
V3I-STAL: Visual Vehicle-to-Vehicle Interaction via
Simultaneous Tracking and Localization

Xiaobai Liu
Department of Computer Science

San Diego State University (SDSU), San Diego, CA
xiaobai.liu@mail.sdsu.edu

ABSTRACT
This paper investigates a visual interaction system for vehicle-to-
vehicle (V2V) platform, called V3I. Our system employs common
visual cameras that are mounted on connected vehicles to perceive
the existence of isolated vehicles in the same roadway, and pro-
vides human drivers with imagery situational awareness. This al-
lows effective interactions between vehicles even with a low per-
meation rate of V2V devices. The underlying research problem for
V3I includes two aspects: i) tracking isolated vehicles of interest
over time through local cameras; ii) at each time-step fusing the
results of local visual perceptions to obtain a global location map
that involves both isolated and connected vehicles. In this paper,
we introduce a unified probabilistic approach to solve the above
two problems, i.e., tracking and localization, in a joint fashion. Our
approach will explore both the visual features of individual vehi-
cles in images and the pair-wise spatial relationships between ve-
hicles. We develop a fast Markov Chain Monte Carlo (MCMC)
algorithm to search the joint solution space efficiently, which en-
ables real-time application. To evaluate the performance of the pro-
posed approach, we collect and annotate a set of video sequences
captured with a group of vehicle-resident cameras. Extensive ex-
periments with comparisons clearly demonstrate that the proposed
V3I approach can precisely recover the dynamic location map of
the surrounding and thus enable direct visual interactions between
vehicles .

1. INTRODUCTION
Motivation Vehicle-to-vehicle (V2V) [53] communication plat-

form can exchange GPS positions, speed, intents and other traf-
fic data between nearby connected vehicles and has shown great
promises in avoiding traffic crashes, preventing injuries, and reduc-
ing traffic congestions. In the last decade, V2V reached a level of
maturity, insofar as vehicle-resident wireless hard-wares have un-
dergone multiple generations to achieve their implementations [50].
However, it is still challenging to deploy V2V system in practice,
because V2V-equipped vehicles need to share roads with isolated
(non-connected) vehicles which will be dominant in amount for a
long period.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands
c© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2964285

(a) (b)

A

B

C

D

Isolated vehicle

Connected vehicle

A B

C D

12 feet

Figure 1: Visual Vehicle-to-Vehicle Interaction (V3I). (a) In-
puts: four video frames captured by cameras on the connected
vehicles; (b) the fused map of both isolated and connected ve-
hicles. The relative positions of isolated vehicles are automati-
cally estimated. (The road map is used for illustration purpose).

To obtain the traffic data of the isolated vehicles that share the
same roadway, an effective and affordable method is to enhance
connected vehicles with cameras. Then the isolated vehicles can
be perceived and networked with the connected vehicles so as to
form a dynamic vehicle network. The human drivers of connected
vehicles, for example, are able to access extended range of traffic
situations and are notified of potential traffic collisions. This vi-
sual system is called Visual Vehicle-to-Vehicle Interaction or V3I.
Our system can work with low penetration rate of connected vehi-
cles and thus allow the smooth transitioning to the next intelligent
transportation system.

The key research question of V3I is how to detect, track and
localize vehicles that appear in the field of views (FOVs) of the
connected vehicles (through cameras). It involves both local vi-
sual perceptions and global visual data fusion across the networked
cameras. Figure 1 illustrates four FOVs in (a) and the fused map in
(b). The main technical difficulties are sourced from the fact that
all cameras are moving at relatively high speeds (60-85 miles per
hour). In particular, the following issues are ubiquitous in a V3I
system.i) While the V3I involves a series of visual perceptions, e.g.
detection, tracking, localization, it is crucial to to process all visual
inputs with real-time efficiency to allow time-critical warnings or
reactions; ii) The localization component is highly ambiguous since
it is actually solving regression of high dimension data (video se-
quence); iii) Since the V2V network is dynamic, there are frequent
changes over the spatial configurations of vehicles.

Objectives In this work, we are interested in developing an effi-
cient and scalable V3I system that can extract time-critical, precise,
and reliable traffic data with extended range from monocular video
sequences. At each time-step, our goal is to construct a dynamic
map that includes accurate 3D positions of the nearby vehicles that
are either connected or isolated. We will update the map adaptively

1117

STAL

V2V

Videos

Map

A

B

C

2

1

3

4

5
6

12

3

4 5 6

Detection

A

B

C

Figure 2: Flowchart of the proposed approach. Videos: monocular video sequences captured from multiple connected vehicles;
V2V: vehicle to vehicle traffic data; STAL: the proposed simultaneous tracking and localization method that jointly formulates three
components: tracking, regression of vehicle locations and consistencies of a set of between-vehicle spatial relationships; Map: location
map that includes vehicle positions at every time-step.

over time and use it as an imagery digitalization of the surround-
ing traffic conditions. The map would be propagated to connected
vehicles in the proximity and used as an interaction medium.

The V3I system involves two basic vision tasks: tracking vehi-
cles over time in individual cameras and localizing them in a global
3D map. These two sub-tasks are coupled and mutually beneficial,
and should be formulated and solved jointly.

Overview We introduce a unified probabilistic approach for si-
multaneous tracking and localization (STAL) of vehicles in V3I
system. Our approach will exploit both visual information ex-
tracted in individual cameras, including lanes, vehicles, etc., and
V2V traffic data, e.g. GPS positions. Since none of these obser-
vations are reliable nor accurate, it is crucial to perform reasoning
while keeping uncertainties to avoid pre-mature decision making.

One of the major components of our approach is to predict the 3D
relative locations of isolated vehicles detected in monocular videos.
A traditional solution [49] [20] is to calibrate camera parameters
and reconstruct 3d position of vehicles based on camera geome-
try. However, such analytic methods will not work well for V3I
system where both cameras and vehicles of interests are moving
at relatively high speeds. In this work, we study a calibration-free
solution, motivated with the fact that an experienced human driver
can roughly estimate the relative distance between a nearby vehicle
and the host vehicle. We cast the localization task as a supervised
regression problem, which aims to learn to map the visual features
of the vehicle images to the 3D locations. In particular, we first
collect a set of monocular video sequences and manually annotate
the locations of individual isolated vehicles with an interactive an-
notation toolkit. The annotations are not given in absolute 3D co-
ordinates but only reflect how close the isolated vehicles locates to
the host vehicles. At each time-point, we collect the short sequence
of video frames in prior as a training sample. Every sample is pro-
vided with a continuous label indicative of relative distance. With
these training data, we develop a Gaussian Process model [26] [32]
with a novel time-series kernel to solve the regression problem. In
comparisons to the other discriminative methods, e.g., support vec-
tor regression [41], Gaussian Process (GP) models are probabilistic
and enjoy the benefits common to all kernel-based models.

Another major component of our approach is a general Bayesian
formulation of a set of pair-wise spatial relationships between ve-
hicles. It includes, e.g., left-right (i.e., a vehicle locates on the left
to the another one), front-back (i.e., a vehicle locates in front of
the other one), or further-closer (depth to the cameras). These spa-
tial relationships are used to test the current solution hypothesis:
whether the relationships hold in the estimated location map. The
proposed formula is characterized with two folds. First, express-
ing spatial relationships between vehicles in binary form, instead
of in relative coordinates, enables robust measurement from noisy
data. Second, although a single relationship carries weak informa-
tion, there are multiple (hundreds of) relationships even for a short
sequence of video frames.

The proposed probabilistic approach will optimize both discrete
variables, e.g. trajectory identity (ID) of vehicle boxes, and con-
tinuous variables, e.g., 3D locations, and the optimal solution lies
on a joint solution space. While it is in general intractable [46],
Markov Chain Monte Carlo (MCMC) method can be used to search
the solution space by simulating a Markov Chain walking toward
the target distribution. It is a true approximation scheme for the
optimal: when run with unlimited resources, it converges to the
optimal solution eventually. However, the conventional MCMC al-
gorithms are restricted to their slow mixing rate, which prevents
their applications in real-time systems. In this work, we develop
a fast MCMC algorithm that can efficiently sample the joint solu-
tion space with rapid mixing rate. The key technical contributions
are two dynamics. i) Dynamic-I: in the continuous space, we uti-
lize the gradient information of the proposal energy functions to
make proposals that are distant from the current solution but are
still accepted with high probabilities. ii) Dynamic-II: in the dis-
crete space, we construct multiple adjacent graphs to represent the
trajectory solutions and cast tracking as graph coloring problem.
At each step we select a cluster of graph nodes, instead of a single
node, and change its color to reconfigure the present solution. The
two dynamics are alternatively performed following the Metropolis
Hasting algorithm [46] to guarantee convergence.

Contributions The three contributions of this paper are (i) a
novel V3I problem that have potentials in enhancing the next gener-

1118

ation transportation system; (ii) a probabilistic formulation for V3I
that integrates both the outputs of a supervised regression model
and a large collection of pair-wise binary spatial relationships be-
tween vehicles, and (3) a hybrid MCMC optimization algorithm
that makes distant proposals in the joint solution space. The pro-
posed approach can generate accurate location maps for both iso-
lated and connected vehicles through common visual sensors, and
provide an affordable way for vehicle to vehicle interaction.

2. RELATIONSHIPS TO PREVIOUS WORKS
While V2V techniques have been studied extensively [53, 50],

to our best knowledge, V3I is the first system that aims to provide
human drivers with imagery situational awareness. The proposed
approach is motivated with four research directions in multimedia
understanding and computer vision.

Vehicle Detection in images has been extensively studied in the
last decade [57]. These detectors can be roughly divided into two
categories. The first category tries to combine hand-crafted fea-
tures, e.g. SIFT [29], HOG [10] [5], and various machine learning
algorithms, e.g., boosting [47], SVM [10], decision trees [8]. The
other category [23] [18] aims to automatically learn features from
images using deep neural network and achieves impressive results
fueled by the availability of large-scale image datasets [9] [23]. A
recent seminal work is the region-based Convolution Neural Net-
work (R-CNN) [14]. A large variants of R-CNN are proposed to
improve convergences [13] or enable end-to-end learning (i.e., get-
ting rid of the post-progressing step) [35]. In this work, we will
utilize the R-CNN technique to our real-time system for detecting
vehicles of interest in video sequences.

Visual object tracking is a long-standing problem [40] in com-
puter vision. Recently the tracking-by-detection framework [17]
has achieved impressive results mostly due to the advances in ob-
ject detections [11, 35], as aforementioned. Another major stream
is to cast visual tracking as data association problem in the Bayesian
framework [7]. In particular, Oh et al. proposed a Markov Chain
Monte Carlo Data Association (MCMCDA) algorithm, and showed
that it clearly outperforms the alternative Bayesian treatments, e.g.,
joint probabilistic data association (JPDA) [36, 37], multiple hy-
pothesis tracking (MHT) [34], etc. Khan et al. [22] integrated the
MCMC sampling within the particle filer tracking framework. Yu
et al. [54] utilized the single site sampler for associating foreground
blobs to trajectories. Liu et al. [30] introduced a spatial-temporal
graph to cast tracking as a graph coloring problem and solve it us-
ing MCMC algorithm. These algorithms enjoy the advantages of
the Monte Carlo search, e.g., avoiding pre-mature decisions while
solving the optimal solution. However, they are restricted to the
high computational complexity and can not be applied over real-
time systems. In this work, we introduce a few improvements over
the MCMC algorithm, including making distant proposals in both
continuous and discrete spaces, exploiting the deepest gradient di-
rections and moment information, and casting tracking in the clus-
ter sampling framework. We will demonstrate that, with these mod-
ifications, it is feasible for MCMC algorithm to achieve real-time
performance.

Joint Recognition and Reconstruction has been investigated
for various computer vision problems, including simultaneous lo-
calization and mapping (SLAM) [49, 20], image labeling and scene
reconstruction [25] [31], object recognition and reconstruction [15],
room layout partition and object modeling [16, 39], tracking and
camera calibration [24] [55], video reconstruction [45]. In this
work, we follow the same methodology but focus on simultaneous
tracking and mapping of vehicles of interest, which has not been

studied. Fusing visual data on the V2V platform is a new research
direction that enables interactions between connected vehicles.

Gaussian Process or GP provides a non-parametric framework
for deriving regression or classification with explicit uncertainty
models. As a probabilistic generative method, GP requires much
less training samples to achieve the same level of performance as
the other discriminative models [47, 56]. Although the standard
GP suffers from high computational complexity O(N3) where N
is the number of training samples, it is possible to largely reduce
the computational cost by imposing sparsity over the training sam-
ples [42, 32], e.g., learning a small number of pseudo-input sam-
ples [43] [44], or using a sparse subset of the training samples [26,
42]. In computer vision, Kapoor et al. [19] applied GP method
for image categorization with human-in-the-loop and achieved im-
pressive results. For all these GP algorithms, the central modeling
choice is the specification of a kernel. In this work, we use GP to
predict the 3D locations of vehicles and integrate the probabilistic
outputs of GP with a unified probabilistic formula. As a technical
contribution, we introduce a time-series kernel to explore both ap-
pearance and temporal cues in the GP formula, which is a novel
concept in this direction.

3. OUR APPROACH
In this section, we introduce our V3I-STAL approach, starting

with an introduction of the whole pipeline. Then, we will specify a
probabilistic formula.

(a) (b)

Data Variable

1

0

Figure 3: (a) Graphical model of the proposed probabilistic
method. (b) state change of a vehicle: staying on the same lane,
0, or changing lane, 1.

3.1 Overview of Our Approach
We consider a set of time-synchronized video sequences that are

captured by multiple cameras on a group of connected vehicles in
the proximity. Our goal is to track and localize isolated vehicles in
videos and generate a global location map at each time-step. We re-
fer this task to simultaneous tracking and localization or STAL. The
cameras on connected vehicles are dynamically networked through
V2V protocols and thus form a dynamic ad-hoc camera network.
The field of views (FOVs) of cameras might overlap with each other
at a certain time and might become disjoint over time.

Figure 2 illustrates the flowchart of the proposed V3I-STAL ap-
proach. We utilize the sliding window strategy [30] to deal with
streaming video sequences. For the present time window, we start
with detecting vehicles and lanes for every monocular video. The
detection results along with the status of connected vehicles (e.g.,
speed, locations) are used as inputs for a probabilistic approach,
which aims to solve tracking and localization jointly. The outcome
of our STAL approach is a scene map that includes the relative co-
ordinates of both isolated and connected vehicles.

1119

Relative World Coordinate We define a relative coordinate sys-
tem to facilitate the derivation of our approach. We take one of
the connected vehicles as reference and consider its location as the
origin, i.e., (0, 0). For any other vehicle in the proximity, its coordi-
nate (y1, y2) is defined as: i) y1 ∈ [...,−2,−1, 0, 1, 2, ...] indicates
the relative lane to the origin where 0 means the same lane with the
reference vehicle, -1 means the left lane, and +1 the right lane); ii)
y2 in[1, 2, 3, 4, ...] which indicates the relative distance projected
on the lane direction (larger number indicates being further). In the
rest of this paper, 3D vehicle locations are defined in this relative
coordinate system unless otherwise specified.

3.2 Probabilistic Formula
We first introduce the notations used in this paper. Let T denote

the size of the time-window, or the number of video frames. LetM
denote the number of cameras, Im the m-th video sequence. Let
I = [I [1..M]]. Let C denote the pair-wise relationships between ve-
hicles (introduced later), let D denote the extra training data, V de-
note the traffic status of connected vehicles. Let O = [I, C,D,V]
pool over all the inputs of our approach.

For each camera m, let xmkt denote the 2D bounding box of the
k-th isolated vehicle at the time t. The corresponding 2D trajectory
is denoted as τmk = [xmkt].Let τ = [τmk] pool all the 2D trajectories,
k ∈ [0..Km],m ∈ [1..M], where Km indicates the total number
of trajectories to solve in the mth video. τm0 denotes the collec-
tion of bounding boxes not assigned to any trajectory. We denote
the 3D location of the k-th isolated vehicle at time t by Qmkt. Let
Qmk = [Qmkt] denote the k-th trajectory, Q = [Qmk] pool all the 3D
trajectories of isolated vehicles. Let Rmt denote the 3D location of
the m-th connected vehicle and R = [Rmt]. Let Y = {Q,R}.
Note that the 2D locations of connected vehicles are fixed (the
bottom-central point) throughout the video sequences. Thus, we
can describe the solution of STAL as the following representation,

W = (Km, τ, Y) (1)

where

τ = [τm0 , τ
m
k], τmk = [xmkt], (2)

Y = {Q,R}, Q = [Qmk], Qmk = [Qmkt] (3)
R = [Rm], Rm = [Rmt] (4)
m ∈ [1..M], k ∈ [0..Km] (5)

According to Bayes’ rule, we can solve the optimal representa-
tion as maximizing a posterior, that is,

W ∗ = arg max
W

p(W |O) (6)

where the posterior model p(W |O) can be factorized as the product
of three probability distributions

p(W |O) ∝
∏
m

[
p(Km)

∏
k

p(τmk |Km,O)
]
p(Y |τ,K,O) (7)

The first term p(Km) ∝ exp(−Km) is used to encourage the
number of trajectories to be small, resulting in a compact represen-
tation. The second probability p(τmk |Km,O) defines the distribu-
tion over 2D trajectories conditioning on the inputs. The third term
p(Y |τ,K,O) defines the distribution over 3D trajectories, which
can be further factorized to be the product of three probabilistic
models,

p(Y |τ,K,O) ∝ p(Q|D, τ,K, I)p(R|V, τ,K, I)p(Y |C, τ,K, I) (8)

The first two terms are distributions over 3D locations of isolated
and connected vehicles, respectively. The third term is defined over
the pair-wise spatial relationships between vehicles.

Figure 3 (a) illustrates the graphical dependences of the above
variables. In the rest of this section, we will elaborate the above
probabilistic models .

3.2.1 Probabilistic Model for 2D trajectories
The distribution p(τmk |Km,O) is defined over the 2D trajecto-

ries, which can be further factorized as

p(τmk |Km,O) ∝ p(τmk |Km)p(Im|τmk) (9)

where p(τmk |Km) is the prior term and p(I|τmk) is the likelihood
term.

Prior In this work, we identify two states of a moving vehicle
at each time-step: staying on the same lane as the previous time or
not. We will introduce a simple method in Section 4 to detect the
state of changing lane. Let ω(τmk , t) returns 0 if the vehicle stays
on the same lane at time t; otherwise 1. Fig. 3 (b) illustrates the
state change. Then, we employ a simple Ising/Potts model [6] to
penalize discontinuity of states, i.e.,

p(τmk) ∝ exp

[
−β
∑
t

1
(
ω(τmk , t) 6= ω(τmk , t− 1)

)]
(10)

where β is a constant and 1(·) is an indicator function. Eq. (10)
is used to constraint the number of times a vehicle change its lane
during driving.

Likelihood The likelihood term p(I|τmk) defines the probability
of the observations given the 2D trajectories, which can be factor-
ized as

p(Im|τmk) =
∏

xm
kt
∈τm

k

pf (xmkt)

pb(xmkt)
· pa(xmkt, x

m
k,t−1) (11)

where pf (·) and pb(·) are foreground and background probabili-
ties, respectively. The first term measures the ratio of the fore-
ground distribution over the background distribution, which can be
analogous to a probabilistic foreground/background classifier. We
use the detection scores to approximate this ratio, as introduced in
Section 4. The second term is defined over the appearance diver-
gence between bounding boxes of the same trajectory. We have,
pa(xmkt, x

m
k,t−1) ∝ exp

(
− L(fmkt , f

m
k,t−1)

)
where f are the vi-

sual features extracted from the vehicle boxes, and L(·) returns the
Euclidean distance of two feature vectors. We will introduce the
visual features to use in Section 4.

The probability for 2D trajectories are separately defined for in-
dividual cameras. While our models follow the previous stochastic
data association framework, e.g. [33] [30], we specify a new type
of prior model and will solve the discrete variables τmk by maxi-
mizing a unified posterior p(W |I), instead of p(τmk |Km,O).

3.2.2 Probabilistic Model for Localizing Isolated Ve-
hicles

The probabilistic model p(Y |D, τ,K, I) is used to specify the
mappings between visual features and 3D locations of vehicles. In
other words, given visual features of a vehicle, we aim to predict its
relative distance from the camera. This is feasible since the visual
features of a vehicle vary while locating at different distances and
angles w.r.t. the camera. Such coherences have been modeled by
Wu et al. [51] with an image scaling theory, e.g., a distant vehicle
will appear with less sketch/boundary features in comparisons to a
nearby vehicle.

We formalize the localization problem in the Gaussian process
framework. We collect a training dataset where every sample con-
sists of a short sequence of vehicle boxes, e.g. 30-50 frames. For
every vehicle in videos, we annotate its location in the relative

1120

world coordinate (as aforementioned) considering the camera po-
sition as the origin. We use multiple vehicle boxes, instead of a
single box, to construct one training sample for two reasons. First,
it is technically critical to obtain motion features to estimate depth
from a single camera [38]. Second, extracting multiple observa-
tions enables robust regression against noises and other variances
(lighting changes etc.).

In the following we first introduce our Gaussian Process model
and then define a time-series kernel.

Gaussian Regression Process Suppose we have a training dataset
D = {(xi, yi), i = 1, ..., n}, where x denotes a training sample,
i.e., a sequence of detected boxes, and y denotes 3D locations of
vehicles, with slightly notation abused. The column vectors for all
n samples are aggregated in the design matrix X , and the outputs
are collected in the output matrix Y, so we can write D = (X,Y).

GP model is to learn a latent function h(xi) that maps the input
xi to the output value. The observed value yi is different from the
function value h(xi) by additive noises, which is assumed to fol-
lows an I.I.D. Gaussian distribution with zero mean and variance
σ2, ε ∼ N (0, σ2). GP model will put a zero mean Gaussian pro-
cess prior on the latent function h(·):

h|X ∼ N (0,KN) (12)

where the covariance matrixKN is constructed from a kernel func-
tion, i.e.,KN (i, j) = K(xi, xj). The kernel functionK() depends
on a small number of parameters θ, e.g., kernel width, to control
the smoothness properties. In GP, we also assume a Gaussian like-
lihood model:

Y |h ∼ N (f, σ2I) (13)

where I is an integer matrix. Integrating out h in Eq. (13), we can
obtain the marginal likelihood,

Y |X, θ ∼ N (0,KN + σ2I) (14)

which is used to train the GP model by finding a maximum w.r.t.
the kernel parameters θ, e.g.,σ2.

With a new input point x∗, prediction is made by conditioning
on the observed data y∗ and the learned hyper-parameter θ. The
distribution of the output value y∗ at the new point is then:

y∗|x∗,D, θ ∼ N (µ,Σ) (15)

with,

µ = KT
∗ (KN + σ2I)−1y∗; (16)

Σ = K∗∗ −KT
∗ (KN + σ2I)−1K∗ + σ2; (17)

whereK∗(i) = K(x∗, xi) is a column vector andK∗∗ = K(x∗, x∗).
To define p(Q|D, τ,K, I), for every time t of a trajectory, we

extract the trajectory segment from the time t − δt to t + δt as a
testing sample, where δt is a small number. Then, we can apply the
Eq. (15) to define the probabilistic model for 3D localization,

p(Q|D, τ,K, I) ∝
∏
m

 1

|τmk |
∏

x∗∈τmk

p(Qmkt|x∗,D, θ)

 (18)

where |τmk | denote the length of the trajectory τmk .
As is clear from the definition in Eq (15), the standard GP is a

non-parametric model and all the training samples are explicitly re-
quired at test time in order to construct the predictive distribution.
It is infeasible to apply GP while the number of training samples is
large. In this work, we use the method by Snelson et al. [43] [44],
which tried to learn a small number (10-20) of pseudo training sam-
ples by minimizing the likelihood function Eq. (14).

Time-series Kernel The key problem left so far is how to define
the kernel function K(xi, xj) where xi and xj are two sequences
of vehicle boxes in images.

We define the kernel function K(xi, xj) as the product of two
kernel distances in terms of both appearance and time. For a train-
ing sample xi, let ti denote a time-stamp , and fit denote the cor-
responding visual feature of the vehicle box at time ti. The time-
series kernel is defined as,

K(xi, xj) =
1

|xi| · |xj |
∑

(fit,ti)∈xi

∑
(fjt,tj)∈xj

φ(fit, fjt)ϕ(ti, tj) (19)

where φ() and ϕ() are two squared exponential kernels

ϕ(ti, tj) = κ exp(− (ti − tj)2

2σ2
t

) (20)

κ and σt are two kernel parameters in θ which can be learned by
maximizing the marginal likelihood (14). The above time series
kernel acts like a sequential convolution filter and takes both ap-
pearance and time proximities into consideration. We will specify
the visual features in Section 4.

3.2.3 Probabilistic Model For Localizing Connected
Vehicles

With V2V traffic data, we can obtain the absolute position of ev-
ery connected vehicle. However, V2V locations are noisy and only
sparsely available (per a few seconds). Therefore, instead of using
the raw V2V positions, we aim to solve the location of connected
vehicles in the relative world coordinate. In particular, we use the
V2V data to measure the spatial displacement between two con-
nected vehicles and enforce the same displacements between the
relative locations to solve. We define the probabilistic model over
V2V data as ,

p(R|V, τ,K, I) ∝ exp{− 2

M(M − 1)

∑
m6=n

L(Rmt −Rnt , Vmnt)} (21)

where Vmnt is the displacement between the vehicles m and n at
time t, L(·, ·)returns the Euclidean distance between two vectors.
It is worthy noting that, although the relative world coordinates can
be scaled up to the world coordinate after calibrating cameras, in
V3I, we only care about the relative 3D positions between vehicles.

3.2.4 Probabilistic Model For Spatial Relationships
We use a set of spatial relationships to describe the relative loca-

tions of vehicles at the time t:

• Left-right, denoted as (m, i, j, t) ∈ L where the vehicle i
locates on the left of the vehicle j, both of which appear in
the camera m;

• front-back, denoted as (m, i, j, t) ∈ F where the vehicle i
locates in front of the vehicle j ;

• further-closer, denoted as (m, i, j, t) ∈ A where the isolated
vehicle i is closer to the camera than the vehicle j, and

• equal position, denoted as (m,n, i, j, t) ∈ E where the vehi-
cle i in camera m appear in the camera n with index j, and
the two vehicles should have the same 3D locations.

Among these relationships, the former three are extracted from a
single camera while the last one is from across cameras. These bi-
nary information, although not accurate, can provide discriminative
constraints over the desired 3D vehicle locations.

1121

We collect these pair-wise relationships from the results of ve-
hicle detection and cross-view matching. Taking further-closer for
instance, we can simply compare the size of two detected boxes to
determine which one is further to the camera. Expressing the rela-
tionships in binary form enable the feasibility of a simple threshold
based method. We denote all the relationships by C = L ∪ F ∪
A ∪ E . For each relationship Ck ∈ C, we check if it still holds
by the current estimation of 3D trajectories Y , which is straight-
forward since the moving direction is available as well. We denote
the validity by H(Y,Ck) which returns 0 if the relationship holds;
1 otherwise. Thus, the likelihood model conditioning on C is de-
fined as,

p(Y |C, τ,K, I) ∝ exp{−γ
∑
Ck∈C

H(Y,Ck)} (22)

where γ is a constant parameter. This model p(Y |C, τ,K, I) is
maximized while all the relationships in C hold in Y .

4. INFERENCE
In this section, we first introduce the proposed inference algo-

rithm and then elaborate the implementations of our V3I system.

4.1 Hybrid Monte Carlo for V3I-STAL
Given multiple monocular video sequences and V2V traffic data,

our inference algorithm aims to find the optimal solution W by
maximizing a posterior p(W |I). This is an intractable problem [46].
As an approximate optimization technique, Markov Chain Monte
Carlo (MCMC) algorithm [46, 33, 30] can search the solution space
by simulating a Marko Chain. However, existing MCMC methods
are restricted to two aspects: i) the mixing rate is slow particularly
for the joint solution space which is the case in this work; and ii) the
search usually got stuck in local minimal without proper parameter
setting in practice.

To address the above issues, we develop a hybrid Monte Carlo
algorithm that can search over the joint solution space efficiently.
Our algorithm starts with an initial solution of W that could be
greedily or randomly obtained. Then, we design a set of dynamics
to reconfigure the current solution which simulates a Markov Chain
walking toward the target posterior distribution p(W |O). The dy-
namics are either jump moves, e.g. creating a new trajectory, or
diffusion moves, e.g. adding a bounding box into an existing tra-
jectory. These stochastic dynamics are paired with each other to
make the solution changes reversible to guarantee convergence to
p(W |I). Formally, a dynamic is proposed to drive the solution
state from W to W ′, which is accepted with the probability in the
Metropolis-hasting form [46]: min(1, p(W

′|O)q(W→W ′)
p(W |O)q(W ′→W)

), where
q(W →W ′) is the proposal probability.

Algorithm 1 summarizes the proposed inference algorithm. In
this work, we use two dynamics, including a dynamic in the dis-
crete space and a dynamic in the continuous space.

Dynamic-I: Cluster Sampling for 2D tracking This dynamic is
used to add, remove or change existing 2D trajectories observed by
individual cameras, i.e., τ . We unify all these operations through
a cluster sampling procedure with a adjacent graph. Figure 4 il-
lustrates four such graphs where the y-direction indicates the time-
step. We detect a set of vehicle boxes, illustrated as blobs, in every
frame and use these boxes as graph nodes to construct the adja-
cent graph. A graph node is only linked to the spatially coherent
nodes in the consecutive frames. With these adjacent graphs, the
goal of this dynamic is to color these graph nodes such that nodes
belonging to the same trajectory have the same color.

We develop a cluster sampling method following the previous

Sweden-Wang Cut algorithm [46, 6], including three major steps.
First, for every edge e =< i, j >, we compute a local probability,
denoted as qe, to indicate how likely the two linked nodes belong
to the same trajectory and thus should be assigned with the same
color. We set the edge probability using the feature similarity,

qe = exp{−L(fi, fj)} (23)

where fi and fj are feature vectors of the two bounding boxes. We
normalize qe so that

∑
e=<i,·> qe = 1 where < i, · > represents

all edges that links the node i to the next frame. Second, we turn off
edges at random according to qe which leads to a set of connected
components (CCPs) of graph nodes. Last, we choose one of the
CCPs and assign its nodes to a new color, which results in three
atomic changes, as Fig. 4 illustrates, i) birth of a new trajectory:
A→ C; ii) Merge, C → A; iii) Switch: A→ B or B → D.

The proposal probability for the Dynamic I is calculated as q(W →
W ′) =

∏
e∈Cut qe whereCut denotes the edges that are turned off

around the selected CCP.
At each iteration step, the Dynamic I will flip the colors of a

cluster of nodes, instead of a single node, like the traditional single-
site sampler, e.g. Gibbs [46]. Similar idea has been used for image
segmentation [46] and 3D scene reconstruction [30].

Dynamic-II: Hamiltonian dynamics For 3D localization We
develop a proposal-making scheme for the continuous parts of W ,
i.e., the 3D trajectories Y , with the Hamiltonian Dynamics [4] [1].

Hamiltonian Dynamics can be used to draw random samples
from a probability distribution with continuous variables for which
direct sampling is difficult. The key is to define a Hamiltonian func-
tion in terms of the target distribution from and a kinetic energy
term parameterized with auxiliary Momentum variables. Then, we
can alternate simple updates for those momentum variables with
Metropolis updates. A state proposed in this way can be distant
from the current state but have a high probability of acceptance.
In comparisons to the random-walk proposal schemes [46] that ex-
plore the state space slowly, Hamiltonian Dynamics can converge
a lot faster to the target distribution.

A B

C D

t

t

t

t

Figure 4: Four atomic states of the discrete tracking solution.
There are three atomic changes, i) birth of a new trajectory:
A → C; ii) Merge, C → A; iii) Switch: A → B or B → D.
Dotted circles indicate the selected CCPs.

In this work, we aim to sample a joint distribution and use the
Hamiltonian dynamics to make proposals in the continuous space.
Formally, let E(Y) = − logP (W |O) denote the target energy
function, i.e., the negative log-probability. Consider Y as a po-
sition at the energy landscape, g as the momentum at a time t.
Sampling Y is equal to moving Y through the energy landscape
with a varying moment g. The energy H(Y, g) at a time-step is a
combination of the energy E(Y) and the kinetic energy K(g), i.e.
H(Y, g) = E(Y)+K(g). We setK(g) = gT g/2 as conventional.

1122

Algorithm 1 Inference .
1: Input: M monocular video sequences; V2V data

Output: 2D and 3D trajectories of vehicles;
2: Initialize the solution representation W ;
3: Iterate until convergence,

- Randomly select one of the two dynamics;

- Make proposals accordingly to reconfigure the current
solution;

- Accept the change with a probability

The partial derivatives of H(Y, g) determine how Y and g change
over time, according to the Hamilton’s equations [1]:

∂Y

∂t
=

∂K(g)

∂g
= g, (24)

∂g

∂t
= −∂E(Y)

∂Y
(25)

Starting with initial state at time t=0, we can iteratively compute the
states of Y and the moment g at each time t, following the Euler’s
method:

Y t+1 = Y t + αgt (26)

gt+1 = gt − α∂E(Y)

∂Y
(27)

where α is a constant.
The proposal probability for the Hamiltonian Dynamic is defined

over the energy changes after L times updates. Let (Y, g) denote
the initial state, (Y ∗, g∗) the updated states after L times, we have

q(W →W ′) =
1

Z exp [H(Y, g)−H(Y ∗, g∗)] (28)

where Z is a normalization constant . It is worthy noting that we
set the evolution times L to be a small number, which allows the
other dynamics in our inference algorithm to be done more often to
help preserve the detail-balance of the sampling process.

Figure 5: Exemplar results of lane detections. We detected both
straight lanes (red) and curved lanes (blue).

4.2 Implementation
Visual Features Instead of using traditional descriptors (e.g.

SIFT, HOG) to represent the visual appearances of vehicle im-
ages, we employ the powerful Deep Convolution Neural Network
(CNN) [23]. With a set of training images of vehicles, we fine
tune the CaffeNet [18], which consists of 5 convolutional layers,
2 max-pooling layers, 3 fully-connected layers and a final 1000-
dimensional output. The negative training samples are randomly
cropped from the video frames in our dataset .

Given an image of vehicle as input, we forward-pass it through
the learned DCNN and take the 1000-dimensional output as our
appearance descriptor, i.e. f , which is used to define the kernel
function φ() and the edge probability qe. These descriptors have
been proved to function like the Texton filter responses [18] yet
with more capabilities of dealing with variances.

Detection of Vehicles and Lanes To detect vehicles in video
sequences, we utilize the Region-based Convolutional Neural Net-
work (R-CNN) [14], which includes two steps: making vehicle
proposals and classifying proposals. In implementation, we use
the Fast R-CNN framework by Girshick [13] that jointly performs
proposal classification and bounding box regression by optimizing
a multi-task loss function. We use the soft-max functions in the
last layer. We use mini-batches of sample size 128. We follow
the sampling strategy in the original article. To deal with scale
issues, we compute image pyramids which basically augment the
training data. This is feasible since our training dataset is relatively
small (about 2000 vehicle images). We use the network parame-
ters pre-trained on the VOC 2012 dataset [18] and fine tune it on
our training dataset with the same multi-task loss function. The
fine-tuning step is very important because that, in V3I system, the
camera setting (viewpoints, heights) are completely different from
that in the VOC 2012 dataset. Among all the steps of RCNN de-
tector, the bottleneck is the number of region proposals generated
for every video frame, which is 64 by default. To accelerate the
process, for each vehicle tracked, we predict its position in the new
video frames according to its current position and moving speed (in
images). We sample a few proposal around the predicted position
only. We found that this simple trick can largely reduce the number
of proposals while keeping the same detection performance.

In addition, we develop a lane detection algorithm that can pro-
cess video frames at real-time speed. It includes three major steps:
filtering image with Derivative of Gaussian (DOG), Line/Spline
Fitting with RANSAC method and Post-processing for lane link-
ing. These algorithms are quite standard and have been discussed
in previous efforts, e.g. [2]. We didn’t use the top-view of the
road [2] because it involves additional computations yet bring min-
imal gains in our case. Figure. 5 illustrates the two results of lane
detection. We will use the estimated lane information to determine
if a vehicle stays on the same way over time, as is used in Eq. (10).

Constructing Pair-wise Constraints Given two bounding boxes
of vehicles detected in the same video frame, we construct the three
pair-wise relationship sets L,F ,A as follows. First, we simple
compare their horizontal image coordinates to determine which one
is on the left hand side. Second, the front-back relationships are
derived from the comparisons of their vertical image coordinates.
This is feasible because of the cameras are facing forward and mov-
ing in parallel directions. Third, we assume the vehicle with larger
size box is closer to the camera. Since the above three relationships
are all expressed in binary form, instead of relative values (like
[10]), they can be robustly extracted even with a simple threshold
method.

To obtain the relationships set E , we need to identify the vehi-
cles across cameras. This correspondence problem is traditionally

1123

solved with the standard stereo algorithms, e.g. extracting interest
points first and applying RANSAC to estimate transform param-
eters [29]. These algorithms, however, do not work well in V3I,
because the viewpoint changes are too big due to the wide base-
lines between cameras, as is illustrated in Fig. 1. Instead, we utilize
a two-step cascade method for detecting such relationships across
two cameras. In the first step, given the position of the two con-
nected vehicles, we match the detected lanes across cameras and
consider vehicles in different views sharing the same lane as a can-
didate match. In the second step, we extract the CNN features of
each box, calculate their Euclidean distance and prune the candi-
date matches if their visual distance is beyond than a threshold. We
compute pyramid representations for each vehicle image to deal
with the viewpoint variances. This simple threshold-based method
works well in practice because: i) the lane information from both
V2V data and lane detectors can largely narrow the search space;
ii) the relationships are used as a soft constraints which means that
error predictions will not dominate the final results.

The above relationships, once detected, are used to define the
posterior distribution p(W |I). In particular, given 3D trajectories
W in the present iteration, we need to verify if every single rela-
tionship in C holds or not, i.e. the value of H(Y,Ck) in Eq. (22).
For the relationships L,F ,A , we can obtain the moving directions
of the involved vehicles from the 3D trajectories which make the
testing straightforward. For the relationships L, we simply check if
the two vehicles have the same 3D locations in Y . Note that a short
period of video frames will have hundreds of such relationships
which makes this term fairly robust against errors and noises.

Stream Video Parsing The proposed STAL algorithm works on
a batch of video sequences and we extend it to deal with streaming
videos with the sliding window strategy [30]. At each time t, we
take as inputs the video frames during t − δw to t + δw where
2δw is the window size, and slide the window with a step (e.g. 25
frames) to get the another window. For each window, we run the
Algorithm 1 and initialize the solution using the results over the
previous window. In particular, we assume the number of trajec-
tories Km remains the same, and match every existing trajectory
to the frames of the new window with the aforementioned cascade
matching algorithm. The matched boxes are added into the existing
trajectories. In this way, we obtain a good initialization that is close
to the optimal solution. Afterwards, we refine the current solution
with the two dynamics. This sliding window method can largely
reduce the computational cost while achieving the same level of
performance.

5. EXPERIMENTS
Dataset To evaluate the proposed V3I approach, we collect a

video dataset that includes four groups of video sequences. Each
group consists of 4 time-synchronized video sequences captured by
4 cameras on connected vehicles. Figure 6 illustrates the driving
route while shooting the group-1, where the star indicates the start-
ing point. Figures 1 and 2 show video frames from the group-1 and
group-2, respectively. These vehicles were running on a freeway
at about 60 miles per hour. Each video lasts 10-20 minutes. Since
the videos are captured during the peak traffic hours in the morn-
ing, there are continuous stream of isolated vehicles appearing in
the videos. These video sequences are with many challenges, e.g.,
lighting changes, motion blur, and work as a challenging bench-
mark for evaluating V3I algorithms.

We develop an interactive toolkit to manually annotate the 2D
and 3D vehicle trajectories for all the 4 groups of video sequences.
We use the relative world coordinates. A major feature of the
toolkit is that it can interpolate trajectories between the annotated

frames in both 2D images and 3D map so that the user does not need
to annotate every single frame. A similar system was developed by
Vondrick et al. [48], which focused on obtaining 2D trajectories.
We also annotate the locations of connected vehicles in videos and
use the annotations as V2V data, i.e., V . It takes about 3 hours
for a user to annotate a video sequence of 20 minutes that includes
hundreds of vehicles.

We divide each video sequence into two even parts and use them
for training and testing purposes, respectively.

Learning and Parameters To obtain the hyper-parameters of
the time-series kernel K(·), we optimize the marginal likelihood
function (14) using the alternate gradient descent algorithm. Fol-
lowing [44], we revise Eq. (14) to learn a few pseudo-inputs to
reduce complexity. We set the number of pseudo-inputs to be 20.

The implementation of Algorithm 1 can be found in Section. 4.
We use the maximal likelihood method (MLE) [46] to estimate the
model parameters in p(W |I), including λ, β, and Z , and fix them
throughout the experiments. We set the size of the sliding window
to be 60 frames, and sliding step to be 10 frames. The parameters
for the vehicle detectors and lane detectors remains the same as in
their respective articles.

Figure 6: Driving routine of the video sequences in group-1.
Blue star indicates the starting point.

Variants of Our Approach and Baselines We implement three
variants of the proposed approach to analyze the benefits of individ-
ual components. i) STAL-1, that optimizes the probability models
for 2D trajectories and uses Dynamic-I for inference. This is an
advanced version of the MCMCDA [33] algorithm. ii) STAL-2:
that implements Algorithm 1 without the pair-wise spatial relation-
ship C. We simply set the the probability p(Y |C, τ,K, I) to be a
constant. iii) STAL-3, that is a full implementation of Algorithm 1.

We compare the proposed approach with 4 recent state-of-the-art
trackers: 1) Geiger et al. [12], that follows the track-by-detection
pipeline and uses the Kalman Filtering algorithm; 2) Lenz et al. [27],
a min-cost flow tracking algorithm; 3) Xiang et al. [52] that tracks
objects with multiple Gaussian Decision Processes. 4) Andriyenko
et al. [3] that proposed a discrete-continuous optimization for 2D
tracking. We use the source codes provided by the authors and
properly train their models on our dataset according to their de-
scriptions.

We implement baseline methods for localization as follows. First,
we apply each of the above baseline trackers and STAL-1 on the in-
put videos to get 2D trajectories, i.e., τ . Then, with fixed τ , we run
the Algorithm 1 with the Dynamic-II only. This leads to five base-
line algorithms that solve tracking and localization in turn.

Metrics For tracking, we employ the widely used CLEAR met-

1124

Sequences
(#vehicles)

Method MOTA(%) MOTP(%) MT(%) PT(%) ML(%) IDSW FRAG

Group 1 (335)

STAL-3 67.15 71.23 47.59 78.67 8.92 181 190
STAL-2 63.27 68.32 45.32 73.56 9.34 210 205
STAL-1 56.15 60.94 39.29 67.21 11.52 235 316

Geiger et al. [12] 59.34 63.34 42.36 69.34 13.46 432 275
Lenz et al. [27] 60.21 61.12 39.15 68.98 11.97 614 243
Xiang et al. [52] 58.76 63.27 36.27 64.32 19.24 543 259

Andriyenko et al. [3] 48.13 56.32 35.37 45.61 20.34 781 345

Group 2 (362)

STAL-3 62.94 67.83 46.27 68.31 10.21 276 215
STAL-2 58.17 61.09 38.49 62.75 13.45 324 229
STAL-1 55.64 54.36 37.23 58.16 15.18 350 417

Geiger et al. [12] 56.72 55.68 40.34 57.32 16.29 613 439
Lenz et al. [27] 54.21 57.13 39.51 60.31 14.53 581 352
Xiang et al. [52] 53.76 56.19 38.14 61.29 17.59 462 533

Andriyenko et al. [3] 45.36 48.32 27.89 52.34 21.69 684 726

Group 3 (274)

STAL-3 52.16 62.84 47.68 73.14 12.37 324 236
STAL-2 48.56 59.12 42.75 68.75 14.35 392 397
STAL-1 43.29 53.87 40.50 64.21 18.57 421 531

Geiger et al. [12] 47.19 55.12 41.29 63.59 15.66 382 689
Lenz et al. [27] 46.36 57.27 43.57 65.82 16.14 475 725
Xiang et al. [52] 42.19 58.34 45.38 61.32 16.34 419 963

Andriyenko et al. [3] 37.35 49.25 36.21 58.35 21.34 531 1236

Group 4 (281)

STAL-3 65.72 73.59 52.76 75.96 8.16 289 210
STAL-2 61.78 67.31 51.34 68.34 9.34 395 256
STAL-1 53.29 62.15 46.12 66.72 11.63 441 443

Geiger et al. [12] 59.42 64.37 48.52 62.36 9.47 476 369
Lenz et al. [27] 58.51 65.92 50.36 67.82 12.24 497 479

Xiang et al. [52] 54.97 59.46 49.21 63.49 13.43 531 412
Andriyenko et al. [3] 49.23 45.29 45.97 52.75 16.53 724 567

Table 1: Results of tracking. STAL-1, STAL-2, STAL-3 are three implementations of the proposed approach. For every group of
sequences, The total number of objects are listed in the first column. See text for detailed explanations.

Table 2: Results of 3D localizations (average errors in meters).
Methods Group-1 Group-2 Group-3 Group-4
STAL-3 1.24 1.72 2.03 1.16
STAL-2 1.56 2.14 2.56 1.56
STAL-1 2.03 3.25 2.97 2.79

Geiger et al. [12] 2.34 2.76 2.67 2.53
Lenz et al. [27] 2.21 2.85 2.86 2.13
Xiang et al. [52] 2.17 3.02 3.10 2.24

Andriyenko et al. [3] 3.16 3.75 2.85 3.17
GP 3.67 3.46 3.21 3.24

SVR [41] 5.32 6.32 4.31 5.29

rics [21]: Tracking Accuracy (MOTA) and Tracking Precision (MOTP)
to measure three kinds of errors in tracking: false positives, false
negatives and identity switches. We also report the percentages
of mostly tracked (MT), partly tracked (PT) and mostly lost (ML)
groundtruth (referring to [28]), as well as the numbers of identity
switches (IDSW) and fragments (FRAG). Hit/miss for the assign-
ment of tracking output to groundtruth is set to a threshold of Inter-
section over Union (IoU) ratio 50%. For localization, we calculate
the average localization errors: the Euclidean distances between
the estimated coordinates and groundtruth coordinates. We calcu-
late localization errors in meters facilitate interpretation. Note that
we only count the mostly tracked vehicles, i.e. the ratio of ground-
truth trajectories that are covered by a track hypothesis for at least
80% of their respective life space.

Efficiency Our approach is implemented in MATLAB and runs
on a desktop with Intel I7 3.0GHz CPU, 32GB memory and Nvidia

K40 GPU. Given 4 sequences of 1080P, the runtime on average
is 15-20 fps for object detection, 1000-1500fps for pre-processing,
and 10−20 fps for running the hybrid Monte Carlo method. Over-
all, the proposed algorithm obtains 10−12 fps, which is dependent
on the vehicle density of the sequence. With proper code migration
and optimization, e.g., batch processing, our algorithm can achieve
real-time processing.

Results Table 1 reports the tracking results of the various meth-
ods. Results over individual groups of videos are listed separately.
From the results, we can obtain the following observations. First,
the proposed joint tracking and localization methods, i.e., STAL-
3 and STAL-2, outperformed the other baseline trackers, which
demonstrates the superiority of the proposed joint framework. Sec-
ond, the comparisons between STAL-3 and STAL-2 further suggest
that it is beneficial to include the pair-wise spatial relationships be-
tween vehicles. In Figures 1 and 2, we plot the generated scene
maps for the group-1 and group-2, respectively.

Table 2 reports the localization results over individual groups of
videos. Among these methods, STAL-3 and STAL-2 can directly
output 3D locations. The other methods solve tracking and local-
ization in a subsequent fashion. All methods are able to access
the V2V traffic data and integrate the outputs of Gaussian Regres-
sion Process (GP). We include the results of GP for comparisons
as well. We also report the regression results by applying the SVR
method over the dataD. From the table, we can observe that STAL-
3 achieved the minimal localization error. While all the methods
can certainly improve the GP results, it is evident that jointly for-
mulating the tracking and localization can generate better localiza-
tion result, which is consistent with our observations on tracking
results.

1125

6. CONCLUSIONS
This paper studies a novel data fusion problem, visual vehicle-

to-vehicle interaction (V3I). We developed a unified probabilis-
tic approach to simultaneously track and localize isolated vehicles
through cameras on connected vehicles. Our formula integrates
a Gaussian Regression Process with time-series kernel, and a set
of pair-wise binary relationships in the Bayesian Framework. For
inference, we introduced a fast Hybrid Monte Carlo algorithm to
efficiently search the joint solution space. Extensive experiments
with component analysis clearly demonstrated the effectiveness of
the proposal approach.

7. ACKNOWLEDGMENT
The data used in this work was collected and annotated by the

Computer Vision Lab at San Diego State University (SDSU). The
author would like to thank Dr. Xianfeng Yang (SDSU) for his
insightful discussions and suggestions. The original idea of this
work was initialized and discussed when the author was traveling
in Boston with his friends: Yibiao Zhao (MIT), Yixin Zhu (UCLA)
and Tianmin Shu (UCLA).

8. REFERENCES
[1] A. Almeida. Hamiltonian systems: Chaos and quantization. Cambridge

monographs on mathematical physics, 1992.
[2] M. Aly. Real time detection of lane markers in urban streets. In IEEE Intelligent

Vehicles Symposium, 2008.
[3] A. Andriyenko and K. Schindler. Discrete-continuous optimization for

multi-target tracking. In Proc. CVPR, 2012.
[4] M. Audin and D. Babbitt. Hamiltonian systems and their integrability.

American Mathmatical Society, 2008.
[5] H. Azizpour and I. Laptev. Object detection using strongly supervised

deformable part models. In ECCV, 2012.
[6] A. Barbu and S. Zhu. Generalizing swendsen-wang to sampling arbitrary

posterior probabilities. IEEE Trans. PAMI, 27(8):1239–1253, 2007.
[7] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. multiple object tracking using

k-shortest paths optimization. IEEE Trans. PAMI, 33(9):1806–1819, 2011.
[8] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified

framework for classification, regression, density estimation, manifold learning
and semi-supervised learning. Foundations and Trends in Computer Graphics
and Vision, 7(2):81–227, 2012.

[9] M. Everingham, S. Eslami, L. V. Gool, C. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A retrospective. IJCV,
111(1):98–136, 2015.

[10] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained part-based models. IEEE Trans. PAMI,
32(9):1627–1645, 2010.

[11] P. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part based models. IEEE Trans. PAMI,
32(9):1627–1645, 2010.

[12] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d traffic scene
understanding from movable platforms. IEEE Trans. PAMI, 2014.

[13] R. Girshick. Fast r-cnn. In CVPR, 2015.
[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In CVPR, 2014.
[15] C. Haene, N. Savinov, and M. Pollefeys. Class specific 3d object shape priors

using surface normals. In CVPR, 2014.
[16] M. Hejrati and D. Ramanan. Analysis by synthesis: Object recognition by

object reconstruction. In CVPR, 2014.
[17] C. Huang, Y. Li, and R. Nevatia. Multiple target tracking by learning-based

hierarchical association of detection responses. IEEE Trans. PAMI,
35(4):898–910, 2013.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding authors. In Proc. ACM Multimedia, 2014.

[19] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Gaussian processes for
object categorization. IJCV, 2009.

[20] N. Karlsson, E. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and
M. Munich. The vslam algorithm for robust localization and mapping. In ICRA,
2005.

[21] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers,
M. Boonstra, V. Korzhova, and j.. Zhang. Framework for performance
evaluation of face, text, and vehicle detection and tracking in video: Data,
metrics, and protocol. IEEE Trans. PAMI, 31(2):319–336, 2009.

[22] S. Khan and M. Shah. A multiview approach to tracking people in crowded
scenes using a planar homography constraint. In Proc. ECCV, 2006.

[23] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep
convolutional neural networks. In Proc. NIPS, 2012.

[24] A. Kundu, Y. Li, F. Daellert, F. Li, and J. Rehg. Joint semantic segmentation
and 3d reconstruction from monocular video. In ECCV, 2014.

[25] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of perspective. In
CVPR, 2014.

[26] N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process
methods: the informative vector machine. In NIPS, 2003.

[27] P. Lenz, A. Geiger, and R. Urtasun. Followme: Efficient online min-cost flow
tracking with bounded memory and computation. In ICCV, 2015.

[28] Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted
multi-target tracker for crowded scene. In Proc. CVPR, 2009.

[29] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. Freeman. Sift flow: Dense
correspondence across different scenes. In Proc. ECCV, 2008.

[30] X. Liu, L. Lin, and H. Jin. Contextualized trajectory parsing via spatio-temporal
graph. IEEE Trans. PAMI, 35(12):3010–3024, 2013.

[31] X. Liu, Y. Zhao, and S. Zhu. Single-view 3d scene parsing by attributed
grammar. In CVPR, 2014.

[32] L. C. o and M. Opper. Sparse online gaussian processes. Neural Computation,
(14):641–668, 2002.

[33] S. Oh, S. Russell, and S. Sastry. Markov chain monte carlo data association for
multi-target tracking. IEEE Trans. PAMI, 54(3):481–498, 2009.

[34] D. Reid. An algorithm for tracking multiple targets. IEEE Trans. Automatic
Control, 24(6):843–854, 1979.

[35] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Proc. NIPS, 2015.

[36] J. Roecker. A class of near optimal jpda algorithms. IEEE Trans.Aerosp.
Electron. Syst., 30(2):504–510, 1994.

[37] J. Roecker and G. Phillis. Suboptimal joint probabilistic data association. IEEE
Trans. Aerosp. Electron. Syst., 29(2):510–517, 1993.

[38] R. Salas-Moreno, R. Newcombe, H. Strasdat, P. Kelly, and A. Davison.
Slam++: Simultaneous localisation and mapping at the level of objects. In Proc.
CVPR, 2013.

[39] A. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box in the box: Joint 3d
layout and object reasoning from single images. In ICCV, 2013.

[40] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah.
Visual tracking: An experimental survey. IEEE Trans. PAMI, 36(7):1442–1468,
2014.

[41] A. Smola and V. Vapnik. Support vector regression machines. In NIPS, 1997.
[42] A. J. Smola and P. Bartlett. Sparse greedy gaussian process regression. In NIPS,

2001.
[43] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs.

In NIPS, 2006.
[44] E. Snelson and Z. Ghahramani. Variable noise and dimensionality reduction for

sparse gaussian processes. In UAI, 2006.
[45] S. Song and M. Chandraker. Robust scale estimation in real-time monocular

sfm for autonomous driving. In CVPR, 2014.
[46] Z. Tu and S. Zhu. Image segmentation by data-driven markov chain monte

carlo. IEEE Trans. PAMI, 24(5):657–673, 2002.
[47] P. A. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object

detection. In NIPS, 2006.
[48] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scaling up

crowdsourced video annotation. IJCV, 2012.
[49] C.-C. Wang. Simultaneous localization and mapping with detection and

tracking of moving objects. In ICRA, 2002.
[50] T. Willke, P. Tientrakool, and N. Maxemchuk. A survey of inter-vehicle

communication protocols and their applications. IEEE Communications
Surveys, 2009.

[51] Y. Wu, S. Zhu, and C. Guo. From information scaling of natural images to
regimes of statistical models. Quarterly of Applied Mathematics, 66(1):81–122,
2008.

[52] Y. Xiang, A. Alahi, and S. Savarese. Learning to track: Online multi- object
tracking by decision making. In ICCV, 2015.

[53] X. Yang, L. Liu, N. Vaidya, and F. Zhao. A vehicle-to-vehicle communication
protocol for cooperative collision warning. In MOBIQUITOUS, 2004.

[54] Q. Yu, G. Medioni, and I. Cohen. Multiple target tracking using spatio-temporal
markov chain monte carlo data association. In Proc. CVPR, 2007.

[55] H. Zhang, A. Geiger, and R. Urtasun. Understanding high-level semantics by
modeling traffic patterns. In ICCV, 2013.

[56] S. Zhang, X. Yu, Y. Sui, S. Zhao, and L. Zhang. object tracking with multi-view
support vector machines. IEEE Trans. MM, 17(3):265–278, 2015.

[57] X. Zhang, Y.-H. Yang, Z. Han, H. Wang, and C. Gao. Object class detection: A
survey. ACM Comput. Surv., 46(1), 2013.

1126

