
FSM Partitioning and Synthesis Targeting an
Embedded Autonomous FSM

Abstract: This paper concerns the synthesis of complex finite state machines (FSM) by a
novel partitioning and encoding approach. The target architecture is a generalization of
FSM implementations with embedded loadable counters. Starting with a subgraph extrac-
tion constraints driven partitioning generates three parts, a sequencing, a command and
an autonomous logic block. By solving the encoding problem simultaneously for all
blocks the total area of the partitioned circuits is minimized. Experimental results demon-
strate the efficiency of the proposed approach.

Keywords: Finite state machine, autonomous automaton, partitioning, state encoding

1 Introduction

Starting at a high level description synthesis programs produce large finite state machines (FSM) as a
RT-level specification of the control part. The controller is now synthesized and tuned to a suitable tar-
get architecture [KNRR88, ZSRM90, GeSa92, Sauc93, DeMi94]. In this paper a novel partitioning
approach is proposed for the synthesis of complex finite state machines.

A number of FSM partitioning methods have been published concerning algebraic [HaSt66], general
[Deva89, AsDN92,YaOI93] and linear [Putk91, JoKo91, BaBr93, KGFF94] partitioning which are
based on different communication structures of the subFSMs. In a different manner of partitioning a
PLA-counter architecture is used [AmBa89]. A subgraph is extracted there by splitting off unforked
chains of states which are realized by an embedded loadable counter. The remaining subgraph forms
the so- called sequencing PLA. In [Paul89] this approach is applied to a generalized sequencer architec-
ture. Using a special associative programmable array structure in [KoWa93] the design costs are drasti-
cally diminished but the realization costs are insignificantly enlarged in comparison with the
conventional approach.

The partitioning approach of this paper based on a target architecture using an autonomous automaton
and PLAs is a generalisation of FSM partitioning with embedded loadable counters [AmBa89]. The
partitioning by splitting off an autonomous automaton and the simultaneous state encoding of the com-
municating subFSMs allows us to exploit an enlarged optimization potential and leads to significant
improvements of the synthesized structures.

The method starts with a subgraph extraction algorithm using a modified state transition graph gener-
ated from the given state transition table. Subsequently, constraints driven partitioning separates an
autonomous automaton and a remaining FSM. This results in generating three symbolical descriptions
corresponding to a sequencing, a command and a autonomous logic block. The functional models are
transformed to a special common state representation. This enables us to solve the encoding problem
for all logic blocks simultaneously. Thus the following logic optimization minimizes the total costs.
Experimental results demonstrate the efficiency of the proposed approach.

The paper is organized as follows. In the next section we discuss the target architecture. Section 3
describes the partitioning method. The simultaneous state encoding and logic optimization is outlined
in section 4. The approach is illustrated by a small example. Finally, section 5 underlines the advan-
tages of this approach by experimental results.

2 Counter based Architecture and Extension using Autonomous FSM

By adapting the controller structure to properties of the state transition graph we can exploit an
increased optimization potential for the FSM realization. One encoding and optimization approach
based on the replacement of the state register by a loadable counter (Figure 1a) was proposed in
[AmBa87]. The state transition function is realized there by the sequencing block cooperating with a
loadable counter. The output function is separately implemented by the command block. A PLA cost
reduction can be achieved because each state transition, which can be carried out by counting, saves
one or more rows of the original sequencing PLA. While counting mode the signal load equals zero and
the next state outputs are „don‘t care“. The counter based FSM realization is well suited for state transi-
tion graphs with a relatively small number of forks. Taking into account the restricted encoding con-
straints [DeMi85] for assignment of states covered by the counter and of states remaining in the
sequencing block a considerable PLA cost reduction is possible [AmBa89].

We replace the loadable counter (Figure 1a) by an autonomous block (automaton) containing multi-
plexor, register and PLA (Figure 1b). This leads to an increased optimization potential. The autono-
mous block which is independent of input signals corresponds to a subgraph of the given state transition
graph which contains not only unforked chains of states but also arbitrarily encoded state chains, joins
and selected loops. To exploit the potential of this structure a novel design approach is presented in the
next sections.

Figure 1. Structural approach using autonomous FSM instead of loadable counter

3 A Partitioning Approach based on Autonomous FSM Model

3.1 Preliminary Definitions

We recall some basic definitions helpful for the subsequent problem formulations.

(1) A finite state machine (FSM), M, is a tuple (X, Y, Z, f, g, Z0) where X is a finite input alphabet, Y is
the output alphabet, Z is a finite set of states, f is the transition function defined by ,

, is the set of initial states, g is the output function, where M is called Moore and Mealy FSM
if g: and g: , respectively.

(2) An autonomous FSM, A, is a FSM, where , f: , and g: .

AND Array OR Array

AND Array OR Array

Clk

Zj(n+1)

Zj(n)

Xi

Yr

C: Command Block

S: Sequencing Block

Counter

OR AND

Register

Mux

Clk
Zj(n+1)

Zj(n)

Z‘‘j
Z‘j

A: Autonomous Block

Substitute

a) b)

load

X Z× Z→
Z0 Z0, Z⊆

Z Y→ X Z× Y→

X ∅= Z Z→ Z Y→

(3) The state transition table (STT) is a tabular representation of M. Each row can be described as a
4-tupel, (ini, psi, nsi, outi) | i {1,2,...,k}, where k is the number of rows, ini and outi are assignments
of the input and output variables, respectively, psi and nsi are symbolic present state (ps) and next state
(ns), respectively.

(4) The directed graph G(V,E,W), called state transition graph (STG), is a graphical representation of
M, where V, V=Z, is the set of vertices, E, , is the set of edges ei = (psi, nsi) and W ={(in(ei),
out(ei)) | } is the set of weights of the edges.

(5) State zi is called predecessor of zj, zi = Pre(zj,) if (zi, zj) E and successor of zj, zi = Post(zj) if
(zj, zi) E.

3.2 Problem Formulation and Algorithmic Solution

The intended subgraph extraction corresponds to a cut through nodes of the given STG. Partitioning by
splitting off an autonomous automaton aims at finding a bipartition of the given FSM description which
minimizes the overall hardware costs of the communicating logic blocks. The partitioning problem is
formalized as follows. We start with the unweighted Graph G = (V,E) derived from the given STT.

 with and is a subgraph of G. We investigate the set of all
subgraphs with , i.e. each vertex of has at most one successor.
Let r(e) be a weight of the edge e, e E where r(e) is used to describe the potential decreasing of the
costs of the remaining (sequencing) subFSM by splitting off this edge e. The weight for a whole sub-
graph is given by . The partitioning task consists in:

The depicted algorithm Subgraph generates successively by local decisions a subgraph which approxi-
mately satisfies the above partitioning task. The measure r is based on heuristics proposed in [AmBa89]
for selecting state chains. We extend the partitioning procedure and r with regard to splitting of an
autonomous automaton involving subtrees (joining edges) and loops. As an example, the emphasized
subgraph in Figure 2b holds these properties.
We compare the obtainable subgraphs for the two different architectures of Figure 1a and b. The
emphasized subgraph Figure 2a of a given STG is computed for the case of an embedded loadable
counter structure Figure 1a. The subgraph in Figure 2b for an embedded autonomous automaton con-
tains a bigger number of edges. Therefore and the number of products covered by the autonomous
automaton is enlarged in this example from 17 to 21. Additionally each join (3,4),(8,4) and (4,6),(5,6)
can be covered by one product of the autonomous block.

Figure 2. Comparison of the obtainable subgraphs for the two different architectures of Figure 1a and b

∈

E Z Z×⊆
ei E∈

∈
∈

G′ V′ E′,() V′ V⊆ E′ E⊆ V′ V′×()∩ Γ
G′ z z V′ |Post z() | 1≤→∈()∀ G′

∈

G′ R G′ V′ E′,()() Σ r e() e E′∈()=
 Find a Subgraph G′ G′, Γ, with a maximal weight R(G′ V′ E′),()∈

1

3

5 6

8

4

2
7

2

2

2 2 1

a) Subgraph (emphasized) for the b) Subgraph (emphasized) for the
 loadable counter architecture autonomous automaton architecture

2

1

3

4

4

1

3

5 6

8

4

2
7

2

2

2 2 1

2

1

3

4

4

Algorithm Subgraph(G):
; ; ;

forall(){
if () { // branch

find | such that
forall

;
;

}
elseif { // chain

;
;

}
else ;

}
; // autonomous block

; // sequencing block

The implemented algorithm subgraph [FeMu93] uses two main heuristics influencing the edge selec-
tion as follows:
 Heuristic A: Give preference to the encoding constraints of the sequencing block.
 Heuristic B: To minimize the autonomous block give preference to joining edges with respect to

face embedding constraints [DeMi85].
Figure 3 illustrates the proposed approach for a small FSM example (STT in Figure 3a used in
[AmBa89]). The selected subgraph = ({1,2,3,0},{(1,2),(2,3),(3,0),(0,0)} forms the autonomous
block A (Figure 3c) and saves rows g and i of the sequencing block, includes self loop b and takes into
account the face encoding constraint (3,0) as option for the subsequent simultaneous state encoding.

Figure 3. Illustration of subgraph extraction

4 Simultaneous State Encoding and Logic Optimization

4.1 Common State Encoding of Partitioned Blocks

The structural approach proposed above implies the property that the sequencing block S (Figure 1 and
Figure 3c), the autonomous block A and the command block C are fed by one common register. There-
fore the state encoding of partitioned blocks influences the needed area for combinational logic signifi-
cantly. For minimizing the overall cost we have to solve the following state assignment problem:
There are given the FSMs S, A and C with the state sets ZS, ZA and ZC, respectively. The state sets ZS,
ZA and ZC are identical or at least overlapping. The task is to find a code for the set ZS ZA ZC such

G V E R, ,()= V′ ∅= E′ ∅=
z V∈

S z() 1>
z′ S z()∈

z′′ S z()\ z′{ }∈ r z z″,() r z z′,()≤ →();
V′ V′ z z′,{ }∪=
E′ E′ z z′,(){ }∪=

S z()() 1=
z′ S z();=
V′ V′ z z′,{ }∪=
E′ E′ z z′,(){ }∪=

G′ V′ E′,()=
G″ V″ E″,() E″ E \ E′ and V″ z z′,{ } z z′,() E″∈()()∪== =

G′

10

3 2

a
c

b

d

e

f
h

g,i j

subgraph extraction

.i 2

.o 3

.p 10
a 00 0 2 10-
b 01 0 0 10-
c 1- 0 3 10-
d 00 2 2 -01
e 10 2 1 -01
f -1 2 3 -01
g 00 3 0 0-1
h 10 3 1 0-1
i -1 3 0 0-1
j -- 1 2 110

state transition
table

state transition
graph

symbolical representation
 of partitioned blocks

A: autonom. block S: sequencing block

C: command block

b -- 0 0 ---
f -- 2 3 ---
g,i-- 3 0 ---
j -- 1 2 ---

a 00 0 2 ---1
c 1- 0 3 ---1
d 00 2 2 ---1
e 10 2 1 ---1
h 10 3 1 ---1

a,b,c -- 0 ~ 10-
d,e,f -- 2 ~ -01
g,h,i -- 3 ~ 0-1
j -- 1 ~ 110

j -- 1 ~ ---0
f -1 2 ~ ---0
g 00 3 ~ ---0
i -1 3 ~ ---0
b 01 0 ~ ---0

loadunspecifieda) b) c)

 ∪ ∪

that after logic minimization the overall costs for the three blocks S, A and C are minimal.
Focusing the PLA based controller structures the two level logic optimization task can be reduced to
satisfy a set of encoding constraints EC (M) for a state transition table STT of a FSM M [DeMi85]. The
computed partition of M into S, A and C allows to group the set of encoding constraints in the form:

and to reduce the set by deleting the interacting constraints. We get the remaining set of constraints:
 .
To solve this reduced encoding problem we insert the temporary splitting tupels 100, 010 and 001 into
the input part of block S, A and C, respectively. We now obtain a new simultaneous state encoding
model illustrated for our example in Figure 4a in KISS notation [SSLM92]. Because the inserted split-
ting tupels are one hot encoded they exclude the encoding constraints

 exceeding the logic block boundaries. Thus the simultaneous
state encoding model can be handled by common state assignment tools like NOVA [ViSa89]. Involv-
ing all encoding constraints inside S, A, C in the state assignment process leads to a minimized total
combinational cost for all blocks. For our example, the results of encoding are depicted in Figure 4b.

Figure 4. Example of simultaneous state encoding and updating logic optimization task

4.2 Updating Logic Optimization Task

After encoding we have to update the optimization task by the steps:
1. Substitute symbolic states in the blocks S, A and C by computed binary codes.
2. Remove all splitting tupels in S‘, A‘ and C‘.
3. Include OFF set in S‘ defined by load = 0,

 i.e. block A operates autonomously (Figure 3c block S).

EC M() E= C S() E∪ C A() E∪ C C() EC S A,() EC S C,() EC A C,()∪∪∪

EC S() E∪ C A() E∪ C C()

EC S A,() EC S C,() EC A C,()∪∪

encoding task:
 .i 5
 .o 4
 .s 4
autonomous block A
 --100 3 0 ----
 --100 0 0 ----
 --100 2 3 ----
 --100 1 2 ----
sequencing block S
 00010 0 2 ---1
 1-010 0 3 ---1
 00010 2 2 ---1
 10010 2 1 ---1
 10010 3 1 ---1
command block C
 00001 0 ~ 10--
 01001 0 ~ 10--
 1-001 0 ~ 10--
 00001 2 ~ -01-
 10001 2 ~ -01-
 -1001 2 ~ -01-
 00001 3 ~ 0-1-
 10001 3 ~ 0-1-
 -1001 3 ~ 0-1-
 --001 1 ~ 110-
state assignment:
 .code 3 11
 .code 0 00
 .code 2 10
 .code 1 01
a) State encoding model with addi-
tional inserted splitting tupel 100,
010 and 001

autonomous block A“
 .i 2
 .o 2
 .s 2
 01 10
 10 11

sequencing block S“
 .i 4
 .o 3
 .p 3
 00-0 101
 101- 011
 1-00 111

command block C“
 .i 4
 .o 3
 .p 3
 --01 110
 --1- 001
 ---0 100

c) PLA description (.type f) of
optimized blocks

autonomous block A‘
 .i 2
 .o 2
 11 00
 00 00
 10 11
 01 10
sequencing block S‘
 .i 4
 .o 3
 0000 101
 1-00 111
 0010 101
 1010 011
 1011 011
 0011 --0
 0100 --0
 -11- --0
 --01 --0
command block C‘
 .i 4
 .o 3
 0000 10-
 0100 10-
 1-00 10-
 0010 -01
 1010 -01
 -110 -01
 0011 0-1
 1011 0-1
 -111 0-1
 --01 110
b) Truth tables (.type fr) of encoded
blocks (deleted splitting tupel)

Figure 4a shows the simultaneous encoding model including inserted splitting tupels and the resulting
overall state assignment using NOVA [ViSa89]. The tasks for the subsequent logic optimization defined
by truth tables S‘, A‘ and C‘ are illustrated in Figure 4b. PLA descriptions of the minimized blocks
obtained by means of ESPRESSO [BMHS84] for overall two level minimization are depicted in
Figure 4c.
For our example, Table 1 summarizes characteristics of the FSM partitioning compared to conventional
single FSM and vertical partitioning using the PLA cost function areaPLA = (2*(#I) + (#O))*(#PT) with
number of inputs #I, outputs #O and product terms #PT, respectively.

TABLE 1. Characteristics of FSM partitioning for our small example

5 Experiments and Application Results

This partitioning and optimization approach is implemented in the program CNT. It is embedded in a
experimental environment using logic synthesis tools NOVA, ESPRESSO and SYNOPSYS as shown
in Figure 5.

Figure 5. Interaction of implemented tool CNT to logic synthesis tools NOVA, ESPRESSO and SYNOPSYS

Table 2 presents experimental results obtained by CNT for MCNC FSM Benchmarks [Yang91]. In rela-
tion to areaPLA of a single PLA realization design improvements are compared using heuristics A and B
for the constraints driven partitioning of state transition graph. Significant area savings are achieved
especially for Moore FSMs (marked by *), FSMs with mainly Moore behaviour (marked by #) and
larger FSM by exploiting the heuristic B

TABLE 2. Results obtained for MCNC FSM Benchmarks using heuristic A or B

FSM
architecture

single FSM vertical partitioning [Paul89] horizontal partitioning using
autonomous block

structure conventional single PLA sequencing + command PLA sequ. + autonom. + com. PLA
areaPLA 91 50 + 21 = 71 12 + 21 + 33 = 66

FSM #PI #PO #ST #PT
single FSM partitioning

heuristic A
partitioning
heuristic B

tav
bbara
ex4 #)

mark1 *)

tss #)

tma *)

bbsse
cse
keyb #)

pma *)

styr
tbk
s298 *)

4
4
6
5
9
7
7
7
7
8
9
6
3

4
2
9

16
12
6
7
7
2
8

10
3
6

4
10
14
15
14
20
16
16
19
24
30
32
218

49
60
21
22
26
44
56
91
170
73
166

1569
1096

198
550
589
684
920
986
990

1617
1705
1925
4257
5310
23976

152
504
418
390
745
819

1096
1854
2274
1355
3412
4926
22524

152
606
418
402
738
782
1097
1417
1541
1077
4150
4499

19616

SYNOPSYS

CNTnova -t

espresso
-Dmany

fsm.kiss fsm.typ.plareport.code

fsm.typ.kiss

fsm.typ.pla

fsm.typ.vhdfsm.typ.scr

 .

Figure 6. Experimental results using large Moore sequencers

Industrially used Moore sequencers are characterized by the property that in many STGs a large part of
edges are unconditional transitions called chains and DC-trees [KoWa93]. CNT exploits this additional
optimization potential for the partitioning and overall optimization of separated logic blocks. Figure 6
shows that methods implemented in the program CNT are especially suitable for large Moore sequen-
zers like application specific sequencers from IMEC (also used in [GeSa92]) whose graph representa-
tion contains a relatively small number of forks.

6 Conclusions and Future Works

We have presented an approach for partitioning and state encoding of FSM based on extracting an
autonomous FSM and creating a simultaneous state encoding model. The implemented procedure CNT
leads especially for large Moore sequencers to significant improvements of the synthesized designs.
The procedure CNT should be closer adapted to qualitative and quantitative characteristics of the given
STG (like number and topology of state chains and joins). We currently extent the experimental envi-
ronment including synthesis tools SIS and SYNOPSYS and round off our approach by taking into
account random logic blocks and adapted heuristics. The proposed partitioning approach is supposed to
be a helpful starting step for multi-level synthesis using the decreased complexity of relatively inde-
pendent subproblems. Another extension aims at programmable logic. In this case the partitioned
blocks have to fulfill strong limitations concerning the number of inputs, outputs and products.

Bibliography
[AmBa87] Amann, R.; Baitinger, U.G.:New State Assignment Algorithms for Finite State Machines Using Counters

and Multiple-PLA/ROM Structures. ICCAD'87, pp. 20-23.

IMEC1 IMEC5 IMEC6 IMEC7 IMEC8 IMEC9 IMEC10

single PLA
two PLAs

0

10000

20000

30000

40000

50000

60000

partitioning heuristic A
partitioning heuristic B

area

FSM #PI #PO #ST #PT
IMEC1
IMEC5
IMEC6
IMEC7
IMEC8
IMEC9
IMEC10

14
6
6
9
8
19
5

67
76
150
138
35
94
120

101
213
75
178
227
190
96

221
353
152
409
366
134
130

[AmBa89] Amann, R.; Baitinger, U.G.: Optimal State Chains and State Codes in Finite State Machines. IEEE Transac-
tions on Computer-Aided Design, Vol. 8, No. 2, Febr. 1989, pp.153-170.

[AsDN92] Ashar, P.; Devadas, S.; Newton, A.R.: Sequential Logic Synthesis. Kluwer Academic Publishers, Boston/
Dortrecht/London, 1992.

[BaBr93] Baranov, S.; Bregman, L.: Automata Decomposition and Synthesis with PLAM. Microprocessing and
Microprogramming, North Holland, vol.38 (1993), pp.759-766.

[BHMS84] Brayton,R.; Hachtel, G.; McMullen, C.; Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for
VLSI Synthesis, Kluwer Academic Publishers, Boston, 1984.

[DeMi85] De Micheli, G.; Brayton, A.R.; Sangiovanni-Vincentelli, A.: Optimal State Assignment for Finite State
Machines. IEEE Trans. on CAD, Vol. 4, No. 4, 1985, pp. 269-284.

[DeMi94] De Micheli, G.: Synthesis and Optimization of Digital Circuits. Mc Graw-Hill, Inc., New York, 1994.

[Deva89] Devadas, S.: General Decomposition of sequential machines: Relationships to state assignment. Design
Automation Conference (DAC´89), June 1989, pp. 13-27.

[FeMu93] Feske, K.; Mulka, S.: FSM-Partitionierung und -Synthese auf der Grundlage von PLAs und Autonomen
Automaten. Tech.Report SFB - 358 - B1 - 5/93, FhG, IIS/EAS Dresden, November 1993.

[GeSa92] Gerbaux, L.; Saucier, G.: Automatic synthesis of large Moore sequencers. The European Conference on
Design Automation (EDAC‘92), 1992 March 1992, pp. 237-244.

[HaSt66] Hartmanis, J.; Stearns, R.E.: Algebraic Structure Theory of Sequential Machines. Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1966

[JoKo91] Jozwiak, L.; Kolsteren, J.C.: An Efficient Method for the Sequential General Decomposition of Sequential
Machines. Microprocessing and Microprogramming, North Holland, vol. 32 (1991), pp. 657-664).

[KNRR88] Kraemer, H.; Neher, M.; Rietsche,G.; Rosenstiel, W.: Data Path and Control Synthesis in the CADDY Syn-
thesis System. Intern. Workshop on Logic and Architectural Synthesis for Silicon Compilation, Grenoble,
1988.

[KGFF94] Koegst, M.; Grass, W.; Franke, G.; Feske, K.: Simultaneous State Encoding and Communication Cost Opti-
mization for FSM Net Design. Proc. of the Twentieth EUROMICRO conference, IEEE, IEE, Liverpool,
UK, September 1994.

[KoWa93] Kottsieper, J.; Waldschmidt, K.: Application of the novel associative programmable arry-structure Multi-
Match-PLA in synthesis of decomposed finite state machines. Microprocessing and Microprogramming,
vol.38, Sept.1993, pp. 455-465, pub. for EUROMICRO'93

Paul89] Paulin, G.P.: Horizontal Partitioning of PLA-based Finite State Machines. 26th ACM/IEEE Design Automa-
tion Conference, 1989, pp. 333-338.

[Putk91] Puttkammer, A.: Entwicklung, Implementierung und Bewertung von Methoden zur Modularisierung von
Steuerwerken. Diplomarbeit, Universität Passau, Fachbereich Mathematik und Informatik, 1991.

[Sauc93] Saucier, G.: Synthesis of a Finite State Machine on any target. EDAC'93, Paris.

[SSLM92] Sentovich, E. M.; Singh, K. J.; Lavagno, L. et al.,: SIS: A System for Sequential Circuit Synthesis", Memo-
randum No. UCB/ERL M92/41, Electronics Research Laboratory, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, CA, May 1992.

[ViSa89] Villa, T.; Sangiovanni-Vincentelli, A.: NOVA: State Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations. 26th ACM/IEEE Design Automation Conference, 1989.

[Yang91] Yang, S.: Logic Synthesis and Optimization Benchmarks, User Guide Version 3.0.

[YaOI93] Yang, W.-L.; Owens R. M.; Irwin, M. J.: Multi Way Decomposition based on Interconnect Complexity.
European Design Automation Conference (EURO-DAC '93), 1993, pp. 390-395.

[ZSRM90] Zegers, J.; Six, P.; Rabaey, J.; De Man, H.: CGE: Automatic Generation of Controllers in the CATHEDRAL-
II Silicon Compiler. EDAC‘90, Glasgow, 1990, pp.617-621.

	Abstract: This paper concerns the synthesis of complex finite state machines (FSM) by a novel partitioning and encoding approach. The target architecture is a generalization of FSM implementations with embedded loadable counters. Starting wit...
	Keywords: Finite state machine, autonomous automaton, partitioning, state encoding
	1 Introduction
	2 Counter based Architecture and Extension using Autonomous FSM
	Figure 1. Structural approach using autonomous FSM instead of loadable counter

	3 A Partitioning Approach based on Autonomous FSM Model
	3.1 Preliminary Definitions
	3.2 Problem Formulation and Algorithmic Solution
	Figure 2. Comparison of the obtainable subgraphs for the two different architectures of Figure 1a and b
	Figure 3. Illustration of subgraph extraction

	4 Simultaneous State Encoding and Logic Optimization
	4.1 Common State Encoding of Partitioned Blocks
	Figure 4. Example of simultaneous state encoding and updating logic optimization task

	4.2 Updating Logic Optimization Task

	structure
	conventional single PLA
	sequencing + command PLA
	sequ. + autonom. + com. PLA
	areaPLA
	91
	50 + 21 = 71
	12 + 21 + 33 = 66
	TABLE 1. Characteristics of FSM partitioning for our small example
	5 Experiments and Application Results
	Figure 5. Interaction of implemented tool CNT to logic synthesis tools NOVA, ESPRESSO and SYNOPSYS

	tav
	bbara
	ex4 #)
	mark1 *)
	tss #)
	tma *)
	bbsse
	cse
	keyb #)
	pma *)
	styr
	tbk
	s298 *)
	4
	4
	6
	5
	9
	7
	7
	7
	7
	8
	9
	6
	3
	4
	2
	9
	16
	12
	6
	7
	7
	2
	8
	10
	3
	6
	4
	10
	14
	15
	14
	20
	16
	16
	19
	24
	30
	32
	218
	49
	60
	21
	22
	26
	44
	56
	91
	170
	73
	166
	1569
	1096
	198
	550
	589
	684
	920
	986
	990
	1617
	1705
	1925
	4257
	5310
	23976
	152
	504
	418
	390
	745
	819
	1096
	1854
	2274
	1355
	3412
	4926
	22524
	152
	606
	418
	402
	738
	782
	1097
	1417
	1541
	1077
	4150
	4499
	19616
	TABLE 2. Results obtained for MCNC FSM Benchmarks using heuristic A or B

	IMEC1
	IMEC5
	IMEC6
	IMEC7
	IMEC8
	IMEC9
	IMEC10
	14
	6
	6
	9
	8
	19
	5
	67
	76
	150
	138
	35
	94
	120
	101
	213
	75
	178
	227
	190
	96
	221
	353
	152
	409
	366
	134
	130
	Figure 6. Experimental results using large Moore sequencers
	6 Conclusions and Future Works
	Bibliography

