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Abstract. We consider the problem of finding the optimal pair of string

patterns for discriminating between two sets of strings, i.e. finding the
pair of patterns that is best with respect to some appropriate scoring
function that gives higher scores to pattern pairs which occur more in
the strings of one set, but less in the other. We present an O(N2) time al-
gorithm for finding the optimal pair of substring patterns, where N is the
total length of the strings. The algorithm looks for all possible Boolean
combination of the patterns, e.g. patterns of the form p ∧ ¬q, which in-
dicates that the pattern pair is considered to match a given string s, if
p occurs in s, AND q does NOT occur in s. The same algorithm can
be applied to a variant of the problem where we are given a single set
of sequences along with a numeric attribute assigned to each sequence,
and the problem is to find the optimal pattern pair whose occurrence
in the sequences is correlated with this numeric attribute. An efficient
implementation based on suffix arrays is presented, and the algorithm is
applied to several nucleotide sequence datasets of moderate size, com-
bined with microarray gene expression data, aiming to find regulatory
elements that cooperate, complement, or compete with each other in en-
hancing and/or silencing certain genomic functions.

1 Introduction

Pattern discovery from biosequences is an important topic in Bioinformatics,
which has been, and is being, studied heavily with numerous variations and
applications (see [1] for a survey on earlier work). Although finding the single,
most significant pattern conserved across multiple sequences has important and
obvious applications, it is known that in many, if not most, actual cases, more
than one sequence element is responsible for the biological role of the sequences.
There are several methods which address this observation, focussing on finding
composite patterns. In [2], they develop a suffix tree based approach for discov-
ering structured motifs, which are two or more patterns separated by a certain



distance, similar to text associative patterns [3]. MITRA is another method that
looks for composite patterns [4] using mismatch trees. Bioprospector [5] applies
the Gibbs sampling strategy to find gapped motifs.

The main contribution of this paper is to present an efficient O(N2) algorithm
(where N is the total length of the input strings) and implementation based on
suffix arrays, for finding the optimal pair of substring patterns combined with any
Boolean function. Note that the methods mentioned above for finding composite
patterns can be viewed as being limited to using only the ∧ (AND) operation. The
use of any Boolean function allows the use of the ¬ (NOT) operation, therefore
making it possible to find not only sequence elements that cooperate with each
other, but those of the form p ∧ ¬q, which can be interpreted as two sequence
elements with competing functions (e.g. positive and negative elements). The
pattern pairs discovered by our algorithm are optimal in that they are guaranteed
to be the highest scoring pair of patterns with respect to a given scoring function,
and also, a limit on the lengths of the patterns in the pair is not assumed. Our
algorithm can be adjusted to handle several common problem formulations of
pattern discovery, for example, pattern discovery from positive and negative
sequence sets [6–9], as well as the discovery of patterns that correlate with a
given numeric attribute (e.g. gene expression level) assigned to the sequences [10–
14]. The significance of the algorithm in this paper lies in the fact that since
there are indeed O(N2) possible substring pattern combinations, the information
needed to calculate the score for each pattern pair can be gathered, effectively,
in constant time.

The algorithm is presented conceptually as using a generalized suffix tree [15],
which is an indispensable data structure for efficient processing of substring in-
formation. Moreover, the algorithm using the suffix tree can, with the same
asymptotic complexity, be simulated very efficiently using suffix arrays, and is
thus implemented. We apply our algorithm to 3’UTR (untranslated region) of
yeast and human mRNA, together with data obtained from microarray experi-
ments which measure the decay rate of each mRNA [16, 17]. We were successful
in obtaining several interesting pattern pairs where some correspond to known
mRNA destabilizing elements.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, substring, and suffix of string w = xyz, respectively.
The length of a string w is denoted by length(w). The empty string is denoted
by ε, that is, length(ε) = 0. The i-th character of a string w is denoted by w[i]
for 1 ≤ i ≤ length(w), and the substring of a string w that begins at position
i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ length(w). For
convenience, let w[i :j] = ε for j < i. For any set S, let |S| denote the cardinality
of the set.

Let ψ(p, s) be a Boolean matching function that has the value true if the
pattern string p is a substring of the string s, and false otherwise. We de-



Table 1. Summary of candidate Boolean operations on pattern pair 〈p, F, q〉.

input
ψ(p, s) true true false false

ψ(q, s) true false true false

output F (ψ(p, s), ψ(q, s)) representation
F0 false false false false false

F1 false false false true (¬p) ∧ (¬q)
F2 false false true false (¬p) ∧ q
F3 false false true true (¬p)
F4 false true false false p ∧ (¬q)
F5 false true false true (¬q)
F6 false true true false (p ∧ (¬q)) ∨ ((¬p) ∧ q)
F7 false true true true (¬p) ∨ (¬q)
F8 true false false false p ∧ q
F9 true false false true (p ∧ q) ∨ ((¬p) ∧ (¬q))
F10 true false true false q
F11 true false true true (¬p) ∨ q
F12 true true false false p
F13 true true false true p ∨ (¬q)
F14 true true true false p ∨ q
F15 true true true true true

fine 〈p, F, q〉 as a Boolean pattern pair (or simply pattern pair), which con-
sists of two patterns p and q and a Boolean function F : {true, false} ×
{true, false} → {true, false}. The matching function value ψ(〈p, F, q〉, s) is
defined as F (ψ(p, s), ψ(q, s)). Table 1 lists all 16 possible Boolean functions of
two Boolean variables, that is, all possible choices for F . We say that a pattern
or Boolean pattern pair π matches string s if and only if ψ(π, s) = true.

For a given set of strings S = {s1, . . . , sm}, let M(π, S) denote the subset of
strings in S that π matches, that is, M(π, S) = {si ∈ S | ψ(π, si) = true}. Now
suppose that for each si ∈ S, we are given an associated numeric attribute value
ri. Let

∑
M(π,S) ri denote the sum of ri over all si such that ψ(π, si) = true,

that is,
∑

M(π,S) ri =
∑

(ri | ψ(π, si) = true). For brevity, we shall omit S

where possible and let M(π) and
∑

M(π) ri, be a shorthand for M(π, S) and
∑

M(π,S) ri, respectively.

2.2 Problem Definition

In general, the problem of finding a good pattern from a given set of strings
S refers to finding a pattern π that maximizes some suitable scoring function
score with respect to the strings in S. We concentrate on scoring functions
whose values for a pattern π depend on values cumulated over the strings in
S that match π. We also assume that the score value computation itself can
be done in constant time if the required parameter values are known. More
specifically, we concentrate on score that takes parameters of type |M(π)| and∑

M(π) ri. The specific choice of the scoring function depends highly on the
particular application. A variety of problems fall into the category represented
by the following problem definition:

Problem 1 (Optimal pair of substring patterns). Given a set S = {s1, . . . , sm}
of strings, where each string si is assigned a numeric attribute value ri, and
a scoring function score : R × R → R, find the Boolean pattern pair π ∈
{〈p, F, q〉 | p, q ∈ Σ∗, F ∈ {F0, . . . , F15}} that maximizes score(|M(π)|,∑M(π) ri).



Below, we give examples of choices for score and ri.

Positive/negative sequence set discrimination: We are given two disjoint
sets of sequences S1 and S2, where sequences in S1 (the positive set) are known
to have some biological function, while the sequences in S2 (the negative set) are
known not to. The objective is to find pattern pairs which match more sequences
in one set, and less in the other.

We create an instance of the optimal pair of substring patterns problem
as follows: Let S = S1 ∪ S2 = {s1, . . . , sm}, and let ri = 1 if si ∈ S1 and
ri = 0 if si ∈ S2. Then, for each pattern pair π, the scoring function will receive
|M(π, S)| and

∑
(π,S) ri = |M(π, S1)|. Notice that |M(π, S2)| = |M(π, S)| −

|M(π, S1)|. Common scoring functions that are used in this situation include
the entropy information gain, the Gini index, and the chi-square statistic, which
all are essentially functions of |M(π, S1)|, |M(π, S2)|, |S1| and |S2|.

Correlated patterns: We are given a set S of sequences, with a numeric
attribute value ri associated with each sequence si ∈ S, and the task is to
find pattern pairs whose occurrences in the sequences correlate with their nu-
meric attributes. For example, ri could be the expression level ratio of a gene
with upstream sequence si. The scoring function used in [11, 13] is the inter
class variance, which can be maximized by maximizing the scoring function

score(x, y) = y2/x+(y−∑|m|
i=1 ri)

2/(m−x), where x = |M(π)| and y =
∑

M(π) ri.
We will later describe how to construct a nonparametric scoring function based
on the normal approximation of the Wilcoxon rank sum test, which can also be
used in our framework.

2.3 Basic Data Structures

A suffix tree [15] for a given string s is a rooted tree whose edges are labeled
with substrings of s, satisfying the following characteristics. For any node v in
the suffix tree, let l(v) denote the string spelled out by concatenating the edge
labels on the path from the root to v. For each leaf node v, l(v) is a distinct
suffix of s, and for each suffix in s, there exists such a leaf v. Furthermore, each
node has at least two children, and the first character of the labels on the edges
to its children are distinct. A generalized suffix tree (GST) for a set of m strings
S = {s1, . . . , sm} is basically a suffix tree for the string s1$1 · · · sm$m, where
each $i (1 ≤ i ≤ m) is a distinct character which does not appear in any of
the strings in the set. However, all paths are ended at the first appearance of
any $i, and each leaf is labeled with idi. It is well known that suffix trees (and
generalized suffix trees) can be represented in linear space and constructed in
linear time [15] with respect to the length of the string (total length of the strings
for GST).

A suffix array [18] As for a given string s of length n, is a permutation of
the integers 1, . . . , n representing the lexicographic ordering of the suffixes of s.
The value As[i] = j in the array indicates that s[j : n] is the ith suffix in the
lexicographic ordering. The lcp array for a given string s is an array of integers



representing the longest common prefix lengths of adjacent suffixes in the suffix
array, that is lcps[i] = max{k | s[As[i−1] :As[i−1]+k−1] = s[As[i] :As[i]+k−1]}.
Recently, three methods for constructing the suffix array directly from a string in
linear time have been developed [19–21]. The lcp array can be constructed from
the suffix array also in linear time [22]. It has been shown that several algorithms
(and potentially many more) which utilize the suffix tree can be implemented
very efficiently using the suffix array together with its lcp array [22, 23] (the
combination termed in [23] as the enhanced suffix array). This paper presents yet
another example for efficient implementation of an algorithm based conceptually
on suffix trees, but uses the suffix and lcp arrays.

The lowest common ancestor lca(x, y) of any two nodes x and y in a tree is
the deepest node which is common to the paths from the root to each of the
nodes. The tree can be pre-processed in linear time to answer the lowest common
ancestor (lca-query) for any given pair of nodes in constant time [24]. In terms
of the suffix array, the lca-query is almost equivalent to a range minimum query
(rm-query) on the lcp array, which, given a pair of positions i and j, rmq(i, j)
returns the position of the minimum element in the sub-array lcp[i : j]. The lcp
array can also be pre-processed in linear time to answer the rm-query in constant
time [24, 25].

The linear time bounds mentioned above for the construction of suffix trees
and arrays, as well as the preprocessing for lca- and rm-queries are actually
not required for the O(N2) overall time bound for finding optimal pattern pairs,
since they need only be done once, and a näıve algorithm costs O(N2). However,
they are very important for an efficient implementation of our algorithm.

3 Algorithm

Now we present algorithms to solve the optimal pair of substring patterns prob-
lem, given the set of strings S = {s1, . . . , sm}, an associated attribute ri for
each string si, and a scoring function score. Also, let N =

∑m
i=1 length(si). We

first show that a näıve algorithm requires O(N3) time, and then describe the
O(N2) algorithm. The algorithms calculate scores for all possible combinations
of pattern pairs, from which finding the optimal pair is a trivial task.

3.1 An O(N3) Algorithm

We know that there are only O(N) candidates for a single pattern, since the
candidates can be confined to patterns of form l(v), where v is a node in the
generalized suffix tree over the set S. This is because for any pattern corre-
sponding to a path that ends in the middle of an edge of the suffix tree, the
pattern which corresponds to the path extended to the next node will match the
same set of strings, and hence the score would be the same. Therefore, there are
O(N2) possible candidate pattern pairs for which we must calculate the scoring
function value. For a given pattern pair candidate π = 〈l(v1), F, l(v2)〉, where
v1, v2 are nodes of the GST, the values |M(π)| and

∑
M(π) ri can be computed

in O(N) time, by using any of the linear time substring matching algorithms.



Then each corresponding scoring function value can be computed in constant
time. Therefore, the total time required is O(N3).

3.2 An O(N2) Algorithm

Our algorithm is derived from the technique for solving the color set size prob-
lem [26], which calculates the values |M(l(v))| in O(N) time for all nodes v of
a GST over the string set S. Let us first describe a slight generalization of this
algorithm. The following algorithm computes the values

∑
M(l(v)) ri for all v.

Note that if we give each attribute ri the value 1, then
∑

M(l(v)) ri = |M(l(v))|.
Thus we do not need to consider separately how to compute |M(l(v))|.

First we introduce some auxiliary notation. Let LF (v) denote the set of all
leaf nodes in the subtree rooted by the node v, and let ci(v) denote the number
of leaves in LF (v) that have the label idi. Let us also define the sum of leaf
attributes for a node v as

∑
LF (v) ri =

∑
(ci(v)ri | ψ(l(v), si) = true).

For any node v in the GST over the string set S, the matching value ψ(l(v), si)
is true for at least one string si. Thus the equality

∑
M(l(v)) ri =

∑
(ri | ψ(l(v), si)

= true) =
∑

LF (v) ri −
∑

((ci(v) − 1)ri | ψ(l(v), si) = true) holds. Let us de-
fine the preceding subtracted sum to be a correction factor, which we denote by
corr(l(v), S) =

∑
((ci(v) − 1)ri | ψ(l(v), si) = true).

Since the recurrence
∑

LF (v) ri =
∑

(
∑

LF (v′) ri | v′ is a child node of v)

clearly holds, the values
∑

LF (v) ri can be easily calculated for all v during a
linear time bottom-up traversal of the GST.

The next step is to remove the redundancies, represented by the values
corr(l(v), S), from the values

∑
LF (v) ri. Let I(idi) be the list of all leaves with

the label idi in the order they appear in a depth-first traversal of the tree. Clearly
the lists I(idi) can be constructed in linear time for all labels idi. We note the fol-
lowing four simple but useful properties: (1) The leaves in LF (v) with the label
idi form a continuous interval of length ci(v) in the list I(idi). (2) If ci(v) > 0, a
length-ci(v) interval in I(idi) contains ci(v)−1 adjacent (overlapping) leaf pairs.
(3) If x, y ∈ LF (v), the node lca(x, y) belongs to the subtree rooted by v. (4)
For any si ∈ S, ψ(l(v), si) = true if and only if there is a leaf x ∈ LF (v) with
the label idi.

Assume that each node v has a correction value that has been initialized to
0. Consider now what happens if we go through all adjacent leaf pairs x, y in
the list I(idi), and add for each pair the value ri into the correction value of the
node lca(x, y). It follows from properties (1) - (3), that now for each node v in
the tree, the sum of the correction values in the nodes of the subtree rooted by v
equals (ci(v)−1)ri. Moreover, if we repeat the process for each of the lists I(idi),
then, due to property (4), the preceding total sum of the correction values in the
subtree rooted by v becomes

∑
((ci(v)−1)ri | ψ(l(v), si) = true) = corr(l(v), S).

Hence at this point a single linear time bottom-up traversal of the tree enables
us to cumulate the correction values corr(l(v), S) from the subtrees into each
node v, and at the same time we may record the final values

∑
M(l(v)) ri.

The preceding process involves a constant number of linear time traversals
of the tree, as well as a linear number of lca-queries. Since each lca-query can



be done in constant time after a linear time preprocessing, the total time for
computing the values

∑
M(l(v)) ri is linear.

The above described algorithm permits us to compute the values
∑

M(l(v)) ri

and |M(l(v))| in linear time, which in turn leads into a linear time solution for
the problem of finding a good pattern when the pattern is a single substring:
The scoring function can now be computed for each possible pattern candidate
l(v). Also the case of a Boolean pattern pair will be solved in this manner. That
is, we will concentrate on how to compute the values

∑
M(π) ri (and |M(π)|) for

all possible O(N2) pattern pair candidates, where π = 〈l(v1), F, l(v2)〉 and v1, v2

are any two nodes in the GST over S. If we manage to do this in O(N2) time,
then the whole problem will be solved in O(N2) under the assumption that the
scoring function can be computed in constant time for each candidate.

Näıve use of the information gathered by the single substring pattern algo-
rithm is not sufficient for solving the problem for pairs of patterns in O(N2) time,
since computing the needed values ψ(〈l(v1), F, l(v2)〉, s1) requires us to somehow
conduct an intrinsic set operation between the string subsets that match / do
not match l(v1) and l(v2). However, an O(N2) algorithm for pattern pairs is
fairly simple to derive from the linear time algorithm for the single pattern.

We go over the O(N) choices for the first pattern, l(v1). For each such fixed
l(v1), we use a modified version of the linear time algorithm in order to process
the O(N) choices for the second pattern, l(v2), in O(N) time. Given a fixed
l(v1), we additionally label each string si ∈ S, and the corresponding leaves
in the GST, with the Boolean value ψ(l(v1), si). This can be done in O(N)
time. Now the trick is to cumulate the sums and correction factors separately for
different values of the additional label. The end result is that we will have the
values

∑
M(l(v)),b ri =

∑
(ri | ψ(l(v), si) = true ∧ ψ(l(v1), si) = b) for all nodes

in linear time. We note that
∑

(ri | ψ(l(v), si) = false ∧ ψ(l(v1), si) = b) =∑
(ri | ψ(l(v1), si) = b) −

∑
M(l(v)),b ri, where the value

∑
(ri | ψ(l(v1), si) =

b) can easily be computed in linear time. Thus all cumulative values of form∑
(ri | ψ(l(v), si) = b1 ∧ ψ(l(v1), si) = b2), where b1, b2 ∈ {true, false}, can

be computed in linear time. And from these it is straightforward to compute
the values

∑
M(〈l(v1),F,l(v2)〉)

ri =
∑

(ri | F (ψ(l(v1), si), ψ(l(v2), si)) = true), as
well as the corresponding scoring function values, in linear time. Thus, given a
fixed l(v1), we can compute the scores for all pattern pair candidates of form
〈l(v1), F, l(v2)〉 in O(N) time. Since there are only O(N) candidates for l(v1),
we have an O(N2) algorithm for evaluating all possible pattern pair candidates.

It is not difficult to see that the space complexity of the algorithm is O(N).
The algorithm is also highly parallelizable, since the O(N) time calculations for
each fixed l(v1) are independent of each other.

4 Implementation Using Suffix Arrays

The algorithm on the suffix tree can be simulated efficiently by a suffix array. We
modify the algorithm of [22, 27] that simulates a bottom-up traversal of a suffix
tree, using a suffix array. Notice that since each suffix of the string corresponds



to a leaf in the suffix tree, each position in the suffix array corresponds to a
leaf in the suffix tree. A subtlety in the modification lies in determining where
to store the correction factors after calculating the lca, since the simulation via
suffix arrays does not explicitly recreate the internal nodes of the suffix tree. For
storing the correction factors, we construct another array C of the same length
as the suffix array, which represents the internal nodes of the suffix tree. An
element C[i] in the array corresponds to the lca of suffix AS [i − 1] and suffix
AS [i]. When adding up the correction factor for two leaves corresponding to AS [i]
and AS [j] (i < j), the correction factor is added into C[rmq(i + 1, j)]. Although
it is the case that different positions in C can correspond to the same internal
node when the node has more than two children, it is possible to correctly sum
the values required for the score calculations, since all positions of the array are
visited in the traversal simulation, and the addition operation on numeric values
is commutative as well as associative.

5 Computational Experiments

The degradation of mRNA, in addition to transcription, is one of several im-
portant mechanisms which control the expression level of a gene (see [28] for
survey). The half lives of mRNA are very diverse: some mRNAs can degrade
100 times faster than others, which allows their expression level to be adjusted
more quickly. The degradation of mRNA is controlled by many factors, for exam-
ple, it is known that some proteins bind to the UTR of the mRNA to promote its
decay, while others inhibit it. Recently, the comprehensive decay rates of many
genes have been measured using microarray technology [16, 17]. We consider the
problem of finding substring pattern pairs related to the rate of mRNA decay
to find possible binding sites of the proteins, in order to further understand this
complex mechanism.

The algorithm was implemented using the C language, and uses POSIX
threads to execute parallel computations. To give an idea of the efficiency of
the algorithm, it can be run on a data set with 720, 673 candidates for a single
pattern, meaning 720, 6732 = 519, 369, 572, 929 possible pattern pairs, requir-
ing about half a day on a Sun Fire 15K with 96 CPUs (UltraSPARC III Cu
1.2GHz). To ease the interpretation process in the following experiments, we
limit the search to Boolean combinations: p′ ∧ q′ and p′ ∨ q′, where p′ is either
p or ¬p, and q′ is either q or ¬q.

5.1 Positive/Negative Set Discrimination of Yeast Sequences

For our first experiment, we used the two sets of predicted 3’UTR processing
site sequences provided in [29], which are constructed based on the microarray
experiments in [16] that measure the degradation rate of yeast mRNA. One set
Sf consists of 393 sequences which have a fast degradation rate (t1/2 < 10 min-
utes), while the other set Ss consists of 379 predicted 3’UTR processing site
sequences which have a slow degradation rate (t1/2 > 50 minutes). Each se-
quence is 100 nt long, and the total length of the sequences is 77, 200 nt. The



Table 2. Top 5 scoring pattern pairs found from yeast 3’UTR sequences.

rank |M(π, Sf )| |M(π, Ss)| χ2 (p-val) pattern pair

1 55/393 7/379 38.5 (< 10−9) UAAAAAUA ∨ UGUAUAA

2 63/393 13/379 34.5 (< 10−8) UAUGUAA ∨ UGUAUAA

3 240/393 152/379 33.9 (< 10−8) (¬AUCC) ∧ UGUA

4 262/393 174/379 33.8 (< 10−8) (¬UAGCU) ∧ UGUA

5 223/393 136/379 33.7 (< 10−8) (¬GUUG) ∧ UGUA

traversal on the suffix array on this dataset shows that there are 46, 554 candi-
dates for a single pattern (i.e. the number of internal nodes in the suffix tree.
Patterns corresponding to leaf nodes were ignored, since they are not “commonly
occurring” patterns), meaning that there are 46, 5542 = 2, 167, 274, 916 possible
pattern pairs. For the scoring function, we used the chi-squared statistic, calcu-
lated by (|Sf | + |Ss|)(tp ∗ tn− fp ∗ fn)2/(tp + fn)(tp + fp)(tn + fp)(tn + fn)
where tp = |M(π, Sf )|, fp = |Sf | − tp, tn = |Ss| − fn, and fn = |M(π, Ss)|.

The time required for computation was around 3 ∼ 4 minutes on the above
mentioned computer. The 5 top scoring pattern pairs found are shown in Table 2.
Several interesting patterns can be found in these pattern pairs. For all the
patterns in the pairs that match more in the faster decaying set, the substring
UGUA is contained. This sequence is actually known as a core consensus for the
binding site of the PUF protein family that plays important roles in mRNA
regulation [30], and has also been found in the previous analysis [29] to be
significantly over-represented in the fast degrading set.

On the other hand, patterns which are combined with ¬ can be considered
as sequence elements which compete with UGUA, and interfere with mRNA de-
cay. The patterns AUCC and GUUG were in fact found to be substrings of a less
studied mRNA stabilizer element, experimentally shown to be within a region
of 65nt in the TEF1/2 transcripts [31]. We cannot say directly that the two
substrings represent components of this stabilizer element, since it was reported
that this stabilizer element should be in the translated region in order to func-
tion. However, the mechanisms of stabilizers are not yet well understood, and
further investigation may uncover relationships between these sequences.

5.2 Finding Correlated Patterns from Human Sequences

For our second experiment, we used the decay rate measurements of the hu-
man hepatocellular carcinoma cell line HepG2 made available as Supplementary
Table 9 of [17]. 3’UTR sequences for each mRNA was retrieved using the EN-
SMART [32] interface. We were able to obtain 2306 pairs of 3’UTR sequences
and their decay rates, with the average length of the sequences being 925.54 nt,
and the total length was 2, 134, 294 nt.

Since the distribution of the turnover rates seemed to have a heavier tail
than the normal distribution, we used a nonparametric scoring function that fits
into our O(N2) total time bound: the normal approximation of the Wilcoxon
rank sum test statistic. The set of sequences S is first sorted in increasing order
according to its decay rate, and each sequence si is assigned its rank for ri. For
a pattern pair π, the rank sum statistic

∑
M(π) ri approximately depends on the



Table 3. Top 5 scoring pattern pairs found from human 3’UTR sequences.

rank |M(π, S)| rank sum avg rank z (p-val) pattern pair

1 1338/2306 1.7101 × 106 1278.1 10.56 (< 10−25) UUAUUU ∨ UGUAUA

2 904/2306 1.2072 × 106 1335.4 10.53 (< 10−25) UUUUAUUU ∨ UGUAUA

3 1410/2306 1.7900 × 106 1269.5 10.49 (< 10−25) UUUAAA ∨ UUUAUA

4 711/2306 9.7370 × 105 1369.5 10.40 (< 10−24) UAUUUAU ∨ UGUAUAU

5 535/2306 7.5645 × 105 1413.9 10.32 (< 10−24) UGUAAAUA ∨ UGUAUAU

normal distribution when the sample size is large. Therefore, we use the z-score

defined by: z(x, y) = (y−x(|S|+1)/2)√
x(|S|−x)(|S|+1)/12

where x = |M(π)| and y =
∑

M(π) ri,

with appropriate corrections for ranks and variance when there are ties in the
decay rate values. The score function can be calculated in constant time for each
x and y, provided O(m log m) time preprocessing for sorting of the data and
assigning the ranks.

The 5 top scoring patterns are presented in Table 3. All pairs are of the
form p ∨ q, common to sequences with higher ranks, that is, sequences with
higher decay rates. Notice that most of the highest scoring patterns contain
UGUAUA, which was contained also in the results for yeast, which may indicate
a possibility that these degradation mechanisms are evolutionarily conserved
between eukaryotes. The other pattern in the pairs consist of A and U, and
apparently captures the A+U rich elements (AREs) [28] which are known to
promote rapid mRNA decay dependent on deadenylation. The form p∨ q of the
pattern pairs also indicates that the two elements may have complementary roles
in the degradation of mRNA.

6 Discussion

We have presented an efficient O(N2) algorithm for finding the optimal Boolean
pattern pair with respect to a suitable scoring function, from a set of strings and
a numeric attribute value assigned to each string. The algorithm was applied to
moderately sized biological sequence data and was successful in finding pattern
pairs that captured known destabilizing elements, as well as possible stabilizing
elements, from 3’UTR of yeast and human mRNA sequences, where each mRNA
sequence is labeled with values depending on its decay rate.

Frequently in biological applications, motif models which consider ambiguity
in the matching are preferred, rather than the “exact” substring patterns used
in this paper. Nevertheless, the selection of the motif model for a particular
application is still a very difficult problem, and substring patterns can be effective
as shown in this paper and others [10]. As well as being efficient, simpler models
also have the advantage of being easier to interpret, and can be used as a quick,
initial scanning for the task.
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