U[Z[+I = E;]U]. B B

= U[updateStord/ (E[IJU) (E[E]U)]e
UIUT1), (UT2)[F, — (UT2)F,)[E[IIU — ETETU]]:
(U[U]e11), U[U]2)[T[E[I]U[UT)] = TIE[ETU[UT)]D)
(U[U]e11), U[U]2)[E[I]U[U]) — E[E]U[UT)]) // by Lem. 1(1)
updateStorél/[U].) (E[I](U[U]e)) (E[ETUTU]L))

Z_I[[*I = E;J(U[U]e)
(111) (U[Z[S152]U])

= U[Z[S]Z[5:10)])

= Z[S2(U[Z[S1]U]e) // by induction

= Z[S2(Z[S1](U[U]e)) // by induction

= I[S1S:](U[U]e)

A.2 Correctness ofWLP

AlthoughW/LP is sometimes confused with the formula-manipulation ojjena used

to obtain a formula that expresses it, or with the formulénat resultsW.LP is really

a semantic notion—the set of stawsscribedby . For example, for any statement

s: var = rhs; in a language that only hdsnt -valued variables, and postcondition

formulay, the formulap|[var < rhs| obtained by substitution is not the only formula

that expresseBVLP(s,). In fact, there are an infinity of acceptable formulas. We
characterize what constitutes an acceptable formula Esvisil

Definition 1 (AcceptableWWLP Formula.). ¢ is anacceptabléormula for'WLP (s, ¢)
iff, for all . € LogicalStruct,

Flvle = FLel(Zs]0)-

That is,i) holds in the pre-state structurexactly wheny holds in the post-state struc-
ture (Z[s]¢).

Lemma 2 (Relationship of7 to 7, F to F, FE to F€).

() T[T[T)U]e = T[T]U[U]e)

(2) FIF[e)Ule = FlelU[U])
(3) FE[FE[FEJU]: = FE[FE[UU].)

21

Proof. The three lemmas are simultaneously proved using strdatahaction onT’, ¢,
andFE, as shown below. Lel/ be ({I; < T;},{F; < FE;}). (Thus,T; = (U11)I;
andFE; = (U12)F;.) Let f be (:.12)[F; — FE[FE;]¢].
(1) () T[T [c]U]e = T[c]e = conste) = T[] (U[U]:)
(i)
lhs = T[T [IJU]c = T [lookupldU I = T[(UT1)I]e
ths = TIIUIUT) = TN — TIT], £)
= lookupld((¢11)[I; — T[T3]e], f) I
=T[UTHI]e
(iii) T[T [Ty op2, To]U]e
=T[T[T1]U op2, T[T>]U]e
= T[T[T1]U]e binop, (op2,) T[T [12]U]:
= T[T](U[U]e) binop, (op2,) T [T=](U[U]e) // by ind. via(1)
= T[Ty op2, To]U[U])
(iv) T[T [ite(, Tr, T2)]UTe_
= T[ite(Fl)U, TIT2]U, T[T2]U)]e
= cond, (F[F[e]U]e, T[T[T1]U]e, T[T [T2]U]e)
= F[Fle]U]e ? T[T [T1]U]e : T[T [T]U]e
= Fle]U[U]e) ? T[T) U[U]e) : T[T=](U[U]e) // by ind. via(1) and(2)
=Fle ?Th : TJUU]e)
(v) T[T[FE(T)]U]:
=T[FE[FEJU(TITIU)]:
= (FEFEFEJUN(TTTIU])
= (FEFEJUIUN)(TTIMU[U])) // by ind. via(3)
= T[FE(T)|U[U])

(2) (i) FIF[T]U]e = F[T]le = T = F[TU[U])
(ii) FIF[FJUL = FIE] = F = F[FJ@[U])

(#i) F[F[T1 ropy, T2]U]e B

FIT[T1]U relop, (rop,) T[T>]U]e

T[T[T:]U]e relop, (1op,) T[T [T]U]:

= T[T U[U]e) relop, (rop,,) T[T=](U[U]e) // by ind. via(1)
= F[T1 rop;, To](U[U]e)

(iv) FIF[=]e:]UTe
=F[=]Fle U]
= ~F[Fle U]
= ~Flpr[(U[U]:) // by ind. via(2)
= Fl[=]e JUUTe)
(v) F[F w1 bop, p2]U]: B
= F[F[¢:1]U boolop, (bop,,) Fp2]U]e
= F[F[e1]U]e boolop, (bop;) F[F[e2]U]e
= Flp1](U[U]:) boolop, (bop,,) Fw2]U[U]e) // by ind. via(2)
= Flp1 bopy, 2] (U[U]e)

22

(3) (2)
lhs = FE[FE[F)U] = FE[lookupldU F|. = FE[(UT2)F]e
rhs = FE[F(UU]e)
— FEFI((AV)L: — TIT], f)
= lookupFuncld (¢:T1)[I; — T[T:]], f) F
=FEN(U12)F.
(ii) FE[FE[FE [T — To]]U]e
= FE((FE[FE]U)T[T1]U — T[T2]U]]e
= FE[(FEFE T[T]U]e — T[T [T2]U]¢]
= FEFEUUTT [T)U[U]e) = T[T2](U[U].)] // by ind. via(1)
= FE[FEo [Ty — T]J(U[U]e)

Theorem A2 For any Stmts and Formulay, v := F[¢](Z[s]Ua) is an acceptable
WLP formula forp with respect tcs.

Proof. For all. € LogicalStruct

Flyle = FIF[el(Z[s]Uia)]:
FlelU[Z[s]Uiale) //byLem.2

= Flel(Z[s]U[U:a]r)) // by Thm. Al
= Flel(Z]s]e)

and therefore, by Defn. 1F[¢](Z[s]Ui4) is an acceptabl®V LP formula for ¢ with
respect tos.

A.3 Correctness of the Symbolic-Composition Method{

Theorem A3 For all Uy, U, € StructUpdate and € LogicalStruct/ [U[U>]U1] =
UTU]U[UL]L).

Proof. LetU; = ({I; <« T;},{F; < FE;}). LetI; andF,, range ovetd andFuncld
respectively.

UHH[[UQ]]UlﬂL
= U[((U1T1)[L; = T[Ti]U0:], (Ur12)[F) — FE[FE;JUL)]e
ey ﬂ({]k — (D[= TL]U) I,)ﬂ
{Fm = (UL12)[F) — FE[FE;|U1]) Fin}
= () = TI(U1 D[= T[L)UL)],
(L12)[F = FE[(U1T2)[F) — FEFE;JUL]) Fin]e])
= (D) Tpiy = TIULD) L] — T[T [T:]UL],
(12)[Frn () = FENULT2)Fn]d][Fy — FE[FEFE;]UL]]e)
= //byLem.2
(D) iy = T L] L = T[L]U[UL]),
(I2)[Fonzgy — FEWULT2) Fp]e][Fy — FEFE;JU[UL])])
(UIUL)DL = TITUUL])],
(U[UL])12)[F; — FE[FE;]U[UL]L)])
UTT](UUL]e)

L

23

