DSSynth: An Automated Digital Controller Synthesis Tool for Physical Plants

Alessandro Abate¹, lury Bessa², Dario Cattaruzza¹, Lennon Chaves², Lucas Cordeiro^{1,2}, Cristina David¹, Pascal Kesseli¹, Daniel Kroening¹ and Elizabeth Polgreen¹

¹ University of Oxford, Oxford, United Kingdom ² Federal University of Amazonas, Manaus, Brazi

alessandro.abate@cs.ox.ac.uk, iurybessa@ufam.edu.br, dario.cattaruzza@cs.ox.ac.uk, lennon.correach@gmail.com, lucas.cordeiro@cs.ox.ac.uk, cristina.david@gmail.com, kesseli.pascal@gmail.com, kroening@cs.ox.ac.uk, elizabeth.polgreen@linacre.ox.ac.uk

"...guaranteeing the correctness of cyber-physical systems (CPS) remains an outstanding challenge"

Xi Zheng et al., 2014

"Simulation alone is not sufficient to support verification and validation of CPS"

Sayan Mitra et al., 2013

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases}$$
 State-space model
$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}}$$
 Transfer-function model

Counter-Example Guided Inductive Synthesis (CEGIS)

Generate sound digital controllers for stability and safety specifications with a very high degree of automation

Step 1

Determine the representation

- State-space model
- Transfer-function model

Step 2

Define the physical plant coefficients and intervals

- state-space: matrices A, B, C and D
- transfer-function: coefficients b_0 , b_1 ,..., b_m and a_0 , a_1 ,..., a_n
- uncertainty over the numerator and denominator coefficients

Step 3

Define the numerical representation

- *I* is the integer part
- **F** is the fractional part
- dynamical range

V Contributions

- i. support for transfer-function and state-space representations in closed-loop form;
- **ii.** synthesize different numerical representations and realization forms of the controller using CEGIS;
- **iii.** provide a MATLAB toolbox to synthesize digital controllers while taking into account FWL effects.

As future work:

- DSSynth Toolbox will perform synthesis considering performance requirements;
- we will also pursue the application of CEGIS to further software engineering problems.

Sponsors:

