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Abstract. Koopman operator linearization approximates nonlinear sys-
tems of differential equations with higher-dimensional linear systems.
For formal verification using reachability analysis, this is an attractive
conversion, as highly scalable methods exist to compute reachable sets
for linear systems. However, two main challenges are present with this
approach, both of which are addressed in this work. First, the approx-
imation must be sufficiently accurate for the result to be meaningful,
which is controlled by the choice of observable functions during Koopman
operator linearization. By using random Fourier features as observable
functions, the process becomes more systematic than earlier work, while
providing a higher-accuracy approximation. Second, although the higher-
dimensional system is linear, simple convex initial sets in the original
space can become complex non-convex initial sets in the linear system.
We overcome this using a combination of Taylor model arithmetic and
polynomial zonotope refinement. Compared with prior work, the result
is more efficient, more systematic and more accurate.

Keywords: Koopman operator · reachability analysis · polynomial
zonotopes · random Fourier features · formal verification.

1 Introduction

Despite recent advances, systems described by nonlinear ordinary differential
equations are still hard to analyze, control, and verify. On the other hand, a
powerful body of methods and theories exists for linear systems making analy-
sis, control, and verification much easier, even for high-dimensional systems. The
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efficiency of techniques related to reachability analysis for linear systems [4,6,15]
motivates the use of Koopman operator linearization, where a higher-dimensional
linear system approximates the dynamic behavior of a nonlinear system. Koop-
man operator techniques are also well-suited for data-driven approaches since
the Koopman linearized system can be directly created from measurements, by-
passing a potentially complex modeling step. The Koopman framework has been
successfully applied to many applications, including control [26, 28], state esti-
mation [31] and recently, formal verification [5].

The main contribution of this paper is to advance the state-of-the-art in
formal verification using reachability analysis on Koopman operator linearized
systems. First, we improve the accuracy of the finite Koopman linearization
by employing random Fourier features [29]. In contrast with an ad hoc, finite-
dimensional feature space, random Fourier features leverage the powerful kernel
trick from machine learning [36, 38] to generate a computationally tractable
mapping over an infinite-dimensional feature space. Second, we improve speed.
Instead of using an SMT solver to reason over non-convex initial sets, we propose
combining Taylor models with polynomial zonotope refinement. A comparison on
the same nonlinear system benchmarks used in the earlier Koopman verification
work [5] demonstrates both the improved accuracy and the improved verification
speed.

1.1 Related Work

The concept of Koopman operator linearization was originally introduced in 1931
[22]. Instead of investigating the dynamic evolution of the original system state,
the Koopman approach considers the evolution of so-called observable functions
or observables defined by nonlinear transformations of the original system state.
Since the set of all possible observables defines a vector space, it then holds that
the dynamic behavior of every nonlinear system can be equivalently represented
by an infinite dimensional linear system. Because it is obviously infeasible to
handle infinite dimensions, a finite set of observables is used in practice. Given
such a set, the system matrix resulting in the most accurate linear approximation
of the original system behavior can be determined using extended dynamic mode
decomposition [41].

Many different methods for determining good observables have been pro-
posed: Carleman linearization [7] equivalently represents the dynamic behavior of
polynomial systems with an infinite dimensional linear system. The correspond-
ing observables are multi-variate monomials, which are determined by repeatedly
computing the time-derivative of the current observables. Terminating this iter-
ation after a certain number of steps yields a finite set of observables. Carleman
linearization can be extended to general nonlinear systems by using a Taylor se-
ries expansion. A finite set of observables defines an exact linear representation
of the original system if the vector space spanned by the observables is closed
under the operation of Lie-derivatives [34]. Consequently, a natural approach is
to refine an initial set of observables by removing observables that violate the
condition [34]. This concept can be extended to obtain polynomial instead of
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linear representations for the original nonlinear system [35]. Another class of
approaches uses neural networks as observables [16,43], where the weights of the
network are trained on traces of the real system. Since these approaches usually
train the system matrix together with neural networks, they circumvent the sub-
sequent application of dynamic mode decomposition. If one aims to reason about
the original system based on the Koopman linearization, some quantification of
the approximation error is required. Several approaches derive error bounds for
truncated Carleman linearization [3, 12, 24] considering quadratic systems [24],
polynomial systems [12], as well as general nonlinear systems [3].

The main motivation for using the Koopman framework for reachability anal-
ysis is that reachable sets for linear systems can be computed efficiently [11,15,23]
even for high-dimensional systems [2,4,6], while reachability analysis for nonlin-
ear systems [1,8,27] is often computationally demanding and potentially results
in large over-approximations. Another advantage is that the Koopman approach
can also be applied to data-driven systems where no model is available. Due
to the nonlinear transformation of the initial state defined by the observables,
reachability analysis for Koopman operator linearized system represents a special
type of reachability problem. To the best of our knowledge only two approaches
exist for far: The first approach [13] utilizes the error bounds for quadratic sys-
tems [24] to compute an enclosure of the reachable set for weakly nonlinear
systems based on a finite Carleman linearization, where interval arithmetic [17]
is applied to enclose the image of the initial set through the observables. The
second approach [5], which represents the work closest to our method, presents
two different verification strategies: 1) Direct encoding of the nonlinear transfor-
mation defined by the observables using a SMT solver, and 2) zonotope domain
splitting, where the initial set is recursively split into smaller sets until the spec-
ification can be verified or falsified.

1.2 Overview

In this work we address the two main bottlenecks of formal verification for Koop-
man operator linearized systems, which are the selection of observables and the
computation of the image of the initial set through the nonlinear transforma-
tion defined by the observables. In particular, while currently observables often
have to be selected manually by the user, we generate observables in a systematic
fashion using random Fourier features. As we demonstrate with numerical exper-
iments, these observables yield high-accuracy approximations of the real system
behavior. Moreover, while previous approaches either compute very conservative
convex enclosures of the image through the observables [13] or have to split the
initial set in order to achieve a desired precision [5], we calculate tight non-convex
enclosures of the image by combining Taylor model arithmetic with polynomial
zonotopes. To conduct collision checks between the resulting non-convex reach-
able set enclosures and unsafe regions we then use a novel polynomial zonotope
refinement strategy, which is significantly faster than the previous SMT solver
and zonotope domain splitting approaches [5].
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The remainder of the paper is structured as follows: We first recapitulate
some preliminary results that are required throughout the paper in Sec. 2. In
the main part we then describe the systematic generation of observables using
random Fourier features in Sec. 3, before we present our proposed verification
algorithm in Sec. 4. Finally, we demonstrate the superior performance of random
Fourier feature observables and our verification algorithm in comparison with
existing techniques on various benchmark systems in Sec. 5.

1.3 Notation

In the remainder of this paper, we will use the following notations: Sets are de-
noted by calligraphic letters, matrices by uppercase letters, vectors by lowercase
letters, and lists by bold uppercase letters. Given a vector b P Rn, bpiq refers to
the i-th entry. Given a matrix A P Rnˆm, Api,¨q represents the i-th matrix row,
Ap¨,jq the j-th column, and Api,jq the j-th entry of matrix row i. Given a discrete
set of positive integer indices H “ th1, . . . , hwu with 1 ď hi ď m @i P t1, . . . , wu,
Ap¨,Hq is used for rAp¨,h1q . . . Ap¨,hwqs, where rC Ds denotes the concatenation
of two matrices C and D. The symbols 0 and 1 represent matrices of zeros and
ones of proper dimension, the empty matrix is denoted by r s, and In P Rnˆn is
the identity matrix. Given an ordered list L “ pl1, . . . , lnq, Lpiq “ li refers to the
i-th entry and |L| “ n denotes the number of elements in the list. Moreover, the
concatenation of two lists L1 and L2 is denoted by pL1,L2q. The left multiplica-
tion of a matrix M P Rmˆn with a set S Ă Rn is defined as MS “ tMs | s P Su,
and the Cartesian product of two sets is denoted by the ˆ operator. We further
introduce an n-dimensional interval as I “ rl, us, @i lpiq ď upiq, l, u P Rn.

2 Preliminaries

Our approach utilizes several existing techniques and concepts, which we shortly
recapitulate here. We use the nonlinear system

9x1 “ x1

9x2 “ x2 ´ x
4
1

(1)

in combination with the initial set X0 “ r´2, 2s ˆ r0, 4s as a running example
throughout this section.

2.1 Koopman Operator Linearization

First, we describe the general concept of Koopman operator linearization [22].
Given a nonlinear system

Bx

Bt
“ f

`

x
˘

with x P Rn, f : Rn Ñ Rn, (2)
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our goal is to find observables gi : Rn Ñ R such that the dynamics of the
resulting new variables gipxq is linear:

Bg
`

x
˘

Bt
“ Ag

`

x
˘

with A P Rmˆm, (3)

where gpxq “ rg1pxq . . . gmpxqs
T is the observable function. Since the new

variables gipxq are functions of the original system state x, the linear system
(3) defines an equivalent representation of the dynamic behavior of the original
system (2). Usually, the number of observables m is significantly larger than the
dimension n of the original system.

Let us demonstrate Koopman linearization for our exemplary system in (1).
By choosing the observables g1pxq “ x1, g2pxq “ x2, and g3pxq “ x4

1 we obtain
the linear system

B

Bt

»

–

g1pxq
g2pxq
g3pxq

fi

fl “

»

–

1 0 0
0 1 ´1
0 0 4

fi

fl

»

–

g1pxq
g2pxq
g3pxq

fi

fl

since Bg1pxq{Bt “ 9x1 “ x1, Bg2pxq{Bt “ 9x2 “ x2 ´ x4
1 “ g2pxq ´ g3pxq, and

Bg3pxq{Bt “ 4x3
1 9x1 “ 4x4

1 “ 4 g3pxq.
The exact linearization using a finite number of observables demonstrated by

the example above is unfortunately only possible for a small number of special
systems. In practice one therefore usually aims to instead determine a linear
system (3) that approximates the dynamic behavior of the nonlinear system
(2) well enough. Given observables gipxq, the system matrix A resulting in the
best approximation can be determined by applying extended dynamic mode
decomposition [41] to traces of the original system. Since those traces can also
be generated by simulating black-box systems or by measuring the real system
behavior, we do not necessarily require a model (2) of the original system. This
is one of the biggest advantages of the Koopman framework making it well
suited for data-driven approaches. The approach we present in this work verifies
Koopman linearized systems using reachability analysis:
Definition 1. (Reachable set) Given an initial set X0 Ă Rn, the reachable set
for a Koopman linearized system is

Rptq :“
 

ξpt, gpx0qq
ˇ

ˇ x0 P X0
(

,

where ξpt, gpx0qq is the solution to (3) at time t P Rě0 for the initial state gpx0q.
Consequently, to compute the reachable set for a Koopman linearized system
one first needs to propagate the initial set through the nonlinear transformation
defined by the observables, followed by the calculation of the reachable set for the
linear system in (3) using a reachability algorithm. This procedure is visualized
in Fig. 1. Def. 1 defines the reachable set for the observables gipxq. However,
since safety specifications are typically defined on the original system state x
rather than on gpxq, we usually require the reachable set for the original state
Rxptq for verification. This issue can easily be resolved by using the original
system state x for the first n observables gipxq “ xpiq, i “ 1, . . . , n, in which case
Rxptq can be obtained via projection: Rxptq “ rIn 0sRptq.
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Fig. 1: Schematic visualization of reachability analysis for Koopman linearized
systems: We first transform the initial set to the higher-dimensional observable
space using gpxq, then compute the reachable set of the linear system using the
matrix exponential eA∆t with time-step size ∆t, and finally obtain the reachable
set in the original state space via projection.

2.2 Taylor Model Arithmetic

Taylor model arithmetic [25] can be utilized to compute tight non-convex enclo-
sures for the image through a nonlinear function. It is based on a set represen-
tation called Taylor models:

Definition 2. (Taylor model) Given a polynomial function p : Rs Ñ Rn, an
interval domain D Ă Rs, and an interval remainder Y Ă Rn, a Taylor model
T pxq is defined as

@x P D : T pxq :“
 

ppxq ` y
ˇ

ˇ y P Y
(

.

The Taylor order κ P N defines an upper bound for the polynomial degree of the
polynomial ppxq. The set defined by a Taylor model is

 

T pxq
ˇ

ˇ x P D
(

“
 

ppxq ` y
ˇ

ˇ x P D, y P Y
(

.

For a concise notation we use the shorthand T pxq “ xppxq,Y,DyT .

The general concept of Taylor model arithmetic is to define rules on how to
perform the arithmetic operations `, ´, ¨, and { as well as elementary functions
such as sinpxq or

?
x on Taylor models [25, Sec. 2]. Since every nonlinear function

represents a composition of arithmetic operations and elementary functions, the
image through the function can then be computed by successively evaluating
those rules. Given two one-dimensional Taylor models T1pxq “ xp1pxq,Y1,DyT
and T2pxq “ xp2pxq,Y2,DyT the rules for addition and multiplication are for
example given as

T1pxq ` T2pxq :“
@

p1pxq ` p2pxq,Y1 ` Y2,D
D

T

T1pxq ¨ T2pxq :“
@

p1pxq ¨ p2pxq,Y1 ¨ Y2 ` I1 ¨ Y2 ` Y1 ¨ I2,D
D

T
,
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where I1 “ tp1pxq | x P Du and I2 “ tp2pxq | x P Du. The rules for elementary
functions are obtained using a finite Taylor series expansion, where the order of
the Taylor series is equal to the Taylor order κ. For sinpxq we for example obtain
with κ “ 2 the rule

sin
`

T1pxq
˘

:“
@

sinpcq ` cospcq pp1pxq ´ cq ´ 0.5 sinpcq pp1pxq ´ cq
2,Y,D

D

T
,

where the expansion point c is chosen as c “ p1pcdq with cd being the center of
the domain D, and the interval Y computed according to [25, Sec. 2] encloses
the remainder of the Taylor series. Due to the finite Taylor series approximation,
Taylor model arithmetic yields a tight enclosure rather than the exact image.
The accuracy of the enclosure can be improved by choosing a larger Taylor order.

For our verification approach we apply Taylor model arithmetic to compute
the image of the initial set through the observable function. The initial set X0 “
r´2, 2sˆ r0, 4s for the exemplary system in (1) can be represented by the Taylor
model T pxq “ xx,H,X0yT . Applying Taylor model arithmetic to the observable
function gpxq defined by the observables g1pxq “ x1, g2pxq “ x2, and g3pxq “ x4

1
then yields the Taylor model

 

gpxq
ˇ

ˇ x P X0
(

Ď

C

»

–

x1
x2
x4

1

fi

fl ,H, r´2, 2s ˆ r0, 4s
G

T

, (4)

which represents the exact image in this case since the observables contain poly-
nomial functions only.

2.3 Set Representations

In this work we use polynomial zonotopes to represent reachable sets, polytopes
to represent unsafe sets, and zonotopes for efficient collision checking. Let us
first introduce polytopes, for which we consider the halfspace representation:
Definition 3. (Polytope) Given a matrix H P Rsˆn and vector d P Rs, the
halfspace representation of a polytope P Ă Rn is defined as

P :“ tx P Rn | H x ď du.

We use the shorthand P “ xH, dyP .
A halfspace H Ă Rn is a special case of a polytope consisting of a single inequality
constraint hT x ď d with h P Rn, d P R. We use the shorthand H “ xh, dyH .
Another special type of polytopes are zonotopes, which can be stored efficiently
using so-called generators:
Definition 4. (Zonotope) Given a center vector c P Rn and a generator matrix
G P Rnˆp, a zonotope Z Ă Rn is defined as

Z :“
"

c`
p
ÿ

i“1
αiGp¨,iq

ˇ

ˇ

ˇ

ˇ

αi P r´1, 1s
*

,

where the scalars αi are called factors. We use the shorthand Z “ xc,GyZ .
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Polynomial zonotopes are a novel non-convex set representation that has been
originally introduced for reachability analysis of nonlinear systems [1]. We use
the sparse representation of polynomial zonotopes [20]5:

Definition 5. (Polynomial zonotope) Given a constant offset c P Rn, a genera-
tor matrix of dependent generators G P Rnˆh, a generator matrix of independent
generators GI P Rnˆq, and an exponent matrix E P Npˆh0 , a polynomial zonotope
PZ Ă Rn is defined as

PZ :“
"

c`
h
ÿ

i“1

ˆ p
ź

k“1
α
Epk,iq

k

˙

Gp¨,iq `
q
ÿ

j“1
βjGIp¨,jq

ˇ

ˇ

ˇ

ˇ

αk, βj P r´1, 1s
*

.

The scalars αk are called dependent factors since a change in their value affects
multiplication with multiple generators. Consequently, the scalars βj are called
independent factors because they only affect multiplication with one generator.
We use the shorthand PZ “ xc,G,GI , EyPZ .

Using polynomial zonotopes for verification has two main advantages:

1. Due to the similarity with Taylor models the set defined by a Taylor model
can be equivalently represented as a polynomial zonotope [20, Prop. 4].

2. Due to the similarity with zonotopes tight enclosing zonotopes can be com-
puted efficiently for polynomial zonotopes [20, Prop. 5].

For verification we therefore convert the Taylor model representing the image
of the initial set through the observable function to a polynomial zonotope, for
which collision checks with the unsafe sets can be efficiently realized using zono-
tope enclosures that are iteratively refined by splitting the polynomial zonotope.

The conversion of the Taylor model in (4) corresponding to our running
example in (1) yields the following polynomial zonotope
C

»

–

x1
x2
x4

1

fi

fl ,H, r´2, 2s ˆ r0, 4s
G

T

“

C

»

–

0
2
0

fi

fl ,

»

–

2 0 0
0 2 0
0 0 16

fi

fl , r s,

„

1 0 4
0 1 0



G

PZ

“

$

&

%

»

–

0
2
0

fi

fl`

»

–

2
0
0

fi

flα1 `

»

–

0
2
0

fi

flα2 `

»

–

0
0
16

fi

flα4
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α1, α2 P r´1, 1s

,

.

-

,

where the high-level idea of the conversion is to represent the interval domain
D with dependent zonotope factors αi P r´1, 1s.

3 Linearization via Fourier Features

We now present the automated generation of observables using random Fourier
features [10]. Let us first motivate why Fourier features are a good choice for
5 In contrast to [20, Def. 1], we explicitly do not integrate the constant offset c in G.

Moreover, we omit the identifier vector used in the original work [20] for simplicity.
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observables. For Koopman linearization, the observables gpxq define a transfor-
mation to a high-dimensional space. One commonly used approach to handle
such high-dimensional spaces efficiently is the kernel trick: In many algorithms
the data points x, y P Rn only appear in the form of inner products gpxqT gpyq.
In this case it suffices to define a kernel function kpx, yq that represents the
similarity measure gpxqT gpyq between data points in the high-dimensional fea-
ture space, rather than explicitly defining a transformation gpxq to this space.
Kernel functions can also represent more general features that are not vectors
and even infinite dimensional features, which motivates their application in the
Koopman framework. The kernel trick is mainly applied for machine learning
techniques [36], such as regression [38], clustering [18], and classification [39].
However, also the extended dynamic mode decomposition algorithm [41] can be
formulated in terms of inner-products [42], so that the kernel trick can be applied
for Koopman linearization. Rather than explicitly choosing observables gpxq we
can therefore select a kernel function instead, which implicitly defines the ob-
servable function gpxq through the kernel’s relation to an inner product space.
Commonly used kernels are radial basis function kernels, polynomial kernels,
and spline kernels.

The kernel trick cannot be applied directly to our reachability technique since
we require an explicit formulation of the observables gpxq. We therefore first
select a kernel function kpx, yq, and then determine observables gpxq that yield a
good approximation of the kernel function kpx, yq « gpxqT gpyq. Random Fourier
features are a common technique to approximate kernel functions [10,29]. They
are based on Bochner’s theorem [33, Sec. 1.4.3], which links a weakly stationary
kernel function to a Fourier transform:

kpx, yq “

ż

Rn

e j ω
T
px´yq dµpωq “ Eω

´

e j ω
T x e j ωT y

¯

, (5)

where the function µ : Rn Ñ r0, 1s defines a probability distribution, Eωp¨q
denotes the expected value with respect to ω, j is the imaginary unit, and a
denotes the complex conjugate for a complex number a P C. The distribution
µpωq associated with a specific kernel can be obtained by taking the inverse
Fourier transform of kpx, yq [29]. We can collect m samples from the distribution
µpωq to approximate the expected value in (5), which finally yields

kpx, yq “ Eω
´

e j ω
T x e j ωT y

¯

«
1
m

m
ÿ

i“1
e j ω

T
i x

loomoon

gipxq

e j ω
T
i y

loomoon

gipyq

.

The random Fourier features are the resulting observables gipxq that approxi-
mate the kernel function. Note that we can omit the constant factor 1

m since
extended dynamic mode decomposition will automatically scale the observables
accordingly. We consider real-valued kernels only, so we use Euler’s formula
ej x “ cospxq ` j sinpxq to simplify the random Fourier features to

gipxq “
?

2 cospωTi x` biq, i “ 1, . . . ,m, (6)
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where the shift bi is selected uniformly from the interval r0, 2πs and ωi is drawn
randomly from the probability distribution µpωq corresponding to the kernel
that is used. While this random selection might appear to be a disadvantage
at first sight, it is guaranteed that the random Fourier feature approximation
converges to the exact kernel function when increasing the number of observables
[29]. Moreover, we observed from our numerical experiments that changes in the
values for bi and ωi do not significantly influence the accuracy of the resulting
linear approximation.

In summary, the random Fourier features presented above represent a sys-
tematic method for selecting a finite set of accurate observables, which requires
only few hyperparameters. These hyperparameters include the type of kernel
that is used, the kernel parameters, and the number of observables. For the
numerical experiments in this paper we use a radial basis function kernel

kpx, yq “ e´
}x´y}22

2 `2 ,

which contains the lengthscale ` as the only parameter. The probability distribu-
tion µpωq for this kernel is the multivariate normal distribution with covariance
matrix `2 ¨ In centered at the origin [29, Fig. 1].

4 Verification using Reachability Analysis

We now present our novel verification algorithm for Koopman linearized systems,
which is summarized in Alg. 1. For simplicity we assume that the specification
we aim to verify is described by a single unsafe set U , but the extension to
multiple unsafe sets is straightforward. We first apply Taylor model arithmetic
(see Sec. 2.2) to compute a tight non-convex enclosure for the image of the
initial set X0 through the observable function gpxq in Line 3. Since it simplifies
the computation of the zonotope enclosures required later on, we then convert
the resulting Taylor model to a polynomial zonotope in Line 4. This polynomial
zonotope is used as the initial set for the computation of the reachable set for
the Koopman linearized system as performed in Line 5, for which we can use any
reachability algorithm for linear systems. For simplicity we assume here that the
obtained reachable sets are exact. In the general case where the exact reachable
set cannot be computed one can for example incorporate the error measures
from [14] and [40] into the verification algorithm.

The problem we are facing now is that the reachable sets R0, . . . ,RtF {∆t

are represented by polynomial zonotopes, a set representation for which exact
collision checks with the unsafe set U are computationally demanding. We resolve
this issue by applying a novel polynomial zonotope refinement procedure in lines
6-19, where we recursively split the polynomial zonotopes until we can either
verify or falsify the specification using zonotope enclosures of the split sets. In
particular, we first enclose each polynomial zonotope in the queue L with a
zonotope in Line 9. For a zonotope Z “ xc,GyZ collision checks with an unsafe
set as performed in Line 10 are very efficient: If the unsafe set is a halfspace
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Algorithm 1 Verification of Koopman linearized systems
Require: Koopman linearized system 9gpxq “ Agpxq, initial set X0, final time tF ,
specification given as an unsafe set U , time step size ∆t, initial Taylor order κ0.
Ensure: System is safe (res = K) or unsafe (res = K).
1: ŗes ÐK, κÐ κ0 (initialization)
2: repeat
3: T pxq Ð tgpxq | x P X0u (comp. using Taylor model arithmetic with order κ)
4: PZ Ð T pxq (convert Taylor model to polynomial zonotope, see [20, Prop. 4])
5: R0, . . . ,RtF {∆t Ð reachability analysis of 9gpxq “ Agpxq for initial set PZ
6: L Ð pR0, . . . ,RtF {∆tq (initialize queue of not yet verified sets)
7: repeat
8: PZ Ð Lp1q, L Ð pLp2q, . . . ,Lp|L|qq (pop first element from queue)
9: Z Ð zonotope enclosure of PZ (see [20, Prop. 5])

10: if Z X U ‰ H then (check if specification is satisfied, see (7) and (8))
11: x0, tÐ most critical initial state and corresponding time
12: if rIn 0s eAtgpx0q P U then
13: return (specification falsified ñ system is unsafe)
14: else
15: PZ1,PZ2 Ð split PZ (see Prop. 1 and (11))
16: L Ð pL,PZ1,PZ2q (add new sets to queue)
17: end if
18: end if
19: until L “ p q or splitting does not yield any further improvement
20: κÐ κ` 1 (increase Taylor order)
21: until L “ p q (queue empty ñ no intersection with U)
22: res Ð K (if this line is reached no reach. set intersects U ñ system is safe)

U “ xh, dyH , we have according to [15, Sec. 5.1]

pZ X U ‰ Hq ô
ˆ

hT c´
p
ÿ

i“1
|hTGp¨,iqq| ď d

˙

(7)

For general polytopes U “ xH, dyP collision checks can be realized using linear
programming:

pZ X U ‰ Hq ô pδ “ 0q, (8)

where
δ “ min

α,x
}c`Gα´ x}1 s.t. α P r´1,1s, Hx ď d. (9)

If the specification cannot be verified, we next try to falsfy it in lines 11-13
by extracting the initial point x0 that is expected to violate the specification
the most from Z. For a halfspace U “ xh, dyH the vector of zonotope factors
α “ rα1 . . . αps

T resulting in the largest violation is given as α “ ´signphTGq,
where the signum function is interpreted elementwise. Since the factors α of the
zonotope enclosure are related to the dependent factors of the original poly-
nomial zonotope and since polynomial zonotopes preserve dependencies during
reachability analysis [21], we can then directly extract the initial point x0 corre-
sponding to α from the polynomial zonotope. For general polytopes we can use
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Fig. 2: Reachable set for the Roessler system (see Sec. 5.1) at time t “ 2.95,
where polynomial zonotopes are depicted by solid lines, the corresponding zono-
tope enclosures are depicted by dashed lines, and the unsafe set is shown in
orange. While the zonotope enclosure of the original polynomial zonotope is too
conservative to verify the specification (left), splitting the polynomial zonotope
once reduces the over-approximation enough for verification to succeed (right).

the optimal α from the linear program in (9) to estimate the most critical initial
point. If we can neither verify nor falsify the specification we have a so called
spurious counterexample that arises due to the over-approximation introduced
by the zonotope enclosure. We therefore split the polynomial zonotope in this
case in Line 15 since splitting reduces the over-approximation in the zonotope
enclosure (see Fig. 2). The split sets are then added to the queue in Line 16,
where we use a first-in, first-out scheme for the queue to detect easy falsifications
fast before excessively splitting the sets.

One remaining issue we are facing is that Taylor model arithmetic is not
exact. Due to the over-approximation in the initial set it can therefore happen
that we can neither verify nor falsify the specification by splitting the polynomial
zonotope. To solve this issue we embed our whole algorithm into a repeat-until-
loop that iteratively increases the order κ used for Taylor model arithmetic (see
Line 20). Since Taylor model arithmetic converges to the exact result if the order
goes to infinity, we obtain a complete algorithm that is guaranteed to terminate.
In practice we can often prevent computational expensive iterations of the outer
loop by choosing the initial order κ0 large enough. It remains to decide when to
stop splitting the polynomial zonotopes and increase the Taylor order instead
(see Line 19). The simplest method is to just use an upper bound for the number
of recursive splits that are performed. A more sophisticated approach is to abort
splitting if the distance between the most critical point rIn 0s eAtgpx0q and the
unsafe set U is smaller than the over-approximation in the polynomial zonotope
PZ, which is given by the independent generators.

Finally, we provide a closed-form expression for splitting a polynomial zono-
tope since this operation is not specified in the original work [20]:

Proposition 1. (Split) Given a polynomial zonotope PZ “ xc,G,GI , EyPZ Ă
Rn and the index r P t1, . . . , pu of one dependent factor, the operation splitpPZ, rq
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returns two polynomial zonotopes PZ1,PZ2 satisfying PZ1 Y PZ2 “ PZ:

PZ1 “
A

c,
“

pG
p1q
1 . . . pG

p1q
h

‰

, GI ,
“

pE1 . . . pEh
‰

E

PZ

PZ2 “
A

c,
“

pG
p2q
1 . . . pG

p2q
h

‰

, GI ,
“

pE1 . . . pEh
‰

E

PZ

with

pEi “

»

–

Ept1,...,r´1u,iq Ept1,...,r´1u,iq . . . Ept1,...,r´1u,iq Ept1,...,r´1u,iq
0 1 . . . Epr,iq ´ 1 Epr,iq

Eptr`1,...,pu,iq Eptr`1,...,pu,iq . . . Eptr`1,...,pu,iq Eptr`1,...,pu,iq

fi

fl ,

pG
pkq
i “

”

b
pkq
i,0 ¨Gp¨,iq . . . b

pkq
i,Epr,iq

¨Gp¨,iq

ı

,

b
p1q
i,j “ 0.5Epr,iq

ˆ

Epr,iq
j

˙

, b
p2q
i,j “ ´0.5Epr,iq

`

2pEpr,iqmod 2q ´ 1
˘

ˆ

Epr,iq
j

˙

,

where xmod y, x, y P N0 is the modulo operation and
`

w
z

˘

, w, z P N0 denotes the
binomial coefficient. To remove redundancies we subsequently apply the compact
operation as defined in [20, Prop. 2] to PZ1 and PZ2.

Proof. The split operation is based on the substitution of the selected depen-
dent factor αr with two new dependent factors αr,1 and αr,2:
 

αr | αr P r´1, 1s
(

“
 

0.5p1` αr,1q ´ 0.5p1` αr,2q | αr,1, αr,2 P r´1, 1s
(

 

0.5p1` αr,1q | αr,1 P r´1, 1s
(

Y
 

´ 0.5p1` αr,2q | αr,2 P r´1, 1s
(

.
(10)

Inserting this substitution into the definition of polynomial zonotopes in Def. 5
yields

PZ “

"

c`
h
ÿ

i“1

ˆ p
ź

k“1
α
Epk,iq

k

˙

Gp¨,iq `
q
ÿ

j“1
βjGIp¨,jq

ˇ

ˇ

ˇ

ˇ

αk, βj P r91, 1s
*

(10)
“

"

c`
h
ÿ

i“1

ˆ p
ź

k“1
k‰r

α
Epk,iq

k

˙

´1` αr,1
2

¯Epr,iq

Gp¨,iq`
q
ÿ

j“1
βjGIp¨,jq

ˇ

ˇ

ˇ

ˇ

αk, βj , αr,1 P r91, 1s
*

loooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooon

“PZ1

Y

"

c`
h
ÿ

i“1

ˆ p
ź

k“1
k‰r

α
Epk,iq

k

˙

´1` αr,2
´2

¯Epr,iq

Gp¨,iq`
q
ÿ

j“1
βjGIp¨,jq

ˇ

ˇ

ˇ

ˇ

αk, βj , αr,2 P r91, 1s
*

looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

“PZ2

.

Finally, with
´1` αr,1

2

¯Epr,iq

“ b
p1q
i,0 ` b

p1q
i,1αr,1 ` b

p1q
i,2α

2
r,1 ` ¨ ¨ ¨ ` b

p1q
i,Epr,iq

α
Epr,iq

r,1
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´1` αr,2
´2

¯Epr,iq

“ b
p2q
i,0 ` b

p2q
i,1αr,2 ` b

p2q
i,2α

2
r,2 ` ¨ ¨ ¨ ` b

p2q
i,Epr,iq

α
Epr,iq

r,2

we obtain the equations above.

The split operation for polynomial zonotopes is not exact, meaning that the
resulting sets usually overlap (see Fig. 2). To minimize the size of the overlapping
region we split the dependent factor with index r that maximizes the following
heuristic:

max
rPt1,...,pu

h
ÿ

i“1
Epr,iqą1

`

1´ 0.5Epr,iq
˘

}Gp¨,iq}2, (11)

where G P Rnˆh and E P Npˆh0 are the generator and exponent matrix of the
polynomial zonotope. Moreover, since the goal of splitting in Alg. 1 is to verify
a certain specification, it is advisable to first project the polynomial zonotope
onto the halfspace normal directions of the unsafe set U before evaluating the
heuristic (11) in order to direct the splitting process towards directions that are
beneficial for verification.

Note that the polynomial zonotope refinement technique presented in this
section is not restricted to verification of Koopman linearized systems, but can
equally be applied for collision checks of polynomial zonotopes or Taylor models
with halfspaces and polytopes in general. Moreover, by inverting the inequality
constraints polynomial zonotope refinement can also be applied to check if a
Taylor model or polynomial zonotope is contained in a halfspace or polytope.

5 Experimental Results

We now evaluate the performance of random Fourier feature observables and
our novel reachability algorithm on various benchmark systems. For this, we
compare our approach with the closest method from the literature [5]. Since the
algorithms presented there are implemented in Julia, we also implemented our
approach in Julia to obtain a fair comparison of the computation time. In our
implementation we use the package TaylorModels.jl6 for Taylor model arithmetic
and the package DataDrivenDiffEq.jl7 for extended dynamic mode decomposi-
tion. All computations are carried out on a 3.2GHz 8-core AMD Ryzen 7 5800H
processor with 16GB memory. We published our implementation together with
a repeadability package that reproduces the results shown in this paper as a
CodeOcean compute capsule8.

5.1 Benchmarks

Let us first define all benchmarks that we use for the evaluation. Again, we
consider the same systems and specifications as in [5] for a fair comparison:
6 https://github.com/JuliaIntervals/TaylorModels.jl
7 https://datadriven.sciml.ai/
8 https://codeocean.com/capsule/8730054/tree/v1

https://github.com/JuliaIntervals/TaylorModels.jl
https://datadriven.sciml.ai/
https://codeocean.com/capsule/8730054/tree/v1
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Roessler attractor: The dynamic equations for the Roessler attractor [32] are

9x1 “ ´x2 ´ x3

9x2 “ x1 ` 0.2x2

9x3 “ 0.2` x3 px1 ´ 5.7q,

and we consider the initial set X0 “ r´0.05, 0.05sˆr´8.45,´8.35sˆr´0.05, 0.05s,
the final time tF “ 6, and the unsafe region x2 ě 6.375´ 0.025 ¨ i parameterized
by i P r0, 20s.
Steam governor: The dynamic equations for the steam governor [37] are

9x1 “ x2

9x2 “ x2
3 sinpx1q cospx1q ´ sinpx1q ´ 3x2

9x3 “ cospx1q ´ 1,

and we consider the initial set X0 “ r0.95, 1.05sˆ r´0.05, 0.05sˆ r0.95, 1.05s, the
final time tF “ 3, and the unsafe set x2 ď ´0.25 ` 0.01 ¨ i parameterized by
i P r0, 10s.
Coupled Van-der-Pol oscillator: The dynamic equations for the coupled Van-
der-Pol oscillator [30] are

9x1 “ x2 9x3 “ x4

9x2 “ p1´ x2
1qx2 ´ x1 ` px3 ´ x1q 9x4 “ p1´ x2

3qx4 ´ x3 ` px1 ´ x3q,

and we consider the initial set X0 “ r´0.025, 0.025sˆr0.475, 0.525sˆr´0.025, 0.025sˆ
r0.475, 0.525s, the final time tF “ 2, and the unsafe set x1 ě 1.25 ´ 0.05 ¨ i pa-
rameterized by i P r1, 16s.
Biological system: The dynamic equations for the biological system [19] are

9x1 “ ´0.4x1 ` 5x3 x4 9x5 “ ´5x5 x6 ` 5x3 x4

9x2 “ 0.4x1 ´ x2 9x6 “ 0.5x7 ´ 5x5 x6

9x3 “ x2 ´ 5x3 x4 9x7 “ ´0.5x7 ` 5x5 x6,

9x4 “ 5x5 x6 ´ 5x3 x4

and we consider the initial set X0 “ r0.99, 1.01sˆ ¨ ¨ ¨ˆr0.99, 1.01s, the final time
tF “ 2, and the unsafe set x4 ď 0.883` 0.002 ¨ i parameterized by i P r1, 10s.

5.2 Approximation Error

We first investigate the accuracy of the Koopman linearized system with re-
spect to the original nonlinear dynamics, where we compare our random Fourier
feature observables with the ad hoc observables from [5]. These ad hoc observ-
ables consist of multi-variate polynomials of the system state x up to a fixed
order, trigonometric functions of the time t, and combinations of these (e.g.,
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Fig. 3: Relative simulation error between Koopman linearized systems and the
original nonlinear system in percent.

x1 x2 sin2ptq cosptq). To obtain the data traces required for extended dynamic
mode decomposition we simulate the original nonlinear systems for 500 points
sampled from the corresponding initial set, where a Sobol sequence is used for
sampling. For the generation of the random Fourier feature observables accord-
ing to (6) we use the parameter ` “ 0.3 and m “ 71 for the Roessler attractor,
` “ 1.62 and m “ 72 for the steam governor, ` “ 1.24 and m “ 132 for the
coupled Van-der-Pol oscillator, and ` “ 1.81 and m “ 105 for the biological
system, where ` is the lengthscale parameter of the kernel and the number of
observables m is chosen identical to the one used for the ad hoc observables [5].
As a measure for the accuracy we use the Euclidean distance between simulated
trajectories for the original nonlinear system and the Koopman linearized sys-
tem. The initial points for these trajectories are the center and the vertices of
the initial set. According to Fig. 3 random Fourier feature observables are for the
steam governor and the Roessler attractor more accurate than than the ad hoc
observables used in earlier work [5]. Moreover, while for the short time horizons
considered in Fig.3 it seems that the ad hoc observables are more precise for the
coupled Van-der-Pol oscillator and the biological system, over longer time hori-
zons the error of the ad hoc observables is exploding. This is visualized in Fig. 4,
where the trajectory corresponding to the ad hoc observables progresses into a
completely different direction than the original system, while random Fourier
features stay accurate. In this way, random Fourier features are not only a more
systematic approach for choosing observables, but also improve the precision of
the resulting Koopman linearized system.
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Fig. 4: Comparison of simulations for Koopman linearized systems with the
ground truth from the original nonlinear system for a time horizon of tF “ 10,
where the biological system is shown on the left and the coupled Van-der-Pol
oscillator is shown on the right.

5.3 Verification using Reachability Analysis

We now compare our novel verification algorithm for Koopman linearized sys-
tems with the verification strategies presented in [5]. In particular, we compare
to verification of the original nonlinear system using Flow* [9], direct encoding
of nonlinear constraints using a SMT solver [5, Sec. 4.1], and zonotope domain
splitting [5, Sec. 4.4]. Both approaches from [5] consider discrete-time safety,
where the system is considered to be safe if the specification is satisfied at time
points 0, ∆t, 2∆t, . . . , tF with ∆t “ 0.05. While our verification algorithm also
supports continuous-time safety, we consider discrete-time safety here to obtain
a fair comparison. Note that for discrete-time safety the reachable set computa-
tion in Line 5 of Alg. 1 simplifies to Ri “ rIn 0s eAi∆t X0, i “ 0, . . . , tF {∆t. For
the comparison we consider both, the ad hoc observables used in [5] as well as
the random Fourier feature observables presented here.

The resulting computation times for verification are summarized in Tab. 1.
For all benchmark instances our novel verification algorithm has the lowest com-
putation time, and is often even magnitudes faster than the other verification
approaches. The main reason for this is that with our polynomial refinement
strategy we can completely avoid the computational expensive calls to SMT
solvers used by the other methods. Moreover, while the computation time for
the other approaches often depends on how difficult it is to verify or falsify the
specification, our algorithm exhibits roughly equal runtimes for all specifications.
The explanation for this is that the polynomial zonotope refinement approach
that we use for the collision checks with unsafe sets is very efficient, so that the
majority of the runtime is spent on the computation of the image through the
observable function using Taylor model arithmetic, a task which is independent
from the specification. Interestingly, using random Fourier features instead of
ad hoc observables can either prolong or accelerate the verification process, de-
pending on the benchmark instance and verification approach used. However,
even if they prolong the time required for verification in some cases, the usage of
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Table 1: Computation time in seconds for verification or falsification of the
benchmark systems from Sec. 5.1 using different approaches, where the sym-
bol ´ indicates that the computation timed-out after 2 hours. The parameter i
specified in the second column changes the specification, and the third column
shows weather the specification can be verified or falsified.

i Safe? Flow* Direct Enc. Zono. Split. Our App.
ad hoc fourier ad hoc fourier ad hoc fourier

1 X 251 788 398 0.57 171 0.20 3.00
Coupled VP 8 ˆ 497 680 120 53 232 0.79 3.77

16 ˆ 1665 557 373 18 38 0.20 2.99

1 X 260 470 ´ 0.59 ´ 0.44 1.95
Biological 5 X 250 426 ´ 49 ´ 0.44 1.73

10 X 238 427 ´ 179 ´ 0.46 1.76

0 X 61 197 149 182 42 0.12 0.25
Steam 5 ˆ 285 59 40 37 38 0.38 0.56

10 ˆ 77 29 20 18 27 0.12 0.26

0 X 55 181 291 9.53 117 0.55 0.35
Roessler 10 ˆ 78 177 385 5.01 241 0.22 0.75

20 ˆ 55 174 158 3.5 86 0.21 0.34

random Fourier feature observables can be justified by their superior accuracy
demonstrated in Sec. 5.2. Yet another observation is that direct encoding and
zonotope domain splitting are not able to verify or falsify the high-dimensional
biological model at all if random Fourier feature observables are used. The reason
for this is that both of these approaches apply an SMT solver for verification,
which do not scale to high-dimensions and are not well-suited for handling the
trigonometric functions as well as the high coupling between variables used for
random Fourier feature observables. So in summary our proposed verification al-
gorithm outperforms all exiting verification techniques for Koopman linearized
systems in terms of runtime. In addition, it handles different types of observables
well and scales to high-dimensional systems.

6 Conclusion

We presented two major improvements for reachability analysis of Koopman op-
erator linearized systems: First, we use random Fourier features as observable
functions, which yields a systematic approach requiring much less user insight
than previous methods. Second, we handle the nonlinear transformation of the
initial state by combining Taylor model arithmetic with polynomial zonotope
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refinement. As demonstrated on several nonlinear system benchmarks, the com-
bination of these two techniques is both extremely accurate and extremely fast.

The main trade-off with Koopman linearized systems is that the guarantees
are on the system approximation, not the original system. Despite this, we believe
the method could still be useful for verification in systems engineering, where
the goal is to produce evidence that the system meets its requirements. It could
also be effective for finding unsafe counterexamples—falsification—or to analyze
systems where only simulation code is provided, or even real-world systems where
sensor measurements could be used to create a Koopman linearized model for
analysis. As such systems do not have models given with symbolic differential
equations, most traditional reachability methods cannot be applied.
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