
FSM Partitioning and Synthesis Targeting an 
Embedded Autonomous FSM

Abstract: This paper concerns the synthesis of complex finite state machines (FSM) by a 
novel partitioning and encoding approach. The target architecture is a generalization of 
FSM implementations with embedded loadable counters. Starting with a subgraph extrac-
tion constraints driven partitioning generates three parts, a sequencing, a command and 
an autonomous logic block. By solving the encoding problem simultaneously for all 
blocks the total area of the partitioned circuits is minimized. Experimental results demon-
strate the efficiency of the proposed approach.
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1  Introduction

Starting at a high level description synthesis programs produce large finite state machines (FSM) as a 
RT-level specification of the control part. The controller is now synthesized and tuned to a suitable tar-
get architecture [KNRR88, ZSRM90, GeSa92, Sauc93, DeMi94]. In this paper a novel partitioning 
approach is proposed for the synthesis of complex finite state machines. 

A number of FSM partitioning methods have been published concerning algebraic [HaSt66], general 
[Deva89, AsDN92,YaOI93] and linear [Putk91, JoKo91, BaBr93, KGFF94] partitioning which are 
based on different communication structures of the subFSMs. In a different manner of partitioning a 
PLA-counter architecture is used [AmBa89]. A subgraph is extracted there by splitting off unforked 
chains of states which are realized by an embedded loadable counter. The remaining subgraph forms 
the so- called sequencing PLA. In [Paul89] this approach is applied to a generalized sequencer architec-
ture. Using a special associative programmable array structure in [KoWa93] the design costs are drasti-
cally diminished but the realization costs are insignificantly enlarged in comparison with the 
conventional approach. 

The partitioning approach of this paper based on a target architecture using an autonomous automaton 
and PLAs is a generalisation of FSM partitioning with embedded loadable counters [AmBa89]. The 
partitioning by splitting off an autonomous automaton and the simultaneous state encoding of the com-
municating subFSMs allows us to exploit an enlarged optimization potential and leads to significant 
improvements of the synthesized structures.

The method starts with a subgraph extraction algorithm using a modified state transition graph gener-
ated from the given state transition table. Subsequently, constraints driven partitioning separates an 
autonomous automaton and a remaining FSM. This results in generating three symbolical descriptions 
corresponding to a sequencing, a command and a autonomous logic block. The functional models are 
transformed to a special common state representation. This enables us to solve the encoding problem 
for all logic blocks simultaneously. Thus the following logic optimization minimizes the total costs. 
Experimental results demonstrate the efficiency of the proposed approach. 

The paper is organized as follows. In the next section we discuss the target architecture. Section 3 
describes the partitioning method. The simultaneous state encoding and logic optimization is outlined 
in section 4. The approach is illustrated by a small example. Finally, section 5 underlines the advan-
tages of this approach by experimental results. 



2  Counter based Architecture and Extension using Autonomous FSM

By adapting the controller structure to properties of the state transition graph we can exploit an 
increased optimization potential for the FSM realization. One encoding and optimization approach 
based on the replacement of the state register by a loadable counter (Figure 1a) was proposed in 
[AmBa87]. The state transition function is realized there by the sequencing block cooperating with a 
loadable counter. The output function is separately implemented by the command block. A PLA cost 
reduction can be achieved because each state transition, which can be carried out by counting, saves 
one or more rows of the original sequencing PLA. While counting mode the signal load equals zero and 
the next state outputs are „don‘t care“. The counter based FSM realization is well suited for state transi-
tion graphs with a relatively small number of forks. Taking into account the restricted encoding con-
straints [DeMi85] for assignment of states covered by the counter and of states remaining in the 
sequencing block a considerable PLA cost reduction is possible [AmBa89]. 

We replace the loadable counter (Figure 1a) by an autonomous block (automaton) containing multi-
plexor, register and PLA (Figure 1b). This leads to an increased optimization potential. The autono-
mous block which is independent of input signals corresponds to a subgraph of the given state transition 
graph which contains not only unforked chains of states but also arbitrarily encoded state chains, joins 
and selected loops. To exploit the potential of this structure a novel design approach is presented in the 
next sections.

Figure 1. Structural approach using autonomous FSM instead of loadable counter

3  A Partitioning Approach based on Autonomous FSM Model

3.1  Preliminary Definitions

We recall some basic definitions helpful for the subsequent problem formulations.

(1) A finite state machine (FSM), M, is a tuple (X, Y, Z, f, g, Z0) where X is a finite input alphabet, Y is 
the output alphabet, Z is a finite set of states, f is the transition function defined by , 

, is the set of initial states, g is the output function, where M is called Moore and Mealy FSM 
if g:  and g: , respectively.

(2) An autonomous FSM, A, is a FSM, where , f: , and g: .
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(3) The state transition table (STT) is a tabular representation of M. Each row can be described as a  
4-tupel, (ini, psi, nsi, outi) | i  {1,2,...,k}, where k is the number of rows, ini and outi are assignments 
of the input and output variables, respectively, psi and nsi are symbolic present state (ps) and next state 
(ns), respectively.

(4) The directed graph G(V,E,W), called state transition graph (STG), is a graphical representation of 
M, where V, V=Z, is the set of vertices, E, , is the set of edges ei = (psi, nsi) and W ={(in(ei), 
out(ei)) | } is the set of weights of the edges.

(5) State zi is called predecessor of zj, zi = Pre(zj,) if (zi, zj)  E and successor of zj, zi = Post(zj) if 
(zj, zi)  E.

3.2  Problem Formulation and Algorithmic Solution

The intended subgraph extraction corresponds to a cut through nodes of the given STG. Partitioning by 
splitting off an autonomous automaton aims at finding a bipartition of the given FSM description which 
minimizes the overall hardware costs of the communicating logic blocks. The partitioning problem is 
formalized as follows. We start with the unweighted Graph G = (V,E) derived from the given STT. 

 with  and  is a subgraph of G. We investigate the set  of all 
subgraphs  with , i.e. each vertex of  has at most one successor.  
Let r(e) be a weight of the edge e, e E where r(e) is used to describe the potential decreasing of the 
costs of the remaining (sequencing) subFSM by splitting off this edge e. The weight for a whole sub-
graph  is given by . The partitioning task consists in: 
                  

The depicted algorithm Subgraph generates successively by local decisions a subgraph which approxi-
mately satisfies the above partitioning task. The measure r is based on heuristics proposed in [AmBa89] 
for selecting state chains. We extend the partitioning procedure and r with regard to splitting of an 
autonomous automaton involving subtrees (joining edges) and loops. As an example, the emphasized 
subgraph in Figure 2b holds these properties. 
We compare the obtainable subgraphs for the two different architectures of Figure 1a and b. The 
emphasized subgraph Figure 2a of a given STG is computed for the case of an embedded loadable 
counter structure Figure 1a. The subgraph in Figure 2b for an embedded autonomous automaton con-
tains a bigger number of edges. Therefore and the number of products covered by the autonomous 
automaton is enlarged in this example from 17 to 21. Additionally each join (3,4),(8,4) and (4,6),(5,6) 
can be covered by one product of the autonomous block. 

Figure 2. Comparison of the obtainable subgraphs for the two different architectures of Figure 1a and b
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Algorithm Subgraph(G): 
;  ; ;

forall( ){ 
if (  ) { // branch

find | such that
forall

;
;

}
elseif   {  // chain

;
;

}
else  ;

}
; // autonomous block

; // sequencing block

The implemented algorithm subgraph [FeMu93] uses two main heuristics influencing the edge selec-
tion as follows: 
  Heuristic A: Give preference to the encoding constraints of the sequencing block. 
  Heuristic B: To minimize the autonomous block give preference to joining edges with respect to 

face embedding constraints [DeMi85]. 
Figure 3 illustrates the proposed approach for a small FSM example (STT in Figure 3a used in 
[AmBa89]). The selected subgraph = ({1,2,3,0},{(1,2),(2,3),(3,0),(0,0)} forms the autonomous 
block A (Figure 3c) and saves rows g and i of the sequencing block, includes self loop b and takes into 
account the face encoding constraint (3,0) as option for the subsequent simultaneous state encoding. 

Figure 3. Illustration of subgraph extraction 

4  Simultaneous State Encoding and Logic Optimization

4.1  Common State Encoding of Partitioned Blocks

The structural approach proposed above implies the property that the sequencing block S (Figure 1 and 
Figure 3c), the autonomous block A and the command block C are fed by one common register. There-
fore the state encoding of partitioned blocks influences the needed area for combinational logic signifi-
cantly. For minimizing the overall cost we have to solve the following state assignment problem: 
There are given the FSMs S, A and C with the state sets ZS, ZA and ZC, respectively. The state sets ZS, 
ZA and ZC are identical or at least overlapping. The task is to find a code for the set ZS ZA ZC such 
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that after logic minimization the overall costs for the three blocks S, A and C are minimal. 
Focusing the PLA based controller structures the two level logic optimization task can be reduced to 
satisfy a set of encoding constraints EC (M) for a state transition table STT of a FSM M [DeMi85]. The 
computed partition of M into S, A and C allows to group the set of encoding constraints in the form: 
             
and to reduce the set by deleting the interacting constraints. We get the remaining set of constraints: 
                                                     .  
To solve this reduced encoding problem we insert the temporary splitting tupels 100, 010 and 001 into 
the input part of block S, A and C, respectively. We now obtain a new simultaneous state encoding 
model illustrated for our example in Figure 4a in KISS notation [SSLM92]. Because the inserted split-
ting tupels are one hot encoded they exclude the encoding constraints 

 exceeding the logic block boundaries. Thus the simultaneous 
state encoding model can be handled by common state assignment tools like NOVA [ViSa89]. Involv-
ing all encoding constraints inside S, A, C in the state assignment process leads to a minimized total 
combinational cost for all blocks. For our example, the results of encoding are depicted in Figure 4b.

Figure 4. Example of simultaneous state encoding and updating logic optimization task

4.2  Updating Logic Optimization Task

After encoding we have to update the optimization task by the steps: 
1. Substitute symbolic states in the blocks S, A and C by computed binary codes. 
2. Remove all splitting tupels in S‘, A‘ and C‘. 
3. Include OFF set in S‘ defined by load = 0, 

 i.e. block A operates autonomously (Figure 3c block S). 
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 .i 5
 .o 4
 .s 4
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 --100 3 0 ----
 --100 0 0 ----
 --100 2 3 ----
 --100 1 2 ----
# sequencing block S
 00010 0 2 ---1
 1-010 0 3 ---1
 00010 2 2 ---1
 10010 2 1 ---1
 10010 3 1 ---1
# command block C
 00001 0 ~ 10--
 01001 0 ~ 10--
 1-001 0 ~ 10--
 00001 2 ~ -01-
 10001 2 ~ -01-
 -1001 2 ~ -01-
 00001 3 ~ 0-1-
 10001 3 ~ 0-1-
 -1001 3 ~ 0-1-
 --001 1 ~ 110-
# state assignment:
 .code 3 11
 .code 0 00
 .code 2 10
 .code 1 01
a) State encoding model with addi-
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010 and 001
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 01 10
 10 11
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 --01 110
b) Truth tables (.type fr) of encoded 
blocks (deleted splitting tupel)



Figure 4a shows the simultaneous encoding model including inserted splitting tupels and the resulting 
overall state assignment using NOVA [ViSa89]. The tasks for the subsequent logic optimization defined 
by truth tables S‘, A‘ and C‘ are illustrated in Figure 4b. PLA descriptions of the minimized blocks 
obtained by means of ESPRESSO [BMHS84] for overall two level minimization are depicted in 
Figure 4c. 
For our example, Table 1 summarizes characteristics of the FSM partitioning compared to conventional 
single FSM and vertical partitioning using the PLA cost function areaPLA = (2*(#I) + (#O))*(#PT) with 
number of inputs #I, outputs #O and product terms #PT, respectively. 

TABLE 1. Characteristics of FSM partitioning for our small example

5  Experiments and Application Results

This partitioning and optimization approach is implemented in the program CNT. It is embedded in a 
experimental environment using logic synthesis tools NOVA, ESPRESSO and SYNOPSYS as shown 
in Figure 5. 

Figure 5. Interaction of implemented tool CNT to logic synthesis tools NOVA, ESPRESSO and SYNOPSYS

Table 2 presents experimental results obtained by CNT for MCNC FSM Benchmarks [Yang91]. In rela-
tion to areaPLA of a single PLA realization design improvements are compared using heuristics A and B 
for the constraints driven partitioning of state transition graph. Significant area savings are achieved 
especially for Moore FSMs (marked by *), FSMs with mainly Moore behaviour (marked by #) and 
larger FSM by exploiting the heuristic B

TABLE 2. Results obtained for MCNC FSM Benchmarks using heuristic A or B

FSM 
architecture

single FSM vertical partitioning [Paul89] horizontal partitioning using 
autonomous block

structure conventional single PLA sequencing + command PLA sequ. + autonom. + com. PLA
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Figure 6. Experimental results using large Moore sequencers

Industrially used Moore sequencers are characterized by the property that in many STGs a large part of 
edges are unconditional transitions called chains and DC-trees [KoWa93]. CNT exploits this additional 
optimization potential for the partitioning and overall optimization of separated logic blocks. Figure 6 
shows that methods implemented in the program CNT are especially suitable for large Moore sequen-
zers like application specific sequencers from IMEC (also used in [GeSa92]) whose graph representa-
tion contains a relatively small number of forks.

6  Conclusions and Future Works

We have presented an approach for partitioning and state encoding of FSM based on extracting an 
autonomous FSM and creating a simultaneous state encoding model. The implemented procedure CNT 
leads especially for large Moore sequencers to significant improvements of the synthesized designs. 
The procedure CNT should be closer adapted to qualitative and quantitative characteristics of the given 
STG (like number and topology of state chains and joins). We currently extent the experimental envi-
ronment including synthesis tools SIS and SYNOPSYS and round off our approach by taking into 
account random logic blocks and adapted heuristics. The proposed partitioning approach is supposed to 
be a helpful starting step for multi-level synthesis using the decreased complexity of relatively inde-
pendent subproblems. Another extension aims at programmable logic. In this case the partitioned 
blocks have to fulfill strong limitations concerning the number of inputs, outputs and products.
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