RESEARCH

Supplementary materials for 'A network based covariance test for detecting multivariate eQTL in saccharomyces cerevisiae'

Huili Yuan¹, Zhenye Li¹, Nelson L. S. Tang² and Minghua Deng^{1,3,4*}

*Correspondence:

dengmh@math.pku.edu.cn ¹LMAM, School of Mathematical Sciences, Peking University, Yiheyuan Road, 100871 Beijing, China Full list of author information is available at the end of the article

1 Supporting Information

1.1 Preliminary[1]

Now consider a Hilbert space \mathcal{F} of functions from R^p to R. Then \mathcal{F} is a reproducing kernel Hilbert space(RKHS) if for each $\mathbf{x} \in R^p$, the Dirac evaluation operator δ_x : $\mathcal{F} \to \mathbb{R}$, which maps $f \in \mathcal{F}$ to $f(\mathbf{x}) \in \mathbb{R}$, is a bounded linear functional. To each point $\mathbf{x} \in R^p$, there corresponds an element $\phi(\mathbf{x}) \in \mathcal{F}$ such that $\langle \phi(x), \phi(x') \rangle_{\mathcal{F}} = k(\mathbf{x}, x')$, where $k : R^p \times R^p \to \mathbb{R}$ is a unique positive definite kernel.

Hilbert-Schmidt Norm. Denote by $C: \mathcal{G} \to \mathcal{F}$ a linear operator. Then provided the sum converges, the Hilbert-Schmidt(HS) norm of C is defined as

$$\| C \|_{HS}^2 \coloneqq \sum_{i,j} \langle C\nu_i, \mu_j \rangle_{\mathcal{F}}^2 \tag{1}$$

where ν_i and μ_j are orthonormal bases of \mathcal{F} and \mathcal{G} respectively. It is easy to see that this generalises the Frobenius norm on matrices.

Hilbert-Schmidt Operator. A linear operator $C: \mathcal{G} \to \mathcal{F}$ is called a Hilbert-Schmidt operator if its HS norm exists. The set of Hilbert-Schmidt operators $HS(\mathcal{G},\mathcal{F})$: $\mathcal{G} \to \mathcal{F}$ is a separable Hilbert space with inner product

$$\langle C, D \rangle_{HS} := \sum_{i,j} \langle C \nu_i, \mu_j \rangle_{\mathcal{F}} \langle D \nu_i, \mu_j \rangle_{\mathcal{F}}$$

Tensor Product. Let $f \in \mathcal{F}$ and $g \in \mathcal{G}$. Then the tensor product operator $f \otimes g : \mathcal{G} \to \mathcal{F}$ is defined as

$$(f \otimes g)h := f\langle g, h \rangle_{\mathcal{G}} \text{ for all } h \in \mathcal{G}$$

$$\tag{2}$$

Moreover, by the definition of the HS norm, we can compute the HS norm of $f\otimes g$ via

$$\|f \otimes g\|_{HS}^2 = \langle f \otimes g, f \otimes g \rangle_{HS} = \langle f, (f \otimes g)g \rangle_{\mathcal{F}} = \|f\|_{\mathcal{F}}^2 \|g\|_{\mathcal{G}}^2$$
(3)

Mean.

$$\langle \mu_x, f \rangle_{\mathcal{F}} := E_x[\langle \phi(x), f \rangle_{\mathcal{F}}] = E_x[f(x)], \tag{4}$$

$$\langle \mu_y, g \rangle_{\mathcal{G}} := E_y[\langle \psi(y), g \rangle_{\mathcal{G}}] = E_y[g(y)], \tag{5}$$

where ϕ is the feature map from \mathcal{X} to the RKHS \mathcal{F} , and ψ maps from \mathcal{Y} to \mathcal{G} . Finally, $\| \mu_x \|_{\mathcal{F}}^2$ can be computed by applying the expectation twice via

$$\| \mu_x \|_{\mathcal{F}}^2 = E_{x,x'}[\langle \phi(x), \phi(x') \rangle_{\mathcal{F}}] = E_{x,x'}[k(x,x')]$$
(6)

Here the expectation is taken over independent copies x, x' taken from p_x .

Covariance Operator. The covariance operator associated with the joint measure p_x on (\mathcal{X}, Γ) is a linear operator $\Sigma_{xx} : \mathcal{F} \to \mathcal{F}$ defined as

$$\Sigma_{xx} := E_x[(\phi(x) - \mu_x) \otimes (\phi(x) - \mu_x)] = \underbrace{E_x[\phi(x) \otimes \phi(x)]}_{:=\widetilde{\Sigma}_{xx}} - \underbrace{\mu_x \otimes \mu_x}_{M_{xx}}$$
(7)

Similarly, $\Sigma_{yy} : \mathcal{G} \to \mathcal{G}$ is defined as

$$\Sigma_{yy} := E_y[(\psi(y) - \mu_y) \otimes (\psi(y) - \mu_y)] = \underbrace{E_y[\psi(y) \otimes \psi(y)]}_{:=\widetilde{\Sigma}_{yy}} - \underbrace{\mu_y \otimes \mu_y}_{M_{yy}}$$
(8)

1.2 Hilbert -Schmidt Different Covariance Criterion

Now, we assume that $\mathcal{X} = \mathcal{Y}, \Gamma = \Lambda$, so $\phi = \psi$

Defition(HSDCC). Given separable RKHSs \mathcal{F} , \mathcal{G} and joint measures p_x, p_y over (\mathcal{X}, Γ) and (\mathcal{Y}, Λ) , we define the Hilbert-Schmidt Different Covariance Criterion(HSDCC) as the squared HS-norm of the difference of covariance Σ_{xx} and Σ_{yy} :

$$HSDCC(p_x, p_y, \mathcal{F}) := \parallel \Sigma_{xx} - \Sigma_{yy} \parallel^2_{HS}$$
(9)

To compute it we need to express HSDCC in terms of kernel functions. This is achieved by the following lemma:

Lemma 1 (HSDCC in terms of kernels).

$$HSDCC(P_{x}, P_{y}, \mathcal{F}) = E_{x,x'}k(x, x')^{2} - 2E_{x'}[E_{x}k(x, x')E_{x''}k(x', x'')] + (E_{x,x'}k(x, x'))^{2} + E_{y,y'}k(y, y')^{2} - 2E_{y'}[E_{y}k(y, y')E_{y''}k(y', y'')] + (E_{y,y'}k(y, y'))^{2} - 2E_{x,y'}k(x, y')^{2} + 2E_{y'}[E_{x}k(x, y')E_{x'}k(x', y')] + 2E_{x}[E_{y}k(x, y)E_{y'}k(x, y')] - 2(E_{x,y'}k(x, y'))^{2}$$
(10)

Proof:

$$HSDCC(P_x, P_y, \mathcal{F}) = \langle \Sigma_{xx} - \Sigma_{yy}, \Sigma_{x'x'} - \Sigma_{y'y'} \rangle_{HS}$$
$$= \langle \Sigma_{xx}, \Sigma_{x'x'} \rangle_{HS} + \langle \Sigma_{yy}, \Sigma_{y'y'} \rangle_{HS} - \langle \Sigma_{xx}, \Sigma_{y'y'} \rangle_{HS} - \langle \Sigma_{x'x'}, \Sigma_{yy} \rangle_{HS}$$
(11)

$$\begin{split} \langle \Sigma_{xx}, \Sigma_{x'x'} \rangle_{HS} &= \langle \Sigma_{xx} - M_{xx}, \Sigma_{x'x'} - M_{x'x'} \rangle_{HS} \\ &= \langle \widetilde{\Sigma}_{xx}, \widetilde{\Sigma}_{x'x'} \rangle_{HS} - \langle \widetilde{\Sigma}_{x'x'}, M_{xx} \rangle_{HS} - \langle \widetilde{\Sigma}_{xx}, M_{x'x'} \rangle_{HS} + \langle M_{xx}, M_{x'x'} \rangle_{HS} \\ &= E_{xx'} [\langle \phi(x) \otimes \phi(x), \phi(x') \otimes \phi(x') \rangle_{HS}] - 2E_{x'} [\langle \phi(x') \otimes \phi(x'), \mu_x \otimes \mu_x \rangle_{HS}] \\ &+ \langle \mu_x \otimes \mu_x, \mu_{x'} \otimes \mu_{x'} \rangle_{HS} \end{split}$$
(12)

$$\langle \Sigma_{yy}, \Sigma_{y'y'} \rangle_{HS} = E_{yy'} [\langle \phi(y) \otimes \phi(y), \phi(y') \otimes \phi(y') \rangle_{HS}] - 2E_{y'} [\langle \phi(y') \otimes \phi(y'), \mu_y \otimes \mu_y \rangle_{HS}]$$

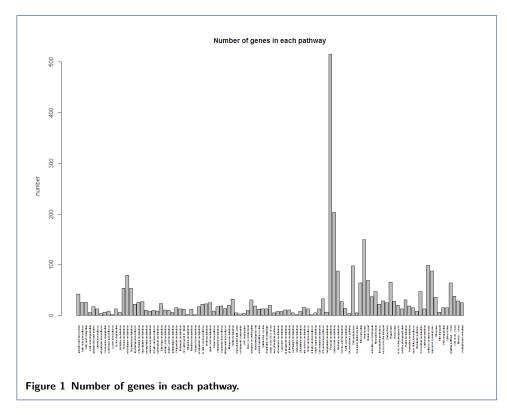
$$+ \langle \mu_y \otimes \mu_y, \mu_{y'} \otimes \mu_{y'} \rangle_{HS}$$

$$(13)$$

$$\langle \Sigma_{x'x'}, \Sigma_{yy} \rangle_{HS} = \langle \Sigma_{xx}, \Sigma_{y'y'} \rangle_{HS} = E_{xy'} [\langle \phi(x) \otimes \phi(x), \phi(y') \otimes \phi(y') \rangle_{HS}] - E_{y'} [\langle \phi(y') \otimes \phi(y'), \mu_x \otimes \mu_x \rangle_{HS}] - E_x [\langle \phi(x) \otimes \phi(x), \mu_{y'} \otimes \mu_{y'} \rangle_{HS}] + \langle \mu_x \otimes \mu_x, \mu_{y'} \otimes \mu_{y'} \rangle_{HS}$$

$$(14)$$

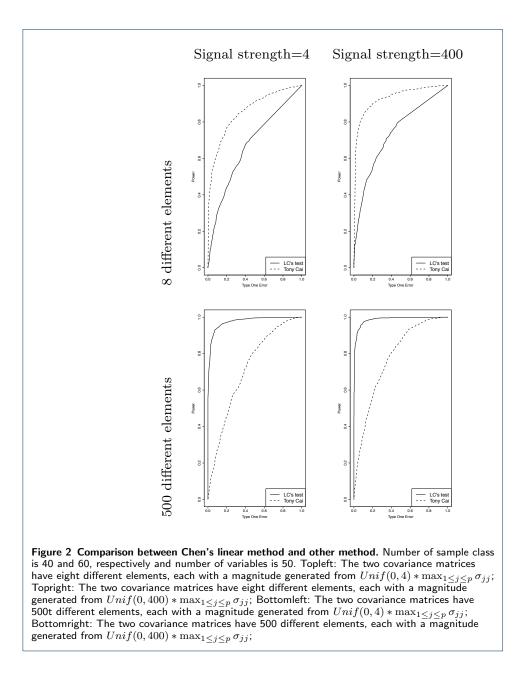
We then give the unbiased statistics to $HSDCC(P_x, P_y, \mathcal{F})$ like [2]



2 Figures

Author details

¹LMAM, School of Mathematical Sciences, Peking University, Yiheyuan Road, 100871 Beijing, China. ²Department of Chemical Pathology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China. ³Center for Quantitative Biology, Peking University, Yiheyuan Road, 100871 Beijing, China. ⁴Center for Statistical Sciences, Peking University, Yiheyuan Road, 100871 Beijing, China.



References

- 1. Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical dependence with hilbert-schmidt norms. In *Algorithmic learning theory*, pages 63–77. Springer, 2005.
- 2. Jun Li, Song Xi Chen, et al. Two sample tests for high-dimensional covariance matrices. *The Annals of Statistics*, 40(2):908–940, 2012.

Yuan et al.

