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Unmet Needs in Spondyloarthritis: Imaging in Axial 
Spondyloarthritis
Lianne S. Gensler1, Lennart Jans2, Sharmila Majumdar3, and Denis Poddubnyy4

ABSTRACT.	 Imaging biomarkers in axial spondyloarthritis (axSpA) are currently the most specific biomarkers for the 
diagnosis of this condition. Despite advances in imaging, from plain radiographs—which detect only 
damage—to magnetic resonance imaging (MRI)—which identifies disease activity and structural change—
there are still many challenges that remain. Imaging in sacroiliitis is characterized by active and structural 
changes. Current classification criteria stress the importance of bone marrow edema (BME); however, BME 
can occur in various diseases, mechanical conditions, and healthy individuals. Thus, the identification of 
structural lesions such as erosion, subchondral fat, backfill, and ankylosis is important to distinguish from 
mimics on differential diagnosis. Various imaging modalities are available to examine structural lesions, but 
computed tomography (CT) is considered the current reference standard. Nonetheless, recent advances in 
MRI allow for direct bone imaging and the reconstruction of CT-like images that can provide similar infor-
mation. Therefore, the ability of MRI to detect and measure structural lesions is strengthened. Here, we 
present an overview of the spectrum of current and cutting-edge techniques for SpA imaging in clinical 
practice; namely, we discuss the advantages, disadvantages, and usefulness of imaging in SpA through radiog-
raphy, low-dose and dual-energy CT, and MRI. Cutting-edge MRI sequences including volumetric interpo-
lated breath-hold examination, ultrashort echo time, zero echo time, and deep learning–based synthetic CT 
that creates CT-like images without ionizing radiation, are discussed. Imaging techniques allow for quanti-
fication of inflammatory and structural lesions, which is important in the assessment of treatment response 
and disease progression. Radiographic damage is poorly sensitive to change. Artificial intelligence has already 
revolutionized radiology practice, including protocolization, image quality, and image interpretation.
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Introduction 
Axial spondyloarthritis (axSpA) is a chronic inflammatory 
condition primarily affecting the spine and sacroiliac joints (SIJ). 
In the imaging assessment of SpA, radiography is the modality 
of choice for screening purposes, whereas computed tomography 
(CT) is not routinely obtained for evaluation of SpA as it comes 
with a large radiation burden. Major strengths of magnetic reso-
nance imaging (MRI) are its lack of radiation exposure, selec-
tive tissue contrast weighting, and high-contrast resolution 
that allows for excellent visualization of bone marrow changes. 
On the other hand, direct bone imaging on MRI remains chal-
lenging due to the low proton content. Recently, several novel 
techniques have emerged to create CT-like images of pelvic 
bones, such as susceptibility weighted imaging (SWI), ultrashort 
echo time (UTE), and synthetic CT MRI sequences, including 
automated segmentation of pelvic bones. Structural damage 
is caused by inflammation and the subsequent repair mecha-
nisms. Whereas structural damage in the SIJ is mostly relevant 
for the diagnosis of the disease, structural damage in the spine 
is one of the major determinants of functional status and spinal 
mobility in axSpA.1 The aim of this review is to present what 
is known about currently clinically available and new innova-
tive techniques in SpA imaging in clinical practice and research, 
including for diagnosis and progression, and the unmet needs 
that should be addressed. This review explores new directions 
and technologies that hold promise for enhancing our under-
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standing of the disease process and the role of antiinflammatory 
therapy in axSpA.

The current state of imaging in axSpA
Radiographs have been the mainstay of imaging in axSpA since 
the identification of axSpA as a diagnostic entity. Radiographs 
can measure damage and progression, but have poor sensitivity 
and are imprecise, particularly in terms of assessing the SIJ. They 
cannot identify inflammation. The advent of MRI revolutionized 
our ability to detect inflammation, particularly osteitis via bone 
marrow edema (BME), capsulitis, and enthesitis. MRI is more 
sensitive to detecting structural damage of the SIJ, measuring 
not just erosions but also backfill, ankylosis, and subchondral 
fatty marrow replacement. Current modalities measure different 
components of the disease (Table).2 Damage is measured by 
radiographs and CT scans, whereas inflammation is best imaged 
by MRI. MRI can also measure certain structural components of 
disease and can be transformed into CT-like images (synthetic 
CT). Various modalities are discussed below in detail (see Box 
for different applications).
CT. CT has an excellent soft tissue–bone contrast and high 
spatial resolution. Therefore, it is the reference imaging modality 
for evaluating structural changes of the calcified bone structure 
in the SIJ. CT is widely available and has a short examination 
time. Unfortunately, CT is associated with radiation expo-
sure. Regardless its superiority at detecting erosions, sclerosis, 
and ankylosis in the SIJ, standard CT and low-dose CT fail to 
adequately visualize BME.3

	 There are several new hardware developments to improve the 
image quality and reduce the radiation exposure of CT scans. 
For example, tin filtration of the x-ray beam reduces the amount 
of harmful radiation by filtering low-energy photons that are 

usually absorbed by the patient’s body and never reach the CT 
detector. Although this can reduce the image contrast, it will also 
markedly reduce the radiation exposure and ensure sufficient 
image quality. On the other hand, new detector technologies, 
namely photon-counting CT, promise an increase in sensitivity 
to radiographs and better spatial resolution, allowing further 
dose reduction and improvement of image quality.4

	 Dual-energy CT (DECT) acquires 2 datasets of images 
simultaneously at different energy levels (eg, 80 kV and 140 kV), 
and allows for differentiation between calcium and hydrogen/fat. 
Virtual noncalcium images can be rendered by subtracting calcium 
from cancellous bone, allowing visualization of BME, which is 
often displayed in color-coded maps. Using DECT, inflammatory 
BME can be detected in the sacrum and ilium in patients with 
sacroiliitis. Other applications include detection of urate crystal 
depositions in the SIJ of patients with gout. Counterintuitively, 
the radiation dose of DECT is comparable with conventional CT 
because it is divided between both energy levels.5
	 With the rapid evolution of artificial intelligence (AI) as a 
novel technique, synthetic CT (or bone MRI) has been devel-
oped (Figure). This method uses a convolutional neural network 
(CNN), with CT scans as the ground truth.6 As such, radi-
odensity contrast of osseous structures can be mapped from 
MRI to CT, creating radiograph-like and CT-like images 
without ionizing radiation. This technique has the advantage 
of providing quantitative Hounsfield unit maps like conven-
tional CT and a fully automatic postprocessing process that does 
not require user input. This technology was clinically validated 
in the SIJ, spine, and pelvis.6-8 In the study by Jans et al, these 
synthetic CT images in patients with sacroiliitis depicted struc-
tural lesions with higher diagnostic accuracy and reliability than 
T1-weighted MRI, and with reliability comparable to CT.6

Table. Imaging modalities in axial spondyloarthritis.

	 Modality	 Findings	 Limitations

Sacroiliac joint	 Radiographs	 Identifies radiographic sacroiliitis, 	 Has low sensitivity, specificity, and reliability
		  including subchondral sclerosis, erosions, 
		  joint space changes, and ankylosis
	 Low-dose CT	 Provides higher sensitivity, specificity, and 	 May be more challenging to obtain in some regions 
		  reliability for sacroiliac structural changes 	 and centers
		  compared to radiographs, and lower radiation 
		  exposure, making it a safer option	
	 MRI	 Effective in capturing structural alterations 	 Requires an erosion-sensitive sequence for 
		  such as subchondral sclerosis, erosions, 	 better detection of erosions (eg, T1-weighted
		  backfill, joint space changes, ankylosis, 	 fat-saturated gradient echo sequence such as VIBE)
		  and fat lesions
Spine	 Radiographs	 Detects new bone formation	 Has low sensitivity to change and takes only 
		  (syndesmophytes) and minor changes such	 a small amount of damage into account 
		  as erosion, sclerosis, and vertebral squaring	  
	 Low-dose CT	 Offers higher sensitivity in detecting new	 Not offered by all imaging centers 
		  bone formation and other structural changes 
		  in the spine compared to radiographs2	  
	 MRI	 Captures various structural changes, 	 Recognition of new bone formation still
		  including fatty lesions, erosions, sclerosis, 	 cannot be performed routinely
		  and potentially syndesmophytes	  

CT: computed tomography; MRI: magnetic resonance imaging; VIBE: volumetric interpolated breath-hold examination. 
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MRI. The introduction of MRI and the subsequent shift from 
identifying structural lesions, as detected by radiography, toward 
active inflammation has been an important step toward an earlier 
diagnosis. This became necessary with the advent of modern 
biologic or targeted synthetic disease-modifying antirheumatic 
drugs, which allow for effective suppression of inflammation.9 
These therapies can help to preserve the physical functionality of 
patients with axSpA before structural changes, especially anky-
losis, appear.
	 MRI is the imaging modality of choice in evaluating BME 
fat-suppressed fluid-sensitive images such as fat-suppressed 
T2-weighted images, short tau inversion recovery, chem-
ical shift Dixon method, or spectral attenuated inversion 
recovery.9 Contrast media is usually unnecessary for assessing 
the SIJ. However, BME seen in MRI is a very sensitive but less 
specific imaging sign of axSpA. It is present in several groups, 
including healthy individuals, patients with mechanical load, 
and postpartum women.10 For this reason, the last update of the 
Assessment of Spondylarthritis international Society (ASAS) 

criteria shifts the focus from the mere presence of active inflam-
mation to include the overall opinion accounting for structural 
changes. New MRI sequences that allow for better depic-
tion of erosions can be applied. These sequences can be easily 
obtained on MRI machines and include volumetric interpolated  
breath-hold examination (VIBE) gradient echo, UTE, SWI, and 
zero echo time (ZTE) sequences.11

Structural damage assessment
SIJ scoring systems. In addition to the radiographic scoring system 
of the modified New York criteria12 and MRI-specific assess-
ment of SIJ damage, scoring systems like the Spondyloarthritis 
Research Consortium of Canada (SPARCC) MRI SIJ structural 
score13 and the Berlin MRI scoring system (including later modi-
fications) have been developed.14

Spine scoring systems. The modified Stoke Ankylosing Spondylitis 
Spine Score (mSASSS)15 is commonly used and is included in the 
ASAS–Outcomes Measures in Rheumatology (OMERACT) 
core outcome set,16 but has limited sensitivity. CT syndesmo-
phyte score is a newer measure that may offer better quantifica-
tion of syndesmophyte growth.17 Overall, low-dose CT seems 
to be the most promising imaging method to assess structural 
damage of the spine in axSpA in the future. It is expected that, 
with CT, the duration of study seeking the therapeutic effect on 
structural damage progression could be reduced at least by half, 
from the current minimum of 2 years to 1 year.
Recent advances and potential future developments. Recent inno-
vations include ultralow-dose CT with AI-supported recon-
struction of images, SWI producing CT-like images from MRI,18 
and synthetic CT derived from MRI data (Figure).5 All these 
advances have an aim of improving detection of structural damage 
while simultaneously lowering or avoiding ionizing radiation. 
Additionally, AI is showing promise in enhancing the standard-
ized recognition of structural damage in SIJ on imaging, which 
might be helpful for both clinical and research applications.19-21

Box. Practice points.

•	 Low-dose CT is a more sensitive and specific imaging tool com-
pared to radiography, and can detect erosions with an equivalent 
radiation exposure.

•	 DECT combines the detection of structural lesions and BME, 
and could be an alternative for patients contraindicated to MRI.

•	 VIBE, SWI, UTE, ZTE, and synthetic CT MRI sequences depict 
the cortical outline of the bones better compared to conventional 
MRI. MRI-based synthetic CT can create HU maps.

•	 MRI with synthetic CT can become a 1-stop modality in the eval-
uation of BME and structural bone changes in sacroiliitis.

BME: bone marrow edema; CT: computed tomography; DECT: 
dual-energy CT; HU: Hounsfield unit; MRI: magnetic resonance imaging; 
SWI: susceptibility-weighted imaging; UTE: ultrashort echo time; VIBE: 
volumetric interpolated breath-hold examination; ZTE: zero echo time. 

Figure. Synthetic CT images look like CT images, although they are derived from MRI studies. 
MR images show active and structural lesions of the sacroiliac joint. (A) Active bone marrow 
edema is seen on the STIR image. (B) T1 image shows erosion. (C,D) Bone MR images make 
the presence of erosions and sclerosis more evident. CT: computed tomography; MR: mag-
netic resonance; MRI: magnetic resonance imaging; STIR: short tau inversion recovery; T1: 
T1-weighted MRI.
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New directions. The sequence of inflammation, repair, and new 
bone formation is a hallmark of axSpA, connecting inflamma-
tion with subsequent structural damage.22 Emerging technol-
ogies like synthetic CT derived from MRI16 and molecular 
imaging, including 18F-fluorodeoxyglucose (FDG) and fibro-
blast activation protein inhibitor positron emission tomography 
(PET),23 hold promise for improving structural damage assess-
ment and prediction in axSpA. AI is increasingly being explored 
for the standardized evaluation of radiographic progression in 
axSpA,24 which could lead to more accurate and efficient moni-
toring, especially in clinical studies.

AI in axSpA imaging
AI has emerged as a transformative technology with unprece-
dented potential in various fields, including medical imaging. 
Recent advances in AI indicate early signs of a technological 
revolution that may potentially transform all aspects of radiology 
including acquisition, interpretation, report generation, and, 
ultimately, disease prediction.
Image reconstruction. AI has the potential to enhance spine 
image reconstruction with improvements in image quality and 
acquisition time as well as a reduced radiation dose. AI algo-
rithms can be used to reduce noise in MRI and CT images by 
learning the patterns of noise in the data using a variety of deep 
learning (DL) techniques. For instance, a previous study showed 
that a DL-based noise reduction algorithm could improve the 
signal-to-noise ratio (SNR) of lumbar spine MRI scans by up 
to 30%.25 Similar studies of lumbar spine CT have shown that 
DL-enhanced images have significantly lower noise compared to 
the original scan.26

	 DL reconstruction algorithms can also be used to enhance 
the resolution of MRI by learning relationships between 
different coordinates in the image. State-of-the-art AI algo-
rithms have demonstrated significant improvements in image 
quality of lumbar spine MRI.27,28 Reconstruction algorithms and 
noise reduction techniques can also be used to reduce acquisi-
tion times of lumbar spine MRI.
	 An important direction in image reconstruction is the 
reduction of radiation dose in lumbar spine CT scans by recon-
structing high-quality images from fewer datapoints. A recent 
study shows that an AI-based DL algorithm could reconstruct 
high-quality images from CT scans of the lumbar spine that were 
acquired, at a dose up to 72% lower than the standard-of-care 
(SOC) dose.29

	 AI for synthetic modalities is very promising. Synthetic CT 
can be used to reduce radiation dose while still maintaining diag-
nostic accuracy.29 Synthetic MRI has the potential to improve 
image quality by reducing noise and artifacts and can enhance 
the diagnosis of spinal disorders. Last, AI-powered synthetic 
imaging can be used to personalize imaging by considering 
patient-specific factors such as age, gender, and body habitus, 
thereby improving the accuracy of diagnosis and subsequent 
management.
	 Fast MRI acquisitions modify conventional imaging 
protocol variables to decrease scan times while maintaining reso-
lution at the cost of increased image noise (ie, reduced SNR). 

Common strategies to shorten acquisition times exploit k-space 
data redundancy or spatial correlation (ie, partial Fourier parallel 
imaging and compressed sensing). Modifications include 
reducing excitations, raising bandwidth, and increasing parallel 
imaging factors. These acceleration approaches inherently suffer 
from reduced SNR or blurring, resulting in insufficient imaging 
quality. DL image enhancement can increase SNR.30 DL-based 
image denoising methods applied to compromised fast scan data 
can restore SNR and maintain image sharpness and SOC image 
quality.
	 DL-based methods employing a deep CNN directly applied 
to raw k-space data have developed rapidly for various MRI 
areas, including undersampled data reconstruction, segmenta-
tion, superresolution, and denoising. Using a DL reconstruction 
method developed to improve SNR and reduce ringing artifacts 
on lumbar spine MRIs (commercially available AIR Recon DL, 
GE HealthCare), Han et al demonstrated that DL reconstruc-
tion combined with fast acquisitions has potential to provide 
diagnostic image quality noninferior to SOC lumbar spine 
MRI. The lumbar spine MRI protocol was 52% faster and was 
able to provide scores noninferior to the standard protocol for 
apparent SNR, visualization of anatomical structures, and diag-
nostic confidence, as blindly evaluated by 1 junior and 2 senior 
subspecialty radiologists.31

	 Synthesizing new images from available images is an active 
area of research in MRI. DL image reconstruction can create 
synthetic images from existing datasets. AI for synthetic modal-
ities, known as virtually generated MRI, is promising, as the 
physical acquisition of particular sequences would no longer be 
necessary. Generative adversarial networks (GANs) based on a 
DL architecture can be used to generate synthetic images from 
different MRI contrasts as input. A GAN consists of a generator 
network and a discriminator network. The generator network 
learns to synthesize realistic images, whereas the discriminator 
network learns to distinguish real from fake (synthesized) 
images. During the learning process, these networks compete 
against each other, resulting in the generator network progres-
sively learning to synthesize images with increasingly realistic 
appearance.32

	 CT and MRI are complimentary modalities routinely 
obtained for the radiologic evaluation and surgical planning 
of patients with spine pathology. Roberts et al developed a DL 
algorithm producing 3-D lumbar spine CT images from MRI 
data using a supervised 3-D cycle-GAN model, which has the 
potential to reduce patient radiation.32

	 Using UTE or ZTE MRI coupled with DL-based noise 
reduction, Hahn et al demonstrated that CT-like images that 
depict bone erosions in axSpA can be generated. Two radiolo-
gists compared CT and these synthetic bone images and estab-
lished that the correlation between the CT and synthetic images 
ranged from 0.66 to 0.85 and was radiologist dependent.33

	 AI tools have enabled automated and robust segmentation of 
spinal structures such as vertebrae, intervertebral discs, and the 
spinal canal. In particular, DL algorithms have previously shown 
good performance in segmenting complex structures even in the 
presence of noise, artifacts, and anatomical variations. Models 
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trained on larger datasets can identify complex features from 
spine images, enhancing the diagnosis and classification of 
various pathologies such as fractures, spinal tumors, or degener-
ative conditions. Specialized algorithms such as GANs and vari-
ational autoencoders show potential for reconstructing images 
from undersampled or noisy data, resulting in faster acquisition 
times while preserving diagnostic accuracy. SpineNet,34 a multi-
task architecture, developed automated classification of several 
spinal conditions, including central canal stenosis on sagittal and 
axial T2-weighted images.35

	 In a well-designed multicenter study across different MRI 
vendors, Bressem et al demonstrated the ability for trained AI 
models to classify active inflammatory and structural changes in 
the SIJs, with accuracies ranging from 75% to 79%.21

	 AI has the potential to assist image analysis, benefiting 
patient management and workflow efficiency. The majority of 
studies are preliminary, retrospective, or single-center, with small 
sample sizes. Manual radiologist labeling of images, believed to 
be the most accurate method for training models, is labor inten-
sive and can limit the number of studies that can be used for 
training. Many models require postprocessing using semiauto-
mated software that typically depends on active human input (ie, 
placing regions of interest to segment and discriminate between 
anatomic structures). This step limits its real-world implementa-
tion in clinical practice.
	 The AI models are limited in their generalizability; further 
work is therefore needed to ensure their reliability and reproduc-
ibility before they can be translated successfully into clinical use. 
Randomized controlled trials and large multicenter studies will be 
required to validate these applications and facilitate their integra-
tion into routine clinical practice. DL methods need further vali-
dation with larger scale studies in external centers with prospective 
evaluation of a greater number and variety of patients.
	 Future work will focus on testing and documenting, pooling 
data from multiple collaborating institutions to increase hetero-
geneous test sets for research and evaluation of machine learning 
(ML) tools by multidisciplinary teams. Individual researchers 
are encouraged to use publicly available datasets and to test algo-
rithms online and provide feedback, reporting cases of success or 
failure and comparing results with published work.
	 3-D CNNs  can offer better performance but are compu
tationally expensive; moreover, medical imaging data must often 
be downsampled to accommodate currently available hardware 
limitations. Further advances in computer hardware and innova-
tive data processing solutions are likely required to develop more 
robust ML models with human-level performance.
	 Cultural challenges are also potentially significant barriers to 
resolving the technological challenges outlined above. Robust 
ML diagnostic tools require large, annotated datasets (tens of 
thousands of training images from multiple institutions) and run 
into systemic barriers from data privacy concerns, increasing the 
challenge of integrating computer-aided diagnostics into a tradi-
tional clinical workflow. Despite standard data anonymization, 
medical imaging data are subject to strict regulations regarding 
storage, transmission, and usage, creating challenges in assem-
bling a large dataset.

	 Another significant cultural challenge is the concept of AI as 
a “black box.” The inability for us to see how DL systems make 
their decisions is problematic. Although we can see the input and 
output, the system’s code or the logic that produced the output 
is not inherently transparent. Explainable AI is a branch of this 
technique that tries to make the used methodology transparent 
to all users.
	 Given this black box nature, accountability for medical deci-
sions would also be a challenge to establish. If an AI model 
makes a wrong diagnosis, would the responsibility fall on the 
clinician using the ML system or the manufacturer of the 
device? This obscure nature also has great implications regarding 
the marketing approval of novel AI tools, which require deeper 
testing and verification compared to other technologies, and 
thus a longer time to market and at greater cost.

Conclusion
Imaging in axSpA has exponentially advanced our under-
standing of this disease. Modalities like MRI have enabled earlier 
detection of disease with inflammatory lesions before damage 
ensues, and newer erosion-specific sequences have added to speci-
ficity in disease diagnosis and assessment. Advancements in struc-
tural damage assessment in axSpA, particularly in the SIJ and 
spine, are reshaping our understanding of disease progression and 
influencing the clinical assessment in daily clinical practice and 
research. Innovations in imaging modalities, scoring systems, and 
AI integration hold the promise of more accurate detection and 
better monitoring for patients with axSpA.
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