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Abstract—We present an evaluation of the robustness and
explainability of ResNet-like models in the context of
Unintended Radiated Emission (URE) classification and suggest
a new approach leveraging Neural Stochastic Differential
Equations (SDEs) to address identified limitations. We provide
an empirical demonstration of the fragility of ResNet-like
models to Gaussian noise perturbations, where the model
performance deteriorates sharply and its F1-score drops to near
insignificance at 0.008 with a Gaussian noise of only 0.5
standard deviation. We highlight a concerning discrepancy
where the explanations provided by ResNet-like models do not
reflect the inherent periodicity in the input data, a crucial
attribute in URE detection from stable devices. In response to
these findings, we propose a novel application of Neural SDEs
to build models for URE classification that are not only robust
to noise but also provide more meaningful and intuitive
explanations. Neural SDE models maintain a high F1-score of
0.93 even when exposed to Gaussian noise with a standard
deviation of 0.5, demonstrating superior resilience to ResNet
models. Neural SDE models successfully recover the
time-invariant or periodic horizontal bands from the input
data, a feature that was conspicuously missing in the
explanations generated by ResNet-like models.

I. INTRODUCTION

The unintended radiated emissions from electronic devices
can provide a plethora of information to observers about the
type of the electronic equipment as well as its current
operating condition. Such emissions can be used for activities
ranging from non-intrusive load monitoring to side-channel
leakage of otherwise secure information. These unintended
radiated emissions (UREs) from electronic devices occur due
to non-ideal filters, manufacturing variations, and other
design constraints, including but not limited to signal
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modulation, frequency mixing, and high-frequency clocking
of signals in digital circuits.

The task of mapping detected UREs to specific devices or
operating conditions can be thought of as a classification
problem. Efforts have been placed towards understanding
machine learning classification tasks for unintended
electronic emissions. In particular, the Oak Ridge National
Laboratory has created the Flaming Moe data set [1] of
real-world unintended electronic emissions to allow for the
design of new URE detection and analysis algorithms. The
dataset has been obtained by studying 18 devices and
observing two 10-minute segments of voltage data captured
at 2 million samples per second. Together with the dataset,
the team released the dimensionally aligned signal projection
algorithm as a new approach for creating low-dimensional
features for URE classification applications [2].

The Flaming Moe data set has served as a robust
benchmark for learning neural network models for URE
classification [3]. It has been argued that an out-of-the-box
residual neural network model is eminently capable of
classifying the URE signals into 18 classes. In fact, A small
residual neural network model can achieve perfect accuracy
on a held-out fragment on the Flaming Moe data set. This
may cause an observer to conclude that further research on
neural network-based analysis of the Flaming Moe data set is
unnecessary. We show that such a conclusion is not true, and
the learned residual neural network model begins to fail
miserably even in the presence of noise in the observed data.

Earlier work on analyzing the Flaming Moe URE data set
has realized the importance of communicating the reason for
the classification or an explanation from the black-box neural
network model to the end human user. In particular, local
interpretable model-agnostic explainability has been used to
explain residual neural networks designed for this purpose.
However, these explanations, as shown in Fig. 4 of [3], do
not obey the inductive bias of the data set that the URE
signal observed in the short-term Fourier transform is often
periodic or time-invariant, and any robust attribution that



covers all explanations should uncover this fact. In the case
of images, an explanation occurring as a horizontal band in
our images uncovers this inductive bias inherent in the data
set. We show that modern explanation methods like
integrated gradients [4] with smoothgrad [5] uncover this
inductive bias in our data set when applied to models based
on neural stochastic differential equations. In summary, the
contributions of this paper are as follows:

1) An empirical demonstration of a lack of robustness to
noise for ResNet-like models in the context of URE
detection: Our investigation has unearthed certain
limitations in the existing residual neural network
models. They have been found to be quite fragile,
readily falling victim to the addition of Gaussian noise.
When perturbed with Gaussian noise of a standard
deviation of 0.25, the F1 score drops to a mere 0.41.
Increasing the standard deviation to 0.5 results in an
almost negligible F1 score of 0.01. See Table I.

2) An empirical demonstration of the lack of periodicity
for explanations of short-term Fourier transform images
in ResNet-like models: Another concern arises from
the data’s inherent inductive bias that creates periodic
behavior or horizontal bands in the input short-term
Fourier transform image. These bands are surprisingly
absent in the explanations provided by the ResNet-like
models, which are instead interspersed with positive
and negative attribution input features in both
horizontal and vertical dimensions. See Fig. 1.

3) A novel application of models based on neural SDEs in
building robust and explainable URE detection models:
We present a more robust and explainable framework
in the form of Neural Stochastic Differential Equations
(SDEs). When compared to the ResNet models, the
Neural SDEs are remarkably resilient against Gaussian
noise. For instance, when exposed to Gaussian noise
with a standard deviation of 0.5, these models retain an
F1 score of 0.93, as compared to the near-zero score of
ResNet models. Furthermore, the explanations
generated by the Neural SDE models recover the
inherent inductive bias in the input, clearly displaying
time-invariant horizontal bands. See Table II and Fig. 2.

In essence, our work is centered around leveraging the power
of neural SDEs to create models for URE classification that
are more robust to Gaussian noise, explainable, and aligned
with the innate properties of the data. This approach offers
a promising path for the development of sophisticated URE
detection algorithms by showing that the current generation
of robust residual neural network models do not achieve a
perfect 100% accuracy on the Flaming Moe data set, thereby
highlighting that this data set remains valuable for building
robust explainable neural network models in the future.

II. RELATED WORK

A. Data Collection and Dataset

To assess the design of machine learning and related
classification algorithms, Unintended Radiated Emission
(URE) has been collected from 18 commercially available
electronic devices, commonly found in an office environment.
This Flaming Moe dataset [1], generated by Oak Ridge
National Laboratory in 2016, serves as an idealized URE
dataset for the development of URE detection and
classification models. Data collection was organized into four
10-minute segments with the device being operations only in
alternate 10-minute windows. Each segment was further split
into 1200 files representing 1 second of data for each device.
A one minute delay was imposed prior to device capture in
order to allow the device to boot and achieve stable
performance. This steady behavior creates an inductive bias
in our experiments that should be uncovered by any sound
and robust explanation approach.

The collection of URE signals for the data set took place
within a Radio Frequency shielded enclosure, employing a
USRP N210 collection platform that featured a
temperature-compensated crystal oscillator. This oscillator is
deemed suitable for low-cost and routine industrial
applications due to its modest frequency accuracy of 2.5
ppm, which is adequate for low-frequency signals observed
in our applications.

B. ResNet Models for URE

Recent work [3] has argued that a small residual network
is capable of achieving a perfect test accuracy on the
Flaming Moe data set. We were able to reproduce this rather
unusual result in our own experiments. However, we found
that inserting a Gaussian noise with a standard deviation of
0.5 results in an almost negligible F1 score of 0.01. Hence,
the off-the-shelf residual neural network model is very fragile
and may not be suitable for real-world data analysis where
such non-adversarial noise may be inevitable.

C. Attribution Methods

Several state-of-the-art attribution methods have been
developed over the last decade with increasingly higher
degrees of success. However, to the best of our knowledge,
we are the first to bring these more contemporary attribution
methods to the analysis of neural networks analyzing
unintended radiation emission (URE) from devices using the
Flaming Moe data set.

Salient methods, like the Layer-wise Relevance
Propagation [6], decomposes the contribution of each neuron
in a network to the final prediction, providing a detailed
“relevance” map. Another technique, known as Shapley
Additive Explanations [7], maps each input feature to its



numerical importance for a given prediction of the neural
network. This approach leverages game theory concepts,
attributing the impact of each feature on the neural network
response in a way that ensures fairness and consistency.

Integrated Gradients [4] works by connecting the response
of a deep neural network to the features in its input through
the concept of path integrals. This is an axiomatic method
that provides a simple and intuitive way of understanding the
feature attributions. Grad-CAM [8], employs the gradients or
derivatives of a target class from a given convolutional layer.
Usually, the gradients from the final layer are used to construct
a rough localization map that highlights those features in the
input that lead to a given prediction.

More recent research directions are seeking to improve
upon these methods, aiming to make them more robust and
consistent, to handle complex scenarios with higher
reliability. For instance, SmoothGrad [5] and Stochastic
Differential Equations [9] have led to more robust attributions
with smaller sensitivity scores for other image data [10].

III. APPROACH

Our approach first employs short-term Fourier transform to
transform time-series data into visual images. Since Flaming
Moe data set has two continuous recordings of 600 seconds
with 2 million samples per second, we obtain 2.4 billion
samples per device for analysis. We create short-term Fourier
transforms using 1 million samples each; thereby, creating
2,400 images per device and obtaining a data set of 43,200
images. For our analysis, we create both deterministic and
stochastic variants of residual neural networks, and analyze
the robustness and explainability of the model using currently
popular attribution methods.

A. Neural Stochastic Differential Equations

Building upon advances in modeling neural networks as
dynamical systems [11], our work exploits recent neural
stochastic differential equations (SDEs) [12], [13] extensions
of these models to encompass stochastic behavior. In this
section, we briefly recall recent results [9], [12] related to
our work. Put succinctly, ResNets can be interpreted as
discretizations of neural ordinary differential equations
(ODEs) and stochastic variants of residual networks can
serve as approximations of neural stochastic differential
equations (SDEs). Both inference and training processes in
ResNets can be represented using dynamical systems [11],
[14]–[17]. A fundamental ResNet unit, with a residual
R(X(i),W (i)), can be defined as follows:

X(i+ 1) = X(i) +R(X(i),W (i)) (1)

where X(i) denotes the input to the ith block and X(i + 1)
signifies the block’s output that is then fed into the succeeding

unit. Here, W (i) indicates the learned weights in the respective
residual neural network block. Specifically, in this notation,
X(0) denotes the network input x and the network output F
is denoted as X(T ). Upon applying suitable limits, we can
formulate the evolution of the residual neural network as an
ordinary differential equation:

dX(t)

dt
= G(X(t),W (t)) (2)

Here, G(X(t),W (t)) = limδt→0
R(X(t),W (t))

δt and X(0) is the
neural network input.

To model a stochastic variant of the ResNet, a noise term
N(i) is added to the right-hand side of the earlier equation.
The dynamical system for such residual neural networks with
a noise component can be represented as an SDE:

dX(t) = G(X(t),W (t)) dt+ σ(X(t), t) dB(t) (3)

Here, the noise is depicted as a Brownian motion term B(t),
scaled by a suitable diffusion coefficient σ(X(t), t).

B. Robust Axiomatic Attributions

Modern axiomatic methods of attributions, including
integrated gradients and their variants, satisfy several
fundamental axioms that are not known to be satisfied by
methods such as LIME. Integrated Gradients (IG) [4] is an
attribution method widely used for feature importance
analysis in deep neural networks. The attribution of an input
feature in DNNs is typically computed with reference to a
baseline input, denoted as xb. This baseline may be a
Gaussian noise image in image-based tasks, or it could be a
randomly generated set of inputs.

While integrated gradients and neural stochastic
differential equations have been used to create robust
attributions of ImageNet and similar images in the wild, we
believe that we are the first to study the use of neural SDEs
and integrated gradients on the explainable classification of
unintended radiation emissions (UREs) from devices.

IV. FRAGILITY AND POOR EXPLAINABILITY OF RESNET

A. Residual Neural Network Models

We first employed an image classification model based on
the ResNet-50 architecture that was trained on 70% of the
available data and tested on the other held-out 30% of the data
set. The model is designed to classify images into one of 18
different classes. Before being fed into the model, the images
are first resized to 224x224 pixels and are then normalized;
the model is trained using a batch size of 32 and the Adam
optimizer with a learning rate of 10−5. The parameters of the
model are updated based on the cross-entropy loss.

The training process continues for 10 epochs with the loss
going down from 2.7 to 0.05. The evaluation is performed on



Fig. 1: ResNet-50 models with perfect accuracy produce attributions that do not support the inductive bias of the data. Horizontal
repeated patterns in the data are not identified in the explanations using horizontal bands. Positive (green) and negative (red)
attributions are interspersed indicating poor explainability in this context. Explanations for all 18 classes are presented in [18].

Fig. 2: Stochastic models produce attributions that uncover the shape or inductive bias of the input. The positive and the negative
attributions occur in horizontal patches that conform to the fact that the data was obtained from a device under stable operation.
Our accompanying report [18] includes attributions for all 18 classes.

a separate test set that constitutes 30% of the original dataset.
The evaluation metrics include precision, recall, and
F1-score, and are computed for each class separately, as well
as an average over all classes. The results suggest that the
model achieves near-perfect performance, with precision,
recall, and F1-score of 1.00 for each of the 18 classes.

B. Robustness Analysis
We investigated the robustness of the learned URE

ResNet-50 model under various noise conditions. We
synthetically introduced Gaussian noise to the input data with
different standard deviations (0.1, 0.25, 0.5), mimicking
potential real-world scenarios where data can be distorted
due to noise. We evaluated the model’s performance across
all classes under each noise level, recording the precision,
recall, and F1 scores for each class and noise level.

The resulting data, presented in Table I, provides an
overview of the model’s fragility. As the standard deviation
of the Gaussian noise increased to 0.25 and 0.5, the
performance of the model deteriorated considerably, as
evidenced from the decrease in average precision from 0.45
for a standard deviation of 0.25 to 0.01 for a standard
deviation of 0.5.

C. Explanation using Integrated Gradients
We seek to gain an in-depth understanding of the

decision-making process of the residual neural network

model with perfect accuracy by visualizing the significant
features contributing to each prediction. We employed
Integrated Gradients [4], a popular interpretability technique,
to identify these important features. We further used a Noise
Tunnel [5] with Integrated Gradients to generate smoother
attributions and reduce variability in the attributions. For
each of the 18 classes under consideration, we selected one
sample that was correctly classified by the model and
computed the attributions for the input image. The computed
attributions were then normalized and visualized in the form
of heatmaps. The visualization presented two images: the
original image and the corresponding heatmap. See Fig. 1.
We observe that the attributions obtained from the standard
residual neural network model do not conform to the
inductive bias in the data set that contains nearly periodic or
stable signals, and hence should contain horizontal patches in
its explanations. In fact, the explanations contain positive and
negative attributions next to each other, and have very poor
human interpretability.

V. RESULTS FROM STOCHASTIC NEURAL NETWORKS

A. Stochastic ResNet Model

The stochastic ResNet model [9] for URE data was
evaluated on a test set comprising 12,960 instances across 18
different classes. The robust model displayed a strong overall
performance, achieving an accuracy of 0.94. Precision, recall,



Class 0.1 Standard Deviation 0.25 Standard Deviation 0.5 Standard Deviation

Precision Recall F1−Score Precision Recall F1−Score Precision Recall F1−Score

1 0.91 1.00 0.95 0.76 0.63 0.69 0.00 0.00 0.00
2 1.00 1.00 1.00 1.00 0.95 0.97 0.00 0.00 0.00
3 1.00 0.93 0.96 0.00 0.00 0.00 0.10 0.04 0.06

Average 0.96 0.95 0.95 0.45 0.47 0.41 0.01 0.04 0.01

TABLE I: ResNet model for URE data is fragile to even Gaussian noise. Per-class and average precision, recall, and F1 scores
for different standard deviations. The average is reported over all classes, and our technical report [18] includes all classes.

Class 0.1 Standard Deviation 0.25 Standard Deviation 0.5 Standard Deviation

Precision Recall F1−Score Precision Recall F1−Score Precision Recall F1−Score

1 0.99 1.00 0.99 0.98 1.00 0.99 0.98 1.00 0.99
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99

Average 0.94 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.93

TABLE II: Stochastic ResNet model is robust to Gaussian noise. Per-class and average precision, recall, and F1 scores for
different standard deviations are shown here. The average is reported over all classes, and our report [18] includes all classes.

Class Precision Recall F1-score
1 0.99 1.00 0.99
2 1.00 1.00 1.00
3 1.00 1.00 1.00

Accuracy Macro Avg Weighted Avg
0.94 0.94 0.94

TABLE III: Test performance of the robust stochastic model.
The average is reported over all classes, and our accompanying
technical report [18] will include all classes.

and F1-score for each class were also examined individually.
These results indicate that our model is highly capable of
discerning the majority of classes with high accuracy, but
efforts could be directed at enhancing its performance on the
remaining classes for a more uniformly robust model.

B. Explanations from the Stochastic Model

We created integrated gradients with noise tunnel
explanations [4], [5] for the stochastic model [9], as shown
in Fig. 2. The attributions are now completely different from
the earlier attributions, and we can now see time-invariant or
horizontal patches in the attributions that tell us the
frequencies that the model used to classify that input. Green
horizontal strips denote the presence of frequencies or the
absence of frequencies that caused the model to classify the
input into that class. Red horizontal strips denote the
presence or absence of frequencies that were counteracting
against this classification.

We computed IG without noise tunnel, IG with noise
tunnel, GradCAM, GradSHAP and occlusion-based
attributions for this method to highlight the relative efficacy

Fig. 3: Attributions of the stochastic model from IG, IG+NT,
GradSHAP, GradCAM and Occlusion methods (left to right).

of the axiomatic integrated gradients approach with noise
tunnels compared to other approaches.

C. Robustness Analysis

The results for the robustness analysis of our robust
stochastic model in Table II can be contrasted with the
results obtained for the standard ResNet model, as shown in
Table I. The standard ResNet model exhibits high
performance in terms of precision, recall, and F1-score in the
absence of noise. However, this performance drastically
degrades as the noise level increases, evident by the average
F1-score drops to 0.008, which indicates that the model is
almost ineffective in the presence of modest noise levels. In
contrast, the robust model demonstrated notable resistance to
noise introduction, maintaining an excellent average F1-score
of 0.93 even at a noise standard deviation of 0.5. Despite the
noisy conditions introduced in the input data, the stochastic
model displays a level of performance that was notably
higher, emphasizing the utility of our approach for real-world
applications where data noise is bound to be prevalent.

VI. CONCLUSIONS

Our investigations have provided hitherto unknown and
hopefully valuable insights into the limitations of ResNet-like



models when used for Unintended Radiated Emission (URE)
detection, particularly their susceptibility to Gaussian noise
and the inability of their explanations to capture the inherent
inductive bias in the data from a stable device. Our findings
underscore the need for more robust and interpretable
machine learning models in URE detection.

We have demonstrated that Neural SDEs offer a promising
alternative. Not only do stochastic models exhibit remarkable
resilience to noise, maintaining high performance even in
high-noise scenarios, but they also generate meaningful
explanations that capture the inherent inductive biases of the
data. These features make Neural SDE models and their
discrete stochastic variants an interesting tool for URE
classification, thereby creating new opportunities for exciting
research in this domain.

We identify several opportunities for future research based
on our prior and ongoing work. The Unintended Radiated
Emission (URE) classification problem can benefit from the
design of hardware solutions with desirable size, weight and
power characteristics, such as those based on in-memory
computing [19], [20] and automated synthesis [21]. Another
direction to pursue is to quantify the confidence of the
response of the neural network for each instance of URE
classifications, using a variety of confidence metrics [22],
[23]. Neural stochastic differential equations [24], [25] where
the noise has been shaped in conformance with URE data
may produce better accuracy and more interpretable results.
Analyzing the adversarial robustness [26]–[29] of robust
neural networks trained on URE data remains an open and
interesting problem.
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