
Analyzing Security Protocols in Hierarchical
Networks

Ye Zhang and Hanne Riis Nielson

Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark

— {yez,riis}@imm.dtu.dk

Abstract. Validating security protocols is a well-known hard problem
even in a simple setting of a single global network. But a real network
often consists of, besides the public-accessed part, several sub-networks
and thereby forms a hierarchical structure. In this paper we first present
a process calculus capturing the characteristics of hierarchical networks
and describe the behavior of protocols on such networks. We then develop
a static analysis to automate the validation. Finally we demonstrate how
the technique can benefit the protocol development and the design of
network systems by presenting a series of experiments we have conducted.

1 Introduction

With the fast development of the communication technology, thousands of in-
tranets of companies, colleges, etc. are connected via the Internet. The network
structure may even change dynamically as exemplified when relocating a laptop
from one place to another. Consider the example on the left of Figure 1 where
gateways are inserted between local networks so that the locally exchanged mes-
sages are not available outside. A tree that represents the network structure is
presented on the right of the figure; here the internal nodes denote the networks
and the leaves represent the agents. The network hierarchy, therefore, requires
that all messages sent between the server and the laptop must go through the
office network.

The fact that the communication varies from place to place increases the
complexity of protocol analysis. Also such networks present us with a new chal-
lenge of defining the attacker capabilities since the classical Dolev-Yao model [9]
was originally proposed by assuming the existence of a single global network, the
Internet. In this paper we shall present our approach to deal with these issues.

Overview of the Paper. In Section 2 we present a variant of the Ambient cal-
culus [7, 4, 5] to model hierarchical networks as well as security protocols; in
order to formalize authentication properties we syntactically add annotations
for declaring authentication intentions of the protocol. In Section 3 we develop a
control flow analysis [15, 18] for tracking the interested property. Regarding the
communication environment considered in this paper, we declare the attacker



2

Server

O1

Internet

H1Laptop

Computation
Center

Office Network

Gateway

Gateway

O2

The Internet

Laptop Office

Network

Computation

Center

Server

H1

O1 O2

Fig. 1. Hierarchical network: an example.

capability based on the Dolev-Yao conditions in Section 4. Our analysis is fully
automatic and always terminating; in Section 5 we sketch the implementation
and show its running-time is polynomial in the size of ambient processes. Section
6 reports our experimental results on a series of virtual networks and protocols.
Finally we conclude with a brief assessment of our approach and a comparison
with related work in Section 7.

2 ABoxed Ambients

We base ourselves on Boxed Ambients [4] and customize it in several ways. First
we remove nil capability ε and concatenation M1.M2 from Boxed Ambients.
Then we extend the calculus with annotations for specifying the authentication
intentions of protocols explicitly. Finally our calculus deviates from all other
ambient calculi, e.g. Mobile Ambients [7] and Discretionary Ambients [18], in
having attacker processes that are used to declare the locations accessible to
attackers.

The syntax of processes P , communication directions η, and capabilities M
is given by Table 1. While most constructs are standard, the further explanation
goes to the restriction and input primitives. The two restriction constructs have
same effect on all processes except for attacker processes: suppose an attacker
is inside P , restriction (v n)P allows the value n to be part of initial knowledge
of the attacker while secret restriction (vk n)P keeps the value unknown to
the attacker. For the simplicity of the presentation, we assume that a subset
C ⊆ Name of names is kept for constants and demand that the name introduced
by two restriction constructs are constants. For input constructs we, inspired
by Lysa [2], use a simple form of patterns, (M ′

1, · · · ,M ′
j ; xj+1, · · · , xk)η, to be

matched against a k-tuple of values (M1, · · · ,Mk). The idea is that the matching
succeeds if the first 1 ≤ i ≤ j values M ′

i pairwise correspond to the values Mi; if



3

P ::= (v n)P restriction
| (vk n)P secretrestriction
| 0 inactiveprocess
| P1|P2 composition
| !P replication
| n[P ] ambient
| M.P movement
| 〈M1, · · · ,Mk〉η output
| (M1, · · · ,Mj; xj+1, · · · , xk)η.P input
| • attacker

��������������������

η ::= n child
| ↑ parent
| ◦ local

M ::= in n enter n
| out n exit n
| n name

Table 1. Syntax of ABoxed Ambients.

so, the remaining k−j values are bound to the variables xj+1, · · · , xk respectively.
For the sake of simplicity, we shall enforce that xi ∈ V where V = Name \C.

We assume perfect cryptography in this paper and make use of two processes,
local-output and input-from-child, to model encryption and decryption respec-
tively. The intuition is that in order to read the mailbox of a child a parent must
have known his child’s name (encryption key). To check protocol intentions, we
syntactically annotate the pair by:

〈M1, · · · ,Mk〉◦` [dest L]
(M

′
1, · · · , M

′
j ; xj+1, · · · , xk)n

` [orig L]

where label ` (called crypt-point) is from some enumerable set D disjoint from
Name and is added to program points where encryption and decryption happen.
The assertion [dest L] specifies a set of crypt-points L ⊆ D where the message
is intended to be decrypted. Similarly [orig L] lists all desired crypt-points at
which M is allowed to have been encrypted. A more detailed discussion on how
to encode encryption and decryption with ambient calculus can be found in [19].

To simplify the analysis definition in Section 3, we shall suppose that each
name has a canonical name bnc ∈ Name and require the alpha-renaming pre-
serves the canonical name; therefore only the canonical version of a name will be
recorded in the analysis. Similarly we write bMc for the canonical capability of M
where the name or variable is replaced with its canonical version. To formulate
protocols and networks more precisely and get better analysis results, we clas-
sify ambients into two classes: site ambients which formalize local networks and
computers, and packet ambients which describe data objects moving between
sites. The programs of interest are then ambients in the form of n?[P?] where
n? /∈ fn(P?) and the function fn(P?) collects the free names of P?. Formally P?

satisfies the conjunction of the following conditions:

– any free name of P? is from C; formally bfn(P?)c ⊆ C;
– P? is well-formed with respect to C; formally C ` wf s(P?).

Here the canonicity operation b·c is extended in a pointwise manner; the well-
formedness basically demands: (1) sites are not movable and thereby the network



4

Alpha− renaming :

P ≡ Q if P are disciplined α−equivalent to Q

Replication :

!P ≡ P |!P
!0 ≡ 0

Reordering of paralle processes :

P |Q ≡ Q|P
(P |Q)|R ≡ P |(Q|R)

P |0 ≡ P

Scope rules for name bindings :

(v n)0 ≡ 0
(v n)(v n′)P ≡ (v n′)(v n)P if n 6= n′

(v n)(P |Q) ≡ P |(v n)Q if n /∈ fn(P )
(v n)(n[P ]) ≡ n[(v n)P ] ifn /∈ fn(n)
(v n)P ≡ (v m)(P{n/m}) if m /∈ fn(P )

Table 2. Structural congruence: P ≡ Q is the least congruence.

structure is static; (2) packets are simple data objects moving between sites, and
(3) attacker processes are as expressive as sites. A formal definition of the well-
formedness can be found in [19] for your reference.

Semantics. The semantics follows the approach of [7, 4] and is specified by the
structural congruence relation P ≡ Q in Table 2 and the reduction relation
P →R Q in Table 3; there are two variants of reduction semantics: (1) the
standard semantics (→) in which R is universally true and thus can be ignored;
(2) the reference monitor semantics (→RM) that deals with annotations by taking
RM(`,L′,`′,L) = (` ∈ L′ ∧ `′ ∈ L); thus decryptions may happen only at crypt-
points designated when the corresponding encryptions were made, otherwise the
execution is aborted. As stated in Table 2, the structural congruence relation
allows rearranging the syntactic appearance of processes; especially we enforce
that α − renaming preserves canonicity. The movement interactions give rise
to re-structuring ambients while the communication interactions do not change
their hierarchy but modify the process to reflect the new binding of names. Here
we adopt the standard notion P [M/x] for substitution. If reference monitor
semantics is concerned, the condition RM(`,L′,`′,L) is checked by some rules.
While the syntax requires us to annotate every process of local-output and input-
from-child, they may be used for non-cryptographic purposes. If that is the case,
we reserve a special label ε for those processes and adopt the set D to ensure
annotations are trivial ones, formally

〈M1, · · · ,Mk〉◦ε [dest D]
(M ′

1, · · · ,M ′
j ; xj+1, · · · , xk)n

ε [orig D].P

Example 1. We consider the version of Wide Mouthed Frog (WMF) [6] below.
1. A → S : A, [B, K]KA

2. S → B : [A, K]KB

3. A → B : [M ]K

It establishes a secret session key K between the initiator A and the responder
B, who share master keys KA and KB with a trusted server S respectively. Its



5

Movement of ambients

(In) m [ in n. P |Q] |n [R] →R n [ m [P |Q] |R]

(Out) n [ m [ out n. P |Q] |R] →R m [P |Q] |n [R]

Execution in context :

P →R Q

(v n)P →R (v n)Q

P →R Q

(vk n)P →R (vk n)Q

P ≡ P ′ ∧ P ′ →R Q′ ∧Q′ ≡ Q

P →R Q

P →R Q

P |R →R Q |R
P →R Q

n [P ] →R n [Q]

Communication :

(Com 1)

∧j
i=1Mi = M ′

i ∧R(`, {ε},ε,L)

〈M1, · · ·, Mk〉◦` [dest L] | (M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)◦.P
→R P{Mj+1/xj+1} · · · {Mk/xk}

(Com 2)

∧j
i=1Mi = M ′

i

〈M1, · · ·, Mk〉n | n[(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)◦.P |Q]
→R n[P{Mj+1/xj+1} · · · {Mk/xk}| Q]

(Com 3)

∧j
i=1Mi = M ′

i ∧R(`, {ε},ε,L)

〈M1, · · ·, Mk〉◦` [dest L] | n[(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)↑.P |Q]
→R n[P{Mj+1/xj+1} · · · {Mk/xk}| Q]

(Com 4)

∧j
i=1Mi = M ′

i

(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)◦.P | n[〈M1, · · ·, Mk〉↑|R]
→R P{Mj+1/xj+1} · · · {Mk/xk} | n[R]

(Com 5)

∧j
i=1Mi = M ′

i ∧R(`,L′,`′,L)

(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)n
`′ [orig L′].P | n[〈M1, · · ·, Mk〉◦` [dest L]|R]

→R P{Mj+1/xj+1} · · · {Mk/xk} | n[R]

Table 3. Transition relation: P → Q.

ABoxed Ambients specification is then given by:

(v KA)(v KB)
( A[(v K) KA[out A. in S. (〈A〉↑|〈B, K〉◦A1

[dest S1])] |
(v M) K[out A. inB. 〈M〉◦A2

[dest B2]]
|

S[(A; )◦.(B; yK)KA

S1
[orig A1].

KB [out S. in B.〈A, yK〉◦S2
[dest B1]]

|
B[(A; zK)KB

B1
[orig S2].(; z)zK

B2
[orig A2]])



6

At first A generates a new session key K by the restriction (v K) and then sends
S a packet named by the key KA. After the packet KA moves into S, the plain
message A is delivered to server’s mailbox while the encrypted values (B, K)
can be read only by the enclosing ambient knowing the master key KA. On the
other side, the server acquires and checks initiator’s name A by local-input and
then decrypts the encrypted part of the message with input-from-child where
the reference monitor checks the authentication intentions. If the decryption
succeeds, the server continues checking whether B is the responder’s name; if
that is the case, it stores the session key K in the placeholder yK . The left
part of the process is encoded in the similar way as illustrated above and the
explanation, therefore, is straightforward. ¤

3 Control Flow Analysis

The aim of our analysis is to safely estimate when RM can cease the computation
of a process. To achieve this goal, we shall develop an analysis for extracting the
following information:

– γ: C → P(C ∪ bMc ) that for every ambient name approximates which
ambients and capabilities may be contained.

– κ: C → P((C∪ bMc )∗) that for every ambient name records the tuples of
messages that may show up in an ambient’s mailbox.

– ρ: V → P(C ∪ bMc ) that for every variable records the tuples of possible
values including names and capabilities.

– ϕ: P(D ×D) that describes the possible violation of authenticity.

The judgement of the analysis takes the form

(γ,κ,ρ) |=µ P : ϕ

and says that when the subprocess P (of P?) is enclosed within an ambient µ
then as P evolves γ will reflect the contents of the ambients , κ will contain the
messages of ambients’ mail boxes, ρ will approximate all the bindings of names,
and ϕ (of the form (`, `′)) indicates something encrypted at ` was unexpectedly
decrypted at `′. The analysis is specified in Table 4 for all non-communication
primitives and in Table 5 for communication related ones.

In Table 4 the rules for restriction, replication and parallel composition ensure
the analysis is valid for the immediate subprocesses while the rule for the inactive
process enforces no restriction on the analysis result.

For an ambient process the analysis first records that the ambient n is
inside the ambient ∗ and then continues analyzing the process P within the
updated environment. Here the auxiliary functions Mρ : M → P(bMc) and
Nρ : Name → P(C) map a variable to a set of canonical capabilities and values
respectively

Nρ(x) = ρ(bxc) ∩C Nρ(c) = {bcc}
Mρ(in n) = {in µ | µ ∈ Nρ(n)}
Mρ(out n) = {in µ | µ ∈ Nρ(n)}

Mρ(x) = ρ(bxc)
Mρ(c) = {bcc}



7

(γ,κ,ρ) |=∗ (v n)P : ϕ iff (γ,κ,ρ) |=∗ P : ϕ

(γ,κ,ρ) |=∗ (vk n)P : ϕ iff (γ,κ,ρ) |=∗ P : ϕ

(γ,κ,ρ) |=∗ 0 : ϕ iff true

(γ,κ,ρ) |=∗ P1| P2 : ϕ iff (γ,κ,ρ) |=∗ P1 : ϕ ∧ (γ,κ,ρ) |=∗ P2 : ϕ

(γ,κ,ρ) |=∗ !P : ϕ iff (γ,κ,ρ) |=∗ P : ϕ

(γ,κ,ρ) |=∗ n[P ] : ϕ iff ∀µ ∈ Nρ(n) : µ ∈ γ(∗) ∧ (γ,κ,ρ) |=µ P : ϕ

(γ,κ,ρ) |=∗ in n.P : ϕ iff Mρ(in n) ⊆ γ(∗) ∧ (γ,κ,ρ) |=∗ P : ϕ∧
∀in µ ∈Mρ(in n) : ϕin(µ)

(γ,κ,ρ) |=∗ out n.P : ϕ iff Mρ(out n) ⊆ γ(∗) ∧ (γ,κ,ρ) |=∗ P : ϕ∧
∀out µ ∈M(out n) : ϕout(µ)

(γ,κ,ρ) |=∗ n.P : ϕ iff Mρ(n) ∩M ⊆ γ(∗) ∧ (γ,κ,ρ) |=∗ P : ϕ∧
∀in µ ∈Mρ(n) : ϕin(µ)∧
∀out µ ∈Mρ(n) : ϕout(µ)

Table 4. Analysis specification (1): (γ, κ, ρ) |=∗ P .

The last three clauses deal with prefixed processes. In each case all potential
capabilities inside the current ambient are recorded by γ and then the continua-
tion process is analyzed; the following closure conditions referred by the clauses
serve the purpose of reflecting the semantics of in- and out- capabilities into the
analysis.

ϕin(µ) iff ∀µa, µp : in µ ∈ γ(µa) ∧ µa ∈ Cp

∧µa ∈ γ(µp) ∧ µ ∈ γ(µp) ⇒ µa ∈ γ(µ)

ϕout(µ) iff ∀µa, µp : out µ ∈ γ(µa) ∧ µa ∈ Cp

∧µa ∈ γ(µ) ∧ µ ∈ γ(µg) ⇒ µa ∈ γ(µg)

Now turn to the clauses in Table 5. The clause for local-output first collects
the potential values M(Mi) of every capability Mi in a message and records
all k-tuples of such messages 〈v1, v2, · · · , vk〉 into the local mailbox. Compared
to local-output, the clauses for output-to-parent and out-to-child do not update
local mailbox but store messages into the mailboxes of possible parents and
children of the current ambient respectively.

The clause for local-input (M1, · · · ,Mj ;xj+1, · · · , xk)◦.P retrieves the local
mailbox to look for the k-tuple messages whose first j elements are pointwise
inside Mρ(Mi) for 1 ≤ i ≤ j. Then the new bindings of names are recorded
by the analysis component ρ for variables xj+1, · · · , xk respectively. Finally
RM(`,D, ε,L) is checked for authentication; the special crypt-point ε and set
D are inserted by the rule of local-input to check if any encrypted message may



8

(γ,κ,ρ) |=∗ 〈M1, · · · , Mk〉◦` [dest L] :ϕ iff ∀v1, · · · , vk: ∧k
i=1 vi ∈Mρ(Mi)

⇒ 〈v1, · · · , vk〉`[dest L] ∈ κ(∗)
(γ,κ,ρ) |=∗ 〈M1, · · · , Mk〉N :ϕ iff ∀µ ∈ Nρ(N) : µ ∈ γ(∗) ∧

∀v1, · · · , vk: ∧k
i=1 vi ∈Mρ(Mi)

⇒ 〈v1, · · · , vk〉ε[dest D] ⊆ κ(µ)

(γ,κ,ρ) |=∗ 〈M1, · · ·, Mk〉↑ : ϕ iff ∀µ : ∗ ∈ γ(µ) ∧ ∀v1, · · ·, vk: ∧k
i=1 vi ∈Mρ(Mi)

⇒ 〈v1, · · ·, vk〉ε[dest D] ⊆ κ(µ)

(γ,κ,ρ) |=∗ (M1, · · · , Mj ; xj+1, · · · , xk)◦.P :ϕ iff

〈v1, · · ·, vk〉`[dest L] ∈ κ(∗): ∧j
i=1 vi ∈Mρ(Mi)

⇒ ∧k
i=j+1vi ∈ ρ(xi) ∧ (¬RM(`,D, ε,L) ⇒ (`, ε) ∈ ϕ) ∧ (γ,κ,ρ) |=∗ P :ϕ

(γ,κ,ρ) |=∗ (M1, · · · , Mj ; xj+1, · · · , xk)N
`′ [orig L′].P :ϕ iff

∀µ ∈ Nρ(N) : µ ∈ γ(∗) ∧ ∀〈v1, · · ·, vk〉`[dest L] ∈ κ(µ) : ∧j
i=1 vi ∈Mρ(Mi)

⇒ ∧k
i=j+1vi ∈ ρ(xi) ∧ (¬RM(`,L′, `′,L) ⇒ (`, `′) ∈ ϕ) ∧ (γ,κ,ρ) |=∗ P :ϕ

(γ,κ,ρ) |=∗ (M1, · · · , Mj ; xj+1, · · · , xk)↑.P :ϕ iff

∀µ : ∗ ∈ γ(µ) ∧ ∀〈v1, · · ·, vk〉`[dest L] ∈ κ(µ)) : ∧j
i=1 vi ∈Mρ(Mi)

⇒ vj+1 ∈ ρ(xj) ∧ · · · ∧ vk ∈ ρ(xk) ∧ (¬RM(`,D, ε,L) ⇒ (`,ε) ∈ ϕ) ∧ (γ,κ,ρ) |=∗ P :ϕ

Table 5. Analysis specification (2): (γ, κ, ρ) |=∗ P .

be read unexpectedly. For the rule of input-from-parent and input-from-child
we retrieve the mailboxes of possible parents and children of the current ambi-
ent respectively. The left part of the rule is quite similar to that of local-input
except that no annotations are implicitly added in the rule of input-from-child
as they have been declared explicitly. Especially we do not need a rule for the
attacker process as it could be any processes (well-formed) whose analysis has
been declared as above.

Semantic Properties. We prove the correctness of the analysis w.r.t. the oper-
ational semantics of ABoxed Ambients. It is convenient to prove the following
lemmata. The first says that estimates keep valid for substitution of closed terms
for variables. The second states that an estimate valid for a process P is also
valid for every process congruent to P .

Lemma 1. (γ, κ, ρ) |=µ P : ϕ and bMc ∈ ρ(bxc) imply (γ, κ, ρ) |=µ P{M/x} : ϕ.

Lemma 2. If P ≡ Q then (γ, κ, ρ) |=µ P : ϕ iff (γ, κ,ρ) |=µ Q : ϕ.

We are now ready to state the subject reduction result, which says our analysis
is semantically correct for both two variants of semantics:



9

Theorem 1. If P →R Q and (γ,κ,ρ) |=µ P : ϕ then (γ,κ,ρ) |=µ Q : ϕ.

Finally we conclude that the analysis can correctly predict when we can safely
remove the reference monitor:

Theorem 2. If (γ,κ,ρ) |=µ P : ∅ then RM can not abort P .

Example 2. For the ABoxed Ambients specification of WMF specified in Ex-
ample 1, an estimate satisfying (γ, κ, ρ) |=? WMF : ϕ is given by

γ : n? 7→ {A,S, B,KA,KB ,K} A 7→ {KA, K}
S 7→ {KA, KB} B 7→ {KB ,K}
KA 7→ {out A, in S} K 7→ {out A, in B}
KB 7→ {out S, in B}

κ : A 7→ {〈A〉ε[dest D]} B 7→ ∅
S 7→ {〈A〉ε[dest D]} KA 7→ {〈B,K〉A1 [dest S1]}
K 7→ {〈M〉A2 [dest B2]} KB 7→ {〈A,K〉S2 [dest B1]}

ρ : yK 7→ {K} zK 7→ {K}
z 7→ {M}

and ϕ = ∅ predicting that RM can not abort the process computation. ¤

4 Modelling Network Attacker

Protocols are executed in a multi-location environment where there may be
malicious attackers in some of places. In a flat space of network, we usually
take the form n?[P | •] in which P and • represent the implementation of a
system and its working environment respectively. For the hierarchical network,
however, there may be several local networks accessible to the attacker. Thus
we must provide our assumption about which local networks the attacker may
reside in. Suppose the attacker is on the network represented by the distinguished
ambient n? or a site ambient a, we declare attacker processes as one of top level
processes of them, formally n?[P | •] or a[Q | •]. Below we shall call a process
without attackers inside target process. We can use Psys[0/•] to get the target
process from a system implementation Psys.

To characterize all capabilities of network attackers, we aim at finding a para-
meterized formula FA DY

RM (∗) ; whenever an estimate (γ, κ, ρ, ϕ) satifies FA DY
RM (∗)

then (γ, κ, ρ) |=∗ R : ϕ for all attackers R. Before we proceed to define such a
formula, we must declare attackers’ power on the network at first. The pioneering
research in [9] describes the attacker capabilities as four conditions: (1) receiving
messages by eavesdropping, (2) decrypting messages using the key they know,
(3) constructing new messages (encrypted or plain), and (4) sending messages
they have. Here the conditions (1) and (4) are not clear enough if the principal
of local networks are concerned. For the first condition we need to provide as-
sumption that which location(s) the attacker can overhear; for the fourth one
we should clarify that which location(s) the attacker can send message to. We



10

turn to the following adjusted Dolev-Yao condition; the design idea is that to
guarantee any flaw of a protocol can be detected, the attacker should be able to
control over any network resource he might gain in the real world.

a. Eavesdropping on any messages presenting in the attacker-nested location
(declared by the attacker process);

b. Decrypting messages using the key the attacker knows;
c. Constructing both encrypted and plain messages;
d. Sending messages to any attacker-reachable sites;
e. Initially the attacker has some knowledge and a private channel is allocated

for all attackers to share information with each other.

While the first three conditions are straightforward, we explain the last two in
detail. The forth item declares that the attacker can deliver messages to any
reachable site. We define the concept ”reachable” based on the knowledge of the
attacker: there is a route (consists of a series of sites) from attacker-nested place
to a destination along which each name of the site is known by the attacker.
For example, consider the network in Figure 1 again and suppose the attacker
resides in the office. We then colored the tree in Figure 1 as below.

where grey nodes denotes attacker-invisible sites and white nodes represent the
sites whose names are knowable to the attacker. As the figure shows, Compu-
tation Center is not reachable to the attacker-composed messages. Neither is
Server although its name is known by the bad guy. Finally the fifth item allows
attackers attack system by collusion. This is a strong assumption about at-
tacker’s capability: it always takes time to broadcast messages among attackers
in reality; also we maximize attacker’s power by assuming all malicious entities
share information with each other. However, this only implies that we may get
over-estimates but no flaw of a security protocol can be left over.

We follow the approach of [2] and state that a target process P is of type
(Nf ,AK) whenever: (1) P is closed, (2) its free names are in Nf , and (3) all
the arities used by input and output are in AK. We can easily find minimal Nf

and AK so that P is of type (Nf ,AK). To charatacterise all attackers R, we
have adopted a few assumptions and applied techniques to translate R into its
semantically equivalent process R in order to have control over the infinite names
and labels that attackers may have. Accordingly we have specified the formula
FA DY

RM (∗); the idea is to add a series of constraints to an estimate so that the



11

adjusted conditions can be implied from the estimate. For detailed description,
please refer to [19].

We can establish the correctness of the adjusted Dolev-Yao condition for
ABoxed Ambients in the following two theorems. The first state that estimates
satisfying FA DY

RM (∗) are also valid for all attackers in site ∗.

Theorem 3. If an estimate (γ,κ,ρ, ϕ) satisfies FA DY
RM (∗) of type (Nf ,AK) then

(γ,κ,ρ) |=∗ R: ϕ for all well-formed processes R of type (Nf ,AK).

Now assume n?[Psys] is the implementation of a system and a set of attacker-
nesting places of Psys is in the set I, we prove that estimates satisfying ∧∗∈IFA DY

RM

(∗) are valid for all attackers in the system:

Theorem 4. If (γ,κ,ρ) |=? Psys[0/•] : ϕ and (γ,κ,ρ, ϕ) satisfies ∧∗∈IFA DY
RM (∗)

of type (Nf ,AK), then (γ,κ,ρ) |=? Psys[R/•] : ϕ for all attackers R.

5 ABox-Ambients Tool

We aim at developing an automatic tool to compute our control flow analysis
correctly and efficiently. It can be shown that there always is a least estimate
of γ, κ, ρ and ϕ for any process P such that (γ,κ,ρ) |=? P : ϕ. The aim of the
tool is to compute such a least (γ, κ, ρ, ϕ) for a given process. The generic strat-
egy of implementing constraint-based analysis is to translate an analysis into a
suitable constraint language and then compute the least estimate of these con-
straints with a standard constraint solver. We adopt Succinct Solver 2.0 [16],
an expressive fragment of first-order predicate logic, as our constraint solver to
obtain an efficient tool. The solver takes constraints encoded with Alternation-
free Least Fixed Point logic (ALFP) as input and gives the least solution of a
program analysis as output. The transforming of the analysis into ALFP pro-
ceeds in three steps. First we transform the analysis from succinct form into
its verbose form [17] so that every analysis component has global scope. This
is because the ALFP recognized by Succinct Solver can not provide scoping
mechanisms for predicates. Second we translate the analysis and the attacker
formulae into ALFP. This is conducted in a series of straightforward encodings,
for instance, representing sets as predicates, and encoding annotations in com-
munication primitives. Finally the analysis and the attacker formulae are turned
into a generation function G that takes a process as argument and returns its
analysis in the form of ALFP formulae.

As explained in [16], the time for solving a formula in Succinct Solver is
polynomial in the size of a finite universe of atomic values, e.g. canonical names
and capabilities, over which a formula is interpreted. Suppose the size of the
universe is N , then a simple worst-case estimate of execution time is about
O(N1+τ ) where τ is the maximal nesting depth of quantifiers in the clause. For
our implementation, the depth of nesting is mainly given by the length of the
sequences specified in communication.



12

6 Protocol Validation

Protocol validation is usually based on many assumptions. For instance, most
formal techniques assume that cryptography is perfect, the master keys are al-
ways securely stored and retrieved. In this section we first discuss how to use
our calculus to model key-store and key-retrieving and thereby protocols can be
validated under fewer assumptions. By doing so, we expect that the approach
can provide system designer more useful information. We then validate WMF
and its two variants in a series of configurations, a set of assumptions about
the network hierarchy, the locations of different roles and attackers. In all the
experiments we have taken the number of each role (except server) to be 3 in
order to ensure that the man-in-the-middle attack can be modeled.

Validating Protocol with Key-retrieving. Our first attempt is to model a data
file storing master keys on the server in plain text. This can be formalised as:

KeyTable = datafile[!〈n1, K1〉◦ε [dest D]]| · · · |!〈nm,Km〉◦ε [dest D]]

where ni and Ki are the identity of a principle and its key respectively. Replica-
tion ‘!’ is used to present the data of the table is persistent. Querying the table
can be encoded as:

Keytable|(ni; yk)datafile
ε [destD]. · · · .yk · ··

where we take advantage of pattern match to check the name ni in input and
acquire its key by variable binding. Following this design idea, we can update
the specification of Example 1 and validate WMF under the configuration whose
ambient representation is visualized as:

The experiment result shows no flaw is found in the system. Next suppose there
are a large amount of secret keys to store and then a dedicated database server
is assigned to support the service of an authentication server. In the real life the
two servers are usually located in a secure area, e.g. a local network, to which no
attackers can physically access. We then validate WMF on the network whose
ambient structure is presented as below.

Here the database query is described by narration

1. S → DBS: A
2. DBS → S: A, KA



13

Our experiment result shows that the protocol may be flawed and ϕ is

{(A2i, `•)|1 ≤ i ≤ n} ∪ {(S2, `•)} ∪ {(`•, S1)}
∪{(`•, B1j)|1 ≤ j ≤ n} ∪ {(`•, B2j)|1 ≤ j ≤ n}

Actually the protocol is flawed as illustrated by below two attacks.

(i) MA → S : A, [B, KM1 ]KM2

MDB → S : A,KM2

S → B : [A,KM1 ]KB

MA → B : [m]KM1

(ii) A → S : A, [B, K]KA

MDB → S : B, KM

S → MB : [A,K]KM

A → B : [m]K

For attack (i), B finally believes that he is getting message from A but he is
actually reading messages composed by the attacker. For attack (ii) the attacker
cheats the server S by sending it a fake master key KM and finally the attacker
can decrypt any message sent from A to B. The root cause of the flaw is that the
authentication server can not distinguish the packets from the database server
with those from attackers. We can fix the problem by either encrypting messages
sent between the servers or simply modifying their communication as:

1. S → DBS: A
2. DBS → S: u,A, KA

where a new name u is introduced and initially known only by the two servers.
Our experiment shows that the protocol is flawless for both the two solutions.

Optimizing Protocol in Hierarchical Networks. We now consider two variants of
WMF: one where the first message (A → S) is not encrypted and one where the
second message (S → B) is not encrypted; the protocol narration is as below.

Variant 1 : A → S : u1, A, B, K
S → B : [A,K]KB

A → B : [m]K

Variant 2 : A → S : A, [B,K]KA

S → B : u2, A, K
A → B : [m]K

Here we assume u1 is initially only known by A and S while u2 is restricted
over B and S. We validate the two protocols in a number of configurations; the
experiment results are summarized in Table 6.

As shown in the first line of the table, the analysis reports that both the two
variants are flawed since the session key K can be acquired by the attacker. For
the second configuration, we assume the initiators and the server are located
in the office that is not accessible to the attacker. Now the validation results
show the first variant is still flawed but this time the second is secure. This
is because the attacker can not overhear or intercept messages on the office
network and that actually provides a private channel for the initiators and the
server. Now we state Variant 2 has advantages over WMF in efficiency and
space-consumption considering both of them are secure because (1) the variant
saves time in encrypting and decrypting values that is usually the most time-
consuming operations in security protocol, and (2) it sharply reduces the size of a
data file or data base by storing much less master keys than before. Similarly we



14

Table 6. Experiments on validating protocols in hierarchical networks.

switch the position of the initiators for the responders in the third configuration;
this time the first variant is secure as expected (see third row of Table 6).

The fourth configuration assumes the responders may appear on both the
Internet and the office while the last one supposes a malicious guy gain access
to the office. In both the two cases the variants are flawed as the attacker can
acquire the session key K and thus the security of the protocols is compromised.

Summarizing the results of the experiment, we conclude that it is possible to
optimize a protocol by considering network structures and principals’ locations;
in particular, the analysis can help system designers check whether the adapted
protocol still guarantee authentication and provide information to track flaws if
there are any.

7 Conclusion

We have shown that hierarchical networks and protocols applied on such net-
works may be formalized as ABoxed Ambients processes so that a static analysis
can pinpoint a wide-variety of errors in security protocols. We have also presented
a new attacker model based on the Dolev-Yao model in order to comply with
the special network considered in this paper. We have argued that the model
gives the attacker reasonable abilities to conduct passive and positive attack to
protocols.

The analysis has been implemented using the Succinct Solver 2.0 and has
then been applied to a number of examples. We would like to extend our cal-



15

culus to deal with asymmetric cryptography. Also it would be interesting to see
how the approach scales to a large protocol which is developed for the environ-
ment of hierarchial networks.

Comparison with related work. A number of formal methods have been devel-
oped in the field of protocol analysis. We shall compare them with our work in
two aspects: the approaches of protocol formalism and the analysis techniques
used to validate protocols. Many papers have considered to formulate protocols
with process calculi such as CSP [12], CCS [10], Lysa [2, 3] and ambient calculus
[18]. We consider ambient calculi as a proper choice with regard to the network
of interest; the scope of the message of local communication is clearly given
by the boundary of ambients. With CSP, CCS and Lysa, one may use private
channels to model local communication between principals. But the resulting
specification would be harder to understand compared to the original topology
of the modelled network. Ambients, however, can formulate the principle of local
networks in a quite nature way.

Boxed Ambients is first used to model security protocol in [18] where a control
flow analysis is also developed to track communication happening on different
locations. But there is no attacker defined to model the realistic environment. We
also have modified the calculus for the purpose of protocol validation specially,
e.g. extending the input with a pattern match to model value-checking, adding
annotations to declare protocol intentions explicitly.

Based on formal protocol specification, a lot of techniques have been devel-
oped to analyze protocols automatically. Two of main trends close to our ap-
proach are type systems and model checking. Type systems have been developed
for security protocol analysis, e.g. by Abadi [1] and by Gordon and Jeffery [11].
The results show that type checking in these systems can be done in polynomial
time while type inference takes exponential time. In comparison, the control flow
analysis presented here retains polynomial time.

Model checking is a method that explores each state in a protocol; see e.g.
FDR [13], Interrogator [14] and Brutus [8]. Since the state space for security
protocol is usually infinite, the approach based on state space exploration can
not guarantee termination while our approach adopts approximation to deal
with arbitrarily long execution sequences. On the other hand, model checking
techniques are often quite efficient in finding flaws if there is any in a protocol.
Thus it can be seen as complementary to control flow analysis techniques.

The major advantages of static analysis approach taken here can be sum-
marized as: first, the least solution always exists and can be computed in low
polynomial time; second, the approach is operational oriented so that the cor-
rectness of the analysis can be established w.r.t. a formal operation semantics;
last but not least, the approach can be fully automated.



16

References

1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–
786, 1999.

2. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Static validation
of security protocols. Journal of Computer Security, 13(3):347–390, 2005.

3. M. Buchholtz, H. R. Nielson, and F. Nielson. A calculus for control flow analysis
of security protocols. Int. J. Inf. Sec., 2(3-4):145–167, 2004.

4. M. Bugliesi, G. Castagna, and S. Crafa. Boxed Ambients. In TACS, pages 38–63,
2001.

5. M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile am-
bients. In CONCUR, pages 102–120, 2001.

6. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. In SOSP,
pages 1–13, 1989.

7. L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

8. E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Brutus.
ACM Transactions on Software Engineering and Methodology, 9(4):443–487, 2000.

9. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–207, 1983.

10. R. Focardi and R. Gorrieri. A taxonomy of security properties for process algebras.
Journal of Computer Security, 3(1):5–34, 1995.

11. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal
of Computer Security, 11(4):451–520, 2003.

12. G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett., 56(3):131–133, 1995.

13. G. Lowe. Breaking and fixing the needham-schroeder public-key protocol using
FDR. In TACAS, pages 147–166, 1996.

14. J. K. Millen. The interrogator: A tool for cryptographic protocol security. In IEEE
Symposium on Security and Privacy, pages 134–141, 1984.

15. F. Nielson, H. R. Nielson, and R. R. Hansen. Validating firewalls using flow logics.
Theor. Comput. Sci., 283(2):381–418, 2002.

16. F. Nielson, H. Seidl, and H. R. Nielson. A succinct solver for ALFP. Nord. J.
Comput., 9(4):335–372, 2002.

17. H. R. Nielson and F. Nielson. Flow Logic: A multi-paradigmatic approach to static
analysis. In The Essence of Computation, pages 223–244, 2002.

18. H. R. Nielson, F. Nielson, and M. Buchholtz. Security for Mobility. In FOSAD,
pages 207–265, 2002.

19. Y. Zhang. Static analysis for protocol validation in hierarchical networks. Master’s
thesis, Technical University of Denmark, 2005.


