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S1 Derivation of deterministic rates

In this section, we outline the derivation of deterministic rate laws for the
continuous model depicted in Fig. 1d (main manuscript). In the following,
molecular concentrations will be denoted by small italic letters, e.g. x1 and
chemical reaction symbols will be denoted by normal capital fonts e.g. X1.

S1.1 Catalytic reactions of c-di-GMP synthesis and degra-
dation (R1, R2, R3 and R4)

S1.1.1 Degradation reactions R2 and R3

The degradation of c-di-GMP by a PDE-type enzyme can be generically
described by the following reaction system:

E + X1

kPDE
1

kPDE
−1

E:X1

kPDE
cat

P + E, (S1)

where E denotes a molecule of the enzyme phosphodiesterase (PDE), X1

denotes a molecule of c-di-GMP and P is the product of this reaction, pGpG.
Here, we made a quasi steady-state assumption for the formation of the
E:X1-complex. This makes the product formation the rate limiting step,
yielding the maximal catalytic velocity Vmax = (e + ex1) · kPDE

cat and the
Michaelis-Menten constant Km = (kPDE

−1 + kPDE
cat )/kPDE

1 [1].
The two important PDEs controlling the curli regulation system are

YhjH and YciR. Similarly to the DGC enzyme YegE, the amount of active
YhjH proteins in the system is assumed to be constant. Therefore, the
Michaelis-Menten reaction rate of YhjH results in

V2 =
Vmax 2x1

x1 + KYhjH
m

, (S2)

where x1 denotes the concentration of c-di-GMP and KYhjH
m is the Michaelis-

Menten constant of YhjH and Vmax 2 is the corresponding maximal catalytic
velocity.
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The degradation of c-di-GMP by YciR has a similar form as eq. (S2).
However, we explicitly modelled the amount of YciR in its catalytic form
x̃2 (YciR I in Fig. 1B of the main manuscript). This pool of YciR sums up
with the pool of non-catalytic YciR (x2) to x̃2 + x2 = YciRtot. As a result,
the Michaelis-Menten reaction rate of YciR, V3, is modelled by

V3 = (YciRtot− x2)
kYciRactx1

x1 + KYciR
m

, (S3)

where (YciRtot−x2) denotes the amount of catalytically active YciR molecules.
By assuming the relation kPDE

1 � kPDE
−1 this quantity can be set equal to the

total amount of catalytically active enzyme (bound and unbound by c-di-
GMP). Furthermore, kYciRact models the rate-limiting product formation
step and thus corresponds to the rate parameter kPDE

cat in the generic reac-
tion scheme (S1).

S1.1.2 Synthesis reactions R1 and R4

The synthesis reaction of c-di-GMP is based on the transformation of two
GTP substrate molecules into one molecule of c-di-GMP and 2 PPi molecules.
The mechanistic details of this reaction were elucidated for several DGC-
type enzymes [2, 3]. Within the curli regulation system the two DGC en-
zymes YegE and YdaM are assumed to play an important role. In contrast to
YdaM, the reaction of YegE is subject to non-competitive inhibition (see e.g.
[1]), which is induced by binding of the product molecule c-di-GMP to the
I-site of the enzyme, inducing allosteric product (feedback) inhibition. Ulti-
mately, this reaction generates c-di-GMP (X1). Due to an excess availability
of the substrate GTP [4] we assumed that all catalytic sites of the enzymes
are occupied with substrate molecules GTP (i.e. Etot ≈ E:S:S + E:S:S:X1),
which reduces the reaction scheme to

E:S:S + X1

konkoff

E:S:S:X1

kDGC
cat

E + 2 X1 (S4)

where for brevity of notation the formation of the PPi molecules as a byprod-
uct of c-di-GMP synthesis is omitted. Since we assumed an excess availabil-
ity of substrate, the synthesis reaction operates at maximal catalytic veloc-
ity Vmax 1, resulting in the kinetic rate V1 given in the Table 1 of the main
manuscript:

V1 =
Vmax 1

1 + x1/Ki
, (S5)
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where Ki = koff/kon is the dissociation constant of c-di-GMP binding to the
I-site of the enzyme. Further, we assumed that the product formation step is
rate limiting in equation (S4). In contrast to YegE, the catalytic mechanism
of YdaM is not subject to allosteric feedback inhibition [5]. However, YdaM
molecules have been observed in a tetrameric form. For this reaction we
assume complete homotropic cooperativity (see e.g. [1] for its definition),
which necessitates to include a Hill parameter n. Again, we assume an excess
availability of the substrate GTP, yielding the final rate function of YdaM
shown in the Table 1 in the main manuscript:

V4 =
kYdaMactx

n
3(

KYdaM
dpolymer

)n
+ xn3

. (S6)

where KYdaM
dpolymer

denotes the microscopic dissociation constant and the vari-
able x3 denotes the concentration of YdaM.

S1.2 Regulatory reactions of protein activities

S1.2.1 Transition between catalytically active and inactive YciR
(R5, R6)

It was previously shown that YciR changes its activity depending on the
amount of c-di-GMP in the system [5]. Thus, a sufficiently high amount of
c-di-GMP suppresses the inhibitory activity of YciR on YdaM and induces
the catalytic activity of YciR leading to the degradation of c-di-GMP. Based
on the observation that these two activities are mutually exclusive, we intro-
duced two different states of this enzyme into our model: non-catalytically
active YciR, with its pool denoted by the model variable x2 (i.e. YciR II
in Fig. 1 of the main manuscript) and YciR I, whose amount is given by
x̃2 =YciRtotal - x2. The transformation of the YciR activity from YciR II to
YciR I is most likely based on a specific interaction of YciR with c-di-GMP,
which activates its catalytic activity as soon as there is a sufficiently high
amount of c-di-GMP in the cell [5]. This reaction could e.g. be due to a
c-di-GMP-induced conformation change. In order to model this interaction,
we assumed a formation of an intermediate complex between YciR II and
c-di-GMP, x1:x2, which denotes a c-di-GMP bound YciR II molecule. The
product of this reaction is x̃2 (YciR I). This gives rise to the following system
of reactions:

R5 : X1 + X2

kR5
1

kR5
−1

X1:X2

kR5
cat

X1 + X̃2. (S7)

By assuming that the formation of the enzyme-substrate complex occurs on
a faster time scale than the product formation step and that kR5

1 � kR5
−1 (i.e.

x2 � x1 : x2) and due to the conservation condition Y ciRtot = x2 +x1:x2 +
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x̃2 we obtained a lumped reaction rate

V5 = kYciRdex2
x1

x1 + KYciR
d

, (S8)

where kYciRde = kR5
cat and (kR5

−1 + kR5
cat)/k

R5
1 ≈ kR5

−1/k
R5
1 = KYciR

d .

The reverse direction (YciR I → YciR II) was assumed to be given by a
first order reaction:

R6 : X̃2

c6 X2.

This results in the reaction reaction rate

V6 = c6(YciRtot− x2). (S9)

S1.2.2 Inhibition reaction of YdaM by YciR II R7 and reverse
reaction R8

We modelled the reactivation reaction of YdaM as a YciR-independent
transformation of inactive YdaM to active YdaM

R8 : X̃3

c8 X3.

This first order reaction results in the following reaction rate

V8 = c8(YdaMtot− x3).

The Inhibition of YdaM was suggested to be induced by binding to YciR
II. In order to model this reaction, we assumed a multistep process

R7 : X2 + X3

kR7
1

kR7
−1

X2:X3

kR7
cat

X2 + X̃3

where the formation of YciRII-YdaM complex X2:X3 is assumed to be fast
and the inactivation step of YdaM is the rate-limiting step. Assuming that
d
dtx2:x3 ≈ 0 and kR7

1 � kR7
−1 and Y daMtot = x3 + x2:x3 + x̃3 we obtain

x2:x3 ≈
kR7

1 x2x3

kR7
1 x2 + kR7

−1 + kR7
cat

.

This allows us to approximate the dynamics of this reaction by the following
rate function

V7 = kYdaMdex3
x2

x2 + KYdaM
d

(S10)

were kYdaMde = kR7
cat and (kR7

−1 + kR7
cat)/k

R7
1 ≈ kR7

−1/k
R7
1 = KYdaM

d .
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S1.3 Chemical Master Equation of the curli regulation sys-
tem

In order to derive a stochastic model of the curli reaction system we as-
sumed that the underlying dynamics are governed by a state-discrete time-
continuous Markov jump process [6]. The probability distribution of the
molecular species vector X = [X1, X2, X3]T at time t is denoted P (X, t) :=
P(X1, X2, X3, time = t). Using the deterministic reaction rates derived
above, the Chemical Master Equation (CME) of the system is derived as
follows

d

dt
P (X, t) =

(
ΩV̄1(X1 − 1) + ΩV̄4(X3)

)
· P (X1 − 1, X2, X3, t)

+
(
ΩV̄2(X1 + 1) + V̄3(X1 + 1, X2)

)
· P (X1 + 1, X2, X3, t)

+ V̄5(X1, X2 + 1) · P (X1, X2 + 1, X3, t)

+ V̄6(X2 − 1) · P (X1, X2 − 1, X3, t)

+ V̄7(X2, X3 + 1) · P (X1, X2, X3 + 1, t)

+ V̄8(X3 − 1) · P (X1, X2, X3 − 1, t)

−
[
ΩV̄1(X1) + ΩV̄2(X1) + V̄3(X1, X2) + ΩV̄4(X3) + V̄5(X1, X2)

+ V̄6(X2) + V̄7(X2, X3) + V̄8(X3)

]
· P (X1, X2, X3, t), (S11)

where the bars over the reaction rates indicate a scaling of the deterministic
parameters YciRtotal,YdaMtotal,KYegE

i ,KYciR
m ,KYciR

d ,KYdaM
d , and KYdaM

dpolymer

by multiplying them by the cell volume Ω.

S2 Validity of the Michaelis-Menten approxima-
tion in the deterministic and stochastic formu-
lation

The usage of the Michaelis-Menten rates as an approximation to elementary
reactions systems contains at least three potential problems. Firstly, it is
not automatically ensured that the deterministic Michaelis-Menten model
approximates the elementary mass action reactions sufficiently well. Fur-
thermore, embedding a Michaelis-Menten reaction into a larger reaction
system may invalidate the underlying quasi steady-state assumption. Fi-
nally, even if the deterministic reaction rates and their embedding within a
larger network is valid, it is still not obvious how to formulate the Michaelis-
Menten rates in a discrete stochastic model. In the following we will address
all of the mentioned aspects.

Previously, using singular perturbation analysis it was shown that the
Michaelis-Menten approximation is only valid in a region of the parameter
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space where the following condition holds (see eq. (81) in [7], alternatively,
eq. (8) in [8]):

ET � S0 + Km . (S12)

In addition, the authors in [7] show that a catalytic system based on a
Michaelis-Menten approximation can only be embedded within a larger re-
action network if the substrate S does not appear in other fast reactions.

In order to ensure the validity of the Michaelis-Menten approximation
for the reactions of the curli regulation system, derived in the sections S1.1
and S1.2 of this SI text, we added the condition (S12) as a constraint to
the parameter identification procedure, described in the Methods section of
the main manuscript. As a result, the parameters were sampled from a
region where the Michaelis-Menten approximation is valid. Furthermore,
the validity of the embedding of a Michaelis-Menten reaction rates within
a larger network was ensured by assuming a hierarchy of the time scales of
reaction rate parameters where the fast time scale of intermediate complex
formation

tfast =
1

k1(S0 + Km)
(S13)

of any reaction R1 - R8 is smaller than the time scale of product formation
of any other reaction where S is involved (see eq. (13) in [7] or alternatively
eq. (14) in [8]). Since for the described reactions the parameter k1 is not
known, we assumed it to be sufficiently large, so that the embedding of the
Michaelis-Menten system is valid. Note that for the reactions where the
additional assumption k1 � k−1 was used, it is required that the parameter
k−1 is sufficiently large such that both conditions are fulfilled.

The validity of the Michaelis-Menten approximation within discrete stochas-
tic models was discussed by Sanft et al. [8]. The authors review two dif-
ferent conditions for the validity of the Michaelis-Menten approximation in
the stochastic context, as suggested by Rao and Arkin and Mastny et al
[9, 10]. They conclude that the deterministic validity of the MM-rates, i.e.
condition (S12), ensures the validity of either (or both) of the two condi-
tions derived in the two studies. Thus, given that condition (S12) holds, one
can generate a stochastic propensity function from the deterministic MM-
rate (see e.g. eq. (S2)) by using corresponding discrete molecular numbers
instead of molecular concentrations.
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