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1 Supporting Information
1.1 Preliminary[1]
Now consider a Hilbert space F of functions from RP to R. Then F is a reproducing
kernel Hilbert space(RKHS) if for each x € RP, the Dirac evaluation operator 4,
:F— R, which maps f € F to f(x) € R, is a bounded linear functional. To each point
x € RP, there corresponds an element ¢(x) € F such that (¢(z), p(z)) r=k(x,2),
where k£ : RPx RP—R is a unique positive definite kernel.

Hilbert-Schmidt Norm. Denote by C: G — F a linear operator. Then provided
the sum converges, the Hilbert-Schmidt(HS) norm of C'is defined as

I Cllsi= D (Cvi, ny)% (1)
i

where v; and p; are orthonormal bases of 7 and G respectively. It is easy to see
that this generalises the Frobenius norm on matrices.

Hilbert-Schmidt Operator. A linear operator C': G — F is called a Hilbert-Schmidt
operator if its HS norm exists. The set of Hilbert-Schmidt operators HS(G,F):
G — F is a separable Hilbert space with inner product

(C,D)us =Y (Cui, i) (Dvi, pij) 7

]

Tensor Product. Let f € F and ¢g € G. Then the tensor product operator f® g :
G — F is defined as

(f® g)h:= flg,h)g for all he G (2)

Moreover, by the definition of the HS norm, we can compute the HS norm of f® ¢

via
1 f@glts= F© g, f@ gus = {f (f@ 9)o)= =l FIF] g3 (3)

Mean.

(e 7o = Ezl(o(x), Hr] = Ezlf(2)], (4)
(ys 9)g = = Ey[(b(y), 9)¢] = Eyla(y)], (5)
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where ¢ is the feature map from X to the RKHS F, and ¢ maps from ) to G.
Finally, || s, ||% can be computed by applying the expectation twice via

I o 1= Ea o [(9(2), (a")) 7] = Eo o [K(z,2)] (6)

Here the expectation is taken over independent copies x,x’ taken from p,.

Covariance Operator. The covariance operator associated with the joint measure
p, on (X.I') is a linear operator X, : F — F defined as

Ygr = Em[(¢(x) — pz) @ (¢(x) — Nz)] =FE; [gb(x) ® ¢($)] — @ fig (7)
:=§xm ]\Jmm

Similarly, 3, : G — G is defined as

Syy = Ey[(Y(y) — 1y) @ (Y(y) — py)] = Ey[(y) @ Y(y)] — py @ iy (8)
:Zi Myy

vy

1.2 Hilbert -Schmidt Different Covariance Criterion
Now, we assume that X = Y,I'=A, so0 ¢ =

Defition(HSDCC).Given separable RKHSs F, G and joint measures p,py
over (X,I') and (Y,A),we define the Hilbert-Schmidt Different Covariance Crite-

rion(HSDCC) as the squared HS-norm of the difference of covariance ¥,, and X,:
HSDCC(pa; py, F) =l Zax — By ”%{S (9)
To compute it we need to express HSDCC in terms of kernel functions. This is

achieved by the following lemma:
Lemma 1 (HSDCC in terms of kernels).

HSDCC(P,, Py, F) =E; »k(v,2")? — 2B/ [E k(x, 2" Epnk(x',2")] + (Ep o k(z,2))?
+ Ey,y’k(ya yl)2 —2Ey, [Eyk(y, yl)Ey”k(y/» y//)] + (Ey,y’k(ya yl))2

- 2E:c,y’k(x7 3/)2 =+ 2Ey/ [Eack(my y/)Ex’k(xlv y/)]
+ 2B, [Eyk(z,y)Eyk(z,y')] — 2(Byyk(z,y))?
(10)

Proof:

HSDCC(PQJ, Py,.]'—) :<Zw$ — Ey?ﬂ ZQI'I' — Ey’y’>HS
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= <sz7 2m’m’>HS + <Eyy7 2y’y’>HS - <E$zy Zy’y’>HS - <Ex’m’a Eyy>HS

(11)
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<mea 2m’r’>HS :<§rz - Mzma iz’m’ - Mx’z’>HS
= <iLEI7 iz’a:’>HS - <§x’z’7wa>HS - <§zxaM:c’w’>HS + <Mw$7Mx’x’>HS
= Eu [(6(2) ® ¢(2), 6(2") ® ¢(2")) ns] — 2B [(6(2") @ 6(2'), pto ® i) 11 5]

+ <,uac Q fg, Pzt @ ,Uac’>HS
(12)

(Byy, Byry ) s =Eyy [(6(y) ® 9(y), o) @ ¢y ) ms| — 2Ey’[<¢(y/) ® o(y'), Py @ fiy) HS]

+ (ly @ fy, py @ py) S
(13)

<Zz’x’72yy>HS = <E:mc» Ey’y’>HS :Emy’ [<¢)((E) & (,Z5($), ¢(yl) & ¢(y/)>HS] - Ey’ [<¢(y/) & Qs(y/)’ P & ,U'm>HS}

— E;[(¢(7) @ ¢(x), pryr @ pryr) 5] + (pha @ pay poyr @ oy ) 5
(14)

We then give the unbiased statistics to HSDCC(P,, Py, F) like [2]

2 Figures

Number of genes in each pathway

number
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Figure 1 Number of genes in each pathway.
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Figure 2 Comparison between Chen’s linear method and other method. Number of sample class
is 40 and 60, respectively and number of variables is 50. Topleft: The two covariance matrices
have eight different elements, each with a magnitude generated from Unif(0,4) * maxi<j<p 0j;;
Topright: The two covariance matrices have eight different elements, each with a magnitude
generated from Uni f(0,400) * max;<;<p 0;;; Bottomleft: The two covariance matrices have
500t different elements, each with a magnitude generated from Unif(0,4) * maxi<j<p 0j;;
Bottomright: The two covariance matrices have 500 different elements, each with a magnitude
generated from Uni f(0,400) * max;<;<p 0j;;
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Figure 3 Comparison between linear method and kernel method. Simulations under different
setups. Setup of the first column is under model 1, the second column is under model 2 and the

third column is under model 3. First row: (p,n1,n2,0)=(40,40,80,0.2); Second row:
(p,n1,n2,0)=(40,40,80,0.3); Third row: (p,n1,n2,0)=(80,100,140,0.2); Fourth row:
(p.n1,m2,0)=(80,100,140,0.3)
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