
Synchronous Schemes and Their Decision Problems
(Extended Abstract)

Zohar Manna

Stanford University and

WeiZmann Institute of Science
and

Amir Pnueli
Tel Aviv University

Abstract.

A class of schemes called synchronous

is defined. A synchronous scheme can have

schemes

several

variables, but all the active ones are required to

keep a synchronized rate of computation as

measured by the height of their respective

Herbrand vsJ_ues. A “reset” statement, which

causes all the variables to restart a new computa-

tion, is admitted. It is shown that equivalence,

convergence, and other properties are decidable

for schemes in this class. The class of

synchronous schemes contains, as special cases,

the lmown decidable classes of Ianov schemes,

one-variable schemes with resets, and progressive

schemes.

Introduction.

As is well-known, equivalence, convergence,

and other properties of Ianov schemes ([II, [RI)

and, more generally, of one-variable schemes

([cM], [c]) are decidable. The deep reason for

this is not the restriction to a single variable

but the fact that the computation progresses in a

uniform maimer.

The only workable tool that has been

developed to date for analyzing general schemes

is that of “unwinding and annotating” ([P], [M],

[G]): The loops of the scheme are ‘unwound

continuously, During this process, the inter-

relations between variablea that are implied by

This is an extended abstract of a forthcoming
technical rep~rt of the Computer Science Dept.,

Stanford University, Stanford, CA, 94305.

This research was.’supported in part by the

National Science Foundation under Grant

MCS7’6-83655 ancl by the Office of Naval Research
under Contract NOO014-T6-C-068T.

Permksion to copy without feeallor part of this material is granted
provided that the copies are not made ordistributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and itsdateappear, and notice kgivent hat copyingk by
permission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.

the assignments, and the truth values of predi-

cates that are implied by the outcomes of tests,

are recorded. The entrance of each generated

statement box is annotated with the accumulated

information known at this point. The utility of

this attached information is that whenever we

encounter a test whose result can be deduced from

the information currently available, we can

forego the test and just pursue the branch corres-

ponding to the known truth value. If the process

terminates, the resulting scheme is “free”, i.e.,

it has the desirable property that every path in

the scheme graph is realizable by some computation.

The convergence and divergence problems of

free schemes are decidable, bot for all interpre-

tations or for some interpretation. Indeed,these

problems are decided by syntactical inspection:

A free scheme converges for some interpretation if

it contains a ‘halt’ statement, and it converges

for all interpretations if it does not contain

100PS in its graph or explicit ‘loop’ statements.

Moreover, if a scheme is known to be free,

and is fully annotated in the sense that all known

interrelations between the values of program

variables are recorded at any point, we can simi-

larly resolve the following “inner equivalence”

problem: “For a scheme with output variables Z1

and
‘2 ‘

is it true that, for any interpretation

and any computation, Z1 = z
2

when the computa-

tion halts?” This property holds for free and

fully annotated schemes if and only if Z1 . Z2

is implied by the information attached to each

exit box in the scheme.

This approach does not provide a decision

procedure for general schemes, because the amount

@ 1980 ACM 09791-01 1-7/80/0100-0062 $00.75 62

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1980 ACM 0-89791-011-7…$5.00

of accumulated information is unbounded, and

therefore the process of unwinding and emnotating

a general scheme to form an equivalent free

scheme may not terminate. Thus, the only solvable

cases are fsmiliee of schemes which are restricted

in a way guaranteeing that the amount of accumu-

lated information is bounded. Such boundedness

can be obtained if we are allowed to discard

already gathered information, being assured

that the discarded information would never be

celled for again.

In this work, we define and study a class of

schemes, called synchronous schemes, which is a

generalization of Ianov schemes as well as of

progressive schemes ([P], [~P]). Synchronous

schemes allow for many variables, but require

that the values of these variables during a

Herbrand computation are kept synchronized, in

the sense that the differences between their

heights are bounded. This enables us to discard

information concerning values of height lower

than the current values, and. hence suggests that

finite ann&cation will be applicable.

Terminology and Definitions.

The general class of schemes that we consi-

der are represented by flowcharts with the

following types of basic statements (boxes):

Initialization:

QSTART

(Y1). ..)Yn) +l).. .,Tn)l
. . .

where each Ti is an expression containing

only constant symbols

Assignments:

~

I(Yl ,..., yn) - (q;),..., Tn(wl
Jd””” Jf

Termination:

*

where each Ti(;) is an expression that may

contain constant symbols as well as the

variables i= (Y1). ..JYn) .

These boxes are interconnected by edges which

are labeled by conditions. A condition is a

boolean combination of atomic formulas of the

formP(~l(~),...,~j(~)) . For example,

P(f(Y1,a),g(Y2)) A- q(g(Y1),f(b,y2)) is a

condition.

We impose a determinism stipulation: If the

edges leaving a given box are respectively

labeled by the conditions C1,CP , then these

conditions must be

(a) Exclusive -- i+ j implies ~(CiA Cj) ,

i.e., no two conditions can coexist.

(b) Exhaustive -- C1VC2V . . . vCp= true,

i.e., at least one condition must hold,

(a) and (b) together imply that exactly one exit

condition must always hold.

On the following page is an example of a

scheme (Scheme S1) in a conventional form

and its representation (Scheme S2) in our

“transition graph” style.

A scheme is said to be simple (non-nested)

if all its expressions T are of the form

f(~, . ..)ur) and all its tests are literals of

the form P(ul>. ..>ur) or -P(u~)... /ur))

where each u.
1

is a variable or am individual

constant.

By the results in [LPP] it is sufficient to

consider the behavior of schemes under the class

of all Herbrand interpretations. ~ the sequel

we consider only Herbrand domains constructed

from the individual constants

symbols of the given schemes.

For a Herbrand term t ,

heightj Itl , as themsximal

the function symbols in t .

Ial=O, lf(a)l= \g(a,b)l=

lh(a,g(a,b)) I = 2, etc.

and function

we define its

nesting depth of

Thus, for exarple,

1,

Consider a Herbrand computation of a scheme

s. At any stage s = 0,1,... in the computa-

tion, each program variable yi holds some

Herbrand value, which we denote by Yi(s) . Let

hi(s) = Iyi(s)l be the height of this value.

Define also M(s) = msx{hl(s),hn(s)] , i.e.,

63

,_ I_,/7(‘oT F
P(Y1)

F.. T T F

v Y
LL Y~ -dYl)

‘o”

I Yp “ f(Yp) + “-< ’l(Y,)> \ /—-<q.(Y,))—

T
T

1

& 4?
HALT oHALT

% -- A scheme in conventional form.

64

I?(Y1) ANq(y2)

A- dY2)

I I

dHALT bHALT

‘2
-- Transformation graph form of

the maximum of the heights of the variables

Yl). ..jyn at state s . Let A(s) denote the

cumulative maximum of M(j) for j = 0,1,...

up to the current state s , i.e.,

A(s) =max{M(j) 10<j < s] .

A scheme is called k-synchronous for an

integer k ~ O ~ if, in every Herbrand computa-

tion, after each assignment step of the form

(Yjl> ~) +(~l,...,. . ..y. ~r) ~ going from state
r

s to state s+l , the heights of the recently

assigned values satisfy either

(a) hjl(s+l))hj (S+1) ~ M(s)-k,
r

or

(b) M(s+l) ~ k.

That is, either all the newly assigned values

have height not less than k below the previous

maximum, or all variables are reset to heights

not exceeding k . A step of the t~e (b) is

called a reset step.——

A scheme

k-synchronous

‘1 “

is called synchronous if it is

for some k > 0 .

A somewhat different approach is to define

a scheme to be k-monotonic if after every

assigmnent step s assigning values to

Y.)...)Yj we have that
J1 r

(a) hjl(s+l), . ..)hj (S+1) ~ I(s)-k,

r

or

(b) M(s+l) ~ k as above.

Here, A(s) is the cumulative maximum since

the last reset. Thus, we relate the heights of.— —

recently computed values to the cumulative

maximum A(s) rather than to the 10CSJ. maximum

M(s) ,

A scheme is called monotonic if it is

k-monotonic for some k~ O .

These two concepts are closely related:

Claim: A scheme is monotonic iff it is

synchronous.

65

Obviously if a scheme is k-monotonic it is

also k-synchronous. This is’ a direct consequence

of the fact that A(s) >M(s) since it is a

cumulative maximum. On the other hand it can be

shown that a k-synchronous scheme is always

n. (k+l) -monotonic. Here n is the rm.mber of

progrmn variables and 1 is the maxirmn height

of any of the expressions ‘c appearing in the

s theme.

Consider the implications of a monotonic

computation. At any state of the computation

some of the variables are “active” in the sense

that they hold values of heights k-close to the

cumulative maximum. After a finite amownt of

computation, unless we enter into an endless loop,

the maximum must rise and some of the variables

rise with it. All active computations must occur

within a distance k of the maximum. Some other

variables may drop behind and become “dead”,

A dead variable may participate in an assigned

expression provided there is some live variable

together with it in the sane expression. A dead

variable may be revitalized by assinging to it

a value of height k-close to the maximum.

Alternately, in a reset, all variables are

reinitialized to values of height < k .

Main Results.

The class of synchronous schemes contains,

special cases:

The class of Ianov schemes with resets.

The more general class of one-variable schemes

with resets.

The class of progressive schemes.

These are the main classes for which equivalence

is known to be decidable.

we derive the following results for

synchronous schemes:

1. Every synchrewws scheme S C- be

effectively transformed into an equivalent

scheme S’ which is simple, free and

synchronous.

This transformation is carried out by am

algorithm which will be discussed later. The

elgoritbm checks that the scheme under transfor-

mation is actually k-synchronous smd reports
.

failure otherwise.

Hence we have:

2. For a given k > 0 , it is decidable—

whether a scheme is k-synchronous.

However:

3. It is undecidable (though partially decida-

ble due to (2)) whether a scheme is

synchronous, that is, whether there exists

a k > 0 such that the scheme is—

k-synchronous.

The following property enables us to formu-

late &Lgoritlmns concerning synchronous schemes

within the schemata framework without reduction

to automata.

4. The class of synchronous schemes is closed

under “cross product”, i.e., if
‘1

and S2

are synchronous, so is SlXS2 , properly

defined.

As a consequence of the transformation (1)

we have:

5. Convergence and divergence problemq, both

for some interpretation emd for all inter-

pretations, are decidable for synchronous

schemes.

6. —
In comparing two synchronous schemes

%

and S2 , the inclusion problem S1~ S2—

and the equivalence problem S1= S
2=

both decidable.

Outline of the Algorithm.

The main technique used in establishing

these results is the algorithm for transforming

a synchronous scheme S into a simple, freej

synchronous scheme S’ as described in (1) above.

Roughly, this algorithm operates on an arbitrary

scheme in the following way:

(a) Consider a synchronous scheme with no resets.

We introduce first auxiliary variables and

intermediate computations to make all terms

simple. Next, we analyze the scheme by

associating with each box in the scheme the

following lists of bounded size:

66

(b)

(i)

(ii)

(iii)

A list of the known truth values of

tests.

Interrelations between variables.

These will be equalities such as

Y~ = f(!4(Y2JY3)lYq) ●
Note that we

only have to retain such relations of

depth not exceeding a bovnd dependent

on k. Hence there are only finitely

many such possible relations.

The difference in depth of each

variable from the maximal depth. These

will be numbers not exceeding k .

Obviously these lists can contain only a

bounded amount of information, md corres-

pondingly only finitely many different

combinations of these lists exists. We use

these lists as tags to the nodes in the

scheme. We may now unwind the original

scheme, tagging each box with the accumulated

information. A node in the original scheme

may correspond to several nodes in the new

scheme, each tagged with its own annotation,

providing full information about the inter-

relations between the variables. The

resulting scheme will be simple, free, and

synchronous.

Next we consider a synchronous scheme with

resets. Our task here is to eliminate the

resets. Let us partition the scheme S into

subschemes, S1,..., Sn , each of which con-

tains a reset instruction as its first

instruction, but no other instances of resets.

TheTe”mey be exits frcrn any Si to any Sj ~

which must go through the main entry of S. .
J

We apply (a) above to each of the Si ‘s.

Then we form the cross product scheme

s’ = s1xs2x. ..xsn which jointl-y simulates

Sl,sn . s’ allocates disjoint sets of

variables.to each component Si and Perfomns

in parallel the operations required by each

of the components. A special tracing

mechanism is provided for representing the

situation that Si exits to Sj . ❑

To decide the equivalence of kwo synchronous

schemes, we first study the problem of inner

equality. Since the result of the preceding

algorithm tags each box with the interrelations

between the variables, we only have to inspect the

tag on all exit statements and check whether it

contains (or implies) the statement Z1 = Z2 .

Now in order to test equivalence of
‘1

and S2

we have only to consider the inner equality

problem for S1XS2 ,

Acknowledgements.

We are indebted to

Pierre Wolper for their

paper.

References.

[c]

[CM]

[G]

[1]

Richard Waldinger and

detailed reading of this

Chsndra, A. K.~ “On the Properties emd

Applications of Program Schemas,” Ph.D.

Thesis, stanford University, March 1973.

Chandra, A. K. and Z. Manna, “Program

Schemas with Eqmlity,” Proceedings of the

Fourth ACM Symposium on the Theory of

Computing, Denver, Colorado, May 1972.

Greibach, S, A.J “Theory of Program

Structures: Schemes, Semantics, Verifica-
tion,” Springer Verlag, lecture notes in

Computer Science, 1975.

Iemov, Y.I., “The Logical Schemes of

Algorithms, u problems of cybernetics>

Vol. 1, Pergemon Press, New York (English
treas~ation), 1960.

[LPP] D. C. Luckham, D. M. R. Park and

M. S. Paterson, r!on Fo@ized Cmpwter

Programs,” Jcss h, 3 (June 1970), 220-249.

[M] Manna, Z., Mathematical Theory of Computa-
tion (Chapter h)

m.

, McGraw-Hill, New York,

[P] Paterson, M. S., “Equivalence Problems in a

Model of Computation,” Ph.D. Thesis,

Cambridge, England, 1967.

[RI Rutledge, J. D., “On IMOV’S Progrw

Schemata,” JACM 11, 1 (January 1964), 1-9.

67

