
Details on logical model and logical data analysis
The logical modelling step is performed to test whether the putative model topology (Fig.1B, main manuscript)
is capable of inducing bistability and fulfilling all observations (constraints) given by the experimental knock-
out data (Fig.1A, main manuscript). To this end, the entire set of parametrizations (denoted K, see further)
of regulatory functions for the components (YdaM, c-di-GMP, etc...) is scanned and it is tested whether
each of these parametrizations K ∈ K can fulfil all observations from the biological knock-out experiments.
This model checking procedure then results in a set of valid parametrizations K∗. Lastly, the set of valid
parametrizations is further analysed, which allows for model simplifications and the derivation of parameter
constraints for the subsequent time-continuous modelling step. In this section we provide the full formal
description of the employed logical framework and a formal version of the logical model we built in the
Methods section. We also list all formal properties, the full description of the results and lastly elaborate on
the methods used for parameter set analysis.

Formalism and set-up
In the following we describe the logical modelling framework. While the notation is slightly modified to
better suit our modelling aim, there is no practical difference to the standard framework of multi-valued
logical models of René Thomas as described for example in [3].

State space

We denote V to be a set of named components. In the main text we stated that components v are either on
or off, except for YciR, which has three activity levels. In the following, we will identify the off state with
the value 0 and the on state with 1. For YciR, the values 2 and 1 correspond to the c-di-GMP degradation
activity and the YdaM/MlrA inhibition activity, respectively.
More generally, each component can take integer values n ∈ [0, ρ(v)], where ρ : V → N+ assigns a maximal
activity level to each component, see Figure S1(a). Since the range of values for each component is finite, we
can describe the set of all possible configurations of the system, the logical state space, as S =

∏
v∈V [0, ρ(v)].

The set S therefore represents all qualitatively different configurations of a system (combinations of logical
values for the distinct species, e.g. on and off ). In the following, s ∈ S refers to a particular state of the
system and by sv = n we state that the component v of the state s has activity level n.

Space of regulatory functions

Edges. In the logical modelling context, each component v depends only on the values of its regulators
u ∈ V . We denote by E ⊆ V × N+ × V , n ≤ ρ(u) for all (u, n, v) ∈ E a set of regulations (regulatory
edges), such that G = (V,E, ρ) denotes a multi-valued regulatory network. We create a labelling function
l : E → {Activating Only, Inhibiting Only,Free}. The formal definition is provided later, but intuitively,
Activating Only edges assign the activity value of the regulator u to the regulated node v, whereas Inhibiting
Only edges assign the opposing activity level. Free edges have no requirements. The set of regulatory edges
is depicted in Fig. S1(b).
Thresholds and regulatory contexts. We use the function θ : V ×V → 2N

+

that provides the thresholds
of all edges between two vertices and which is defined as θ(u, v) = {n | (u, n, v) ∈ E} where u, v ∈ V . Note
that θ(u, v) = ∅ if there is no edge from u to v. Thresholds divide the activity intervals of a regulator, with
respect to the effect that they exert on the regulated component (e.g. activation), defined as:

Iuv = {[j, k) | j, k ∈ θ(u, v) ∪ {0, ρ(u) + 1}, j < k,¬∃l ∈ θ(u, v) : j < l < k}. (1)

Note that
⋃
Iuv = [0, ρ(u)], even in the case that there is no edge from u to v.

A regulatory context of a component v ∈ V—a set of all the possible combinations of activities of its
regulators—is denoted and defined as Ωv =

∏
u∈V I

u
v .

Parameterizations. The dynamics of a component v based on the activities of its regulators denotes
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activity levels
component v max. act. ρ(v)

YegE 1
YhjH 1

c-di-GMP 1
YciR 2
YdaM 1
MlrA 1

(a)

regulatory edges
u ∈ V n ∈ [1, ρ(u)] v ∈ V l(u, n, v)
YhjH 1 YhjH Activating Only
YegE 1 YegE Activating Only
YhjH 1 c-di-GMP Inhibiting Only
YegE 1 c-di-GMP Activating Only
YdaM 1 c-di-GMP Activating Only
YciR 2 c-di-GMP Inhibiting Only

c-di-GMP 1 YciR Free
YciR 1 YdaM Inhibiting Only
YciR 2 YdaM Free
YciR 1 MlrA Inhibiting Only
YciR 2 MlrA Free
YdaM 1 MlrA Activating Only

(b)

∀s ∈ S, sC-di-GMP = 1 : KYciR(s) = 2

∀s ∈ S, sC-di-GMP = 0 : KYciR(s) = 1

∀s, s′ ∈ S, sYciR = 0, s′ = s[YciR/2] : (KMlrA(s) = KMlrA(s′)) ∧ (KYdaM(s) = KYdaM(s′))

∀s, s′ ∈ S, sYciR = 0, s′ = s[YciR/1] : Kc-di-GMP(s) = Kc-di-GMP(s′)

(c)

Figure S1: Formal description of the logical regulatory graph. (a) The components v and their
respective maximum activity levels ρ(v). (b) Regulators u acting in their activity levels n on components
v. The edge labels l(u, n, v) indicate that regulatory edges are constrained to particular regulatory sets, i.e.
sets of ’activating’ or ’inhibiting’ regulations. Additional constraints (c) are imposed on the regulation of
and by YciR to achieve the required semantics. The term s[v/n] where s ∈ S, v ∈ V, n ∈ N denotes a state s
where the value of the index v has been replaced by n, e.g. the first constraint states that if c-di-GMP is in
state 1 (’on’), then YciR is updated from state 1 to state 2.

its regulatory function. The regulatory function of a component is defined as Kv : Ωv → [0, ρ(v)] for
each component v ∈ V . A vector of regulatory functions for each component K = (Kv)v∈V is called a
parametrization. Each parametrization uniquely defines the dynamics of a regulatory network, as further
explained, and we use the term model for a pair (G,K) where K is a parametrization of the regulatory
network G.

Note that there are usually many possible regulatory functions for a component v ∈ V , the set of which
is denoted Kv. The product of these K = (Kv)v∈V is then called the parametrization space and it naturally
corresponds to a set of all possible logical models.
Update functions. Having a regulatory graph G = (V,E, ρ) and a parametrization K we can fully describe
its dynamical behaviour as a transition system over its state space S. This is a directed graph (S,→) where
→⊂ S × S is the transition relation. Here, we are interested in asynchronous dynamics, which means that
the transition relation is non-deterministic.

To obtain the relation→,K is converted into an update function FK = (FK
v )v∈V where FK

v : S → [0, ρ(v)]
for all v ∈ V . Here we exploit the fact that for each s ∈ S and for each v ∈ V there exists a context ω ∈ Ωv

such that s ∈
∏

u∈V ωu. To simplify the notation we will further write s ∈ ω instead of s ∈
∏

u∈V ωu. For
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every v ∈ V , we obtain the function FK
v from the parametrization by setting

FK
v (s) =


sv + 1, if sv < Kv(ω), s ∈ ω,
sv, if sv = Kv(ω), s ∈ ω,
sv − 1, if sv > Kv(ω), s ∈ ω.

(2)

Note that in our context, YegE and YhjH are treated as inputs and always keep the value they were initially
assigned. This is achieved by putting positive feedback loops on each of these two components.
Edge constraints. The edge labels as described above are resolved on the parametrizations. Given an edge
(u, n, v) such that [n−, n), [n, n+) ∈ Iuv for some n−, n+ ∈ [0, ρ(u)]. Then (u, n, v) is Activating iff there
exists ω ∈ Ωv such that ωu = [n−, n) and Kv(ω) < Kv(ω[u/[n, n+)]). Likewise (u, n, v) is Inhibiting iff there
exists ω ∈ Ωv such that ωu = [n−, n) and Kv(ω) > Kv(ω[u/[n, n+)]). An edge is Activating Only iff it is
Activating and not Inhibiting. An edge is Inhibiting Only iff it is Inhibiting and not Activating. A Free
edge has no requirements.
Additional constraints. Usually, an increase of the state value of a component represents an increase in
the concentration of the respective species. Here this is not the case as our assumption is that the total
amount of YciR is conserved. Our choice (which value represents the particular situation) is arbitrary and
has no impact on the results. To model this situation, we explicitly set the parameters, i.e., formulate the
rules, for regulation by c-di-GMP as shown in Figure S1c. There, we set YciR to level 2 if c-di-GMP is
present and to level 1 if it is not. Also, we had to explicitly specify that YciR regulates c-di-GMP only at
the level 2 and YdaM and MlrA only at the level 1 in line with the interpretation of the values, which is also
formalized in Figure S1(c).

Transition system analysis

Having FK , we now assign each parametrized regulatory graph a transition system via the function T : K →
{(S,→)} where T (K) = (S,→) such that

∀v ∈ V,∀s ∈ S(s→ s[v/n] ⇐⇒ (FK
v (s) = n ∧ FK

v (s) 6= sv)), (3)

with x[i/k] denoting that in the vector x, the i-th value is substituted for k. Lastly, for the model analysis
we use the LTL model checking [1] technique. We encode the experimental observations as a set of logical
properties ϕ = {ϕ1, . . . } (exemplified below) and require that any valid model exhibits these properties.

In the transition system (S,→) we label component v of each state s with its activity level, i.e. sv = n.
Additionally, we add a label SS to all stable state (all states for which it holds that there is no s′ ∈ S such that
s→ s′). For all experiments we use the formulas of the form G(knockouts)∧ (initial state)∧F(output∧SS)
where:

• G(knockouts) specifies the components that are globally (G) set to 0,

• (initial state) specifies the initial conditions of the experiment,

• F(output∧SS) specifies that in the future (F) the system will reach the state with the required output
and remain there.

The formulas translate the experimental observations from the genetic knock-out experiments (Figure 1A,
main manuscript) into the context of the logical model. Each knock-out experiment translates into two
logical properties that are listed in Table S1. The set of parametrizations satisfying all properties is given
in Table S2.

For illustration we detail the formal description for one of the observations. For experiment #4 (ydaM
is knocked out), the hyperrepressed phenotype was observed. This observation translates into the two
properties:
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• G(Y daM = 0) ∧ (MlrA = 0 ∧ Y egE = 1 ∧ Y hjH = 1) ∧ F(MlrA = 0 ∧ SS) - there is a trace from a
state where YhjH and YegE is present and MlrA absent to a stable state where MlrA is absent, while
YdaM is permanently absent (knocked out).

• ¬(G(Y daM = 0) ∧ (MlrA = 0 ∧ Y hjH = 1 ∧ Y egE = 1) ∧ F(MlrA = 1 ∧ SS)) - it is not true that
there is a trace from a state where YhjH and YegE is present and MlrA absent to a stable state where
MlrA is present, while YdaM is permanently absent (knocked out).

In the second step we test for each model whether it satisfies the properties via the automata based LTL
model checking [1]. We convert a transition system (S,→) into a so-called Kripke Structure by setting all
the states s ∈ S as both initial and final. We then check if the structure satisfies each of the properties.
Formally, denote→K the transition relation obtained from a parameterization K ∈ K. We create the refined
model set K′ where K ∈ K′ ⇐⇒ ∀ϕi ∈ ϕ : ¬((S,→K) |= ¬φi). The check is conducted on a product of
the Kripke Structure and a Büchi automaton for each of the properties. For more details please refer to the
relevant literature [1].

The validation procedure yields 10 parametrizations (see Table S2) that satisfy the set of observations
from the knock-out experiments. These 10 parametrizations refer to the interpretations of the data as stated
in the Methods section of the main manuscript in subsection Formalisation of the experimental data.
Note that the observations from the knock-out experiments can also be interpreted in a less conservative
sense: i.e. interpreting the data such that no curli is expressed in both the basal- and hyperrepressed
phenotype (the stable state MlrA off is reachable, while the on state is not) and that the hyperactivated
phenotype corresponds to the scenario where all cells express curli (the stable state MlrA on is reachable, but
not the off state). In the latter scenario, there is one parameterization that fulfils the constraints arising from
this less conservative interpretation of the experimental observations (see Fig.A, main manuscript). Thus,
irrespective of the elaborated interpretation of the experimental observations in Fig. 1A (main manuscript),
there exists at least one logical model that is consistent with the data. This parameterization is depicted in
the first row of Table S2.

Analysis of results

In the Results section of the main manuscript we discuss several observations drawn from the final parametriza-
tion set K∗ shown in Table S2. Here, we present our reasoning in more detail.

First, consider the regulation of MlrA. As seen in Table S2, there are two possible regulatory functions for
MlrA (compare rows 1–5 with rows 6–10). All combinations of these two with the 5 possible functions for c-di-
GMP yield the 10 valid models. Since our focus is on stabilizing behaviour, we distinguish parametrizations
according to the stable states that they generate. If the network is to stabilize in a state where YciR exhibits
its inhibiting effect on YdaM then YdaM needs to be off, since there are no other regulators influencing its
activity. For the same reason, YciR switching to PDE activity must result in a change of activity level for
YdaM, namely YdaM must become active. Consequently, in a stable state we either observe that YciR acts
as an inhibitor and YdaM is off, or YciR exhibits its PDE activity and YdaM is on. Since MlrA is only
regulated by YdaM and YciR, we know that in the first scenario MlrA needs to be off, since its inhibitor is
active and its activator is inactive, and in the second, opposing scenario MlrA is on. That is, in a stable state
the values of YdaM and MlrA always coincide and we can use YdaM as a marker for the curli production.

Furthermore, note that only one function for MlrA is possible (the function stated in rows 1–5 of Table S2)
if we consider the constraint set relating to the less conservative interpretation of the knock-out experiments
(see previous section). This is due to the interpretation of the basal phenotype as a biological state with no
curli production, which is also the case when YdaM and YciR are both knocked out. In particular, this means
that the absence of an inhibitory effect of YciR is not sufficient to initiate curli production and therefore
eliminates one of the two previously valid MlrA regulatory functions. Since the logical framework is too
coarse-grained to distinguish between differences in data that are of rather quantitative nature (as might
be the case when considering the basal and the hyperrepressed phenotype), the underlying assumptions and
consequently the result of this analysis have to be carefully evaluated in the biological context.
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As a further result, we identified YdaM as the most prominent regulator of c-di-GMP. Let us recall the
assumption that the pool of c-di-GMP is shared between YegE, YciR, YdaM, and YhjH. We assume that
there are no competitive reactions between the above listed four proteins on any single molecule of c-di-GMP,
meaning that c-di-GMP is active in the system if and only if the production/degradation ratio stabilizes in
a state with a sufficiently high concentration of c-di-GMP. From the final parametrization set, we can see
that the conditions for c-di-GMP to be on are either that the activating effect exhibited by YdaM is already
sufficient on its own (see parameterization sets corresponding to row 4 & 9 in Table S2), or only one other
activating influence (YegE being on, YhjH being off or YciR being at its MlrA/YdaM inhibitor activity)
is needed (see the remaining parametrizations/rows of Table S2). Conversely, if the activating influence of
YdaM is absent, this cannot be compensated (the parameter sets in rows 2 & 7 in Table S2), or only if
one activating influence is combined with the absence of at least one inhibiting influence on c-di-GMP (the
remaining rows in Table S2).

Continuing on the idea of functional independence we can qualitatively compare the pair-wise effects of
competitive regulators of c-di-GMP. Two observations appear:

1. YdaM is stronger than YciR: in all parametrizations we observe that when YdaM is on, YciR is at its
PDE activity, and the inputs (YhjH and YegE) are off then c-di-GMP is on.

2. YhjH is stronger than YegE: in all parametrizations we observe that when only YhjH and YegE are on
then c-di-GMP is off.

Such observations can now be exploited to derive constraints for the parameter sampling for the ODE model.
In the following, we will only focus on the observation 1). As a first step we translate the logical scenario

for our observation concerning c-di-GMP regulation into the continuous setting. Since in the statement 1)
YegE and YhjH are in the off configuration (e.g. knocked out), we can drop the first two terms in the ODE
describing c-di-GMP behaviour, meaning the equation

d

dt
x1 =

Vmax 1

1 + x1/K
YegE
i

− Vmax 2x1

x1 +KYhjH
m

− (Y ciRtot− x2)
kYciRactx1
x1 +KYciR

m
+

kYdaMactx
n
3

(KydaM
dpolymer

)n + xn3
,

simplifies to:
d

dt
x1 = −(YciRtot− x2)

kYciRactx1
x1 +KYciR

m
+

kYdaMactx
n
3

(KydaM
dpolymer

)n + xn3
.

Much of the difficulty in relating a logical to an ODE model comes from the necessity to put real-
valued and discretized values into relation, implying that we need to decide which ranges of real values
correspond to the logical states of YdaM and c-di-GMP being on and YciR being in its PDE configuration.
A variety of discretization methods are available, but the results often need to be carefully evaluated w.r.t.
the application, see e.g. [2]. However, for our purposes we do not need to know the exact discretization
thresholds, we just need to make sure that we evaluate the ODE at values for x1, x2 and x3 that represent
the logical values of c-di-GMP being on, YciR being in its PDE configuration (interpreted as YciR not acting
as YdaM inhibitor) and YdaM being on. We achieve this by considering the limits x1 → ∞, x2 → 0, and
x3 → ∞, which ensures that we crossed the respective discretization thresholds regardless of their actual
value. Note that these limits can be interpreted as YciR being fully committed to PDE activity and YdaM
and c-di-GMP fully saturating the corresponding rate functions. This results in the terms x1/(x1 +KYciR

m )

and xn3/((K
ydaM
dpolymer

)n + xn3 ) tending to the limit value 1. We obtain:

lim
x1→∞

kYciRactx1
x1 +KYciR

m
= kYciRact,

lim
x2→0

(Y ciRtot− x2) = Y ciRtot,

lim
x3→∞

kYdaMactx
n
3

(KydaM
dpolymer

)n + xn3
= kYdaMact,
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which we apply to our simplified ODE, obtaining the limit form:

d

dt
x1 = −YciRtot · kYciRact + kYdaMact.

The target parameter for c-di-GMP in the corresponding logical states indicates that c-di-GMP remains
active in this scenario. We now make the assumption that we can translate this into a constraint saying
that the value of x1 should not decrease (represented by d

dtx1 ≥ 0) whenever the system is in a biological
state corresponding to the state of our logical scenario. In particular, this holds for our limit considerations.
In general, this assumption will not always be true, since it is feasible that for large values inhibiting
effects come into play that are again counteracted when approaching the discretization threshold. However,
the logical model is set up in such a way that all qualitative regulation effects that could lead to such a
behaviour are captured and represented by the different activity levels, so that we exclude the possibility of
the observations not holding asymptotically. This is also in agreement with the biological interpretation of
those limits mentioned above. Inserting the condition for d

dtx1 into the ODE then yields the inequality

0 ≤ −YciRtot · kYciRact + kYdaMact,

giving us the constraint:
YciRtot · kYciRact ≤ kYdaMact.

To further ensure that our assumptions are proper, we relax this constraint based on the following
observation. Y ciRtot represents the total number of YciR molecules in the system. We know that YciR is
present, therefore Y ciRtot ≥ 1 and from there:

kYciRact ≤ YciRtot · kYciRact ≤ kYdaMact.

Since the value for Y ciRtot is expected to be much larger than 1, we can utilize the much weaker constraint

kYciRact ≤ kYdaMact.

with high confidence.
Similar arguments can be made to derive a constraint from the observation 2) listed above. However,

while the formal steps can still be executed, the biological interpretation becomes more difficult, and the
logical observation is more local as in the previous case where the strong impact of YdaM was supported by
a global analysis. For these reasons we decided not to include the corresponding constraint in the parameter
sampling procedure stated in the Methods section of the main manuscript.
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knock-out # LTL formula

1 (YegE = 1 ∧YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS)

1 (YegE = 1 ∧YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS)

2 G(Y ciR = 0) ∧ (MlrA = 0 ∧YegE = 1 ∧YhjH = 1) ∧ F(MlrA = 1 ∧ SS)

2 ¬(G(Y ciR = 0) ∧ (MlrA = 0 ∧YegE = 1 ∧YhjH = 1) ∧ F(MlrA = 0 ∧ SS))

3 G(YhjH = 0) ∧ (MlrA = 0 ∧YegE = 1) ∧ F(MlrA = 1 ∧ SS)

3 ¬(G(YhjH = 0) ∧ (MlrA = 0 ∧YegE = 1) ∧ F(MlrA = 0 ∧ SS))

4 ¬(G(YdaM = 0) ∧ (MlrA = 0 ∧YegE = 1 ∧YhjH = 1) ∧ F(MlrA = 1 ∧ SS))

4 G(YdaM = 0) ∧ (MlrA = 0 ∧YegE = 1 ∧YhjH = 1) ∧ F(MlrA = 0 ∧ SS)

5 ¬(G(YegE = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS))

5 G(YegE = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS)

6 G(YciR = 0 ∧YhjH = 0) ∧ (YegE = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS)

6 ¬(G(YciR = 0 ∧YhjH = 0) ∧ (YegE = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS))

7 ¬(G(YciR = 0 ∧YdaM = 0) ∧ (YegE = 1 ∧YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS))

7 G(YciR = 0 ∧YdaM = 0) ∧ (YegE = 1 ∧YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS)

8 G(YegE = 0 ∧YciR = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS)

8 ¬(G(YegE = 0 ∧YciR = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS))

9 G(YegE = 0 ∧YhjH = 0) ∧MlrA = 0 ∧ F(MlrA = 1 ∧ SS)

9 G(YegE = 0 ∧YhjH = 0) ∧MlrA = 0 ∧ F(MlrA = 0 ∧ SS)

10 ¬(G(YdaM = 0 ∧YhjH = 0) ∧ (YegE = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS))

10 G(YdaM = 0 ∧YhjH = 0) ∧ (YegE = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS)

11 ¬(G(YdaM = 0 ∧YegE = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS))

11 G(YdaM = 0 ∧YegE = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS)

12 ¬(G(YciR = 0 ∧YdaM = 0 ∧YhjH = 0) ∧ (YegE = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS))

12 G(YciR = 0 ∧YdaM = 0 ∧YhjH = 0) ∧ (YegE = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS)

13 G(YciR = 0 ∧YegE = 0 ∧YhjH) ∧MlrA = 0 ∧ F(MlrA = 1 ∧ SS)

13 ¬(G(YciR = 0 ∧YegE = 0 ∧YhjH) ∧MlrA = 0 ∧ F(MlrA = 0 ∧ SS))

14 ¬(G(YciR = 0 ∧YdaM = 0 ∧YegE = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 1 ∧ SS))

14 G(YciR = 0 ∧YdaM = 0 ∧YegE = 0) ∧ (YhjH = 1 ∧MlrA = 0) ∧ F(MlrA = 0 ∧ SS)

15 ¬(G(YdaM = 0 ∧YegE = 0 ∧YhjH = 0) ∧MlrA = 0 ∧ F(MlrA = 1 ∧ SS))

15 G(YdaM = 0 ∧YegE = 0 ∧YhjH = 0) ∧MlrA = 0 ∧ F(MlrA = 0 ∧ SS)

16 ¬(G(YdaM = 0 ∧YciR = 0 ∧YegE = 0 ∧YhjH = 0) ∧MlrA = 0 ∧ F(MlrA = 1 ∧ SS))

16 G(YdaM = 0 ∧YciR = 0 ∧YegE = 0 ∧YhjH = 0) ∧MlrA = 0 ∧ F(MlrA = 0 ∧ SS)

Table S1: The list of all LTL formulas used in model checking. Each observations from the genetic
knock-out experiments translates into two LTL properties. Note that the numbering of the experimental conditions
corresponds to their appearance (from top to bottom) in Figure 1A (main manuscript). I.e. the first two lines
correspond to the wild type, line 3 and 4 to the YciR knock-out, etc.... The 15 properties, which relate to the
observations from the genetic knock-out data and the interpretation of the data as stated in the Methods section of
the main manuscript in section Formalisation of the experimental data are highlighted by bold fonts (first column).
The remaining properties are only valid if the experimental data is interpreted in a less conservative sense (see last
paragraph before Analysis of results within this document.)
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KYdaM(s) KYciR(s) KMlrA(s)

sYciR = 0∨ sYciR = 2 (sc-di-GMP = 1)+ 1 (sYciR = 0∨ sYciR = 2)∧ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∧ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∧ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∧ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∧ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∨ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∨ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∨ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∨ sYdam = 1

sYciR = 0 ∨ sYciR = 2 (sc-di-GMP = 1) + 1 (sYciR = 0 ∨ sYciR = 2) ∨ sYdam = 1

...

Kc-di-GMP(s)

((sYciR < 2∨ sYhjH = 0∨ sYegE = 1)∧ sYdaM = 1)∨ (sYhjH = 0∧ sYegE = 1)

(sYciR < 2 ∨ sYhjH = 0 ∨ sYegE = 1) ∧ (sYdaM = 1)

((sYciR < 2 ∨ sYhjH = 0 ∨ sYegE = 1) ∧ sYdaM = 1) ∨ (sYciR < 2 ∧ sYhjH = 0 ∧ sYegE = 1)

(sYdaM = 1) ∨ (sYciR < 2 ∧ sYhjH = 0 ∧ sYegE = 1)

((sYhjH = 0 ∨ sYegE = 1) ∧ sYdaM = 1) ∨ (sYciR < 2 ∧ sYhjH = 0 ∧ sYegE = 1)

((sYciR < 2 ∨ sYhjH = 0 ∨ sYegE = 1) ∧ sYdaM = 1) ∨ (sYhjH = 0 ∧ sYegE = 1)

(sYciR < 2 ∨ sYhjH = 0 ∨ sYegE = 1) ∧ (sYdaM = 1)

((sYciR < 2 ∨ sYhjH = 0 ∨ sYegE = 1) ∧ sYdaM = 1) ∨ (sYciR < 2 ∧ sYhjH = 0 ∧ sYegE = 1)

(sYdaM = 1) ∨ (sYciR < 2 ∧ sYhjH = 0 ∧ sYegE = 1)

((sYhjH = 0 ∨ sYegE = 1) ∧ sYdaM = 1) ∨ (sYciR < 2 ∧ sYhjH = 0 ∧ sYegE = 1)

Table S2: The set of parametrizations K∗ whose respective transition system T (K) where K ∈ K∗
satisfies all logical properties. Each parametrization shown in the table had to fulfill the 15 logical
properties stated in Table S1 (bold indices), which relate to the observations from the genetic knock-out
data and the interpretation of the data as stated in the Methods section of the main manuscript in section
Formalisation of the experimental data. Note that the observations from the knock-out experiments can also
be interpreted in a less conservative sense: i.e. requiring that no curli is expressed in both the basal- and
hyperrepressed phenotype (the stable state MlrA off is reachable, while the on state is not) and requiring
that the hyperactivated phenotype corresponds to the scenario where all cells express curli (the stable state
MlrA on is reachable, but not the off state). In the latter scenario, there is one parameterization that fulfils
the constraints arising from this less conservative interpretation of the experimental observations (see Fig.A,
main manuscript). This parameterization is highlighted in blue (first row of this table). To simplify the
notation we describe the functions via expressions of Boolean algebra, meaning that an expression evaluates
to 1 if it is true and to 0 otherwise. The components YegE and YhjH are input components and therefore
not listed (For an input component c it holds that Kc(s) = sc for all states s ∈ S).
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