
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. **, NO. **, 2019. 1

Relative Acoustic Transfer Function Estimation in
Wireless Acoustic Sensor Networks

Jie Zhang, Richard Heusdens and Richard C. Hendriks

Abstract—In this work, we present an algorithm to estimate
the relative acoustic transfer function (RTF) of a target source
in wireless acoustic sensor networks (WASNs). Two well-known
methods to estimate the RTF are the covariance subtraction
(CS) method and the covariance whitening (CW) approach, the
latter based on the generalized eigenvalue decomposition. Both
methods depend on the use of the noisy correlation matrix, which,
in practice, has to be estimated using limited and (in WASNs)
quantized data. The bit-rate and the fact that we use limited data
records therefore directly affect the accuracy of the estimated
RTFs. Therefore, we first theoretically analyze the estimation
performance of the two approaches in terms of bit rate. Secondly,
we propose for both RTF estimators a rate-distribution method
by minimizing the power usage and constraining the expected
estimation error. The optimal rate distributions are found by
using convex optimization techniques. The model-based methods,
however, are impractical due to the dependence on the true
RTFs. We therefore further develop two greedy rate-distribution
methods for both approaches. Finally, numerical simulations on
synthetic data and real audio recordings show the superiority of
the proposed approaches in power usage compared to uniform
rate allocation. We find that in order to satisfy the same RTF
estimation accuracy, the rate-distributed CW methods consume
much less transmission energy than the CS-based methods.

Index Terms—Sensor networks, relative transfer function,
covariance subtraction, covariance whitening, model/data-driven
rate distribution, quantization, convex optimization

I. INTRODUCTION

ACOUSTIC transfer function (ATF) identification is re-
quired by many algorithms in wireless acoustic sensor

networks (WASNs), e.g., Wiener filtering [1]–[3] or beam-
forming [4]–[7] based noise reduction, or, sound source lo-
calization [8]. Often, instead of the ATF, algorithms use the
relative acoustic transfer function (RTF) [5], which is obtained
by normalizing the ATF with its value at the reference micro-
phone. The RTF of a single desired source spans the signal
subspace of interest and directly determines the formation of
the target spatial autocorrelation matrix.

Assuming a perfect voice activity detector (VAD) is avail-
able, the microphone recordings can be classified into noise-
only segments and speech+noise segments. During each of
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these periods, we can estimate the noise and noisy correla-
tion matrices, respectively, using sample correlation matrices.
Given the estimated noise and noisy correlation matrices and
assuming that the target speech and noise signals are mutually
uncorrelated, the low-rank target spatial correlation matrix
(more strictly, with a rank equal to the number of target
point sources of interest) can be obtained by subtracting the
noise correlation matrix from the noisy correlation matrix.
Most existing RTF estimation algorithms are based on the use
of sample correlation matrices. Due to the estimation errors
in the sample correlation matrices, particularly in noisy and
reverberant environments, the autocorrelation matrix of the
target sources will be full-rank in practice [1]. The estimation
errors on the correlation matrices will directly affect the
accuracy of the estimated RTFs.

In centralized WASNs, where all the network nodes are
wirelessly connected to a fusion center (FC), the nodes need
to quantize and transmit their microphone recordings to the
FC. The quantization of the data is thus another source for
inaccuracies when estimating the RTFs. Moreover, the number
of quantization levels (i.e., the bit-rate) used to transmit data
to the FC is one-to-one related to the required transmission
power. The power usage is another point of concern in WASNs
as typically the wireless sensors are battery-driven with limited
power budget. The transmission power can be assumed to be
exponentially related with the communication rate (e.g., in bits
per sample) [9], [10]. Intuitively, the lower the rate, the less
power is required, but the worse the RTF estimation, leading
to a trade-off between RTF estimation accuracy and power
consumption. In this paper, we investigate the relation between
power usage required for data transmission in WASNs and the
estimation accuracy of the RTFs (due to quantization errors,
limited data when calculating samples covariance matrices
and limited signal-to-noise ratio). As a result, we obtain an
algorithm to estimate the RTF at prescribed accuracy, at low
rate and low power usage.

Given the target speech correlation matrix, the RTF can
be estimated by simply extracting its normalized first column
vector, i.e., covariance subtraction (CS) [1], [11]–[14], or by
calculating the normalized principal eigenvector [1], [8]. The
idea behind the CS method is that the true speech correlation
matrix is rank-1 under the assumption that only a single target
speech point source is present. Alternatively, given the noise
and noisy correlation matrices, we can first whiten the noisy
correlation matrix using the noise correlation matrix, then the
RTF can be estimated by taking the normalized first column
of the whitened noisy correlation matrix, or by computing
the normalized principal eigenvector of the whitened noisy
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correlation matrix, i.e., covariance whitening (CW) [15]–[18].
Using the technique of generalized eigenvalue decomposition
(GEVD) for a matrix pencil (i.e., noise and noisy correlation
matrices), the CW method is then equivalent to extracting the
normalized principal generalized eigenvector. In this work, we
will only discuss the two extreme cases, i.e., 1) the CS method
where the RTF is obtained by extracting the normalized first
column vector and 2) the CW method where the RTF is
obtained by calculating the normalized principle eigenvector
of the whitened noisy correlation matrix, as the presented
results can easily be extended to the other two cases. In the
remainder of this work, we refer to these two cases as the CS
and CW method, respectively. In general, the CW method can
achieve better performance than the CS method, especially in
severe noisy scenarios [13], [18]. However, the CS method
is more appealing from an implementation point of view,
since it only requires to extract the first column vector of
a matrix, while the other one requires computationally more
demanding matrix eigenvalue decompositions and/or matrix
inversion. In [13] and [18], Markovich-Golan and Gannot
analyzed the performance of the CS and CW methods using
synthetic non-stationary Gaussian signals, respectively. We
will take the performance analysis of both methods as the
basis of the energy-aware RTF estimation procedures that are
presented in this work.

A. Contributions

The contributions of this paper can be summarized as
follows. Firstly, we briefly analyze the performance of the
CS method and the CW method in a theoretical fashion, with
quantization noise being taken into account. This is based on
the work presented in [13], [18]. It is shown that the estimation
errors of both methods are related to the signal-to-noise ratio
(SNR), the communication rate and the number of available
segments which are used to estimate the second-order statistics
(SOS). We show that the CW always performs better than
the CS method. This is because the performance of the CW
method depends on the output SNR of a minimum variance
distortionless response (MVDR) beamformer, while the CS
method depends in a similar way on the input SNR, which is
always lower than the MVDR output SNR.

Secondly, based on the framework presented in [19], we
develop for both the CS and CW approach a model-driven
rate-distribution algorithm for RTF estimation in WASNs,
referred to as MDRD-CS and MDRD-CW. The model-driven
problems are formulated by minimizing the total transmis-
sion costs between all microphone nodes and the FC and
constraining the expected RTF estimation performance. Using
convex optimization techniques, the MDRD-CS/CW problems
are derived as semi-definite programs. Through distributing
bit rates optimally, the transmission cost in WASNs can be
saved significantly compared to a blind full-rate transmission
strategy, meanwhile satisfying the prescribed desired estima-
tion performance on the RTF. Note that the MDRD-CS/CW
methods depend on the true RTF and noise SOS, which are
unknown in practice. The proposed model-driven methods are
thus not practical from the perspective of implementation.

To make the model-based methods practical, we further pro-
pose two corresponding data-driven methods (i.e., DDRD-CS
and DDRD-CW), which are (performance-wise) near-optimal
and use a greedy rate distribution strategy, but only rely on
realizations. Since the microphone nodes send the quantized
data to the FC frame-by-frame, we can estimate the RTF and
noise SOS using the previously received segments, and then
solve the model-driven problems based on the estimated RTF
and noise SOS. Then, each node quantizes the new segment
at the rate that is obtained by the model-driven method. As
such, the data-driven methods can avoid the dependence on
the true RTF and noise SOS.

Finally, the proposed approaches are validated via numer-
ical simulations in a simulated WASN. We find that both
the MDRD-CS and the MDRD-CW satisfy the performance
requirement, and the DDRD-CS (or DDRD-CW) method
converges to the MDRD-CS (or MDRD-CW) method when
increasing the number of available segments. We conclude
that the sensors that are closer to the FC are more likely
to be allocated with a higher rate, since they are cheaper
in transmission. Besides, we show that at higher bit-rates,
redundant information is transmitted, as the performance of
CS/CW-based methods does not gain much with increasing bit
rate. Hence, the proposed methods can reduce the redundant
bits and save energy usage compared to the unnecessary full-
rate quantization. Furthermore, it is shown that given the same
performance requirement, the MDRD-CW (or DDRD-CW)
method consumes much less transmission energy compared
to the MDRD-CS (or DDRD-CS) method.

B. Outline and notation

The paper is structured as follows. Sec. II presents pre-
liminaries on the signal model and the estimation of sample
correlation matrices. In Sec. III, we theoretically analyze the
performance of the CS/CW-based RTF estimators. Sec. IV
formulates the rate-distributed RTF estimation problem and
solves it in the context of the CS and CW methods, respec-
tively. In Sec. V, we show the proposed greedy methods.
The proposed methods are validated in Sec. VI via numerical
simulations. Finally, Sec. VII concludes this work.

The notation used in this paper is as follows: Upper (lower)
bold face letters are used for matrices (column vectors). (·)T
or (·)H denotes (vector/matrix) transposition or conjugate
transposition. (·)∗ denotes the conjugate of a complex number.
diag(·) refers to a block diagonal matrix with the elements in
its argument on the main diagonal. IN and ON denote the
identity matrix and the N × N matrix with all its elements
equal to zero, respectively. e1 is a column vector with 1 at
the first entry and zeros elsewhere. 0N is an N × 1 all-
zeros column vector. E{·} denotes the statistical expectation
operation. Tr(·) and rank(·) denote the trace and rank of a
matrix, respectively. || · ||2 denotes the ℓ2 norm. A ≽ B means
that A−B is a positive semidefinite matrix. Furthermore, ⊙
denotes the Hadamard (elementwise) product. X̂ and X̃ denote
the estimate of a random variable X and the corresponding
estimation error, respectively.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2019.2923542

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. **, NO. **, 2019. 3

II. FUNDAMENTALS

A. Signal model

We consider K microphones that sample the sound field
consisting of one target point source, degraded by acoustic
background noise. In the short-time Fourier transform (STFT)
domain, letting l and ω denote the index of time frame and
angular frequency, respectively, the noisy DFT coefficient at
the kth microphone, say Yk(ω, l), k = 1, · · · ,K, is given by

Yk(ω, l) = Xk(ω, l) + Uk(ω, l), (1)

where Xk(ω, l) = ak(ω)S(ω, l) with ak(ω) the ATF of the
target signal with respect to the kth microphone and S(ω, l)
the DFT coefficient of the target source signal at the source
location. In this work we assume that the ATF is time-
invariant, i.e., the target source is assumed static, during the
time period of interest. Therefore, ak(ω) is not a function of l.
In (1), the term Uk(ω, l) represents the total received noise at
the kth microphone (including interfering sources and sensor
noise). In this work, the noise signals contained in Uk(ω, l)
are assumed stationary during the time period of interest. This
assumption is not strictly necessary for the theory that we will
derive. However, the expressions that we present depend on
the SOS that can only be estimated if the sources are stationary
for a fixed period of, say L time-frames. In a centralized
WASN, we assume that a FC is employed to collect data and
process the tasks at hand. In this case, the microphone nodes
need to transmit their recordings to the FC, and the recordings
should be quantized at specified communication rates. Taking
the utilization of quantizers into account and letting Qk(ω, l)
denote the quantization noise1 contained in the transmitted
data from the kth microphone node, the quantized version of
the kth microphone measurements that is received by the FC
is given by

Ŷk(ω, l) = Xk(ω, l) + Uk(ω, l) +Qk(ω, l). (2)

Note that the quantization takes place in the STFT domain
directly. Given a bit-rate, the real and imaginary parts of
Yk(ω, l) are quantized separately, as the bit-rate is equally
distributed to the real and imaginary parts [20]. A more opti-
mal but complicated rate distribution for quantizing complex
Gaussian random variables can be found in [21]. For notational
convenience, the frequency variable ω and the frame index
l will be omitted now onwards bearing in mind that the
processing takes place in the frequency domain. Using vector
notation, the quantized signals from the K microphones are
stacked in a vector ŷ = [Ŷ1, ..., ŶK ]T ∈ CK . Similarly,
we define K dimensional vectors y, x, u, q and a for
the microphone recordings, the target speech component, the
received noises by the microphones, the quantization noise and
the ATFs, respectively, such that (2) can be rewritten as

ŷ = aS + u+ q, (3)

with the clean speech component given by x = aS. Further-
more, we define n = u + q as the total noise at the FC

1In real-life applications, Yk(ω, l) is already quantized, since it is acquired
by the analog-to-digital converter of the kth sensor. In this case, Qk(ω, l)
would represent the error from changing the bit resolution of Yk(ω, l).

including quantization noise. Without loss of generality, we
assume that the first microphone is taken as the reference
microphone. The RTF can then be defined as

d = a/a1, (4)

where a1 refers to the first entry of vector a.

B. Estimating sample covariance matrices

We assume that the quantization noise is uncorrelated with
the microphone recording2, and that the noise components and
the target signal are mutually uncorrelated, such that from the
signal model (2), the SOS of the noisy microphone signals
during speech+noise segments are given by

Rŷŷ = E{ŷŷH} = Rxx +Ruu +Rqq. (5)

Further, the SOS of the noise are given by

Rnn = Ruu +Rqq. (6)

Assuming that the speech and noise signals are mutually
uncorrelated, Rxx can be calculated as

Rxx , σ2
Saa

H = σ2
X1

ddH

= Rŷŷ −Rnn, (7)

with σ2
S = E{|S|2} and σ2

X1
= E{|X1|2}, respectively,

representing the power spectral density (PSD) of the target
source and the PSD of the speech component at the reference
microphone. Obviously, we have the relation σ2

X1
= |a1|2σ2

S .
Note that Rŷŷ and Rnn are full-rank (positive definite)
matrices, and rank (Rxx) = 1 in a single speech point source
scenario. More importantly, both Rŷŷ and Rnn depend on
Rqq, while Rxx does not. From (5) and (6), we know that the
communication rate affects Rŷŷ and Rnn by the addition of
the matrix Rqq. Hence, in case Rnn and Rŷŷ are perfectly
estimated (e.g., given sufficiently long data measurements),
Rqq can be eliminated by calculating Rxx with the subtractive
operation in (7).

In practice, given L speech+noise segments, the SOS Rŷŷ

can be estimated by average smoothing, that is

R̂ŷŷ =
1

L

L∑
l=1

ŷlŷ
H
l . (8)

The SOS estimator in (8) is unbiased and the corresponding
estimation error is denoted by

R̃ŷŷ = R̂ŷŷ −Rŷŷ. (9)

Similarly, we can estimate Rnn by

R̂nn =
1

|T |
∑
l∈T

nln
H
l , (10)

where T indicates a set of noise-only time segments. However,
to make the analysis on the CS and CW method consistent, we
will assume that Rnn is known and can be used to estimate
the RTF vector. This could be argued for under conditions of
relatively stationary noise sources. In that case, Rnn can be

2This assumption holds under high rate communication. At low rates, this
can be achieved by applying subtractive dither [22], [23].
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estimated with relatively small error as sufficiently long time
segments can be used. The assumption that Rnn is known is
required in the derivation of the CW-based RTF estimation
accuracy. However, in the derivation of the CS-based RTF
estimation accuracy this assumption is strictly speaking not
necessary and expressions can also be derived taking esti-
mation errors on Rnn into account. In the derivation of the
estimation accuracy under the CW approach it is not trivial
to take both estimation errors on R̃ŷŷ and Rnn into account.
As such this is a disadvantage of the CW approach. However
in order to make comparison of both methods possible, we
make the same assumption in both methods. From now on
we therefore assume R̃ŷŷ is estimated and Rnn is known.
However, in Sec. III-A, for completeness, we will give the
expressions for the CS estimation accuracy when also Rnn

is estimated. With R̂ŷŷ and Rnn at hand, using (7) we can
obtain the estimate of R̂xx by

R̂xx , R̂ŷŷ −Rnn, (11)

which can be reformulated as

R̂xx = Rxx + R̃xx, (12)

with R̃xx = R̃ŷŷ. Although rank(Rxx) = 1, in practice we
have rank(R̂xx) > 1 due to the estimation error in R̂ŷŷ. The
RTF estimators presented in the sequel are based on the SOS
Rxx, Rŷŷ and Rnn, whereas in practice these matrices are
replaced by the sample correlation matrices R̂xx, R̂ŷŷ and
R̂nn.

For the SOS of the quantization noise, we assume that each
microphone node employs a uniform quantizer for quanti-
zation, such that given bk bits per sample, the PSD of the
quantization noise is given by [24], [25]

σ2
qk

= ∆2
k/12,∀k, (13)

where the uniform intervals have width ∆k = Ak/2
bk with

A/2 denoting the maximum absolute value of the kth mi-
crophone measurement. Assuming that the quantization noise
across microphones is mutually uncorrelated, the correlation
matrix of the quantization noise across microphones reads

Rqq =
1

12
× diag

([
A2

1

4b1
,
A2

2

4b2
, ...,

A2
K

4bK

])
. (14)

III. PERFORMANCE ANALYSIS FOR RTF ESTIMATORS

In this section, we will theoretically analyze the RTF esti-
mation performances of the CS method and the CW method,
which is based on the work presented in [13] and [18],
respectively, which we extend by taking quantization noise
into account. The estimation accuracy is defined as the ratio
between the expected squared norms of the error vector d̃ and
the true RTF vector as [13]

ϵ , E[||d̃||22]/||d||22. (15)

A. Performance analysis for CS method

The CS method takes the normalized first column of the
matrix R̂xx as the RTF estimate [1], [11], i.e.,

d̂CS , R̂xxe1

eT1 R̂xxe1
, (16)

which is based on the rank-1 model for the clean-speech
correlation matrix Rxx. The denominator of (16) represents
the signal power at the reference microphone, i.e.,

σ̂2
X1

, eT1 R̂xxe1. (17)

In order to analyze the CS-based RTF estimator, we write
the RTF estimate from (16) as

d̂CS = d+ d̃CS. (18)

In [18], it was shown that the estimation error term d̃CS is
given by

d̃CS =
1

|a1|2σ̂2
S

(
I− deT1

)
R̃xxe1. (19)

Assuming the estimation error R̃ of the covariance matrix R
of a Gaussian random variable when estimated as in (8) obeys
a complex Wishart distribution [26], it can be shown (see [18])
that given the noise SOS Rnn, the RTF estimation error ϵCS

of the CS-based method from (15) is given by [13], [18]

ϵCS =
1 + 1

η

L||d||22σ̂2
X1

·Tr
((

I− deT1
)
Rnn

(
I− deT1

)H)
, (20)

where η is referred to as the signal-to-(total)noise ratio at the
reference microphone, i.e.,

η ,
σ̂2
X1

eT1 Rnne1
=

eT1 R̂xxe1
eT1 Rnne1

. (21)

Finally, taking the quantization noise into account as Rnn =
Ruu +Rqq, and for readability, defining

G =
(
I− deT1

)
(Ruu +Rqq)

(
I− deT1

)H
,

such that the final CS error model can be formulated as

ϵCS =
1 + 1

η

L||d||22σ̂2
X1

· Tr (G) . (22)

Note that (22) differs from the one in [13] by the facts that 1)
quantization noise is taken into account 2) similar as in [18]
we assume Rnn to be known (estimated based on larger data
records), resulting in the term 1

η in (22).
Further, in case Rnn is estimated based on a different

number of frames, say T = |T | frames, that are different
(independent) from the L frames used to estimate Rŷŷ, we
obtain

ϵCS =

1
L + 1

η

(
1
L + 1

T

)
||d||22σ̂2

X1

· Tr (G) . (23)

If L = T , (23) will be identical to the error model derived
in [13].
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B. Performance analysis for CW method

The CW method takes the normalized principal eigenvector
of the whitened noisy covariance matrix as the estimated RTF,
which is given by

d̂CW =
R

H/2
nn ψ̂

eT1 R
H/2
nn ψ̂

, (24)

where ψ̂ is the principal eigenvector of the matrix R̂zz =
1
L

∑L
l=1 zz

H with z = R
−H/2
nn ŷ. In [18], it was shown that

the error vector of the CW method can be approximated by

d̃CW =
θ

a1

(
I− deT1

)
RH/2

nn ψ̃, (25)

where θ =
√

aHR−1
nna, and ψ̃ denotes the estimation error

vector of the principal eigenvector, and its covariance matrix
is given by [27]

Θψ =
λ1

L(λ1 − 1)2

(
I−ψψH

)
, (26)

where λ1 = aHR−1
nnaσ̂

2
S +1 denotes the principal eigenvalue,

and the true principal eigenvector is given by ψ = R
−H/2
nn a/θ.

Hence, the covariance matrix of d̃CW can be formulated as

Θ
(a)
=

|θ|2

|a1|2
(
I− deT1

)
R

H
2
nnΘψR

1
2
nn

(
I− deT1

)H
(b)
=

1 + 1
σ̂2
X1

dHR−1
nnd

Lσ̂2
X1

(
I− deT1

)
Rnn

(
I− deT1

)H
, (27)

where (a) is obtained by substitution of (25) and (b) is due to
the fact that (I−deT1 )d = 0K . Finally, taking the quantization
noise into account, we can formulate the CW-based RTF
estimation error as

ϵCW =
Tr(Θ)

||d||22
=

1 + 1
σ̂2
X1

dHR−1
nnd

L||d||22σ̂2
X1

· Tr (G) . (28)

Note that in fact the term σ̂2
X1

dHR−1
nnd is the output SNR of

an MVDR beamformer [4], [28]–[30].

Remark 1. By inspection, the estimation errors of both the
CS method and the CW method are influenced by the SNR,
frame length and communication rate, the signal power and
the location of source, i.e., ||d||22. The final expression in (22)
or (28) differs from the one derived in [13], [18] by the fact
that the quantization noise is now also taken into account.
Comparing (28) to (22), the only difference lies in the SNR
term. Since after the use of an MVDR beamformer, the SNR
can be improved, i.e., η ≤ σ̂2

X1
dHR−1

nnd, we can conclude
that the CW-based RTF estimator always achieves a higher
accuracy than the CS method.

IV. MODEL-DRIVEN RATE-DISTRIBUTED METHODS

In this section, we first present the transmission energy
model, and then formulate the general rate-distributed RTF
estimation problem. Finally, we propose convex optimization
approaches for the resulting rate distribution problems for the
CS-based and CW-based methods.

A. Transmission energy model

In WASNs, the sensors transmit data to the FC via wireless
links, and the communication channels are inevitably cor-
rupted by additive noise. Let us assume that the transmission
channel noise is white Gaussian with PSD Vk, ∀k. Given a
transmitted power Ek from the kth microphone node in the
WASN, the received energy by the FC will be D−r

k Ek with
Dk and r denoting the transmission distance from the kth
microphone to the FC and the path loss exponent, respectively.
Typically, 2 ≤ r ≤ 6 [9], [31]. We assume r = 2 throughout
this work without loss of generality. The loss in the received
energy is caused by the channel power attenuation. With these,
the SNR of the kth channel can be formulated as

SNRk = D−2
k Ek/Vk, ∀k, (29)

which is different from the acoustic noise or acoustic SNR
that is mentioned before. Assuming that the transmitted speech
signals are Gaussian distributed in the STFT domain, the
capacity based on the Shannon theory [32] for Gaussian
channels is then given by

bk =
1

2
log2 (1 + SNRk) , ∀k, (30)

which is valid for one frequency bin. To achieve reliable
transmissions, bk bits per sample at most can be transmitted
from microphone k to the FC at each frequency bin. Based on
the channel SNR (29) and the capacity (30), we can formulate
the transmitted energy as [9], [10], [19], [20], [33]

Ek = D2
kVk(4

bk − 1),∀k. (31)

Notice that the above energy model holds under two con-
ditions [9], [10]: 1) band-limited input signals, and 2) the
microphone recordings are quantized at the channel capacity.

B. General problem formulation

The proposed model-driven rate-distributed RTF estimation
method is formulated by minimizing the total transmission
costs while constraining the RTF estimation error, which can
be expressed as the following optimization problem:

min
b

K∑
k=1

D2
kVk(4

bk − 1)

s.t. ϵCS/CW ≤ β

α
,

bk ∈ Z+, bk ≤ bmax, ∀k,

(P1)

where ϵCS/CW indicates the use of either ϵCS or ϵCW from
(22) and (28), respectively, Z+ denotes a non-negative integer
set, bmax the maximum rate, and β the optimal performance,
which can be the RTF estimation error of the CS or CW-based
method when all the sensor measurements are quantized at the
maximum bit rate, and α ∈ (0, 1] is the parameter to control
the desired performance. In practice, β/α is just a number,
which can be assigned by users, not necessarily dependent on
the optimal performance. By solving (P1), we can determine
the optimal rate distribution that the microphone nodes can
utilize to quantize their recordings, such that a desired RTF
estimation accuracy is achieved with minimum energy usage.
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One way to solve (P1) is exhaustive search, i.e., evaluating
the performance for all (bmax + 1)K possible candidate rate
distributions, but evidently this is intractable unless bmax

or/and K are very small. Note that (P1) is formulated per
frequency bin. Also, (P1) is non-convex due to the facts that:

• the constraint ϵCS/CW ≤ β
α is non-linear in b;

• the bit-rate b is constrained to be integer valued.
Next, we will solve (P1) using convex optimization techniques
in the context of the CS and CW methods, respectively.

C. Model-driven rate-distributed CS (MDRD-CS)

For the first constraint ϵCS ≤ β
α in (P1), using the expression

ϵCS from (22), we can rewrite it as

c1 ·
[
c2 +Tr

((
I− deT1

)
Rqq

(
I− deT1

)H)]
≤ β

α
,

or rearranged as

Tr
((

I− deT1
)
Rqq

(
I− deT1

)H)
≤ β

αc1
− c2, (32)

where the constants c1 and c2 are given by

c1 =
1 + 1

η

L||a||22σ̂2
S

=
1 + 1

η

L||d||22σ̂2
X1

, (33)

c2 = Tr
((

I− deT1
)
Ruu

(
I− deT1

)H)
. (34)

Clearly, (32) is non-convex and non-linear in terms of the bit
rates bk, ∀k. For linearization, we equivalently rewrite (32) into
two new constraints by introducing a new Hermitian positive
semi-definite matrix Z ∈ SK+ with S+ denoting the set of
Hermitian positive semi-definite matrices, i.e.,

Tr (Z) ≤ β

αc1
− c2, (35)(

I− deT1
)
Rqq

(
I− deT1

)H
= Z. (36)

Now, (35) is linear in the new variable Z, however, (36) is
still non-convex in bk. To convexify (36), we can relax it to

Z ≽
(
I− deT1

)
Rqq

(
I− deT1

)H
, (37)

since (37) and (35) are sufficient to obtain the original con-
straint in (32). By inspection, (37) can be written as a linear
matrix inequality (LMI) using the Schur complement [34,
p.650], i.e., [

R−1
qq I− deT1(

I− deT1
)H

Z

]
≽ O2K , (38)

where R−1
qq can be computed from (14) as

R−1
qq =12× diag

([
4b1

A2
1

,
4b2

A2
2

, ...,
4bK

A2
K

])
. (39)

Note that (38) is not an LMI in the unknown parameters
b, but in 4bk , ∀k. Finally, we define a constant vector f =
[ 12A2

1
, · · · , 12

A2
K
]T and introduce a variable change tk = 4bk ∈

Z+, ∀k, such that R−1
qq = diag (f ⊙ t) and (38) are both linear

in t. For the integer constraint bk ∈ Z+, ∀k, we relax it to

bk ∈ R+, i.e., tk ∈ R+, ∀k. Altogether, we obtain a standard
semi-definite programming (SDP) problem [34, p.128] as

min
t,Z

K∑
k=1

D2
kVk(tk − 1)

s.t. Tr (Z) ≤ β

αc1
− c2,[

diag (f ⊙ t) I− deT1(
I− deT1

)H
Z

]
≽ O2K ,

1 ≤ tk ≤ 4bmax , ∀k.

(P2)

D. Model-driven rate-distributed CW (MDRD-CW)

Applying the expression from (28) to (P1), one can consider
the MDRD-CW problem. Then, the first constraint ϵCW ≤ β

α
in (P1) can be rewritten as

Tr
((

I− deT1
)
Rqq

(
I− deT1

)H)
≤ β

αc′1
− c2, (40)

where c′1 is defined by

c′1 =
1 + 1

σ̂2
X1

dHR−1
nnd

L||d||22σ̂2
X1

, (41)

and R−1
nn can be calculated as

R−1
nn

(a)
= (Ruu +Rqq)

−1

(b)
= R−1

uu −R−1
uu

(
R−1

uu +R−1
qq

)−1
R−1

uu, (42)

where (b) is derived from the matrix inversion lemma [35,
p.18]3. Similar to Sec. IV-C, by introducing a matrix Z ∈ SK++,
(40) can equivalently be rewritten into two new constraints,
e.g., (35) and (36), and the latter one can be relaxed to the
LMI in (38).

Further, due to the fact that the unknown rates also sit in
c′1 and c′1 is non-convex in terms of the bit rate b, we relax
(41) as

c′1 ≥
1 + 1

σ̂2
X1

dHR−1
nnd

L||d||22σ̂2
X1

. (43)

With the substitution of the expression for R−1
nn from (42) into

(43), we obtain

δ ≥ dHR−1
uu

(
R−1

uu +R−1
qq

)−1
R−1

uud, (44)

where δ is given by

δ = dHR−1
uud−

1/σ̂2
X1

c′1L||d||22σ̂2
X1

− 1
. (45)

Using the Schur complement, (44) can be reformulated as the
following LMI:[

R−1
uu +R−1

qq R−1
uud

dHR−1
uu δ

]
≽ OK+1. (46)

Note that (45) is non-convex in c′1, which can be relaxed to

δ ≤ dHR−1
uud−

1/σ̂2
X1

c′1L||d||22σ̂2
X1

− 1
, (47)

3(A+CBCT
)−1

= A−1−A−1C
(
B−1 +CTA−1C

)−1
CTA−1.
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since (47) and (44) are sufficient conditions for obtaining
(40). As a consequence, the MDRD-CW problem can also
be formulated as an SDP problem:

min
t,Z,c′1,δ

K∑
k=1

D2
kVk(tk − 1)

s.t. Tr (Z) ≤ β

αc′1
− c2,[

diag (f ⊙ t) I− deT1(
I− deT1

)H
Z

]
≽ O2K ,[

R−1
uu + diag (f ⊙ t) R−1

uud
dHR−1

uu δ

]
≽ OK+1,

1/σ̂2
X1

c′1L||d||22σ̂2
X1

− 1
− dHR−1

uud+ δ ≤ 0,

1 ≤ tk ≤ 4bmax , ∀k.

(P3)

Remark 2. Both the MDRD-CS problem in (P2) and the
MDRD-CW problem in (P3) can be solved in polynomial
time using interior-point methods or solvers, like CVX [36]
or SeDuMi [37]. The computational complexity for solving
both problems is of the order of O(K3). After (P2) or
(P3) is solved, the allocated bit rates can be resolved by
bk = log4 tk, ∀k. Since the solution of (P2) or (P3) are
continuous values, we need to further refine the rates. We rec-
ommend to utilize randomized rounding, since this technique
can guarantee that the integer solution obtained in this way
always satisfies the performance requirement. The randomized
rounding technique is detailed in [19], [38], the complexity of
which is linear in K.

V. GREEDY RATE-DISTRIBUTED METHODS

Strictly speaking, the MDRD-CS/CW estimators proposed
in the previous section are not practical, since the rate-
distribution solver in (P2) or (P3) depends on the signal
power σ2

X1
, the true RTF d, SNR and noise SOS Ruu.

Although we can estimate σ2
X1

, SNR and Ruu in practice
using the microphone measurements, we have no knowledge
on d. However, the model-driven methods can provide a lower
bound on the optimal rate distribution that we can achieve with
the constraint on the RTF estimation performance. Based on
the model-driven estimators, we will propose two practical
low-rate RTF estimators in this section, which are referred
to as the data-driven rate-distributed CS/CW methods (i.e.,
DDRD-CS and DDRD-CW, respectively). In what follows, we
will take the DDRD-CS algorithm as an example to clarify the
proposed greedy methods, because the updating procedures for
both methods are similar.

Due to the fact that the microphone nodes quantize and
transmit their recordings to the FC on a frame-by-frame basis,
we can update the rate distribution at the FC end using
the previously received data and estimated RTF. In detail,
for the first time frame4, we initialize the bit rates at the

4Note that for the proposed rate distribution methods, we only need to
transmit the speech+noise segments, since the statistics of the acoustic noise is
assumed known in this work. This is the assumption that we made in Sec. II-B
in order to make the analysis on the CS and CW methods consistent.

maximum rate, and the microphone nodes quantize data at
the initial rates. At the FC end, we can estimate the initial
correlation matrices R̂qq, R̂ŷŷ and R̂xx using (14), (8) and
(11), respectively. Also, we can compute the signal power
σ̂2
X1

and the SNR at the reference microphone η̂ using (17)
and (21), respectively. Based on the estimate of R̂xx, we can
extract its normalized first column as the estimated RTF, i.e.,
d̂CS, using (16). Using this information, we can update the
constants c1 and c2 as

ĉ1 =
1 + 1

η̂

l||d̂||22σ̂2
X1

, (48)

ĉ2 = Tr
(
(I− d̂eT1 )(Rnn − R̂qq)(I− d̂eT1 )

H
)
, (49)

where l denotes the number of received segments by the FC,
e.g., in the initial case l = 1, and the estimate of the acoustic
noise statistics is given by R̂uu = Rnn − R̂qq. Based on
these, we can update the rate distribution by solving (P2), i.e.,

min
t,Z

K∑
k=1

D2
kVk(tk − 1)

s.t. Tr (Z) ≤ β

αĉ1
− ĉ2, diag (f ⊙ t) I− d̂eT1(

I− d̂eT1

)H

Z

 ≽ O2K ,

1 ≤ tk ≤ 4bmax , ∀k.

(50)

Note that (50) is an instantaneous optimization problem of
(P2) for one specific frame, as ĉ1, ĉ2 and d̂ need to be updated
frame-by-frame and they get more accurate with more frames
received by the FC.

Subsequently, the microphone nodes quantize the next frame
at the recently obtained bit rates. The FC then updates the SOS
and the parameters required by (50) using the past segments
together with the newly received measurements in a similar
way. This procedure will continue until all the frames at
the microphone end have been transmitted. This data-driven
approach is summarized in Algorithm 15, where we also
include the DDRD-CW method. The proposed DDRD-CW
method is obtained by replacing the CS-steps using the CW-
steps, e.g., d̂ is the normalized eigenvector of the matrix pencil
(R̂ŷŷ,Rnn) corresponding to the maximum eigenvalue. Note
that when the number of frames l ≪ L, it is possible that
(50) is infeasible due to insufficient segments for estimating
the SOS. To circumvent the infeasibility, we can relax β in
(50) using

β̂ = Lβ/l, (51)

such that the constraint Tr (Z) ≤ β̂
αĉ1

− ĉ2 gradually becomes
tighter when increasing the number of frames, resulting in
an increase in the bit-rates per frame that are required for
quantization. To this end, we can conclude that the complexity

5The current setup assumes the sources to be stationary in both time and
space. For non-stationary sources, e.g., moving sources, Algorithm 1 should
be modified as R̂ŷŷ = 1

P

∑l
ι=l−P ŷιŷH

ι , where P denotes the number of
frames from the past that we want to include. If the sources are completely
stationary, then P = l− 1.
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Algorithm 1: DDRD-CS/CW methods

1 Require: Ruu;
2 Initialize: bk = bmax, ∀k;
3 for l = 1 : L do
4 Transmit the lth noisy segment using bk bits;
5 R̂qq = 1

12 × diag([
A2

1

4b1
,
A2

2

4b2
, ...,

A2
M

4bM
]);

6 R̂ŷŷ = 1
l

∑l
ι=1 ŷlŷ

H
l ;

7 R̂xx = R̂ŷŷ −Ruu − R̂qq;
8 σ̂2

X1
= |a1|2σ̂2

S = eT1 R̂xxe1;

9 η̂ =
σ̂2
X1

eT
1 (R̂qq+Ruu)e1

;

10 Case 1: DDRD-CS
11 d̂CS = σ̂−2

X1
R̂xxe1;

12 ĉ1 =
1+ 1

η̂

l||d̂||22σ̂2
X1

;

13 ĉ2 = Tr((I− d̂CSe
T
1 )Ruu(I− d̂CSe

T
1 )

H);
14 update bCS by solving (P2);
15 Case 2: DDRD-CW
16 d̂CW =

R̂H/2
nn ψ̂

eT
1 R̂

H/2
nn ψ̂

;

17 ĉ2 = Tr((I− d̂CWeT1 )Ruu(I− d̂CWeT1 )
H);

18 update bCW and c′1 by solving (P3);
19 end for
20 return bCS,bCW, d̂CS, d̂CW
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3 sensors source noise FC

Figure 1. An illustration of experimental setting with 20 microphones. The
FC and the first microphone are placed at the same position.

of the greedy approaches for each frame is the same as the
model-driven methods, i.e., O(K3), and the complexity for all
the frames is of the order of O(LK3).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the RTF estimation performance
of the proposed methods using synthetic data and natural
speech data. Note that in simulations, the matrix Rnn is
already estimated using sufficiently long noise-only segments.

A. Simulations on synthetic data

Fig. 1 shows the experimental setup, where K = 20 candi-
date microphones are placed in a 2D room with dimensions

(3 × 3) m. The microphones are distributed uniformly on a
circle with the origin at (1.5, 1.5) m and a radius of 0.5
m. The FC (black solid square) is assumed to be at the
first microphone node, i.e., (2, 1.5) m. As the first node is
considered to be the FC, it can be assumed that it always
quantizes at the maximum rate, since it does not cost any
transmission energy. The sensors are indexed in an anti-
clockwise order. One target source (red solid circle) and one
interfering source (blue star) are positioned at (2.1, 0.9) m
and (0.6, 2.4) m, respectively. We assume that the positions
of all sources and microphones do not change. In this section,
the simulations are performed directly in the STFT domain
at a single frequency bin using a synthetic non-stationary
Gaussian source signal and synthetic ATFs. The target source
is modelled as S(ω, l) ∼ CN (0, σ2

S(l)) (i.e., the real and
imaginary parts of S(ω, l) are both zero-mean Gaussian dis-
tributed with variance σ2

S(l)). The non-stationarity is realized
by varying the variance as σ2

S(l) ∼ 0.5e0.5 (which is a
scaled exponential random variable with an average of one,
i.e., σ2

S = 1), such that the resulting average variance of the
target source is one. The interference consists of a stationary
coherent source and spatially-white sensor noise. We employ
the SNR to measure the ratio between the variances of the
target source and the sensor noise. Signal-to-interferer ratio
(SIR) is used to measure the ratio between the variances of
the target source and the interfering sources. The ATFs of
the sources are modelled as a summation of a direct-path
component and reflection components modelled as a complex
Gaussian random variable6. The ratio between the power of the
direct-path component and the reflections power is denoted as
direct-to-reverberation ratio (DRR). The simulation parameters
are set as follows: bmax = 16 bits per sample, SNR = 20
dB, SIR = 0 dB, DRR = 30 dB and the number of frames
L = 8000. The channel noise PSD is set to be Vk = 1, ∀k.
Note that the level of SNR or SIR is averaged over time, since
the variance of the target source is time-variant. We set β in
(P1) to the estimation error of the classical CS method when
each sensor quantizes at the maximum bit rate. The presented
results are averaged over 100 Monte-Carlo trials. In order
to focus on the rate-distributed RTF estimation problem, we
assume that the internal clocks of the sensors are synchronized.

1) Evaluation of MDRD-CS/CW methods: To study the
performance of the rate distribution, we compare the proposed
MDRD-CS/CW methods to the CS/CW methods using a
uniform rate allocation (referred to as uni.CS and uni.CW, re-
spectively). For instance, given the rate distribution bk obtained
by the MDRD-CS method, the uni.CS method distributes
round(

∑K
k=1 bk/K) bits to each sensor and estimates the RTF

using the classic CS method. Similarly, the uni.CW method is
based on the rate distribution that is obtained by the MDRD-
CW method. In addition, we also compare uni.PowerCS/CW
methods, which distribute the total transmission powers that

6The direct path is characterized by the gain and delay values. The gain can
be viewed as the reciprocal of the distance from the source to the sensors, and
the delay (in number of samples) is caused by the propagation of the source.
Using the power of the direct-path component and the DRR parameter, we
can calculate the power (or variance) of the reflection components. Then,
the reflection components can be generated as zero-mean complex Gaussian
random variables.
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Figure 2. RTF error and transmission cost of the model-based methods in
terms of α. The cost function in x-axes means the total transmission power
per frame. The “total” refers to the summation of transmission costs over
microphones and “per frame” indicates the average over L frames.
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Figure 3. (a) An example for rate distribution when α = 0.8 and (b) RTF
accuracy in terms of rate increment.

are consumed by the MDRD-CS/CW methods uniformly to
all the sensors, respectively. As such, the uni.PowerCS (or
uni.PowerCW) method uses the same amount of transmis-
sion energy as the proposed MDRD-CS (or MDRD-CW)
approach, but most likely with different bit-rate distributions.
Fig. 2 shows the RTF estimation error and transmission
cost parameterized by α. Clearly, the better the accuracy,
the more transmission cost is required. Hence, the proposed
methods can trade-off the performance and energy usage by
controlling the parameter α. From the simulations it follows
that the proposed MDRD-CS/CW methods always satisfy the
performance requirement. Moreover, their transmission costs
are always much lower compared to the full-rate quantization
(i.e., when α = 1) or uniform rate allocation. Given the
same RTF performance requirement, the MDRD-CW method
consumes much less transmission energy than the MDRD-CS
method. In other words, given the same power budget, the CW
method always performs better than the CS method.

Fig. 3(a) shows the rate distributions obtained by the pro-
posed MDRD-CS/CW from Fig. 2 at α = 0.8. Clearly, to
fulfil a desired RTF estimation performance ϵCS/CW ≤ β

α ,

cost function of (P1)
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Figure 4. RTF error and transmission cost of model-driven methods in terms
of the number of available segments for α = 0.8. The cost function in x-axes
means the total transmission power per frame.

we do not need full-rate quantization for all the sensors, as
the optimal rate distributions are far below the maximum rate
bmax per sensor. Given the same performance requirement,
the MDRD-CW method needs less bit rates than the MDRD-
CS method. Sensor one is allocated the maximum number of
bits, as this is the FC and no additional transmission energy
is required. Further, we see that in order to save transmission
energy, the sensors that are closer to the FC are allocated
with a higher rate. In Fig. 3(b), we show an example on
how the RTF accuracy changes by further increasing the rate,
starting from the optimal distributions given in Fig. 3(a).
The resulting RTF accuracy is plotted as a function of the
rate increment ∆b. For ∆b = 0, we use the optimal rate
distribution given in Fig. 3(a). Then, for ∆b > 0, we increase
each bk, ∀k by ∆b bits per sample. The resulting rate is
upper-bounded by bmax, i.e., the bit rates are increased to
bk = min (bmax, bk +∆b) , ∀k. Obviously, by increasing the
bit-rate, we do not gain significantly in the RTF accuracy
of the MDRD-CS method, which reveals that many bits are
redundant and it is unnecessary to use full-rate quantization.
Notably, the performance gain (e.g., 8 dB) in the MDRD-
CW method is caused by the fact that β is set as the best
performance of the classic CS method.

Fig. 4 compares the RTF accuracy and the energy usage
parameterized by the number of segments L for α = 0.8.
Clearly, the more segments for estimating the correlation
matrices, the more accurately the CS/CW-based estimators
perform and the more transmission costs required. To achieve
the same RTF estimation performance, the proposed methods
consume much less transmission cost.

For further studying other influence factors on the proposed
model-driven rate distribution approaches, we place the FC in
Fig. 1 at the center of the room, such that all the microphone
nodes have the same distance from the FC. The locations of
the target source and the noise source are fixed, that is, only
the SNRs across microphones vary from each other. Fig. 5
shows an example of the resulting rate distributions for such
a scenario. We can clearly see that the SNR does affect the
rate distributions, as roughly the sensor having a lower SNR
(e.g., sensor 18 which is closest to the interfering source) is
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Figure 5. Rate distributions of the proposed model-driven methods for the
scenario where the FC is located at the center of the room and α = 0.8.

allocated with a higher rate. This reveals that the more noisy
the microphone measurements are, the more bits are required
for quantization. Comparing the ranges of the distributed rates
between Fig. 5 and Fig. 3(a), it can be concluded that the
distance between a sensor and the FC is more relevant than
the SNR for the proposed rate optimization problems.

2) Evaluation of DDRD-CS/CW methods: Fig. 6 compares
the proposed DDRD-CS/CW methods to the model-driven
versions, uni.CS/CW and uni.PowerCS/CW. For each seg-
ment, the uni.CS/CW methods use uniform rate allocation,
and uni.PowerCS/CW use uniform power allocation as be-
fore. Clearly, by increasing the number of available segments,
the DDRD-CS method and the DDRD-CW method converge
to the MDRD-CS method and the MDRD-CW method in
terms of performance, respectively. The proposed DDRD-CW
method converges faster. Note that the final rate distributions
of the MDRD-CS (or MDRD-CW) method and the DDRD-
CS (or DDRD-CW) method are not necessary to be the same.
Fig. 7 shows the transmission cost per frame of the data-
driven methods as a function of the number available frames.
The cost of the DDRD-CS/CW methods gradually increases,
which is caused by the relaxation β̂ = Lβ/l for overcoming
the infeasibility of (50) when l ≪ L. Since the constraint
Tr (Z) ≤ β̂

αĉ1
− ĉ2 gradually gets tighter by increasing the

number of frames, more and more bits are needed to fulfill
the performance requirement. More importantly, the DDRD-
CS/CW methods use much less transmission energy than the
uni.CS/CW methods.

B. Simulations on natural speech data

In this section, we will show the performance of the
proposed methods using natural speech data in a simulated
WASN. The experimental setup is same as Fig. 1. The single
target source is a speech signal originating from the TIMIT
database [39]. The coherent interfering source is a stationary
Gaussian speech shaped noise signal. The microphone self
noise is modeled as uncorrelated noise at an SNR of 50 dB.
All signals are sampled at 16 kHz. We use a square-root
Hann window of 100 ms for framing with 50% overlap. The
real RTFs are generated using [40] with reverberation time
T60 = 200 ms.
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Figure 6. RTF accuracy of the data-driven methods for α = 0.8. The total
number of received frames (i.e., x-axis) increases from 1 to L = 8000.
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Figure 7. Transmission cost of the data-driven methods per frame for α =
0.8. The total number of received frames (i.e., x-axis) increases from 1 to
L = 8000. The y-axes means the total transmission power per frame.
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Figure 8. RTF estimation performance of the proposed methods using the
real speech recordings for α = 0.8. The total number of received frames (i.e.,
x-axis) increases from 1 to L = 500.

At first, we show the RTF estimation performance of the
proposed methods in Fig. 8 for α = 0.8. This is a similar
comparison as in Fig. 6, but now using real speech signals. The
total number of segments is L = 500. We can see that similar
to the synthetic data case in Fig. 6, the DDRD-CS and DDRD-
CW methods converge to MDRD-CS and MDRD-CW in the
sense of RTF accuracy, respectively. Both methods satisfy the
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Figure 9. Transmission cost per frame of the proposed methods using the
real speech recordings for α = 0.8. The total number of received frames (i.e.,
x-axis) increases from 1 to L = 500. The cost function in y-axes means the
total transmission power per frame.

performance requirement. Similarly, the transmission cost per
frame is shown in Fig. 9.

Secondly, we validate the application of the proposed
methods in multiple reverberation conditions. The perfor-
mance is examined for different values of T60, selected from
{0, 200, 400, 600, 800} ms. The RTF estimation accuracy and
the average transmission power per frame of the proposed
methods and the reference methods are shown in Fig. 10 for
α = 0.8. Note that in reverberant environments, the early and
late reverberations of the source signal might fall into different
frames, since the frame length is fixed. When estimating the
noisy correlation matrix and updating the RTF estimate frame-
by-frame, the late reverberation of the interfering source will
thus be regarded as another source of noise. Increasing the
level of reverberation will lead to a lower long-term SIR. As
Fig. 5 shows that the sensors with a lower SNR should be
allocated with a higher rate, the proposed methods need to dis-
tribute more bits to the sensors, i.e., more transmission power,
in a more reverberant environment. Also, that is why with an
increase in the reverberation time, both the RTF estimation
error and the transmission power increase in Fig. 10.

Finally, since the RTF performance is also affected by the
source location (e.g., see Eqs. (22, 28)), we further evaluate the
RTF performance for different positions of the target source.
To do so, we randomly place the target source on the diagonal
of the room, i.e., on the line from the bottom-left corner to
the top-right corner. The RTF estimation performance in terms
of the distance from the target source to the center of the
sensor array is shown in Fig. 11. The proposed CS/CW-based
methods obtain a similar performance variation in terms of
the source location. Clearly, the proposed approaches achieve
a better RTF estimation performance when the sources are
located in the near-field, since the SNR is higher in this case.

VII. CONCLUDING REMARKS

In this work, we investigated the RTF estimation problem
using the CS/CW methods under low bit-rate. Taking quan-
tization noise into account, we showed that the estimation
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Figure 10. RTF estimation accuracy and transmission cost of the proposed
methods for multiple reverberation conditions with α = 0.8. The cost function
in x-axes means the average transmission power per frame.
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the target source to the center of the room, i.e., (1.5, 1.5) m, for α = 0.8.

errors of both methods are influenced by the SNR, the number
of available frames and the bit rate. Motivated by this, we
formulated to minimize the energy usage for data transmission
between sensors and the FC by constraining the RTF estima-
tion performance, such that the optimal rate distribution can
be found for the sensors to quantize their measurements. The
problem was first solved by semi-definite programming, which
was called MDRD-CS/CW. Since the proposed model-based
methods are not practical (they depend on the true RTF), we
further proposed two corresponding greedy approaches (i.e.,
DDRD-CS/CW). We can conclude that

• Both the model-based methods and the greedy methods
satisfy the performance requirement on the RTF esti-
mation, more importantly, with a significant saving of
transmission cost compared to the full-rate quantization
or uniform rate allocation;

• The performance of the greedy method converges to that
of the model-based method with increasing the number
of available frames;

• Given the same performance bound, the proposed CW-
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based methods need less bit rates, resulting in less energy
consumption compared to the CS-based methods;

• The resulting rate distributions are affected by the dis-
tance, the SNR, etc. In general, the sensors that are closer
to the FC are allocated with a higher rate because they are
cheaper in data transmission, and the sensors that have a
lower SNR should be allocated with a higher rate.

The benefits of the proposed approaches can be concluded as
• The considered methods can provide an effective strategy

for saving the energy consumption over WASNs through
distributing the quantization rates.

• The proposed methods can remove the redundant bits
contained in the raw microphone measurements and be
applied in noisy/reverberant environments.
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