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1 Supporting Information
1.1 Preliminary[1]

Now consider a Hilbert space F of functions from Rp to R. Then F is a reproducing

kernel Hilbert space(RKHS) if for each x ∈ Rp, the Dirac evaluation operator δx
:F→ R, which maps f ∈ F to f (x) ∈ R, is a bounded linear functional. To each point

x ∈ Rp, there corresponds an element φ(x) ∈ F such that 〈φ(x), φ(x
′
)〉F=k(x,x

′
),

where k : Rp×Rp→R is a unique positive definite kernel.

Hilbert-Schmidt Norm. Denote by C : G → F a linear operator. Then provided

the sum converges, the Hilbert-Schmidt(HS) norm of C is defined as

‖ C ‖2HS :=
∑

i,j

〈Cνi, µj〉2F (1)

where νi and µj are orthonormal bases of F and G respectively. It is easy to see

that this generalises the Frobenius norm on matrices.

Hilbert-Schmidt Operator. A linear operator C : G → F is called a Hilbert-Schmidt

operator if its HS norm exists. The set of Hilbert-Schmidt operators HS(G,F):

G → F is a separable Hilbert space with inner product

〈C,D〉HS :=
∑

i,j

〈Cνi, µj〉F 〈Dνi, µj〉F

Tensor Product. Let f ∈ F and g ∈ G. Then the tensor product operator f ⊗ g :

G → F is defined as

(f⊗ g)h := f〈g, h〉G for all h ∈ G (2)

Moreover, by the definition of the HS norm, we can compute the HS norm of f⊗ g

via

‖ f⊗ g ‖2HS= 〈f⊗ g, f⊗ g〉HS = 〈f, (f⊗ g)g〉F =‖ f ‖2F‖ g ‖2G (3)

Mean.

〈µx, f〉F : = Ex[〈φ(x), f〉F ] = Ex[f(x)], (4)

〈µy, g〉G : = Ey[〈ψ(y), g〉G ] = Ey[g(y)], (5)
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where φ is the feature map from X to the RKHS F , and ψ maps from Y to G.

Finally, ‖ µx ‖2F can be computed by applying the expectation twice via

‖ µx ‖2F= Ex,x′ [〈φ(x), φ(x′)〉F ] = Ex,x′ [k(x, x′)] (6)

Here the expectation is taken over independent copies x,x’ taken from px.

Covariance Operator. The covariance operator associated with the joint measure

px on (X ,Γ) is a linear operator Σxx : F → F defined as

Σxx := Ex[(φ(x)− µx)⊗ (φ(x)− µx)] = Ex[φ(x)⊗ φ(x)]︸ ︷︷ ︸
:=Σ̃xx

−µx ⊗ µx︸ ︷︷ ︸
Mxx

(7)

Similarly, Σyy : G → G is defined as

Σyy := Ey[(ψ(y)− µy)⊗ (ψ(y)− µy)] = Ey[ψ(y)⊗ ψ(y)]︸ ︷︷ ︸
:=Σ̃yy

−µy ⊗ µy︸ ︷︷ ︸
Myy

(8)

1.2 Hilbert -Schmidt Different Covariance Criterion

Now, we assume that X = Y,Γ = Λ, so φ = ψ

Defition(HSDCC).Given separable RKHSs F , G and joint measures px, py

over (X ,Γ) and (Y,Λ),we define the Hilbert-Schmidt Different Covariance Crite-

rion(HSDCC) as the squared HS-norm of the difference of covariance Σxx and Σyy:

HSDCC(px, py,F) :=‖ Σxx − Σyy ‖2HS (9)

To compute it we need to express HSDCC in terms of kernel functions. This is

achieved by the following lemma:

Lemma 1 (HSDCC in terms of kernels).

HSDCC(Px, Py,F) =Ex,x′k(x, x′)2 − 2Ex′ [Exk(x, x′)Ex′′k(x′, x′′)] + (Ex,x′k(x, x′))2

+ Ey,y′k(y, y′)2 − 2Ey′ [Eyk(y, y′)Ey′′k(y′, y′′)] + (Ey,y′k(y, y′))2

− 2Ex,y′k(x, y′)2 + 2Ey′ [Exk(x, y′)Ex′k(x′, y′)]

+ 2Ex[Eyk(x, y)Ey′k(x, y′)]− 2(Ex,y′k(x, y′))2

(10)

Proof:

HSDCC(Px, Py,F) =〈Σxx − Σyy,Σx′x′ − Σy′y′〉HS

= 〈Σxx,Σx′x′〉HS + 〈Σyy,Σy′y′〉HS − 〈Σxx,Σy′y′〉HS − 〈Σx′x′ ,Σyy〉HS

(11)
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〈Σxx,Σx′x′〉HS =〈Σ̃xx −Mxx, Σ̃x′x′ −Mx′x′〉HS

= 〈Σ̃xx, Σ̃x′x′〉HS − 〈Σ̃x′x′ ,Mxx〉HS − 〈Σ̃xx,Mx′x′〉HS + 〈Mxx,Mx′x′〉HS

= Exx′ [〈φ(x)⊗ φ(x), φ(x′)⊗ φ(x′)〉HS ]− 2Ex′ [〈φ(x′)⊗ φ(x′), µx ⊗ µx〉HS ]

+ 〈µx ⊗ µx, µx′ ⊗ µx′〉HS

(12)

〈Σyy,Σy′y′〉HS =Eyy′ [〈φ(y)⊗ φ(y), φ(y′)⊗ φ(y′)〉HS ]− 2Ey′ [〈φ(y′)⊗ φ(y′), µy ⊗ µy〉HS ]

+ 〈µy ⊗ µy, µy′ ⊗ µy′〉HS

(13)

〈Σx′x′ ,Σyy〉HS = 〈Σxx,Σy′y′〉HS =Exy′ [〈φ(x)⊗ φ(x), φ(y′)⊗ φ(y′)〉HS ]− Ey′ [〈φ(y′)⊗ φ(y′), µx ⊗ µx〉HS ]

− Ex[〈φ(x)⊗ φ(x), µy′ ⊗ µy′〉HS ] + 〈µx ⊗ µx, µy′ ⊗ µy′〉HS

(14)

We then give the unbiased statistics to HSDCC(Px, Py,F) like [2]

2 Figures
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h⌃xx,⌃x0x0iHS =he⌃xx � Mxx, e⌃x0x0 � Mx0x0iHS

= he⌃xx, e⌃x0x0iHS � he⌃x0x0 , MxxiHS � he⌃xx, Mx0x0iHS + hMxx, Mx0x0iHS

= Exx0 [h�(x) ⌦ �(x),�(x0) ⌦ �(x0)iHS ] � 2Ex0 [h�(x0) ⌦ �(x0), µx ⌦ µxiHS ]

+ hµx ⌦ µx, µx0 ⌦ µx0iHS

(12)

h⌃yy,⌃y0y0iHS =Eyy0 [h�(y) ⌦ �(y),�(y0) ⌦ �(y0)iHS ] � 2Ey0 [h�(y0) ⌦ �(y0), µy ⌦ µyiHS ]

+ hµy ⌦ µy, µy0 ⌦ µy0iHS

(13)

h⌃x0x0 ,⌃yyiHS = h⌃xx,⌃y0y0iHS =Exy0 [h�(x) ⌦ �(x),�(y0) ⌦ �(y0)iHS ] � Ey0 [h�(y0) ⌦ �(y0), µx ⌦ µxiHS ]

� Ex[h�(x) ⌦ �(x), µy0 ⌦ µy0iHS ] + hµx ⌦ µx, µy0 ⌦ µy0iHS

(14)

We then give the unbiased statistics to HSDCC(Px, Py, F) like [2]
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Figure 2 Comparison between Chen’s linear method and other method. Number of sample class
is 40 and 60, respectively and number of variables is 50. Topleft: The two covariance matrices
have eight di↵erent elements, each with a magnitude generated from Unif(0, 4) ⇤ max1jp �jj ;
Topright: The two covariance matrices have eight di↵erent elements, each with a magnitude
generated from Unif(0, 400) ⇤ max1jp �jj ; Bottomleft: The two covariance matrices have
500t di↵erent elements, each with a magnitude generated from Unif(0, 4) ⇤ max1jp �jj ;
Bottomright: The two covariance matrices have 500 di↵erent elements, each with a magnitude
generated from Unif(0, 400) ⇤ max1jp �jj ;
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Figure 2 Comparison between Chen’s linear method and other method. Number of sample class
is 40 and 60, respectively and number of variables is 50. Topleft: The two covariance matrices
have eight different elements, each with a magnitude generated from Unif(0, 4) ∗max1≤j≤p σjj ;
Topright: The two covariance matrices have eight different elements, each with a magnitude
generated from Unif(0, 400) ∗max1≤j≤p σjj ; Bottomleft: The two covariance matrices have
500t different elements, each with a magnitude generated from Unif(0, 4) ∗max1≤j≤p σjj ;
Bottomright: The two covariance matrices have 500 different elements, each with a magnitude
generated from Unif(0, 400) ∗max1≤j≤p σjj ;
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Figure 4 Comparison between linear method and kernel method. Simulations under di↵erent
setups. Setup of the first column is under model 1, the second column is under model 2 and the
third column is under model 3. First row: (p,n1,n2,✓)=(40,40,80,0.2); Second row:
(p,n1,n2,✓)=(40,40,80,0.3); Third row: (p,n1,n2,✓)=(80,100,140,0.2); Fourth row:
(p,n1,n2,✓)=(80,100,140,0.3)

Figure 3 Comparison between linear method and kernel method. Simulations under different
setups. Setup of the first column is under model 1, the second column is under model 2 and the
third column is under model 3. First row: (p,n1,n2,θ)=(40,40,80,0.2); Second row:
(p,n1,n2,θ)=(40,40,80,0.3); Third row: (p,n1,n2,θ)=(80,100,140,0.2); Fourth row:
(p,n1,n2,θ)=(80,100,140,0.3)


