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1 Supporting Information
1.1 Preliminary[1]

Now consider a Hilbert space F of functions from Rp to R. Then F is a reproducing

kernel Hilbert space(RKHS) if for each x ∈ Rp, the Dirac evaluation operator δx
:F→ R, which maps f ∈ F to f (x) ∈ R, is a bounded linear functional. To each point

x ∈ Rp, there corresponds an element φ(x) ∈ F such that 〈φ(x), φ(x
′
)〉F=k(x,x

′
),

where k : Rp×Rp→R is a unique positive definite kernel.

Hilbert-Schmidt Norm. Denote by C : G → F a linear operator. Then provided

the sum converges, the Hilbert-Schmidt(HS) norm of C is defined as

‖ C ‖2HS :=
∑

i,j

〈Cνi, µj〉2F (1)

where νi and µj are orthonormal bases of F and G respectively. It is easy to see

that this generalises the Frobenius norm on matrices.

Hilbert-Schmidt Operator. A linear operator C : G → F is called a Hilbert-Schmidt

operator if its HS norm exists. The set of Hilbert-Schmidt operators HS(G,F):

G → F is a separable Hilbert space with inner product

〈C,D〉HS :=
∑

i,j

〈Cνi, µj〉F 〈Dνi, µj〉F

Tensor Product. Let f ∈ F and g ∈ G. Then the tensor product operator f ⊗ g :

G → F is defined as

(f⊗ g)h := f〈g, h〉G for all h ∈ G (2)

Moreover, by the definition of the HS norm, we can compute the HS norm of f⊗ g

via

‖ f⊗ g ‖2HS= 〈f⊗ g, f⊗ g〉HS = 〈f, (f⊗ g)g〉F =‖ f ‖2F‖ g ‖2G (3)

Mean.

〈µx, f〉F : = Ex[〈φ(x), f〉F ] = Ex[f(x)], (4)

〈µy, g〉G : = Ey[〈ψ(y), g〉G ] = Ey[g(y)], (5)
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where φ is the feature map from X to the RKHS F , and ψ maps from Y to G.

Finally, ‖ µx ‖2F can be computed by applying the expectation twice via

‖ µx ‖2F= Ex,x′ [〈φ(x), φ(x′)〉F ] = Ex,x′ [k(x, x′)] (6)

Here the expectation is taken over independent copies x,x’ taken from px.

Covariance Operator. The covariance operator associated with the joint measure

px on (X ,Γ) is a linear operator Σxx : F → F defined as

Σxx := Ex[(φ(x)− µx)⊗ (φ(x)− µx)] = Ex[φ(x)⊗ φ(x)]︸ ︷︷ ︸
:=Σ̃xx

−µx ⊗ µx︸ ︷︷ ︸
Mxx

(7)

Similarly, Σyy : G → G is defined as

Σyy := Ey[(ψ(y)− µy)⊗ (ψ(y)− µy)] = Ey[ψ(y)⊗ ψ(y)]︸ ︷︷ ︸
:=Σ̃yy

−µy ⊗ µy︸ ︷︷ ︸
Myy

(8)

1.2 Hilbert -Schmidt Different Covariance Criterion

Now, we assume that X = Y,Γ = Λ, so φ = ψ

Defition(HSDCC).Given separable RKHSs F , G and joint measures px, py

over (X ,Γ) and (Y,Λ),we define the Hilbert-Schmidt Different Covariance Crite-

rion(HSDCC) as the squared HS-norm of the difference of covariance Σxx and Σyy:

HSDCC(px, py,F) :=‖ Σxx − Σyy ‖2HS (9)

To compute it we need to express HSDCC in terms of kernel functions. This is

achieved by the following lemma:

Lemma 1 (HSDCC in terms of kernels).

HSDCC(Px, Py,F) =Ex,x′k(x, x′)2 − 2Ex′ [Exk(x, x′)Ex′′k(x′, x′′)] + (Ex,x′k(x, x′))2

+ Ey,y′k(y, y′)2 − 2Ey′ [Eyk(y, y′)Ey′′k(y′, y′′)] + (Ey,y′k(y, y′))2

− 2Ex,y′k(x, y′)2 + 2Ey′ [Exk(x, y′)Ex′k(x′, y′)]

+ 2Ex[Eyk(x, y)Ey′k(x, y′)]− 2(Ex,y′k(x, y′))2

(10)

Proof:

HSDCC(Px, Py,F) =〈Σxx − Σyy,Σx′x′ − Σy′y′〉HS

= 〈Σxx,Σx′x′〉HS + 〈Σyy,Σy′y′〉HS − 〈Σxx,Σy′y′〉HS − 〈Σx′x′ ,Σyy〉HS

(11)
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〈Σxx,Σx′x′〉HS =〈Σ̃xx −Mxx, Σ̃x′x′ −Mx′x′〉HS

= 〈Σ̃xx, Σ̃x′x′〉HS − 〈Σ̃x′x′ ,Mxx〉HS − 〈Σ̃xx,Mx′x′〉HS + 〈Mxx,Mx′x′〉HS

= Exx′ [〈φ(x)⊗ φ(x), φ(x′)⊗ φ(x′)〉HS ]− 2Ex′ [〈φ(x′)⊗ φ(x′), µx ⊗ µx〉HS ]

+ 〈µx ⊗ µx, µx′ ⊗ µx′〉HS

(12)

〈Σyy,Σy′y′〉HS =Eyy′ [〈φ(y)⊗ φ(y), φ(y′)⊗ φ(y′)〉HS ]− 2Ey′ [〈φ(y′)⊗ φ(y′), µy ⊗ µy〉HS ]

+ 〈µy ⊗ µy, µy′ ⊗ µy′〉HS

(13)

〈Σx′x′ ,Σyy〉HS = 〈Σxx,Σy′y′〉HS =Exy′ [〈φ(x)⊗ φ(x), φ(y′)⊗ φ(y′)〉HS ]− Ey′ [〈φ(y′)⊗ φ(y′), µx ⊗ µx〉HS ]

− Ex[〈φ(x)⊗ φ(x), µy′ ⊗ µy′〉HS ] + 〈µx ⊗ µx, µy′ ⊗ µy′〉HS

(14)

We then give the unbiased statistics to HSDCC(Px, Py,F) like [2]

2 Figures
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h⌃xx,⌃x0x0iHS =he⌃xx � Mxx, e⌃x0x0 � Mx0x0iHS

= he⌃xx, e⌃x0x0iHS � he⌃x0x0 , MxxiHS � he⌃xx, Mx0x0iHS + hMxx, Mx0x0iHS

= Exx0 [h�(x) ⌦ �(x), �(x0) ⌦ �(x0)iHS ] � 2Ex0 [h�(x0) ⌦ �(x0), µx ⌦ µxiHS ]

+ hµx ⌦ µx, µx0 ⌦ µx0iHS

(12)

h⌃yy,⌃y0y0iHS =Eyy0 [h�(y) ⌦ �(y), �(y0) ⌦ �(y0)iHS ] � 2Ey0 [h�(y0) ⌦ �(y0), µy ⌦ µyiHS ]

+ hµy ⌦ µy, µy0 ⌦ µy0iHS

(13)

h⌃x0x0 ,⌃yyiHS = h⌃xx,⌃y0y0iHS =Exy0 [h�(x) ⌦ �(x), �(y0) ⌦ �(y0)iHS ] � Ey0 [h�(y0) ⌦ �(y0), µx ⌦ µxiHS ]

� Ex[h�(x) ⌦ �(x), µy0 ⌦ µy0iHS ] + hµx ⌦ µx, µy0 ⌦ µy0iHS

(14)

We then give the unbiased statistics to HSDCC(Px, Py, F) like [2]
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Figure 1 Number of genes in each pathway.

Author details
1LMAM, School of Mathematical Sciences, Peking University, Yiheyuan Road, 100871 Beijing, China. 2Center for

Quantitative Biology, Peking University, Yiheyuan Road, 100871 Beijing, China. 3Center for Statistical Sciences,

Peking University, Yiheyuan Road, 100871 Beijing, China. 4Department of Chemical Pathology, Prince of Wales

Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

Figure 1 Number of genes in each pathway.

Author details
1LMAM, School of Mathematical Sciences, Peking University, Yiheyuan Road, 100871 Beijing, China. 2Department

of Chemical Pathology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong,

Shatin, Hong Kong, China. 3Center for Quantitative Biology, Peking University, Yiheyuan Road, 100871 Beijing,

China. 4Center for Statistical Sciences, Peking University, Yiheyuan Road, 100871 Beijing, China.



Yuan et al. Page 4 of 5

Yuan et al. Page 4 of 6

Signal strength=4 Signal strength=400

8
d
i↵

er
en

t
el

em
en

ts

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type One Error

Po
we

r

LC's test
Tony Cai

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type One Error

Po
we

r

LC's test
Tony Cai

5
0
0

d
i↵

er
en

t
el

em
en

ts

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type One Error

Po
we

r

LC's test
Tony Cai

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type One Error

Po
we

r

LC's test
Tony Cai

Figure 2 Comparison between Chen’s linear method and other method. Number of sample class
is 40 and 60, respectively and number of variables is 50. Topleft: The two covariance matrices
have eight di↵erent elements, each with a magnitude generated from Unif(0, 4) ⇤ max1jp �jj ;
Topright: The two covariance matrices have eight di↵erent elements, each with a magnitude
generated from Unif(0, 400) ⇤ max1jp �jj ; Bottomleft: The two covariance matrices have
500t di↵erent elements, each with a magnitude generated from Unif(0, 4) ⇤ max1jp �jj ;
Bottomright: The two covariance matrices have 500 di↵erent elements, each with a magnitude
generated from Unif(0, 400) ⇤ max1jp �jj ;
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Figure 2 Comparison between Chen’s linear method and other method. Number of sample class
is 40 and 60, respectively and number of variables is 50. Topleft: The two covariance matrices
have eight different elements, each with a magnitude generated from Unif(0, 4) ∗max1≤j≤p σjj ;
Topright: The two covariance matrices have eight different elements, each with a magnitude
generated from Unif(0, 400) ∗max1≤j≤p σjj ; Bottomleft: The two covariance matrices have
500t different elements, each with a magnitude generated from Unif(0, 4) ∗max1≤j≤p σjj ;
Bottomright: The two covariance matrices have 500 different elements, each with a magnitude
generated from Unif(0, 400) ∗max1≤j≤p σjj ;
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Figure 4 Comparison between linear method and kernel method. Simulations under di↵erent
setups. Setup of the first column is under model 1, the second column is under model 2 and the
third column is under model 3. First row: (p,n1,n2,✓)=(40,40,80,0.2); Second row:
(p,n1,n2,✓)=(40,40,80,0.3); Third row: (p,n1,n2,✓)=(80,100,140,0.2); Fourth row:
(p,n1,n2,✓)=(80,100,140,0.3)

Figure 3 Comparison between linear method and kernel method. Simulations under different
setups. Setup of the first column is under model 1, the second column is under model 2 and the
third column is under model 3. First row: (p,n1,n2,θ)=(40,40,80,0.2); Second row:
(p,n1,n2,θ)=(40,40,80,0.3); Third row: (p,n1,n2,θ)=(80,100,140,0.2); Fourth row:
(p,n1,n2,θ)=(80,100,140,0.3)


