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Appendix A: FFT Lomb-Scargle periodogram1

A periodogram estimates the spectral-density function σ̃(f) at frequency f , which is itself the2

Fourier transform of the stationary (or time-averaged) autocorrelation function σ(τ).3

σ̃(f) ≡
∫ +∞

−∞
dt e−2πıfτ σ(τ) ∝ VAR

[∫ +∞

−∞
dt e−2πıft x(t)

]
= VAR[x̃(f)] , (A.1)4

σ(τ) = lim
T→∞

1

2T

∫ +T

−T
dt︸ ︷︷ ︸

time average

COV[x(t+ τ), x(t)] , (A.2)5

6

where the noted time average is unnecessary for process with stationary autocorrelation func-7

tions that have no dependence upon absolute time t, and where we define the variance of any8

complex-valued process VAR[z] ≡ 〈z z∗〉, where z∗ denotes the complex conjugate of z. The DFT9
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periodogram is a straightforward approximation to the variance of the (continuous) Fourier trans-10

form of x(t) via the discrete Fourier transform (DFT). Another way of motivating the periodogram,11

which more readily generalizes in the case of missing data, is that the periodogram at frequency f12

is equivalent to the the ‘power’ derived from a least-squares fit of all n data points to a sinusoid13

of frequency f . “Power” in this context is bit of a mathematical abstraction that we will later14

define, but note that if the signal x(t) represents oscillator position, velocity, electrical current, or15

electrical voltage, then the signal’s variance σ(0) is proportional to its average oscillator potential,16

kinetic, inductor, or resistor energy, respectively. Further note that with Parseval’s theorem we can17

distribute this “energy” among times or frequencies18

σ(0) ∝
∫ +∞

−∞
dtVAR[x(t)] =

∫ +∞

−∞
df VAR[x̃(f)] . (A.3)19

20

Therefore the periodogram estimates autocorrelation structure via the spectral-density function and21

distributes the signal’s variance among frequencies in a way that is conjugate to how the variance22

is distributed among times.23

The naive implementation of the DFT or LS periodogram has a computational cost of O(n2)24

to estimate the n most relevant frequencies within the range df ≤ f ≤ F (Table A.1), where df is25

the natural frequency resolution of the data and F is the Nyquist frequency or natural frequency26

cutoff of the data. The fast Fourier transform (FFT) reduces this computational cost to O(n log n)27

for the DFT periodogram. Furthermore, Press and Rybicki (1989) discovered that, after expanding28

the sinusoids in an evenly spaced grid via Lagrange interpolating polynomials, the LS periodogram29

can also be calculated using FFT techniques. As the Lagrange interpolants are approximations30

of the true functions, the evenly-spaced grid needs to be fine enough to accurately capture the31

high-frequency behavior. Our implementation of the LS periodogram differs in that it is given by a32

simple expression without the necessity of Lagrange interpolation. In the case of evenly scheduled33

data, where our implementation is exact, the cost savings of avoiding Lagrange interpolation are34

2



typically on the order of a factor of 10-40 (Press and Rybicki, 1989).35

Time domain Frequency domain

temporal resolution ⇔ frequency range
dt F = 1/(2dt)

temporal range ⇔ frequency resolution
T df = 1/T

Table A.1: Conjugate relationship between the temporal quality of data and the frequential
quality of data under the DFT. These relations are still approximately true for the Lomb–Scargle
periodogram (LSP).

For our derivation, we exploit the fact that for the realization of the process of interest x(t), we36

know the indicator function37

w(t) ≡

 1 , x(t) observed

0 , x(t) missed
, (A.4)38

39

and, though we have not always measured x(t) on a uniform time grid, we have measured w(t)40

and (effectively) w(t)x(t) on a uniform time grid. This scheme is natural for data that are evenly41

scheduled but feature missing values, as the observed times neatly reside in a uniformly spaced grid42

of scheduled observation times that is only slightly larger than the number of observations.43

Our fast implementation of the LS periodogram then follows the derivation of Scargle (1982).44

We exploit the equivalence of the LS periodogram to a least-squares fit of the data to independent45

sinusoids46

x(t) ≈ xf (t) = A(f) e+2πıft +A(f)∗ e−2πıft , (A.5)47
48

to obtain the amplitudes A(f). This fitting has the associated least-squares cost function49

L(f) =
∑
t

w(t) |x(t)− xf (t)|2 , (A.6)50

51
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given weights w(t). Solutions for the amplitudes must therefore satisfy the system of equations52

 ∑
tw(t)

∑
t e
−4πıftw(t)∑

t e
+4πıftw(t)

∑
tw(t)


 Â(f)

Â(f)∗

 =

∑t e
−2πıftw(t)x(t)∑

t e
+2πıftw(t)x(t)

 . (A.7)53

54

If we represent the data x(t) and weights w(t) on a uniform time grid, with missing data naturally55

weighted by zero, then all of these sums can be calculated with the FFT implementation of the56

DFT of the weights w(t)57

DFT{w}(f) = W (f) =
∑
t

e−2πıftw(t) , (A.8)58

59

so that we have60  W(0) W(2f)

W(2f)∗ W(0)


 Â(f)

Â(f)∗

 =

DFT{wx}(f)

DFT{wx}(f)∗

 . (A.9)61

62

For frequencies f larger than half the Nyquist frequency F , it is convenient to exploit the periodicity63

of the transform64

W(2f) = W(2f−2F ) . (A.10)65
66

Solving Eq. (A.9) for the amplitudes, we then have67

Â(f) =
W(0) DFT{wx}(f)−W(2f) DFT{wx}(f)∗

W(0)2 − |W(2f)|2
, (A.11)68

69

while the power estimate in Scargle (1982) Eq. (C3) equates to70

P̂ (f) =
1

2

(∑
t

w(t) |x(t)|2 −min
A(f)

L(f)

)
, (A.12)71

72
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by expressing his power estimate in terms of both x(t) and w(t). Refer to Scargle (1982) for more73

details on the “power”, but note simply that it measures the amount of variability in the data74

attributable to frequency f . Combining equations (A.12), (A.6), and (A.5), we now have75

P̂LSP(f) =−
∑
t

w(t)x(t) x̂f (t) +
1

2

∑
t

w(t) x̂f (t)2 , (A.13)76

=− Â(f)
∑
t

e+2πıftw(t)x(t)− Â(f)∗
∑
t

e−2πıftw(t)x(t) (A.14)77

+
1

2
Â(f)2

∑
t

e+4πıftw(t) +
∣∣∣Â(f)

∣∣∣2∑
t

w(t) +
1

2
Â(f)2∗

∑
t

e−4πıftw(t) ,78

= −Â(f) DFT{wx}(f)∗ − Â(f)∗DFT{wx}(f) (A.15)79

+
1

2
Â(f)2W (2f)∗ +

∣∣∣Â(f)
∣∣∣2W (0) +

1

2
Â(f)2∗W (2f) ,80

81

and then combining this expression with Eq. (A.11) we have after some simplification82

P̂LSP(f) =
W(0) |DFT{wx}(f)|2 − Re

[
W(2f)∗DFT{wx}(f)2

]
W(0)2 − |W(2f)|2

, (A.16)83

84

which can be constructed entirely from the FFT of w(t) and w(t)x(t).85

A.1 Comparison to the DFT periodogram86

Strictly speaking the DFT periodogram is not defined for missing data, but researchers not familiar87

with the Lomb-Scargle periodogram will typically replace a few missing values of the data with the88

mean or an interpolated value. In the case of interpolating the missing value, the effect is to bias89

the autocorrelation estimate with the properties of the interpolating function at the scale of the90

gaps. I.e., straight-line interpolation over gaps of width ∆t gives the appearance of a more ballistic91

process over timescales . ∆t and frequency scales of & 1/∆t. On the other hand, the case of92

replacing missing data with the mean value can be derived from a simpler cost function than that93

5



of the Lomb-Scargle periodogram, where relations between different phase sinusoids of the same94

frequency are ignored. With the mean first detrended from the data, then the single-frequency95

fitting and cost functions are given by96

x(t) ≈ xf (t) = A(f) e+2πıft , L(f) =
∑
t

w(t) |x(t)− xf (t)|2 , (A.17)97

98

with the amplitude solutions and power estimates found to be99

Â(f) =
DFT{wx}(f)

W (0)
, P̂DFT(f) =

|DFT{wx}(f)|2

W (0)
, (A.18)100

101

where again W (f) = DFT{w}(f) and W (0) = n. Comparing this result to the Lomb-Scargle102

periodogram relation that we have derived (A.16), we can see that the mean-imputed DFT peri-103

odogram shows up in the LSP, but it is shifted and rescaled by terms that vanish when W (2f) = 0.104

If w(t) = 1 for all evenly-sampled t, then W (f) = 0 for all canonical f 6= 0 and so the LSP reduces105

to the DFT periodogram. In other words, if there are no missing data, the LSP and DFT are106

strictly equivalent. Note, however, that the ordinary method of inflating the frequency resolution107

of the DFT periodogram by padding the data with mean values is also not consistent with the LSP108

value, as padding the data produces a periodogram equivalent to Eq. (A.18). In short, the LSP109

gives an improved result both when there are missing data and when the frequency resolution is110

inflated beyond the natural resolution of the data.111

A.2 Expectation value of the periodogram112

As noted by Scargle (1982), the DFT and LS periodograms tend to be fairly similar in practice, and113

so one can view the LSP in Eq. (A.16) as being the DFT periodogram |DFT{wx}(f)|2/W (0) with114

small corrections. Here we investigate this dominant term of the Lomb-Scargle periodogram under115

different sampling regimes. For simplification we will assume that the sampling and movement116
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processes are independent, 〈w(t)x(t′)〉 = 〈w(t)〉 〈x(t′)〉, and that the movement process is stationary117

with detrended mean and autocorrelation function COV[x(t), x(t′)] = σ(t− t′). In this case we can118

express the expectation value119

〈
P̂LSP(f)

〉
≈ 1

W(0)

〈
|DFT{wx}(f)|2

〉
, (A.19)120

≈ 1

W(0)

∑
tt′

e−2πıf(t−t
′) 〈w(t)w(t′)〉σ(t−t′) . (A.20)121

122

For the next step we perform an inverse Fourier transform from the frequency f domain back to123

the time-lag τ domain to obtain the equivalent relation124

DFT−1
{〈
P̂LSP

〉}
(τ) ≈ 1

W(0)

∑
ftt′

e+2πıf(τ−[t−t′]) 〈w(t)w(t′)〉σ(t−t′) . (A.21)125

126

If the data vectors x(t), w(t) are padded with zeros to twice their recorded length 2N (on a uniform127

grid), then the frequency sums evaluate to Kronecker delta functions with the identity128

δK(t) =

∑
f e

+2πıft∑
f

(A.22)129

130

and so we have131

DFT−1
{〈
P̂LSP

〉}
(τ) ≈ 2N

W(0)

∑
tt′

δK(τ − [t−t′]) 〈w(t)w(t′)〉σ(t−t′) , (A.23)132

≈ 2N

n(0)
n(τ)σ(τ) , (A.24)133

134

using the property that the Kronecker delta function is equal to one when its argument is zero and135

zero otherwise, and where n(τ) is the number of data pairs recorded with time-lag τ between them.136

If the data vectors were not padded with zeros to at least twice their recorded length 2N , and were137

left with length N , then the second half of the estimate would be a repeat of the first half due to138
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the periodicity of this representation of the Kronecker delta function.139

The pair number n(τ) is also proportional to the inverse transform of the periodogram of the140

sampling process w(t). Therefore, back in the frequency domain, the periodogram of the movement141

process actually represents a convolution of the autocorrelation functions of the sampling process142

and the movement process. One might imagine de-biasing this estimator by dividing the result143

by a factor of n(τ) in the time domain. However, the resulting correlogram would no longer be144

positive definite, which renders the corresponding periodogram illegitimate in approximating the145

strictly positive eigenvalue spectrum of a positive-definite covariance matrix.146

A.3 Autocorrelation in the sampling schedule147

Equation (A.24) shows the direct link between the autocorrelation function σ(τ) and the estimated148

periodogram P̂ (f), as given by the number of observation pairs n(τ) with time lag τ between149

them. Importantly, the periodogram is always biased by the sampling schedule through n(τ).150

When there are no missing data, n(τ) is a simple function that decreases linearly with the time151

lag τ , and its influence on the periodogram is both predictable and mild. If there are missing data152

with no particular autocorrelation structure in timing of their gaps (uncorrelated and uniformly153

distributed), then again n(τ) has a simple structure that does not contaminate the periodogram154

in a non-trivial way. However, if the sampling schedule is itself periodic, or otherwise temporally155

autocorrelated, then both the DFT and LS periodograms will exhibit strong biases that say more156

about the autocorrelation structure of the sampling schedule than that of the signal. This is why157

the diagnostic argument of ctmm’s plot.periodogram method will plot both the periodogram of158

the data and the periodogram of the sampling schedule. Viewing both periodograms side-by-side159

allows users to check for any possible autocorrelation structure in the sampling schedule that might160

have propagated into the periodogram of the data.161

8



A.4 Sampling properties and periodogram averaging162

The sampling regime intuitively constrains the resolution and bandwidth of the periodogram—i.e.,163

the precision and range of frequencies over which the period can be estimated. Although, the164

Lomb-Scargle periodogram can be calculated for any frequency, it only contains novel information165

over some limited set of frequencies. In the case of evenly sampled data where the LSP reduces to166

the DFT periodogram, this relationship is exact and is summarized by table A.1. In short, temporal167

resolution translates into frequency range, via the Nyquist frequency F = 1/(2dt), while temporal168

range translates into frequency resolution. With the canonical set of frequencies described in169

table A.1, the periodogram contains approximately two locations worth of information per positive170

frequency. By default, the ctmm periodogram function inflates this resolution by a factor of two with171

the res=1 argument, to make this relationship approximately one-to-one. Inflating the frequency172

resolution further will cause the estimates P̂ (f) to be increasingly correlated between frequencies173

and lead to a locally smooth periodogram. On the other hand, if the periodogram is evaluated174

at frequencies beyond the Nyquist frequency, then the periodogram simply repeats itself, as there175

is no information in the data beyond this cutoff. The Lomb-Scargle periodogram approximately176

follows the same general relations as the DFT periodogram, though some frequencies can be better177

sampled than others.178

Autocorrelation estimates of any kind can be very noisy for an individual and pooling the esti-179

mates of multiple individuals is a good way of reducing this variability. An assumption required to180

average periodograms is that the sampling frequencies are roughly the same, as differently struc-181

tured sampling schedules lead to different natural biases of the periodogram. To average multiple182

individual periodograms, we choose the best frequency resolution (largest T ), worst Nyquist fre-183

quency (largest dt), and then weight the estimates by their corresponding amount of data. More184

specifically, we distribute the n degrees of freedom in a dataset over what would be the natural set of185

frequencies 0 < f ≤ F for that dataset, regardless of how we fix those parameters for the population186
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estimate. The worst Nyquist frequency is chosen because evaluating any one periodogram beyond187

its Nyquist frequency yields a nonsense estimate contaminated by Nyquist frequency periodicities,188

while the best frequency resolution is chosen because inflating a low-resolution periodogram will189

only induce correlated errors and we account for this in the average via weighting. This selection190

criteria is automated by the ctmm periodogram function when feeding it a list of telemetry objects.191

A.5 How periodicity combines with random motion192

In App. D we explore periodograms for all of the basic continuous-time movement models, including193

Brownian motion and Ornstein–Uhlenbeck motion, without any periodicity. These basic movement194

models provide what a signal analyst might refer to as nuisance “background noise” in which the195

periodic “signal” exists, in that, for a Gaussian stochastic process the expectation value of the196

periodogram decomposes into197

〈P̂ (f)〉 = 〈P̂stochasic(f)〉+ 〈P̂deterministic(f)〉 , (A.25)198
199

where the stochasic component describes an (on average) smooth curve (e.g., 1/f2 for Brownian200

motion) and the deterministic mean component gives us the “peak” or “spike” atop this curve.201

Therefore the importance of the height of any periodicity is relative to the background curve of a202

model such as Brownian motion.203

A.6 Effect of telemetry error on the periodogram204

For additive telemetry errors that are uncorrelated with the movement process, the expectation205

value of the periodogram of the noisy, observed process P̂data(f) is given by the sum206

〈P̂data(f)〉 = 〈P̂move(f)〉+ 〈P̂error(f)〉 , (A.26)207
208
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of the animal’s movement process and the error process. The autocorrelation function of an un-209

correlated error process σerror(τ) is furthermore proportional to a Dirac delta function δ(τ), and so210

from Eq. (A.20) the quantity 〈P̂error(f)〉 is approximately constant for all frequencies f . Therefore,211

the effect of telemetry error is to shift the resulting periodogram vertically along the y-axis and212

induce further variability in the estimate.213

A.7 A gridding algorithm214

To apply the periodogram, we want to define a regular temporal grid that is evenly spaced and can215

accommodate all data points. As GPS fixes can be delayed, there can be variability in the realized216

sampling intervals of tracking data. To construct a well behaved grid that avoids an unnecessary217

temporal resolution, we optimize the alignment of our temporal grid relative to the data. Given218

the data, a regular temporal grid (sampling schedule) can be defined by two parameters: an initial219

time t0 and a grid spacing ∆t. For the grid spacing ∆t, by default, in ctmm we use the median220

realized sampling interval, which performs well if there is a single intended sampling rate. For the221

initial time, we minimize the cost function222

COST(t0) =
n∑
i=1

∣∣∣∣sin(π ti − t0∆t

)∣∣∣∣2 , (A.27)223

224

which is zero if all recorded times are aligned with the grid and greater than zero otherwise. This225

cost function has the necessary features of being periodic in the parameter t0 (with period ∆t)226

and increasing monotonically with increasing misalignment. Moreover, this cost function is both227

analytic and exactly solvable. Differentiating and expanding our cost function, we then have the228

optimal grid relation229

0 = 〈S〉 cos

(
2π

t̂0
∆t

)
+ 〈C〉 sin

(
2π

t̂0
∆t

)
, (A.28)230

231
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in terms of the averages232

〈S〉 =
1

n

n∑
i=1

sin

(
2π

ti
∆t

)
, 〈C〉 =

1

n

n∑
i=1

cos

(
2π

ti
∆t

)
. (A.29)233

234

It then derives from Eq.(A.28) the following formula for the optimal initial time235

t̂0 = −∆t

2π
tan−1

(
〈S〉
〈C〉

)
. (A.30)236

237

This formula is implemented in ctmm to propose a default time grid upon which to compute the238

LSP.239
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