Gsas

?I;SC@ Micro Analytic Service

Programming and Administration
Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS® Micro Analytic Service 1.2: Programming and
Administration Guide. Cary, NC: SAS Institute Inc.

SAS® Micro Analytic Service 1.2: Programming and Administration Guide

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19
(DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to
the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.
July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

About This Book v
AccesSTDIlity oo vii
Chapter 1 « Introduction to SAS Micro Analytic Service 1
What Is SAS Micro Analytic Service?ttt e e 1
Chapter 2 CoNcCepts e e e e 3
OVEIVIEW . . . ottt ittt et e e e e e e e e e e e e e e e 3
User or Business Contextttt e 3
Module Contextottt 4
ReVISION . . .o 4
Interfaceso 5
Example: JAVA Interfaceo e 6
Chapter 3 « DS2 Programming for SAS Micro Analytic Service 1"
OVEIVIEW .« . ottt et ettt e e e e e e e e e e e 11
Publishing DS2 Source Code to SAS Micro Analytic Service 11
SAS Micro Analytic Service and SAS Foundation 12
DO 12
Programming Blocks 12
Public and Private Methods and Packages 13
Argument Types Supported in Public Methods 16
Chapter 4 * Best Practices for DS2 Programmingc.cc i, 19
OVEIVIEW .« . ettt et et et e e e e e e e e e e e e e 19
Global Packages Versus Local Packagesooou... 19
Replacing SCAN (and TRANWRD) withDS2Code 20
Hash Package e e 23
Character-to-Numeric CONVEISIONSot vvtt ittt et ettt e 23
Passing Character Valuesto Methods iiiiiin.. 23
Performing the Computation ONeceo vttt et i 24
Moving Invariant Computations Outof Loops 24
Chapter 5 * Java Interface Reference i, 25
OVEIVIEW .« . ottt et et e e e e e e e e e e e e e e 25
TOPOLOZY . . v et 26
Start-U D . . ot e 26
Shutdowno 27
User Context Methods e 27
Module Context Methodso 29
Revision Methods 32
Execution Methods o 37
Execute Method o 42
Revision Monitoring Methods 43
Complete Java EXampleo e 43
Chapter 6 « SAS Micro Analytic Service RESTAPI i, 49
OVEIVIEW .« . ottt et et e e e e e e e e e e e e e e 50

Terminologyot 51

iv Contents

Client Application Featurest 52
Security and Authentication i 53
Life Cycle . ..o 54
Media TYPES . . . oottt e e 54
SAS Micro Analytic Service Media Types ooiii i 56
Resources and Collectionsttt 71
Chapter 7 « Administration e 115
SAS Micro Analytic Service Loggingttt 115
Secure DS2 HTTP Package Usageot 116
MONIEOTING . .« o ettt et e e e e e e e e e e 116
Chapter 8 » Deploymentand Tuning 123
Deploying SAS Micro Analytic Servicet 123
Cluster Deployment for SAS Micro Analytic Service 124
Tuning SAS Micro Analytic Servicet 125
Appendix 1 « SAS Micro Analytic Service ReturnCodes 129
Appendix 2 « REST Server Error Messages and Resolutions 135
Recommended Reading i 139

Index 141

About This Book

Audience

This guide is intended for developers and information technology administrators.
Developers can use the information to author SAS DS2 code that extends or customizes
the functionality of SAS Enterprise Decision Manager, SAS Business Rules Manager, or
SAS Real-Time Decision Manager to meet their business needs. Developers can find
information about the SAS Micro Analytic Service runtime environment, as well as tips,
best practices, and restrictions on programming DS2 to run in SAS Micro Analytic
Service. Information technology administrators can find information about SAS Micro
Analytic Service deployment, operation, and tuning.

Vi About This Book

Accessibility

vii

For information about the accessibility of any of the products mentioned in this
document, see the usage documentation for that product.

viii About This Book

Chapter 1

Introduction to SAS Micro Analytic
Service

What Is SAS Micro Analytic Service? 1

What Is SAS Micro Analytic Service?

SAS Micro Analytic Service 1.2 is a memory-resident, high-performance program
execution service. As a SAS platform service, it is not available for individual license,
but is included in selected SAS solutions. SAS Micro Analytic Service 1.2 provides
hosting for DS2 programs and supports a “compile-once, execute-many-times” usage
pattern. SAS Micro Analytic Service is multi-threaded and can be clustered for high
availability. It can host multiple programs simultaneously, as well as multiple user or
business contexts that are isolated from one another.

SAS Micro Analytic Service has a layered architecture that is suitable for a variety of
deployment topologies. The core engine is written in C for high performance. Java
clients can integrate with its Java Plain Old Java Object (POJO) interface. The SAS
Micro Analytic Service POJO interface communicates with the C engine through an
optimized JNI layer. A web application with a REST interface is provided for integration
with SAS solutions and other client applications, and adds persistence and clustering for
scalability and high availability.

For example, SAS Enterprise Decision Manager generates DS2 programs that implement
user-created rule sets and rule flows. It can combine SAS analytics, such as score code
generated by SAS Enterprise Miner, with business rules in order to form decision logic.
SAS Micro Analytic Service is used to compile and execute the generated code.

In addition to providing generated code, SAS Micro Analytic Service enables users of
solutions such as SAS Real-Time Decision Manager and SAS Enterprise Decision
Manager to author DS2 code that is customized to their specific needs. SAS Micro
Analytic Service supports a subset of the DS2 programming language, which includes
language features that are suitable for the high-performance execution of transactions.
Specific rules and restrictions are detailed in Chapter 3, “DS2 Programming for SAS
Micro Analytic Service,” on page 11.

2 Chapter 1 + Introduction to SAS Micro Analytic Service

Chapter 2
Concepts

OVeIVIEW . . . 3
User or Business Context i 3
Module Context 4
ReVISION 4
Interfaces 5
Example: JAVA Interface i 6
Instantiate SAS Micro Analytic Serviceovvuin i 6
Create a User ConteXtttt e e e e e e 7
Create Modules e 7
Basic Steps for Using SAS Micro Analytic Service 8

Overview

SAS Micro Analytic Service has several component types, which are arranged in a three-
level hierarchy.

Note: If you are writing code to deploy to SAS Micro Analytic Service, follow the
programming guidelines described in Chapter 3, “DS2 Programming for SAS Micro
Analytic Service,” on page 11.

1. User or business context
2. Module context

3. Revision

User or Business Context

A context is a container for the programs that SAS Micro Analytic Service executes. It is
also an isolated execution environment. That is, programs executing in one context are
not visible to any other context. Therefore, contexts can be used to provide a separate
environment for each user or different business unit, or for any other usage requiring

4 Chapter 2

Concepts

isolation. The programs hosted by SAS Micro Analytic Service are known as modules. A
context is a container of modules.

Because business context and user context are interchangeable terms that describe the
two common uses of this single component, this document uses the term user context for
simplicity.

Module Context

A module represents program code. In the case of DS2, each module represents exactly
one DS2 package, and the name of each module is the same as the name of the DS2
package that it represents. If you are unfamiliar with DS2 packages, see “Understanding
DS2 Methods and Packages” in SAS 9.4 DS2 Language Reference. Every module is
owned by exactly one user context.

SAS Micro Analytic Service supports module revisions, and is capable of hosting and
executing multiple revisions of a module concurrently. When SAS Micro Analytic
Service compiles a DS2 package, it creates a revision of that module. Therefore, a
module is a container of revisions. It also houses any compiler warning or error
messages generated from the latest revision compilation or compilation attempt.

Note: The Micro Analytic Service 1.2 REST interface supports running the latest
revision only. The Java and C interfaces support multiple revisions.

Revision

A revision is at the leaf level of the object hierarchy. Each revision contains source code,
an executable code stream (optimized binary executable), and metadata. The metadata
describes the methods, method signatures, and entry points in the code.

SAS Micro Analytic Service assigns a revision number to each revision, which is a
monotonically increasing integer value beginning with 1. A revision is uniquely
identified by module ID and revision number. When you reference a revision, specifying
revision number zero selects the latest revision.

Note: A lookup is incurred when revision zero is specified. Therefore, for maximum
performance, a nonzero revision number should be used when possible.

Interfaces 5

Figure 2.1 Component Hierarchy

User User User
context context context
Module Module
C DS2 Module Module Module
functions packages
Revision 3 Revision 1 Revision 1 Revision 8 Revision 2
Revision 2 Revision 7 Revision 1
Revision 1 Revision 1
Interfaces

SAS Micro Analytic Service has a layered set of interfaces:

C
The SAS Micro Analytic Service core engine is written in C for high performance.

Note: The C interface is not accessible. However, it is important to be aware of it
because it does have an impact on threading, tuning, logging configuration, and
options for monitoring.

Java
a thin Java layer that communicates with the C interface through the Java Native

Interface (JNI).

REST/JSON
adds functionality such as persistence and clustering support and communicates with
the SAS Micro Analytic Service core engine through the Java interface.

All three interfaces are functionally similar. However, the REST interface handles
certain functionality automatically, such as initialization and user context management.
By contrast, the Java and C interfaces provide methods to control these elements
directly.

The following example illustrates SAS Micro Analytic Service interfaces allowing you
to publish code and execute it many times. Although you might be using SAS Micro
Analytic Service 1.2 through the REST interface, this example uses the Java interface in
order to show all of the steps, including those that the REST interface handles
automatically.

6 Chapter2 -« Concepts

Figure 2.2 Interfaces Example

ﬂAS Micro Analytic Service \

SAS Business
Rules Manager, |p--ccceccmcccccccccccccceeeeee H
SAS Model o y
Manager, and so on
SAS Customer h SAS
Intelligence and SAS Real- |:> Decision
Time Decision Manager Services

J

Java | Java method calls
client
‘ C client || C function calls

[0
S
‘'
=
=
®)
)
o
o
©
>
®
o

SAS TK libraries

SAS Micro Analytic Service

Example: JAVA Interface

Instantiate SAS Micro Analytic Service

When using the Java interface, instantiating the tksfjni Java class starts SAS Micro
Analytic Service.

Note: When using the REST interface, the service is started automatically when the web
application is started.

int threads = 4;
TkLight tk = new tksfjni(threads, null);

The threads argument creates a threaded kernel thread pool of size 4. The SAS threaded
kernel architecture is the internal architecture that enables SAS analytics. SAS Micro
Analytic Service uses the worker threads in the threaded kernel thread pool to dispatch
code compilation and execution tasks. For most applications, the best performance is
achieved by setting the thread pool size to be approximately equivalent to the number of
cores in the server where SAS Micro Analytic Service is running. Passing zero as the
threads argument causes SAS Micro Analytic Service to set the thread pool size equal to
the total number of logical processors that are present on the hosting server. For
example, Intel hyper-threaded processors have two logical processors per core.
Therefore, if threads is specified as zero on a system that has one Intel quad-core hyper-
threaded processor, the thread pool size is 8. Changing the thread pool size requires
restarting SAS Micro Analytic Service.

The second argument, which is null in the example above, can be used to specify the
location of a logging configuration file that controls SAS Micro Analytic Service
logging. SAS Micro Analytic Service uses the SAS 9.4 Logging Facility. For more
information, see SAS 9.4 Logging: Configuration and Programming Reference.

Example: JAVA Interface 7

Create a User Context

Create Modules

All modules are owned by a user context, so you must create a context to contain the
module that is published below.

// Create a user context

long userCtx = tk.newUserContext ("My user context");

if (userCtx == -1) {
System.out.println(" User context creation failed.");
tk.term() ;
return;

}

Note: When you use the REST interface, the creation of a context is done automatically.

The steps that follow illustrate how to publish code to SAS Micro Analytic Service,
where it is compiled and prepared for high-performance execution.

Create a module to hold the revisions of the code by calling the newModuleContext()
method, with the user context ID. Doing this causes the new module to be owned by the
user context you just created.

long moduleCtx = tk.newModuleContext (userCtx, Language.DS2,

"myPgk", 0);
if (moduleCtx == -1)
System.out.println (" Module context creation failed.");
tk.term() ;
return;

}

The second argument, Language.DS2, specifies that you are using this module to publish
a DS2 package. The third argument is the package name, which should match the
package name in the source code. If it does not, SAS Micro Analytic Service corrects the
name upon successfully creating the revision.

Now you need source code to publish. See Chapter 3, “DS2 Programming for SAS
Micro Analytic Service,” for information about writing code for SAS Micro Analytic
Service. This example uses the following simple program:

String myCode = "ds2 options sas;\n" +
"package myPkg;\n" +
"method myMth(int i, in out int j);\n" +
" j =1+ 5;\n" +
"end;\n" +
"endpackage; \n";

The source code is passed to SAS Micro Analytic Service as a string argument to the
newRevision() method. Notice the escaped newline characters at the end of each line. If
you read in the source code from a file, the newline characters are included. However, if
you use a literal string as above, the best practice is to include newline characters so that
any compiler messages can be easily traced to the given line number.

To publish your code to SAS Micro Analytic Service, call the newRevision() method,
passing in the module ID, source code string, and a description. The last two parameters
are for options that are not used with DS2.

int rev = tk.newRevision(moduleCtx, myCode,

8 Chapter2 -« Concepts

"my DS2 package", null, 0);
if (rev > 0) {
System.out.println (" Revision " + rev + " created.");
}
else {
System.out.println (" Revision not created.");

}

If the revision number that is returned is greater than zero, the code compiled correctly
and is now ready to be executed. Otherwise, call the following function in order to check
the compiler messages for errors:

String[] msgs = tk.getCompilationMessages (moduleCtx) ;

The example package contains one method, called “myMth,” which has one input and
one output argument. Before executing the method, you must create the method
arguments. The Java interface uses a tksfValues object to pass arguments to and from the
method to execute.

tksfvalues args = new tksfvValues(2, 1);

The first parameter to the tksfValues constructor is the total number of method
arguments, including both inputs and outputs. The second parameter specifies the
number of output arguments from the method. Because DS2 output arguments are
passed by reference, both inputs and outputs must be populated in the tksfValues object.
For more information, see Chapter 3, “DS2 Programming for SAS Micro Analytic
Service,” on page 11.

args.setInt(3);
args.setoutInt () ;

Note: The REST API does not support method overloading.

Continue to change the value in the argument vector and call the execute() function, as
many times as needed. The execute() function takes the following arguments: user
context ID, module ID, revision number (passing zero selects the latest revision), the
name of the method to execute, and the populated tksfValues object.

rc = tk.execute (userCtx, moduleCtx, rev, "myMth", args);

Successful execution returns zero for the return code, and the results can be retrieved
from the tksfValues object. Arguments are positional and are retrieved by the zero-based
index. In this case, the single integer output value can be retrieved from index position 1
(the second slot in the argument’s object).

int result = args.getInt(l);

Basic Steps for Using SAS Micro Analytic Service

Using SAS Micro Analytic Service involves four steps. When you are using the REST
interface, the first two are handled automatically.

Example: JAVA Interface

Figure 2.3 Annotated Steps

1. Instantiate SAS Micro Analytic Service. TK thread pool size.]
TkLight tk = new tksfjni (32, logcfgloc);

A user context is a module container, and
provides an isolated execution environment.

2. Get a user or business context.

- " TN
userCx = tk.newUserContext("A user context A module context is a revision container, and

represents a DS2 package.

3. Create modules.
moduleCtx = tk.newModuleContext(userCtx, Language.DS2, "Network risk score test", 0);
revision = tk.newRevision(moduleCtx, testDS2, "Network risk score code", null, 0);

A revision has an executable code stream with an
i entry point for each DS2 package method, source
4. EXGCUte ma ny times. code, and signature metadata.

rc = tk.execute(userCtx, moduleCtx, revisionNumber, methodName, arguments);

10 Chapter2 - Concepts

Chapter 3

1"

DS2 Programming for SAS Micro
Analytic Service

OVEIVIEW . . . 11
Publishing DS2 Source Code to SAS Micro Analytic Service.................. 11
SAS Micro Analytic Service and SAS Foundation 12
L O . 12
Programming Blocks 12
Public and Private Methods and Packages 13
OVEIVIEW . o . ettt et e e e e e e e e e e 13
Public Method Rules 13
Public Method Example 14
Private Method Example i i 15
Method Overloadingo e 15
Argument Types Supported in Public Methods 16
OVEIVIEW . ¢ . ettt et e e e e e e e e e e e 16
Supported DS2 Data TYPeSot ottt e et e 16
Unsupported DS2 Data TYPes oot v et e et e e 17

Overview

SAS Micro Analytic Service 1.2 supports a subset of the DS2 programming language
that is suitable for high-performance transaction processing in real time. This chapter
covers only that subset. Note that DS2 batch processing is not supported.

For more information about the DS2 programming language, see SAS 9.4 DS?2
Programming Reference.

Publishing DS2 Source Code to SAS Micro
Analytic Service

The DS2 source code submitted to SAS Micro Analytic Service should begin with

"ds2 options sas"

It should end with

12 Chapter 3 + DS2 Programming for SAS Micro Analytic Service

"endpackage"

The code cannot contain DATA statements, PROC statements, or FedSQL connection
strings. The source code should contain one and only one DS2 package, and this package
can contain as many methods as desired.

It is a best practice to include a line feed character at the end of each source code line.
This line feed character makes it easier to use compiler warning and error messages that
include line numbers.

SAS Micro Analytic Service and SAS Foundation

Although DS2 is supported by both SAS Foundation and SAS Micro Analytic Service,
SAS Micro Analytic Service has a lightweight, high-performance engine, which does not
support either the full SAS language or PROC statements. Therefore, PROC statements
cannot be used. However, here is an effective DS2 authoring and testing mechanism:
develop your DS2 packages in SAS Foundation using PROC DS2, and publish those
packages to SAS Micro Analytic Service after removing the surrounding PROC DS2
syntax.

It is recommended that every DS2 module that you publish to SAS Micro Analytic
Service include the following on the first line of code, just above the PACKAGE
statement:

ds2_options sas;

This option instructs DS2 to use SAS missing value handling, and helps ensure that your
DS2 program behaves the same as if it were run in SAS Foundation.

/0

SAS Micro Analytic Service 1.2 is a limited functionality release that does not support
database, SAS data set, or file I/O other than logging. As a result, the following DS2
features are not supported by SAS Micro Analytic Service 1.2:

» Package SQLStmt

» The features of package Hash that enable the population of a hash package from the
contents of a file

SAS Micro Analytic Service 1.2 does support the DS2 HTTP package, which can
execute HTTP requests to, and get responses from, HTTP and HTTPS web services.

Programming Blocks

Each DS2 module represents exactly one package, so the DS2 PACKAGE statement
plays a major role in SAS Micro Analytic Service. A DS2 package contains one or more
methods, and methods can contain a wide variety of DS2 language constructs. Package
methods work well with rapid transaction processing because they can be called over
and over again with little overhead, as transactions flow through the system. By contrast,
the DS2 THREAD and TABLE statements are batch-oriented and are not supported.

The following code blocks are supported:

Public and Private Methods and Packages 13

*+ PACKAGE...ENDPACKAGE

* METHOD...END

+ DO...END

The following code blocks are batch-processing oriented and are not supported:
* TABLE...ENDTABLE

+ THREAD...ENDTHREAD

Similarly, the following statements are not supported: OUTPUT and SET

+ OUTPUT

» SET

Public and Private Methods and Packages

Overview

Private methods and packages are SAS Micro Analytic Service concepts, rather than
DS2 features.

SAS Micro Analytic Service can host public DS2 packages and private DS2 packages.
Private DS2 packages have fewer restrictions on the DS2 features that can be used than
public packages have. Although a private DS2 package cannot be called directly, it can
be called by another DS2 package. Private DS2 packages are useful as utility functions,
as solution-specific built-in functions, or for solution infrastructure. See your SAS
solution documentation for a description of the solution-specific built-in functions that
you can use when authoring custom DS2 modules.

As with public packages, SAS Micro Analytic Service 1.2 private packages do not
support 1/O.

A public DS2 package can contain private methods, as long as it contains at least one
public method. Any method that does not conform to the rules for public methods is
automatically treated as private. Private methods are allowed and do not produce errors
if they contain correct DS2 syntax. Private methods are not callable externally.
Therefore, they do not show up when querying the list of methods within a package.
However, they can be called internally by other DS2 package methods. Here are several
typical uses of private methods:

* Small utility functions that return a single, non-void, result.

* Methods containing DS2 package arguments. These are not callable externally.

Public Method Rules

Public methods must conform to the following rules:

* The return type must be void. Rather than using a single return type, public methods
can return multiple outputs, where each output argument specifies the in_out
keyword in the method declaration. Non-void methods are treated as private.

* Arguments that are passed by reference (meaning ones that specify in_out) are
treated as output only. True update arguments are not supported by public methods.

14 Chapter 3 + DS2 Programming for SAS Micro Analytic Service

This restriction results in more efficient parameter marshaling and supports all
interface layers, including REST.

* Input arguments must precede output arguments in the method declaration. It is
permissible for a method to have only inputs or only outputs. However, if both are
present, all inputs must precede the outputs.

» All argument data types are publicly supported. See “Supported DS2 Data Types” on
page 16.

Public Method Example

The example below illustrates a valid public method. It has a void return type (no
RETURNS clause), uses only publicly supported data types, and treats in_out arguments
as output only.

method quickSortStep (int lowerIndex, int higherIndex, in out double numbers[10]) ;

dcl int i;

dcl int j;

dcl int pivot;
dcl double temp;

i = lowerIndex;
j = higherIndex;

/* Calculate the pivot number, taking the pivot as the
* middle index number. */

pivot = numbers[ceil (lowerIndex+ (higherIndex-lowerIndex)/2)];

/* Divide into two arrays */
do while (i <= j);
/**
* In each iteration, identify a number from the left side that
* is greater than the pivot value. Also identify a number
* from the right side that is less than the pivot value.
* Once the search is done, then exchange both numbers.
*/
do while (numbers([i] < pivot);
1= i+1;
end;
do while (numbers([j] > pivot);
jo=3-1;
end;
if (1 <= j) then do;
temp = numbers([i];
numbers [1] = numbers[j];
numbers [j] = temp;

/* Move the index to the next position on both sides. */
1 = i+1;
j=3-1;
end;
end;

/* Call quickSort recursively. */

Public and Private Methods and Packages 15

if (lowerIndex < j) then do;
quickSortStep (lowerIndex, j, numbers);
end;
if (i < higherIndex) then do;
quickSortStep (i, higherIndex, numbers);
end;
end;

Here is another example of a public method that illustrates the use of the HTTP package
calling out to a web service using a POST request and then getting a response.

method httppost (nvarchar(8192) url,
nvarchar (67108864) payload,
in out nvarchar respbody,
in out int hstat, in out int rc);
declare package http h();
rc = h.createPostMethod(url);
if rc ne 0 then goto Exit;
rc = h.setRequestContentType('application/json;charset=utf-8');
if rc ne 0 then goto Exit;
rc = h.addRequestHeader('Accept', 'application/json');
if rc ne 0 then goto Exit;
rc = h.setRequestBodyAsString(payload) ;
if rc ne 0 then goto Exit;
rc = h.executeMethod() ;
if rc ne 0 then goto Exit;
hstat = h.getStatusCode() ;
if hstat 1t 400 then h.getResponseBodyAsString(respbody, rc);
else respbody = '';
Exit:
h.delete();
end;

Private Method Example

The example below generates a private method in SAS Micro Analytic Service. It has a
non-void return type. That is, it has a RETURNS clause in the declaration, which
specifies a single integer return value.

method isNull (double val) returns int;
return null (val) OR missing(val) ;
end;

Method Overloading

SAS Micro Analytic Service supports method overloading. In DS2, when two or more
methods in the same package have the same name, those methods are said to be
overloaded. When overloaded methods are used, the method signature (list of input and
output parameters and their types) is used to select the correct method to execute.
Because a method signature includes both input and output parameters, any output
parameter types must always be set in tksfValues before executing the method.

Note: Each module constitutes a separate name space and corresponds to one DS2
package. Therefore, two DS2 methods with the same name, in different modules, are
not considered overloaded.

16 Chapter 3 + DS2 Programming for SAS Micro Analytic Service

Note: The C language does not support method overloading. Syntax errors occur if two
C functions with the same name exist in the source code of the same C module.
Therefore, only DS2 package methods can be overloaded in SAS Micro Analytic
Service 1.2.

The following functions enable you to query information about overloaded methods. For
more information about these methods, see Chapter 5, “Java Interface Reference,” on
page 25.

getStepInputs()
The version of getStepInputs() that takes an index parameter retrieves descriptions of
the input parameters of the overloaded method indicated by name and index value.
That is, you can use getStepInputs() to query the input arguments for overloaded
method 1, 2, 3, and so on. To do this, specify 1, 2, 3, and so on, for the index value.

getStepOutputs()
works similarly to getStepInputs(), but retrieves descriptions of the specified
method's output parameters.

getOverloadedStepCount()
returns the number of overloaded methods that exist in the specified module having
the specified name.

isOverloaded()
returns True if the specified method is overloaded and False if not.

Argument Types Supported in Public Methods

Overview

SAS Micro Analytic Service supports a subset of the DS2 data types for use as public
method arguments. Data types in the unsupported list can still be used in the body of a
(public or private) DS2 package method, and as arguments to private methods. The lists
of publicly supported and unsupported data types are given below.

Note: Any additional types added to the DS2 programming language in future releases
should be considered unsupported unless otherwise stated in the SAS Micro Analytic
Service documentation.

Supported DS2 Data Types
The following are the supported DS2 data types:

« BIGINT
.« CHAR()

- DOUBLE

+ FLOAT

. INTEGER
+ NCHAR(@)

« NVARCHAR(n)
« REAL

SMALLINT
VARCHAR(n)

Unsupported DS2 Data Types

Argument Types Supported in Public Methods 17

The following are the unsupported DS2 data types:

BINARY (n)
DATE
DECIMAL(p, s)
NUMERIC(p, s)
TIME(p)
TIMESTAMP(p)
TINYINT
VARBINARY (n)
PACKAGE

18 Chapter 3 + DS2 Programming for SAS Micro Analytic Service

Chapter 4

19

Best Practices for DS2
Programming

OVEIVIEW . . . 19
Global Packages Versus Local Packages 19

OVEIVIEW . o . ettt ettt e e e e e e e e e e e e e 19

Fast . 20

SOW 20
Replacing SCAN (and TRANWRD) withDS2 Code 20
Hash Package et e 23
Character-to-Numeric Conversions iuinen .. 23
Passing Character Valuesto Methods 23
Performing the ComputationOnce, 24
Moving Invariant Computations OQutof Loops 24

Overview

This section describes best practices that are recommended when programming in DS2
for any environment. They are not unique to SAS Micro Analytic Service.

Global Packages Versus Local Packages

Overview

The scope of a package instance makes a difference. Package instances that are created
in the global scope typically are created and deleted (allocated and freed) once and used
over and over again. Package instances that are created in a local scope are created and
deleted each time the scope is entered and exited. For example, a package instance that is
created in a method's scope is created and deleted each time a method is called. The
creation and deletion time can be costly for some packages.

The following examples use the hash package. This technique can be used for all
packages.

20 Chapter4 - Best Practices for DS2 Programming

Fast

This example creates a hash package instance that is global, created and deleted with the
package instance, and reused between calls to load and clear.

/** FAST *x/
package mypack;
dcl double k d;
dcl package hash h([k], [d]);

method load and clear();
dcl double ij;
do k =1 to 100;
d = 2*k;
h.add() ;
end;
h.clear();
end;
endpackage;

Slow

This example creates a hash package instance that is local to the method and created and
deleted for each call to load and clear.

/** SLOW **/
package mypack;
dcl double k d;

method load and clear();
dcl package hash h([k], [d]);
dcl double ij;
do k =1 to 100;
d = 2*k;
h.add() ;
end;
h.clear();
end;
endpackage;

Replacing SCAN (and TRANWRD) with DS2 Code

Consider the following code:

i=1;
onerow = TRANWRD (SCAN(full table, i, '['), ';;', ';-;');
do while (onerow ~= '');
j=1;
elt = scan(onerow, j, ';');
do while (elt ~= '');
* processing of each element in the row;
J = J+1;
elt = SCAN(onerow, j, ';');

Replacing SCAN (and TRANWRD) with DS2 Code 21

end;

1= 1+1;

onerow = TRANWRD (SCAN (full table, i, '|'), ';;', ';-;');
end;

You can make the following observations:

* SCAN consumes adjacent delimiters. Therefore, TRANWRD is required to
manipulate each row into a form that can be traversed element by element.

» SCAN starts at the front of the string each time. Therefore, the aggregate cost is
O(N”™2).

* SCAN and TRANWRD require NCHAR or NVARCHAR input. If full table is
declared as a CHAR or VARCHAR input, it must be converted to NVARCHAR,
then processed, and then converted back to VARCHAR in order to be captured into
the onerow value.

Here is code that replaces this type of loop with a native DS2 solution and that thus
avoids these problems by collecting the necessary details into a package:

dcl package STRTOK row iter();

dcl package STRTOK col iter();

row_iter.load(full table, '|');

do while (row iter.hasmore());
)

7

row_iter.getnext (onerow
col iter.load(onerow, ';');
do while (col iter.hasmore());
col iter.getnext (elt)
* processing of each element;
end;
end;

The supporting package, STRTOK, is shown below. It can be used to replace SCAN and
TRANWRD pairs anywhere in DS2.

/** STRTOK package - extract subsequent tokens from a string.
* So named because it mirrors (in a safe way) what is done by the original
* strtok(1l) function available in C.
*/
package sasuser.strtok/overwrite=yes;
dcl varchar(32767) _buffer;
dcl int strt blen;
dcl char(1l) _delim;

/* Loads the current object with the supplied buffer and delimiter
* information. This avoids the cost of constructing and destructing the
* object, and allows the declaration of a STRTOK outside of the loop in which
* it is used.
*/
method load(in out varchar bufinit, char(l) delim);
_buffer = bufinit .. delim;
_delim = delim;

strt = 1;
blen = length(buffer);
end;

/* Are there more fields? 1 means there are more fields. 0 means there are
* no more fields.

*/

22 Chapter4 - Best Practices for DS2 Programming

method hasmore() returns integer;
if (strt >= blen) then return 0;
return 1;

end;

/* The void-returning GETNEXT method places the next token in the supplied
* variable, tok.
*/
method getnext (in out varchar tok);
dcl char(1l) c;
dcl int e;
tok = '';
if (hasmore()) then do;
e = strt;
c = substr(_buffer,e,1);

do while (¢ ~= delim);
tok = tok .. c;
e =¢e + 1;
c = substr(_buffer,e,1);

end;
strt = e + 1;
end;
end;

/* The value-returning GETNEXT method returns the next token. This version is
* more computationally expensive because it requires an extra copy, as opposed to
* the void-returning version, above.
*/
method getnext () returns varchar (32767) ;
dcl varchar(32767) tok;
getnext (tok) ;
return tok;
end;

/* Construct a STRTOK object using the parameters as initial values.
*/

method strtok (varchar(32766) bufinit, char(l) delim);
load (bufinit, delim);

end;

/* Construct a STRTOK object without an initial buffer to be consumed.
*/
method strtok() ;
strt = 0; blen = 0;
end;
endpackage; run;

Using STRTOK instead of SCAN and TRANWRD avoids the CHAR to NCHAR
conversions and reduces CPU because of how STRTOK retains the intermediate state
between calls to the getnext() methods. Therefore, it is O(N) instead of O(N"2).

Passing Character Values to Methods 23

Hash Package

With both the DATA step and DS2, note the size of the key. A recent program carried out
many hash lookups with a 356-byte key. Hashing is an O(1) algorithm; the "1" with the
hash package is the length of the key. The longer the key, the longer the hash function
takes to operate.

dcl char(200) k1 k2;
dcl double dl d2;

/* If k1 and k2 are always smaller than 200, then */
/* size them smaller to reduce the time spent in */
/* the hash function when adding and finding values */
/* in the hash package. */
dcl package hash([kl k2], [dl d2]);

Character-to-Numeric Conversions

When converting a string to a numeric value, note the encoding of the string. When the
string is a single-byte encoding, DS2 translates the value to a TKChar (UCS-2 or
UCS-4) for conversion. The longer the string, the longer the time it takes to do the
conversion.

dcl char(512) s;
dcl nchar(512) ns;
dcl double x;

s = '12.345";

ns = '12.345";

X = 8; /* slow */

x = substr(s,1,16); /* faster */

x = substr(ns,1,16); /* even faster, avoids transcoding */

Passing Character Values to Methods

In SAS Micro Analytic Service, DS2 method input parameters are passed by value.
What this means is that a copy of the value is passed to the method. When passing
character parameters, a copy of the parameter is made to ensure that the original value is
not modified. Making sure that character data is sized appropriately ensures that less
copying occurs.

DS2 method output parameters, which are specified by the in_out keyword, are passed
by reference. Therefore, no copy is made.

method copy made (char (256) x);
end;

method no copy(in out char x);

24 Chapter4 - Best Practices for DS2 Programming

end;

Performing the Computation Once

If a computation is repeated multiple times to compute the same value, you can perform
the computation once and save the computed value. For example, the following code
block performs the computation, compute(x), four times:

if compute(x) > computed max then computed max = compute(x);
if compute (x) < computed min then computed min = compute(x);

If compute(x) always computes the same value for a given value of x, then the code
block can be modified to perform the computation once and save the computed value:

computed x = compute (x) ;
if computed x > computed max then computed max = computed x;
if computed x < computed min then computed min = computed x;

Moving Invariant Computations Out of Loops

If a computation inside a loop computes the same value for each iteration, improve
performance by moving the computation outside the loop. Compute the value once
before the loop begins and use the computed value in the loop. For example, in the
following code block, compute(x) is evaluated during each iteration of the DO loop:

do i =1 to dim(a);
if (compute(x) eq ali]) then ...;
end;

If compute(x) is invariant (meaning that it always computes the same value for each
iteration of the loop), then the code block can be modified to perform the computation
once outside the loop:

computed x = compute (x) ;
doi =1 to dim(a);

if (computed x eq al[il) then ...;
end;

Chapter 5

25

Java Interface Reference

OV eI VIEW . . .o e 25
TOPOlOgY . . .ot e 26
Start-UPo 26
Shutdown e 27
User Context Methods i 27
Module Context Methods 29
Revision Methods 32
OVETVIEW .« . ot ettt ettt e et et e e e e e 32
Parameter Descriptionso vttt 32
Method DesCriptionso vv vttt et e e e e 33
Execution Methods 37
OVETVIEW .« . ot ettt ettt e et et e e e e e 37
Java Data TYPes . . oottt 37
Method ATgUmEntsottt e e e 38
Argument Setter Methods 39
Argument Getter Methods i 41
Execute Method i 42
Revision Monitoring Methods 43
Complete Java Example 43

Overview

The Java interface allows tightly coupled Java client applications to drive SAS Micro
Analytic Service directly though Java method calls. This is made possible because the
Java interface provides fine-grained control of SAS Micro Analytic Service, and does
not hide detailed functionality. By contrast, the REST interface, in the interest of
usability and simplicity, handles many interactions automatically. A typical SAS Micro
Analytic Service 1.2 client uses the REST interface, which in turn uses the Java interface
described in this chapter.

The Java interface enables client-supplied DS2 and C programs to be published to SAS
Micro Analytic Service, where they are compiled into modules and made available for
repeated execution. The interface also includes methods for querying information about

26 Chapter5 + Java Interface Reference

currently loaded artifacts, such as user contexts, modules, methods, or functions
(sometimes called steps), and step signatures (such as input and output arguments).

Topology

As you can see from the following figure, the Java interface is positioned between the
REST interface and the C interface. Dependencies between the three interface layers are
strictly one way. The C interface does not depend on the REST or Java interfaces. In
fact, C clients can omit the Java layers altogether. The Java interface communicates with
SAS Micro Analytic Service strictly through the C interface and does not depend on the
REST interface. Similarly, the REST interface communicates with SAS Micro Analytic
Service strictly through the Java interface.

Figure 5.1 Java Interface

AS Micro Analytic Servicm

o)

SAS Business

Rules Manager, r"“"““““““““““"'!\‘ T
SAS Model L L P < g
Manager, and so on ' | S
w B = 0] ”
Y B= E% = 9] @
SAS Customer Intelligence) SAS o) & 5 8 s
and SAS Real-Time |:> Decision | Java) O E, oz <o S
Decision Manager) Services o < £33 >
SRS =
Java | Java method calls S S 2
client = (%}
%)
<
%)

| C client || C function calls

_

Start-Up

The SAS Micro Analytic Service 1.2 Java interface is a public Java interface named
TkLight, obtained by instantiating Java class tksfjni, which implements the interface.

int threads = 4;
String logconfigloc = null;
TkLight tk = new tksfjni(threads, logconfigloc) ;

CAUTION:
The tksfjni instance must be kept a singleton, as it is not advisable to start two

instances of SAS Micro Analytic Service within the same process space. This
would yield unpredictable results and is not supported.

The first tksfjni constructor argument specifies the size of the threaded kernel thread
pool to be maintained by SAS Micro Analytic Service. For best performance, the size of
the thread pool should be about equal to the number of processor cores in the server

User Context Methods 27

hosting SAS Micro Analytic Service. The exact number of threaded kernel threads to

specify for best performance varies somewhat, depending on the characteristics of the
code to be published. When the number of threads that is specified exceeds four times
the number of cores of the hosting server, SAS Micro Analytic Service fails to start.

The second tksfjni constructor argument, when non-null, specifies the location of a
logging configuration file, which controls SAS Micro Analytic Service logging. SAS
Micro Analytic Service uses the SAS 9.4 Logging Facility. For more information, see
SAS 9.4 Logging: Configuration and Programming Reference. Your SAS solution might
provide a default logging configuration. For more information, see your solution’s
documentation.

Shutdown

SAS Micro Analytic Service is shut down by calling term().
tk.term() ;

Because SAS Micro Analytic Service is an in-memory service, all published artifacts
(user contexts, modules, and revisions) are purged. If SAS Micro Analytic Service is
restarted when using the Java interface, any previously purged artifacts are not restored
and must be re-published if desired. However, the REST interface includes an artifact
persistence feature that restores the state of SAS Micro Analytic Service automatically.
For more information, see Chapter 6, “SAS Micro Analytic Service REST APL,” on page
49.

User Context Methods

User (or business) contexts have two primary functions:

* A user context is a container of modules. Every module is parented to one and only
one user context.

» User contexts provide isolated execution environments. The operations of one user
context are not visible to any other user context.

Note: Recall that there is no functional difference between a user context and a business
context. Whether contexts are used to provide each user with their own environment,
or whether they are used to insulate business units from one another, is application-
specific. The set of functionality is the same. SAS Micro Analytic Service uses the
UserContext construct for both business and user contexts.

Here is a list of available methods:

newUserContext
long newUserContext (java.lang.String displayName)

Creates a new user or business context and returns an opaque pointer to it. Modules
are organized by user context. User contexts are isolated from one another.

Parameter
displayName - The name that is used in log messages.

Return
handle - The opaque context identifier (opaque pointer) that is used to pass to
functions that require a user context identifier.

28 Chapter5 + Java Interface Reference
deleteUserContext
void deleteUserContext (long userContext)
Deletes a user context and all modules that are associated with it.

Parameter
userContext - The opaque user context handle of the context to delete.

userContextExists
boolean userContextExists(long userContext)

Queries the existence of a user context.

Parameter
userContext - The opaque user context handle.

Return
Boolean - True if the context exists, False otherwise.

getUserContextDisplayName
java.lang.String getUserContextDisplayName (long userContext)

Retrieves the display name of the given user context.

Parameter
userContext - The opaque user context handle.

getModulelDs
long[] getModulelIDs (long userContext)

Retrieves the IDs of all modules that are currently loaded in the system.

Return
The long array of the module IDs.

getModuleNames

java.lang.String[] getModuleNames (long userContext)
Retrieves the names of all modules that are currently loaded in the system.

Returns
The string array of the module IDs.

Note: The C modules are named according to the value of the displayName
argument passed to newModuleContext(). DS2 modules are named for the
DS2 package that the module represents (such as the package name given in
the source code).

Note: If the value of the displayName argument to newModuleContext() differs
from the DS2 package name that was given in the source code, the module
name changes when the first revision of the DS2 package is created.

getUserContextCreationDateTime
java.util.Date getUserContextCreationDateTime (long userContext)

Gets the user context creation datetime.

Parameter
userContext - The opaque user context handle.

Return
The creation datetime in SAS form (GMT seconds since 1960).

getUserContextLastModifiedDateTime
java.util.Date getUserContextLastModifiedDateTime (long userContext)

Gets the user context last modified datetime.

Module Context Methods 29

Parameter
userContext - The opaque user context handle.

Return
The datetime of the last modification in SAS form (GMT seconds since 1960).

Here is an example of creating a new user context:

long userCtx = tk.newUserContext ("A user context");

if (userCtx <= 0) {
System.out.println(" User context creation failed.");
return;

}

The user context handle that is returned from newUserContext() actually represents a C
language pointer that is maintained in the SAS Micro Analytic Service core. The pointer
is opaque to Java and represented as a value of type long. This value can be used to pass
to any method that requires a user context identifier. It should not be modified.

Module Context Methods

The terms module and module context are used interchangeably. In SAS Micro Analytic
Service 1.2, a module context represents either of the following:

named C module
a collection of related C functions

DS2 package
a collection of related DS2 methods (also referred to in SAS Micro Analytic Service
as a DS2 module).

A module context contains revisions of C or DS2 code. The revisions within a module
context might contain different source code, but all revisions must represent the same
named DS2 package or C module. That is, for DS2 modules the package name that is
given in the source code is not allowed to change from revision to revision. If it does, an
error is returned and the revision is not created.

In addition to zero or more revisions, a module context maintains information such as a
description, highest revision number used, number of revisions present, programming
language (C or DS2, for SAS Micro Analytic Service), messages from the most recent
compilation, creation date and time, and last modified date and time.

Here is a list of available module contexts:

newModuleContext
long newModuleContext (long userContext,
TkLight.Language language,
java.lang.String displayName,
java.util.EnumSet<TkLight .ModuleOptions> options)

Creates a new module context within the given user context. A module is a collection
of related steps (a DS2 package or collection of C routines). Add code to the module
context by calling newRevision().

Note: For DS2 packages, the module displayName is assigned the DS2 package
name when the first revision is created.

Note: DS2 packages containing non-void methods or methods with DS2 package
arguments are treated as internal and are not returned in queries for the list of
methods. It is permissible to include private methods that do not produce errors,

30 Chapter5 < Java Interface Reference

as long as the code is valid. See “Public and Private Methods and Packages” on
page 13.

Parameters
userContext - The opaque handle returned from newUserContext().

language - Source language (C or DS2).

displayName - For DS2, set it to the DS2 package name. For C, any text
identifier is acceptable.

options - If the EnumSet contains enum INTERNAL, the module context and all
revisions are private.

Return
module context - The module context created (opaque handles), returns zero on

€ITOofrT.

Note: The module context handle that is returned from newModuleContext()
actually represents a C language pointer in SAS Micro Analytic Service core.
This handle is opaque to Java and represented as a value of type long. This
value is used to pass to any method that requires a module context identifier,
and should not be modified.

deleteModuleContext
void deleteModuleContext (long moduleContext)

Deletes the specified module context and its modules and revisions.

Parameter
moduleContext - The opaque module context handle

moduleContextExists
boolean moduleContextExists (long moduleContext)

Queries the existence of a module context.

Parameter
moduleContext - The opaque module context handle

Return
Boolean - True if context exists, False otherwise.

getModuleContextDisplayName
java.lang.String
getModuleContextDisplayName (long moduleContext)

Retrieves the display name of the given module context.

Parameter
moduleContext - The opaque module context handle.

getModuleContextByName
long getModuleContextByName
(long userContext,java.lang.String name)

Retrieves the module context opaque handle, when given the display name. This
method is provided as a convenience for clients that choose to identify modules by
name. Callers are responsible for guaranteeing name uniqueness.

Parameters
userContext - The opaque handle returned from newUserContext().

name - DS2 package name or C module display name.

Module Context Methods 31

Note: For DS2 packages, the module context name is the name of the DS2
package, which is set when the first revision is created. If a module context
must be retrieved by name before the first revision is created, then the
displayName argument to newModuleContext() must be set to the correct
name (the name of the DS2 package to be subsequently published) when the
module context is created.

getModuleContextCreationDateTime
java.util.Date
getModuleContextCreationDateTime (long moduleContext)

Gets the module context creation datetime.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

Returns
Creation datetime in SAS form (GMT seconds since 1960).

getModuleContextLastModifiedDateTime
java.util.Date
getModuleContextLastModifiedDateTime (long moduleContext)

Gets the module context’s last modified datetime.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

Return
The creation datetime in SAS form (GMT seconds since 1960).

registerModuleName
int registerModuleName (long moduleContext,
java.lang.String name)

Registers a module name so that it can participate in calls across code streams. Call
this function to enable other C modules to call functions on the given module. Calls
across code streams can be made by C modules only.

Note: Although DS2 cannot call across code streams, DS2 package methods can call
methods in other packages. An in-memory DS2 program repository enables DS2
package references to be resolved at compile time, so that a complete set of
referenced packages is compiled into every code stream. Therefore, calls across
code streams are not necessary with DS2 modules. However, C modules require
external modules to be registered, using this method, in order to locate the
external module at run time.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

name - The name to assign the module (must be unique within the user context).

Return
result code - Zero indicates successful registration nonzero indicates registration
failed.

32 Chapter5 < Java Interface Reference

Revision Methods

Overview

A revision represents the executable code of a module. A module might contain zero or
more revisions. More than one revision of a given module can be executed concurrently
by different callers, or at different times by the same caller. Passing in zero for a revision
number gets the latest revision of the specified module.

For example, caller A might rely on specific behavior in revision 3 of module X. You
might set up caller B to always use the latest version of module X. To execute the
desired code, caller A would specify the ID of module X and revision 3:

revision = 3;

rc = tk.execute (userCtx, moduleX, revision, methodName, args);

Caller B would specify the same module ID and revision zero:

revision = 0;

rc = tk.execute (userCtx, moduleX, revision, methodName, args);

Revision numbers are monotonically increasing values starting at 1. Revisions can be
created and deleted. However, revision numbers are never reused. This behavior
prevents the code of a revision from unexpectedly changing out from under a caller.
Once a revision has been deleted, attempts to execute or query that revision receive a
result code indicating the revision was not found.

Parameter Descriptions

Some of the revision-specific methods, such as getStepInputs() and getStepOutputs(),
return instances of the public class tksfParmdef, which stands for parameter definition.
Each tksfParmdef instance describes one parameter of a C function or DS2 package
method. tksfParmdef contains the following member variables, along with getters and
setters for each:

public int index; // parameter position (zero-based)
public String name; // parameter name
public sftype type; // parameter type
public int dim; // if array, dimension; ignored otherwise
public int size; // if varchar, max length; ignored otherwise

The parameter type member variable, sftype, is defined as the following enumeration,
which represents the Java data types that are supported by SAS Micro Analytic Service:

// Supported data types
public enum sftype {

string t,
char_t,
long t,
double_t,
int_t,
stringArray t,
charArray t,
longArray t,
doubleArray t,

Method Descriptions

Revision Methods 33

intArray t

Here are the available revision methods:

newRevision
int newRevision(long moduleContext,

java.lang.String sourceCode,

java.lang.String description,

java.lang.String[] CEntryPoints,
java.util.EnumSet<TkLight.RevisionOptions> options)

The source code is compiled into executable form and, if it is successful, a revision
number is assigned by SAS Micro Analytic Service. Revisions are uniquely
identified by module context ID and revision number. Once created, a revision can
be executed many times.

If source code compilation fails during newRevision(), the revision is not created,
and any compiler warning or error messages are maintained by the owning module
context until the next time newRevision() is called for the given module context.

Note: For DS2 packages, the parent module context displayName is assigned the

DS2 package name (given in the source code) when the first revision of that
module context is successfully created. After the first revision is created, the
name cannot be changed. Attempts to create a revision of a DS2 module with a
different package name than the original revision result in an error.

Note: DS2 packages containing non-void methods or methods with DS2 package

arguments are treated as private and are not returned in queries for methods. It is
permissible to include private methods, and private methods do not produce
errors as long as the code is valid. For more information, see “Public and Private
Methods and Packages” on page 13.

Parameters

moduleContext - The opaque handle returned from newModuleContext().

sourceCode - The string containing the source code (must match language of
original source code).

description - User-supplied text.

CEntryPoints - If C code, this refers to the names of the entry points (functions)
to make available externally.

Return

revisionNumber - The new revision number.

deleteRevision

void deleteRevision(long moduleContext,

int revision)

Deletes the module revision that is specified by module context and revision number.

Parameter

moduleContext - The opaque handle returned from newModuleContext().

getCompilationMessages

java.lang.String[]
getCompilationMessages (long moduleContext)

Retrieves any compiler diagnostic messages from the latest compilation
(newRevision call) of the given module context.

34 Chapter5 + Java Interface Reference

Note: Only compilation messages from the most recent compilation, per module
context, are retained.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

Return
An array of strings containing compiler diagnostic messages.

revisionlsValid
boolean revisionIsValid(long moduleContext,
int revision)

Returns True if the revision is valid, False if otherwise.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
Boolean - True if the revision is valid, and False if otherwise.

getSteplDs
java.lang.String[] getStepIDs
(long moduleContext, int revision)

Retrieves the IDs of steps (DS2 package methods or C functions) contained by the
revision.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The string array containing a list of step IDs (DS2 package method names or C
function names).

getStepDescription
java.lang.String getStepDescription
(long moduleContext, int revision, java.lang.String stepId)

Retrieves the step description.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().
stepld - The name of the DS2 package method or C function.

Return
The description of the step.

getSteplnputs
java.util.ArrayList<tksfParmdef> getStepInputs
(long moduleContext, int revision, java.lang.String stepId)

Retrieves the step input arguments.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepld - The name of the DS2 package method or C function.

Revision Methods 35

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 32.

getSteplnputs
java.util.ArrayList<tksfParmdef> getStepInputs
(long moduleContext, int revision, java.lang.String stepId, int index)

Retrieves step input arguments for an overloaded method, at a zero-based index.
Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().
stepld - The name of the DS2 package method or C function.
index - The zero-based index of the overloaded method.

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 32.

getStepOutputs
java.util.ArrayList<tksfParmdef> getStepOutputs
(long moduleContext, int revision, java.lang.String stepId)

Retrieves the step output arguments.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().
stepld - The name of the DS2 package method or C function.

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 32.

getStepOutputs
java.util.ArrayList<tksfParmdef> getStepOutputs
(long moduleContext, int revision, java.lang.String stepId, int index)

Retrieves the step output arguments for an overloaded method, at a zero-based index.
Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().
stepld - The name of the DS2 package method or C function.
index — The zero-based index of the overloaded method.

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 32.

36 Chapter5 < Java Interface Reference

getOverloadedStepCount
int getOverloadedStepCount (long moduleContext,
int revision,
java.lang.String stepID)

Retrieves the number of overloaded steps matching the given step ID.
Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().
stepld - The name of the DS2 package method or C function.

Return
The number of overloaded steps (DS2 package methods having the same name).

isOverloaded
boolean isOverloaded (long moduleContext,
int revision,
java.lang.String stepID)

Retrieves the number of overloaded steps matching the given step ID.
Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().
stepld - The name of the DS2 package method or C function.

Return
True, if the method is overloaded, False otherwise.

getRevisionCreationDateTime
java.util.Date getRevisionCreationDateTime
(long moduleContext, int revision)

Gets the revision creation datetime.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The creation datetime in SAS form (GMT seconds since 1960).

Execution Methods 37

Execution Methods

Overview

Java Data Types

As previously discussed, code is published to SAS Micro Analytic Service by calling
newRevision(), which returns a revision number greater than zero upon successful
compilation. When a revision number less than or equal to zero is returned, a revision
was not created. In this case, messages output by the compiler during the failed
compilation attempt can be retrieved by calling getCompilerMessages() with the module
context ID.

Note: Compiler messages from the most recent call to newRevision() are maintained by
the module context. Therefore, if newRevision() fails to create a revision, the
compiler message can still be retrieved. Each call to newRevision() overwrites any
previously saved compiler messages.

When a revision has been created, its methods can be executed repeatedly. To execute a
method, call execute(), passing in the module context ID, revision number (or zero for
latest revision), method name, and method arguments.

Note: The method name is also referred to as an entry point.
rc = tk.execute (userCtx, moduleCtx, revisionNumber, "myMethod", args);

Revision numbers are assigned by SAS Micro Analytic Service. The first revision
number is always 1. Subsequent revisions are assigned numbers 2, 3, 4, and so on.
Revision numbers are never reused. Therefore, if four revisions of a module have been
created and revision 3 is deleted, the next revision number assigned is 5 (3 is never
reused). Specifying zero for revision number gets the latest revision.

Note: If you know the number of the revision that you want to execute, always pass that
number to execute() rather than zero. Passing in zero specifies the latest revision, and
causes SAS Micro Analytic Service to look up the latest revision number. This
lookup takes time and can be bypassed altogether by passing in the explicit, nonzero
revision number.

Here are the Java scalar data types supported by SAS Micro Analytic Service:
* String

e Character

* Long
* Integer
* Double

The following Java array types are supported:
» String[]

* longf]

e int[]

* double[]

38 Chapter 5

Java Interface Reference

Method Arguments

Method arguments, including input and output parameters, are passed to SAS Micro
Analytic Service as a com.sas.mas.tksfValues Java object.

tksfvalues p = new tksfValues (numArgsTotal, numInputs);

The first parameter to the tksfValues constructor is the total number of arguments,
including both inputs and outputs. The second parameter specifies the number of input
arguments of the method.

Note: Before calling execute(), all method arguments, including outputs, must be set on
the tksfValues instance. Output arguments are set by calling the setOut<type>
methods of tksfValues.

Output arguments must be set for two reasons:

» DS2 passes output arguments by reference. Therefore, the correct types must be
allocated in order to receive the output values. Because DS2 follows this pass-by-
reference convention, SAS Micro Analytic Service follows the same convention
regardless of the programming language.

* SAS Micro Analytic Service supports method overloading. When overloaded
methods are used, the method signature (list of input and output parameters and their
types) is used to select the correct method to execute. Because a method signature
includes both input and output parameters, the output parameter types must be set in
tksfValues.

In DS2, when two or more methods in the same package have the same name, those
methods are said to be overloaded. Each module constitutes a separate namespace.
Therefore, two DS2 methods that have the same name, but are in different packages, are
not considered overloaded. Similarly, two C functions with the same name, but in
different C modules, will not have a name conflict.

Note: The C language does not support method overloading. Syntax errors occur if two
C functions with the same name exist in the source code of the same C module.

DS2 in_out parameters are treated strictly as output. This convention is necessary to
support the REST interface, which does not support true in/out arguments.

When you are coding in DS2 or C, all input arguments must be positioned before any
output arguments. Failure to do so causes your method to malfunction. SAS Micro
Analytic Service might not detect this error because the DS2 compiler does not carry this
restriction.

Note: Arrays are always passed by reference in DS2, regardless of whether the in_out
keyword is specified. However, SAS Micro Analytic Service treats arrays without
the in_out keyword as input and arrays with the in_out keyword as output, as long as
all inputs precede outputs in the method signature.

Incorrect:

method solve(double tempRate, in out int finalRate, int custId);
Correct:

method solve(double tempRate, int custId, in out int finalRate);

tksfValues provides methods for setting and getting arguments, including methods that
enable the use of explicit or implicit argument indices and methods that support missing
values. These methods are described in the sections that follow.

Execution Methods 39

Argument Setter Methods

Overview

Use the setter methods to prepare input and output arguments before calling execute().
Output variables, of the correct types, must be set before calling execute(). Here are the
reasons:

* Output variables are passed by reference. Therefore, variables must exist to receive
the output values.

» DS2 supports method overloading (two or more methods having the same name but
different signatures). The entire signature must be reflected in the arguments list to
allow selection of the correct same-named method.

» TKG does not supply metadata for C functions. Therefore, the data type must be set
for every argument, including the output arguments.

Setters with an Implicit Index
Use the tksfValues methods below to set the values of input arguments.

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first setter method call uses index 0, the next index 1, and so on.

public void setString(String value) ;

public void setChar (Character value);
public void setLong(Long value) ;

public void setInt (Integer value);

public void setDouble (Double value) ;

public void setStringArray (String[] value);
public void setLongArray (long[] value);
public void setIntArray(int[] value);
public void setDoubleArray (double[] value);

Setters with an Explicit Index
Use the tksfValues methods below to set the values of input arguments.

These methods use explicit indexes and set the value of the input argument at the zero-
based index position that is given.

public void setString(int index, String value);

public void setChar (int index, Character value);
public void setLong(int index, Long value) ;

public void setInt (int index, Integer value) ;

public void setDouble (int index, Double value) ;

public void setStringArray(int index, Stringl[] value);
public void setLongArray(int index, long[] value);
public void setIntArray(int index, int[] value);
public void setDoubleArray(int index, double[] wvalue);

Missing Value Setters with an Implicit Index
Use the tksfValues methods below to set the values of input arguments to missing.

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first setter method call uses index 0, the next index 1, and so on.

40 Chapter5 + Java Interface Reference

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setMissingString() ;

public void setMissingChar() ;

public void setMissingLong() ;

public void setMissingInt() ;

public void setMissingDouble () ;

public void setMissingStringArray(int dim);
public void setMissingLongArray (int dim);
public void setMissingIntArray (int dim);
public void setMissingDoubleArray(int dim);

Missing Value Setters with an Explicit Index
Use the tksfValues methods below to set the values of input arguments to missing.

These methods use explicit indexes, and set the value of the input argument at the zero-
based index position given.

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setMissingString(int index) ;

public void setMissingChar (int index);

public void setMissinglong(int index) ;

public void setMissingInt (int index);

public void setMissingDouble (int index);

public void setMissingStringArray(int index, int dim);
public void setMissinglLongArray(int index, int dim);
public void setMissingIntArray(int index, int dim);
public void setMissingDoubleArray(int index, int dim);

Output Setters with an Implicit Index
Use the tksfValues methods below to set the type of an output argument (and to set its
value to missing) before calling execute().

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first setter method call uses index 0, the next index 1, and so on.

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setOutString() ;

public void setOutChar();

public void setOutLong() ;

public void setOutlInt();

public void setOutDouble () ;

public void setOutStringArray(int dim);
public void setOutLongArray (int dim) ;
public void setOutIntArray(int dim);
public void setOutDoubleArray(int dim);

Output Setters with an Explicit Index
Use the tksfValues methods below to set the type of an output argument, and to set its
value to missing, before calling execute().

These methods use explicit indexes, and set the value of the input argument at the zero-
based index position given.

Execution Methods 41

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setOutString(int index) ;

public void setOutChar (int index) ;

public void setOutLong (int index) ;

public void setOutInt (int index) ;

public void setOutDouble (int index) ;

public void setOutStringArray(int index, int dim);
public void setOutLongArray (int index, int dim);
public void setOutIntArray(int index, int dim);
public void setOutDoubleArray(int index, int dim);

Argument Getter Methods

Overview
Use the getter methods to retrieve results after calling execute(). A return code of zero
from execute() indicates successful execution.

tksfValues provides methods for retrieving method output values, and for checking to see
whether an output argument has been set to missing.

Similar to the getter methods, setter methods use either implicit or explicit indices.

Missing Value Check

The following method can be used to see whether a given output argument contains a
missing value. isMissing() checks the argument at the given zero-based position for
missing, regardless of the arguments data type.

public boolean isMissing(int ndx) ;

Getters with an Implicit Index
Use the tksfValues methods below to get the values of output arguments.

Note: The first output argument often follows one or more input arguments. Therefore,
in order to use implicit indices to retrieve output values, it is often necessary to call
setIndex() before calling the first getter method. setIndex() sets the implicit zero-
based index to the given value, enabling the first getter method (with implicit index)
to retrieve the first output argument.

public void setIndex (int ndx);

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first getter method call uses index 0, the next index 1, and so on.

public String getString() ;

public Character getChar();
public Long getLong () ;

public Integer getInt();

public Double getDouble() ;

public String[] getStringArray();
public long[] getLongArray () ;
public int[] getIntArray();
public double[] getDoubleArray() ;

Getters with an Explicit Index
Use the tksfValues methods below to get the values of output arguments.

42 Chapter5 + Java Interface Reference

These methods use explicit indexes and get the value of the output argument at the zero-
based index position given.

public String getString(int pos);

public Character getChar (int pos);
public Long getLong(int pos);

public Integer getInt (int pos);

public Double getDouble (int pos) ;

public String[] getStringArray(int pos) ;
public long[] getLongArray(int pos);
public int[] getIntArray(int pos);
public double[] getDoubleArray(int pos) ;

Miscellaneous tksfValues Methods
Use clear() to reset all argument values in the tksfValues instance and to set the implicit
index to zero.

public void clear();

Use the following methods to retrieve the total number of arguments and the number of
input arguments, respectively, of the tksfValues instance:

public int getSize();
public int getInputCount () ;

Execute Method

The following example executes a method (or step). The results are returned in output
arguments. The return code indicates the success or failure of step execution.

int execute(long userContext,
long moduleContext,
int revision,
java.lang.String entryPoint,
tksfvalues arguments)

Here are the parameters:

userContext
The opaque handle returned from newUserContext().

moduleContext
The opaque handle returned from newModuleContext().

revision
The revision number returned from newRevision().

entryPoint
The name of the DS2 package method or C function to execute.

arguments
The tksfValues object containing input arguments and placeholders for output
arguments.

Complete Java Example 43

Revision Monitoring Methods

Here are the revision monitoring methods:

getRevisionHitCount
long getRevisionHitCount (long moduleContext,
int revision)

Returns the aggregate total number of times any method of the revision has been
called since the revision was created.

Parameters
moduleContext - The opaque pointer returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The number of times the revision methods have been called.

getRevisionAvglLatency
double getRevisionAvgLatency (long moduleContext,
int revision)

Returns the average execution latency, in seconds, of method calls on the specified
revision.

Parameters
moduleContext - The opaque pointer returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The average length of time, in seconds, spent in method execution. The average
includes all methods of the specified revision.

getTotalRevisionExecutionTimeSeconds
double getTotalRevisionExecutionTimeSeconds (long moduleContext,
int revision)

Returns the total time, in seconds, spent executing methods of the specified revision.

Parameters
moduleContext - The opaque pointer returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The total length of time, in seconds, spent in method execution. The total
includes all methods of the specified revision.

Complete Java Example

This section examines a simple but complete Java program that uses SAS Micro
Analytic Service to call a simple DS2 package method. Comments within the body of
the code explain each step.

The example code performs the following sequence of steps:

44 Chapter 5 + Java Interface Reference

—_—

Starts SAS Micro Analytic Service

Creates a user context

Creates a module context

Creates a new revision (DS2 package is compiled)

Checks for compiler messages and prints any that are found to the console
Retrieves and prints metadata about the DS2 package

Prepares method arguments

Calls a method

A S A L o

Retrieves and prints results

—_
=]

. Prepares a different set of argument values

—_—
—_—

. Calls a different method of the package

—_
[\S)

. Retrieves and prints results of the second call

13. Shuts down SAS Micro Analytic Service

The console output from running the example follows the source code.

package com.sas.mas.test;
import java.util.ArrayList;

import com.sas.mas.TkLight;

import com.sas.mas.tksfParmdef;
import com.sas.mas.tksfValues;
import com.sas.mas.TkLight.Language;
import com.sas.mas.jni.tksfjni;

public class SimpleDS2Example {

/*
This is a simple DS2 package with two methods. The code could have
been read from a file, but is included here for easy reference.

The source code starts with "ds2 options sas" and ends with
with "endpackage." This pattern should be used with all DS2 to be
published to SAS Micro Analytic Service.

Note: each source code line ends with a line-end character.
This best practice facilitates use of the line numbers included in
compiler messages, making it easier to locate syntax errors.

*/
static String DS2 =
"ds2 options sas; \n" +
"package simple example /overwrite=yes; \n" +
" \n" +
" method str2double (char(12) numericString, in out double number) ; \n" +
n number = put(numericString, 8.0); \n" +
n /* Include an undeclared variable to illustrate a compiler warning */ \n" +
" anotherNumber = number; \n" +
" end; \n" +
"

n \I’l"

Complete Java Example

n method flip string(varchar(32767) in string, in out varchar out string); \n" +
" /* Reverse the input string and set in output string */ \n" +
" out string=reverse(in string); \n" +
" end; \n" +
" \n" +
"endpackage; \n";
/**
* @param parms
*/
public static void main(String[] parms) {
int re;
String stringToReverse = new String("This is a test...");
String stringToConvert = new String("0.9997");
long userCtx = -1;
long moduleCtx = -1;

// Start SAS Micro Analtyic Service with four threads and

// no logging configuration file location (null second argument)
int threads = 4;

TkLight tk = new tksfjni(threads, null);

System.out.println("*** Simple example of using SAS Micro Analytic Service *xx");
// Create a user context.

userCtx = tk.newUserContext ("A user context");
if (userCtx <= 0) {

System.out.println(" User context creation failed.");
return;

else {
System.out.println(" User context created at " +

tk.getUserContextCreationDateTime (userCtx) + ".");

/* Create a module context.
This module context is owned by the user context just created.
The language is specified as DS2. Therefore, all revisions
of the module must be DS2.
The module is named for the DS2 package it represents, or
"simple example" in this case.
Pass null for the last argument, which specifies the default options.
*/
moduleCtx = tk.newModuleContext (userCtx,
Language.DS2,
"simple_ example",

null) ;
if (moduleCtx <= 0) {
System.out.println (" Module context creation failed.");
tk.term() ;
return;
}
else {
System.out.println(" Module context created at " +

tk.getModuleContextCreationDateTime (moduleCtx) + ".");

45

46 Chapter5 + Java Interface Reference

/* Publish the DS2 to SAS Micro Analytic Service by calling newRevision() .
Pass in the module context ID, the source code String, and an
optional description.

Pass null for the fouth argument, a list of entry points, which

is only used for C modules.

Pass null for the last argument, which specifies default options.
*/

int revision = tk.newRevision(moduleCtx, DS2,

"A simple DS2 example to illustrate SAS Micro Analytic Service usage.",
null, null);

if (revision <= 0) {

System.out.println (" Compilation failed");
String[] messages = tk.getCompilationMessages (moduleCtx) ;
if (messages.length > 0) {
System.out.println (" Compiler messages:");
for (String msg : messages) {
System.out.println(" "+ msg);

}

System.out.println(" Revision creation failed.");
tk.term() ;
return;
}
else {
System.out.println(" Revision " + revision + " created at " +
tk.getRevisionCreationDateTime (moduleCtx, revision)

System.out.println(" DS2 Package: " +
tk.getModuleContextDigplayName (moduleCtx)) ;

/* Even successful compilations can produce warning messages from the compiler.
The undeclared variable included in the source code generates such a
warning. However, it will not prevent the code from publishing and executing
properly.

*/
String[] messages = tk.getCompilationMessages (moduleCtx) ;
if (messages.length > 0) {
System.out.println(" Compiler messages:");
for (String msg : messages) {
System.out.println (" " + msg) ;

/* Once published, SAS Micro Analtic Service can be queried for information
about the revision. Here you are asked for the inputs to the str2double
method. Parameter metadata is represented by class tksfParmdef.
*/
ArrayList<tksfParmdef> inputs = tk.getStepInputs (moduleCtx,
revision,
"str2double") ;
System.out.println(" Input arguments to method 'str2double':");
for (tksfParmdef p : inputs) {
System.out.println(" Input name: '" + p.name + "' type: " +

Complete Java Example

p.getType()) ;

}

/* Setup arguments to call method "str2double", which has one String input and
one double output.
Note: Setters are being used with implicit indices.

*/
int numArgs = 2;
int numInputs = 1;

tksfValues args = new tksfValues (numArgs, numInputs); // DS2 method arguments
args.setString(stringToConvert) ;

args.setOutDouble () ;

String methodName = "str2double";

// Execute the DS2 package method "str2double"
rc = tk.execute (userCtx, moduleCtx, revision, methodName, args);
if (rc = 0) {

System.out.println(" Bad return code from execute:" + rc);
if (rc == 29) {
System.out.println (" Exception occurred during execution of " +

methodName + " in the TK environment.");

}

tk.term() ;
return;

}

else {
// Print results (Getters are being used with explicit indices.)
System.out.println(" Results of calling str2double:");
System.out.println(" Input String: " + args.getString(0)) ;
System.out.println(" Output double (rounded): " + args.getDouble(1));

// Setup arguments to call the method "flip string", which has one String input
// and one double output. Setters are being used with implicit indices.

numArgs = 2;

numInputs = 1;

args = new tksfValues (numArgs, numInputs); // DS2 method arguments
args.setString(stringToReverse) ;

args.setOutString() ;

methodName = "flip string";

// Execute the DS2 package method "flip string"
rc = tk.execute (userCtx, moduleCtx, revision, methodName, args);
if (rc = 0) {

System.out.println(" Bad return code from execute:" + rc);
if (rc == 29) {
System.out.println(" Exception occurred during execution of " +

methodName + " in the TK environment.");
}
tk.term() ;
return;
}
else {
// Print results (Getters are being used with explicit indices.)
System.out.println(" Results of calling flip string:");
System.out.println(" Input String: " + args.getString(0));

47

48 Chapter 5

Java Interface Reference

System.out.println (" Output String: " + args.getString(l));

}

System.out.println ("*** Simple DS2 example complete ***\n");

// Shutdown
tk.term() ;

Here is the console output from running the example code above:

x* Simple example of using SAS Micro Analytic Service *

User context created at Tue Apr 07 17:50:28 EDT 2015.
Module context created at Tue Apr 07 17:50:28 EDT 2015.
Revision 1 created at Tue Apr 07 17:50:28 EDT 2015.
DS2 Package: simple example
Compiler messages:
Line 6: No DECLARE for assigned-to variable anothernumber;
creating it as a global variable of type double.
Input arguments to method 'str2double':
Input name: 'numericString' type: string t
Results of calling str2double:
Input String: 0.9997
Output double (should round to nearest whole number): 1.0
Results of calling flip string:
Input String: This is a test...
Output String: ...tset a si sihT

***x Simple DS2 example complete ***

Chapter 6

49

SAS Micro Analytic Service REST

API

OVEIVIEW . . . 50
Terminology e 51
Micro ANalytic SETVICE . . . ot vttt et e e 51
Micro AnalyticModule e 51
Micro ANalytic StEPot 51
PacKage . . . o 51
Methodo 51
SIgNatUIe . . . o e e 51
Input Signature i e 51
OUtPUL SIgNAtUIEottt e e e e 51
Moduleo 51
Module IDo 52
Module Name 52
S . ot 52
Step DD . ot 52
Source Codeot 52
Client Application Features i, 52
Post Load or Create Modulest 52
Get Input or Output Step Signaturesttt 52
Post Validate Input Variables 53
Post Execute Modules 53
PutUpdate Moduleso e 53
Delete Moduleso 53
Security and Authentication L i 53
Life Cycle o 54
Media TyPesot e 54
Externally Defined Media Types ooii it e 54
SAS Micro Analytic Service Media Types.............., 56
application/vnd.sas.microanalyticmodule 56
application/vnd.sas.microanalytic.module.definition 59
application/vnd.sas.microanalytic.module.source 61
application/vnd.sas.microanalytic.module.step 62
application/vnd.sas.microanalytic.module.step.input 67
application/vnd.sas.microanalytic.module.step.input.validity 68
application/vnd.sas.microanalytic.module.step.output 69
Resources and Collections 71

TESOUICE / . v vt et e e e e e e e e 71

50 Chapter 6

SAS Micro Analytic Service REST API

Collection /modules it 72
resource /modules/{moduleld} 83
Resource /modules/{moduleld}/source 91
Collection /modules/{moduleld}/steps, 93
Resource /modules/{moduleld}/steps/{stepld} 107

Overview

The SAS Micro Analytic Service REST API provides an interface for web client
applications to compile and execute micro analytic modules into steps that provide near
real-time analytic capabilities. The REST API supports the execution of DS2 source and
provides the ability to run SAS Enterprise Miner score code (converted from a SAS
DATA step to DS2) and user-written functions.

The API provides the following POST methods:

Create module
publishes analytic code in memory with a request body containing the DS2 source
code as input.

Validate steps
validates the request body of input values required by the DS2 source code and
returns validation results.

Execute step
validates and executes the micro analytic step with a request body of input values
required by the DS2 source code.

The API provides the following PUT method:

Update module
publishes updated analytic code in memory with a request body containing the DS2
source code as input.

The API provides the following DELETE method:

Delete module
removes analytic code from memory.

The API provides the following GET methods:

Query an individual module
returns detailed information about a module

Query steps by module
returns a list of steps available by module.

Query an individual step by module
returns detailed information about the inputs required by the step and the outputs
produced by the step.

Retrieve module details
returns information such as the module's name, current revision, and a list of
compiled steps.

The implementation supports only JSON resource representations.

Note: The REST API does not support method overloading.

Terminology 51

Terminology

Micro Analytic Service

A small footprint, near real-time or machine-embedded, analytical service providing the
ability to embed SAS analytics into very small portable systems requiring near real-time
or transactional analytics.

Micro Analytic Module

A collection item that contains multiple steps of analytical logic. The SAS Micro
Analytic Service REST API representation of a collection of units of step code to
execute analytical logic.

Micro Analytic Step

A unit of analytical logic that is executed. It includes input and output values. Here is an
example: the name value pairs that contain the input values required to execute the step
and the output values that are generated as a result of its execution. For DS2 source, a
step is defined as a method. When the step is executed, a specific method in the module
is executed.

Package

An assembly of methods defined by a DS2 source.
Method

A unit of DS2 source that has input and output variables.
Signature

Variables defined as inputs into a method and outputs from the execution of a method.

Input Signature

A description of the input values required to execute the step. The attributes of the input
signature include the input variable, its data type, and the dimensions where applicable.

Output Signature

A description of the output values. Here is an example: the name value pairs that
describe the name of the output variable, its data type, and the dimensions where
applicable.

Module

A container of units of analytical code to be executed. For a DS2 source, it is a package.

52 Chapter6 + SAS Micro Analytic Service REST AP/

Module ID

A generated unique string that identifies a module in an installation. When the
installation is a cluster, no two modules created on two different cluster nodes have the
same ID.

Module Name

A name associated with a module. For a DS2 source, this corresponds to the package
name. A DS2 package name can be quoted. Because of that, it is not convenient to use it
on the URL to specify the module for an HTTP operation. Even though the module
name is not used to identify a module, each module name has to be unique in an
installation.

Step

A unit of analytical code to be executed. For a DS2 source, it is a method.

Step ID

The name of a step that is included in the micro analytic module. For a DS2 source, this
corresponds to the name of a method. The combination of module ID and step ID is used
to retrieve the individual step.

Source Code

The input analytic source code that is compiled into a micro analytic module containing
one or more steps.

Client Application Features

Post Load or Create Modules

To load or create a micro analytic module, the client application posts a module with a
request body that contains the DS2 source code to the module’s resource collection.

The DS2 source code is represented as a source code representation that compiles into
one DS2 package. The package is represented as a micro analytic module with multiple
methods that are represented as steps in the REST API. Therefore, a module contains
multiple steps. These modules and steps are stored in memory. The response body that is
returned contains a module resource for the module.

Get Input or Output Step Signatures

The client application references a step directly by using an ID of the module generated
by the REST server. This ID is referred to as the module ID, and the name of the step
(compiled DS2 method) is referred to as the step ID.

Before executing the step, the client application performs a GET method on the step to
retrieve these signatures:

Security and Authentication 53

» The signature describing the input variables or types that must be put in the request
body to execute the step.

» The signature describing the output variables or types that the step returns in its
response body.

Post Validate Input Variables

The client application posts to the step's validations resource, along with a request body
that contains the input values that are required to execute the step (compiled DS2
method).

When the POST is received, the input values are validated against the input signature of
the step. A validation error is reported to the client as a response body that contains the
validation results. This allows the client to validate its input before execution.

Post Execute Modules

The service supports a synchronous way to execute a step (compiled DS2 method). In
this case, the client application posts to the step resource, along with a request body that
contains the input values that are required to execute the step (compiled DS2 method).

Put Update Modules

The client application creates a new revision of a module through its module ID.

Delete Modules

The client application deletes a module through its module ID.

Security and Authentication

To reduce Cross Site Request Forgery (CSRF) attack, a filter is used to check whether
the HTTP referrer header value of an incoming request is registered in the white list that
is set up during product configuration. A referrer identifies the page that caused the
incoming request to be sent. If the referrer header is used but the referring address does
not match any of the patterns allowed in the white list, the request is rejected with an
HTTP 403 error. For more information, see SAS 9.4 Intelligence Platform Middle-Tier
Administration Guide.

Note: If you encounter white list issues, from SAS Management Console navigate to
Application Management = SAS Application Infrastructure, and then right-click
and select Properties. On the Advanced tab, add trusted hosts to the white list. For
example, the value *.example.com added to the white list allows requests originating
from the example.com domain to get through.

The creation and execution of the analytical logic are tasks controlled through security.
In an enterprise application, the API uses authentication supported by the SAS platform
to create tickets and use them with the API. The API internally processes user roles and
authorization and returns a status of 401 if the operation is not allowed for a particular
user. However, it will not specify implementation or representation.

All modules are discoverable and usable by an authenticated user.

54 Chapter6 + SAS Micro Analytic Service REST AP/

Life Cycle

A compiled micro analytic module remains compiled during the lifetime of the server
session in which it was compiled, even when dependent modules are updated afterward.

The REST server manages the persistence of the modules by keeping metadata about the
modules. Therefore, when the REST server restarts, there is enough information to
recreate the existing modules. The module IDs remain the same. However, when the
modules are loaded into memory again they can be put in addresses that are different
from the last time. Furthermore, each reload of the modules requires them to be
recompiled.

The compilation of the modules is delayed until necessary (for example, when a module
is to be executed).

Media Types

Externally Defined Media Types

application/vnd.sas.collection
The application/vnd.sas.collection media type represents a collection of resources. The
collection is usually a page of limit items from a larger collection.

Here are the link relations for the application/vnd.sas.collection media type.

Relationship HTTP Method Description

self GET The current page of the (filtered) collection.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

next GET The next page of resources. It should be omitted if the
current view is on the last page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

first GET The first page of resources. It should be omitted if the
current view is on the first page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

Media Types 55

Relationship HTTP Method Description

last GET The last page of resources. It should be omitted if the
current view is on the last page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex[modifiers]

Media type: application/vnd.sas.collection

up GET The resource that this collection resides in.
URI: {SASApi}/rest/containerUri

Media type: application/vnd.sas.collection

Here is an example of application/vnd.sas.collectiontjson and application/
vnd.sas.collection+json;version=2:

{

"version" : 2,

"accept": "space-separated media type names allowed in this collection",
"count" : integer,

"start" : integer,

"limit" : integer,

"name" : "items",

"items": [

{ resourcel fields }, ...,

{ resourceN fields }

1,

"links" : [
{ link representation },
{ link representation },
]
}

Note: The order of the fields can vary.

application/vnd.sas.error
Here are attributes for application/vnd.sas.error:

errorCode
The system error code for reference (64-bit integer). It is often used for correlation
with back-end service error message identifiers.

httpStatusCode
The HTTP status code error number (integer), 1xx, 2xX, 3xx, 4xx, or 5xx values.

message
The back-end system error message string. The message should be localized as per
the Accept-Language of the request.

details
Detailed information specific to this error, in a list of strings. If appropriate, these
strings should be localized as per the Accept-Language of the request.

remediation
Recommended actions to resolve the error, in a list of strings. The remediation string
should be localized as per the Accept-Language of the request.

56 Chapter6 + SAS Micro Analytic Service REST AP/

version
Version information for this error format (integer, value 1).

links
An array of application/vnd.sas.link objects.

application/vnd.sas.link
application/vnd.sas.link is a media type used to denote a link to a resource.

text/vnd.sas.source.ds2

text/vnd.sas.source.ds2 is a media type used to denote SAS source code consisting of
DS2 code.

SAS Micro Analytic Service Media Types

application/vnd.sas.microanalytic.module

The application/vnd.sas.microanalytic.module media type describes the module that is
returned by the SAS Micro Analytic Service when source code is posted or put to the
module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module media type.

Relationship HTTP Method Description

self GET A link to the individual module.
URI: SASMicroAnalyticService/rest/modules/{moduleld}

Media type: application/vnd.sas.microanalytic.module

up GET A link to the collection of modules.
URI: SASMicroAnalyticService/rest/modules

Media type: application/vnd.sas.collection

steps GET A link to the collection of steps. This is created when a
module is compiled.

URI: SASMicroAnalyticService/rest/modules/{moduleld}/
steps

Media type: application/vnd.sas.collection

source GET A link to the source code that was used to compile a
module.

URI: SASMicroAnalyticService/rest/modules/{moduleld}/
source

Media type: application/
vnd.sas.microanalytic.module.source

Relationship

update

delete

Name

version

description

name

creationTimeStamp

modifiedTimeStamp

revision

scope

steps

HTTP Method

PUT

DELETE

SAS Micro Analytic Service Media Types 57

Description

A link to update a module.
URI: SASMicroAnalyticService/rest/modules/{moduleld}

Media type: application/vnd.sas.microanalytic.module

A link to remove a module.

URI: SASMicroAnalyticService/rest/modules/{moduleld}

The application/vnd.sas.microanalytic.module media type contains the following

members.

Type

integer

string

string

string

string

string

integer

string (ENUM)

array of string

Description

The media type's schema version number. This
representation is version 1.

A generated unique string identifying a module in an
installation.

Text describing the rules and logic performed by the
module. The description is specified in the POST or PUT
request body and carried over.

The name associated with the module.

The formatted time stamp that tells when the module was
initially created.

The formatted time stamp that tells when the module was
last revised.

The revision number of the module. It is a whole number
starting from one and increases by one each time the
module is revised.

The scope restricts how a module can be used. There are
two possible values:

public
The module is available to be called outside another
module.

private
The module can be called only from within another
module.

An array of step IDs in the module.

58 Chapter6 + SAS Micro Analytic Service REST AP/

Name

properties

warnings

links

Type Description

array The properties that were specified for the module. Here are
the representation members:

name
string - The name of the property.

value
string - The value of this property.

object Optional object, as described in “application/vnd.sas.error”
on page 55. This is included if the compiling of this
resource produces any warning.

array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module+json:

"links": [

{

"method":"GET",

"rel":"gelf",

"href":"http://www.example.com/SASMicroRnalyticService/rest/modules/
359fb2le-c65d-4b8d-81e0-216d95cb0825",

"uri":"/modules/359fb2le-c65d-4b8d-81e0-216d95cb0825",

"type":"application/vnd.sas.microanalytic.module"

"method": "GET",

l|relll . |lupll ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroRnalyticService/rest/modules/
359fb2le-c65d-4b8d-81e0-216d95¢cb0825/source",

"uri":"/modules/359fb2le-c65d-4b8d-81e0-216d95¢cb0825/source™",

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"steps",

"href":"http://www.example.com/SASMicroRnalyticService/rest/modules/
359fb2le-c65d-4b8d-81e0-216d95¢chb0825/steps",

"uri":"/modules/359fb2le-c65d-4b8d-81e0-216d95cb0825/steps",

"type":"application/vnd.sas.collection"

"method" : "PUT",
"rel":"update",
"href":"http://www.example.com/SASMicroRnalyticService/rest/modules/

SAS Micro Analytic Service Media Types 59

359fb2le-c65d-4b8d-81e0-216d95chb0825",
"uri":"/modules/359fb2le-c65d-4b8d-81e0-216d95cb0825",
"type":"application/vnd.sas.microanalytic.module"

"method" : "DELETE",

"rel":"delete",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
359fb2le-c65d-4b8d-81e0-216d95chb0825",

"uri":"/modules/359fb2le-c65d-4b8d-81e0-216d95cb0825"

1,
"scope":"public",
"description":"575",
"id":"359fb2le-c65d-4b8d-81e0-216d95cb0825",
"steps": [
"execute",
"executeFinalRuleSets",
"executeFirstDotRuleSets",
"executeInitRuleSets",
"executeLastDotRuleSets",
"initRuleFiredRecording",
"initializeLookupHash",
"recordRuleFired",
"resetRuleFiredHash",
"term"
1,
"properties": [
{
"nmame" : "connectionString",
"value":"DRIVER=base;"

1,

"revision":1,
"creationTimeStamp":"2015-04-16T16:05:38.000-0400",
"modifiedTimeStamp":"2015-04-16T16:05:38.000-0400",
"name":"Rule575",

"version":1

application/vnd.sas.microanalytic. module.definition

The application/vnd.sas.microanalytic.module.definition media type describes the
resource that is used to define a revision of the SAS Micro Analytic Service module in
the module’s collection. It is used in the request body of POST and PUT in the module’s
collection.

The application/vnd.sas.microanalytic.module.definition media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

60 Chapter6 + SAS Micro Analytic Service REST AP/

Name Type Description

description string The text describing the logic of the module.

code string The source code. (For example, DS2 source code)

type string The source code type. In this version, the only valid value

is text/vnd.sas.source.ds2.

properties array This can be used to define connection strings. If a property
definition is not needed, this can be omitted or specified as
an empty array. Here are the representation members:

name
string - The name of the property. It cannot contain
spaces and must be unique. Version 1 allows only
connectionString as the value.

value
string - The value of this property.

scope string (ENUM) The scope restricts how a module can be used. There are
two possible values:

public
The module is available to be called outside another
module.

private
The module can be called only from within another
module.

Here is an example of application/vnd.sas.microanalytic.module.definition+json:

{

"version": "1",

"description": "Sample module",

"scope" : "public",

"type" : "text/vnd.sas.source.ds2",

"properties" : [],

"code" : "ds2 options sas;\n package sampleModule / overwrite=yes;
\n \n method copy charN array(char(12) in arrayl[4], in out char(12)
out_array[4]);\n out array := in array;\n end;\n \n
method copy varchar array(varchar(SlZ) in arrayl[3],
in out varchar out array[3]);\n out array := in array;\n end'\n \n
method copy int array(int 1n_array[1, in out int out_arrayl[5]);\n
out_array := in array;\n end~\n \n method copy_float_array(double in arrayl[2],
in out double out array[2]);\n out array := in array;\n end;\n \n
method copy_blglnt_array(blglnt in array([1], in out bigint out array[1]);\n
out_array := in array~\n end;\n \n method copy . arrays(char (12)
in charN arrayl[4],\n varchar(512) in varchar array[1l],\n int in int array[5],
\n double in double arrayl[2], \n blglnt in bigint array[1, \n
in out char(12) out charN array[4],\n in out varchar(512)
out Varchar array ,\n 1n out int out int array ,\n
in out double out double array[2],\n in out blglnt out bigint array[1]);\n \n
copy_charN_array(1n_charN_array, out_charN array);\n copy_lnt_array(1n_1nt_array,
out_int array);\n copy float array(in double array, out double array);\n
copy bigint array(in bigint array, out bigint array);\n \n end;\n \n

endpackage;\n \n \n"

SAS Micro Analytic Service Media Types 61

Note: There are many \n strings throughout the source code. They help to signal line
breaks to the DS2 compiler. Line breaks are useful because, in JSON representation,
the entire source code must be presented as one long string and the \n returns the line
breaks to you. If there are errors, the compiler messages will not all refer to line 1. If
your platform is UNIX or Linux, you can use the sed command to convert \n into a
real line break character. Here is the pattern for the sed command: -e "s#\\n#

\n#g".

application/vnd.sas.microanalytic.module.source

Relationship

self

up

Name

version

moduleld

source

links

The application/vnd.sas.microanalytic.module.source media type describes the source
code resource that is created by the SAS Micro Analytic Service when a POST or PUT
is performed on the module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module.source

media type.

HTTP Method

GET

GET

Description

A link to the source code that was used to compile the
module.

URI: SASMicroAnalyticService/rest//modules/
{moduleld}/source

Media type: application/
vnd.sas.microanalytic.module.source

A link back to the module.

URI: SASMicroAnalyticService/rest//modules/
{ModulelD}

Media type: application/vnd.sas.microanalytic.module

The application/vnd.sas.microanalytic.module.source media type contains the following

members.

Type

integer

string

string

array of link objects

Description

This media type's schema version number. This
representation is version 1.

A generated unique string identifying a module in an
installation.

The source code used to create the module.

Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.source +json:

62 Chapter6 + SAS Micro Analytic Service REST AP/

"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"source":"ds2 options sas;\n package sampleModule / overwrite=yes; \n \n

method copy charN array(char(12) in array([4], in out char(12) out arrayl[4]);\n

out_array := in array;\n end-\n \n method copy varchar array(varchar (512) 1n_array[3],

in out varchar out array[3]);\n out array := in array;\n end-\n \n

method copy int array(int 1n_array[1, in out int out_array[5]);\n out array := in array;\n
end;\n \n method copy float array(double in array[2], in out double out_array(2]);\n
out_array := in array;\n end-\n \n method copy bigint array(bigint in array[1l],

in out bigint out array[1]);\n out array := in array~\n end;\n \n method copy arrays(char(12)
in charN array[4],\n varchar(512) in varchar array[l],\n int in int array[5],

\n double in double _array[2], \n bigint in bigint array[1, \n in out char(12)

out_charN array[4],\n in out varchar(512) out_varchar array[l],\n in out int out int array[5],\n
in out double out double array[2],\n in out bigint out blglnt array[1]);\n \n

copy_charN_array(1n_charN_array, out_charN array);\n copy_lnt_array(1n_1nt_array, out_int array);\n
copy_float array(in double array, out double array);\n copy bigint array(in bigint array,
out_bigint array);\n \n end;\n \n endpackage;\n \n \n",
"links": [
{
"method":"GET",
"rel":"self",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source™",
"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"type":"application/vnd.sas.microanalytic.module"

1,

"version":1

application/vnd.sas.microanalytic. module.step

The application/vnd.sas.microanalytic.module.step media type describes the step that is
returned by SAS Micro Analytic Service when a GET is performed on the step’s
collection. Step instances are created by posting a module to the module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module.step media

type.

Relationship HTTP Method Description

self GET A link to the individual step of a specific module.
URI: SASMicroAnalyticService/rest/modules/ {moduleld}/
steps/ {stepld}

Media type: application/vnd.sas.microanalytic.module.step

SAS Micro Analytic Service Media Types 63

Relationship HTTP Method Description

up GET A link back to the module's collection of steps.
URI: SASMicroAnalyticService/rest/modules/{moduleld}/
steps

Media type: application/vnd.sas.collection

validate POST A link used to validate that the input values are correct for
a specific step of a module.

URI: SASMicroAnalyticService/rest/modules/ {moduleld}/
steps/ {stepld}/validations

Media type: application/
vnd.sas.microanalytic.module.step.input.validity

execute POST A link used to execute a specific step of a module.

URI: SASMicroAnalyticService/rest/modules/{moduleld}/
steps/{stepld}

Media type: application/
vnd.sas.microanalytic.module.step.output

The application/vnd.sas.microanalytic.module.step media type contains the following

members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

id string The name of a step that is included in the compiled
module.

moduleld string A generated unique string identifying a module in an
installation.

description string Text describing the rules and logic performed by the step.

64 Chapter 6

Name

inputs

SAS Micro Analytic Service REST API

Type

array

Description

Provides information about the specific input values that
should be specified in the request body when executing a
step. Here are the representation members:

name

string - The name of a variable that is expected to be
passed into the step.

type

string (ENUM) - This is the data type of the variable. If
the variable's type is (array of) integer, long, or decimal,
the value must be a JSON (array of) number. If the
variable's type is (array of) string or char, the value
must be a JSON (array of) string. Only arrays with one
dimension are supported. Null is used to represent
missing values. The following data types are supported:

size

decimal - For DS2, this corresponds to the double
data type.

bigint

integer

string
decimalArray
bigintArray
integerArray

stringArray

integer - For a string type, this field indicates the length
of the string, which is at least one. For a non-string
type, this field has the value of zero.

dim

integer - For an array type, this field indicates the length
of the array, which is one or greater. For a non-array
type, this field has a value of zero.

SAS Micro Analytic Service Media Types 65

Name Type Description

outputs array Provides information about the specific output values that
should be expected in the response body of a step
execution. Here are the representation members:

name
string - The name of a variable that is expected to
receive output from the step.

type
string (ENUM) - This is the data type of the variable. If
the variable's type is (array of) integer, long, or decimal,
the value must be a JSON (array of) number. If the
variable's type is (array of) string or char, the value
must be a JSON (array of) string. Only arrays with one
dimension are supported. The following data types are

supported:

* decimal - For DS2, this corresponds to the double
data type.

* bigint

* integer

* string

* decimalArray
* DbigintArray
* integerArray
* stringArray
size
integer - For a string type, this field indicates the length

of the string. For a non-string type, this field has the
value of zero.

For DS2, the variable length is not required since an
output variable is passed by reference. A zero is
reported if a length is not specified. Otherwise, the
length specified is reported.

dim
integer - For an array type, this field indicates the length
of the array, which is one or greater. For a non-array
type, this field has a value of zero.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.step+json:

"links": [
{
"method":"GET",
l|re1ll : "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",
"type":"application/vnd.sas.microanalytic.module.step"

66 Chapter6 + SAS Micro Analytic Service REST AP/

b
{

1,

"method":"GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method":"POST",

"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays/validations",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method":"POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",

"type":"application/vnd.sas.microanalytic.module.step.output"

"id":"copy arrays",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

"name":"in charN_array",
"type":"stringArray",
"dim":4,

"size":12

"name":"in varchar array",
"type":"stringArray",
"dim":1,

"size":512

"name":"in int_array",
"type":"integerArray",
"dim":5,

"size":0

"mame":"in double array",
"type":"decimalArray",
"dim":2,

"size":0

"name":"in bigint array",
"type":"bigintArray",

"dim":1,
"size":0

}

1,
"outputs": [

{
"mame":"out charN array",
"type":"stringArray",
"dim":4,
"size":12

¥

{
"mame":"out varchar array",
"type":"stringArray",
"dim":1,
"size":512

¥

{
"mame":"out int array",
"type":"integerArray",
"dim":5,
"size":0

¥

{
"name":"out double array",
"type":"decimalArray",
"dim":2,
"size":0

¥

{
"mame":"out bigint array",
"type":"bigintArray",
"dim":1,
"size":0

}

1.

"description":null,

"version":1

SAS Micro Analytic Service Media Types 67

application/vnd.sas.microanalytic. module.step.input

Name

version

The application/vnd.sas.microanalytic.module.step.input media type describes the input
values that are required by SAS Micro Analytic Service step when a POST is used to

validate or execute a step.

The application/vnd.sas.microanalytic.module.step.input media type contains the

following members.

Type

integer

Description

This media type's schema version number. This
representation is version 1.

68 Chapter6 + SAS Micro Analytic Service REST AP/

Name Type Description

inputs array Holds the values that are to be passed to the step for input
validation or execution. The order of the variables should
match the order presented in the input signature. Here are
the representation members:

name
string - The name of an input variable for the step.

value
varies - This represents the actual value to set on the
variable. If the variable's type is (array of) integer, long,
or decimal, the value must be a JSON (array of)
number. If the variable's type is (array of) string, the
value must be a JSON (array of) string.

Here is an example of application/vnd.sas.microanalytic.module.step.input+json:

"version" : 1,
"inputs": [
{
"name" : "supported browsers",
"value": [
"Apple Safari",
"Google Chrome",
"Microsoft Internet Explorer",
"Mozilla Firefox"

"mame" : "random integers",
"value": [

10,

15,

3

"name": "AMBALANCE",
"value" : 1055.93

application/vnd.sas.microanalytic. module.step.input.validity

The application/vnd.sas.microanalytic.module.step.input.validity media type describes
the output values that are returned by SAS Micro Analytic Service for a POST to
validate the inputs required to execute a step.

The application/vnd.sas.microanalytic.module.step.input.validity media type contains the
following members.

Name

version

moduleld

stepld

valid

results

"version" : 1,

Type

integer

string

string

Boolean

objects

SAS Micro Analytic Service Media Types 69

Description

This media type's schema version number. This
representation is version 1.

A generated unique string identifying a module in an
installation.

The name of a step.

The value is true if all the input parameters are valid. If any
parameter is invalid, the value is false.

The object contains a member for each input parameter that
is invalid. The name of the member is that of an input
parameter. The value is the reason why the input is invalid.
The object is empty if there is no invalid input parameter.

Here is an example of application/vnd.sas.microanalytic.module.step.input.validity+json:

"moduleId": "83e7d274-fel7-429e-92ca-93ec2153¢c731",

"stepId":"predict"
"valid":false,

’

"results":
"s2": "String value expected but found string array value [String].",
"s4": "Bigint value expected but found double value 77.0."

application/vnd.sas.microanalytic. module.step.output

Name

version

moduleld

stepld

The application/vnd.sas.microanalytic.module.step.output media type describes the
output values that are returned by SAS Micro Analytic Service when a step is executed.

The application/vnd.sas.microanalytic.module.step.output media type contains the

following members.

Type

integer

string

string

Description

This media type's schema version number. This
representation is version 1.

A generated unique string identifying a module in an
installation.

The name of the step.

70 Chapter6 + SAS Micro Analytic Service REST AP/

Name Type Description

outputs array Holds the output values returned from executing a step.
The order of the variables matches the order presented in
the output signature. Here are the representation members:

name
string - The name of the variable that is expected to
receive output from the step.

value
This represents the actual value returned from the step
execution.

Here is an example of application/vnd.sas.microanalytic.module.step.output+json:

{

"moduleId": "70a58acd-5618-4dc3-9d7a-9e675e8el3bb",
"stepId": "test all types",
"outputs": [

"mame": "out_string",
"value": "This is a test..."
"name": "out bigint",
"value": 987654321
"mame": "out int",
"value": 7654321
"name": "out_ double",
"value": 0.9997
"mame": "string arr",
"value": [
"John Jacob Hale",
"Male" ,
"Master Swimmer"
1
"mame": "bigint_arr",
"value": [
1078653221,
2256390877,
9719886300
1
"mame": "int_arr",
"value": [
77,

436702,

Resources and Collections 71

"name": "double arr",
"value": [

0.9997,

1.0,

0.0023

}
1,

"version": 1

Resources and Collections

resource /

The root / returns links to the top-level resources surfaced through this API. The
module’s collection is the only top-level resource. The GET link is for querying the
module’s collection. The POST link is for creating a module.

The / resource uses the GET / method, which requires authentication, and has a request
URL of GET http://www.example.com/SASMicroAnalyticService/rest/.

The response to the GET request is a collection of links to the resources. In this version,
the module’s collection is the only top-level resource.

Here is a JSON representation of the top-level resource containing links:

"version":1,
"links": [

{

"method":"GET",
"rel":"modules",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",

"uri":"/modules"

"method":"POST",

"rel":"createModule",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules"

Here are the HTTP response codes:

200
OK

401
Unauthorized

72 Chapter 6

SAS Micro Analytic Service REST API

500
Server error.

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

GET / returns the application/json media type representation by setting the Accept:
header of the request.

Collection /modules

Name

?start

Nimit

?label

"links": [

{

The /modules resource collection is a collection of modules that are loaded in memory
by SAS Micro Analytic Service.

The /modules resource allows the GET method, which requires authentication, and has a
request URL of GET http://www.example.com/SASMicroAnalyticService/rest/modules.

Each module object in the collection contains fields and links that enable you to get
detailed information about a specific module.

Here are the HTTP response codes:

200
OK

401
Unauthorized

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

Here are the query parameters for /modules:

Type Description

integer The starting index of the first item in a page. The index is
0-based. The default is 0.

integer The maximum number of modules to return in this page of
results. The actual number of returned modules might be
less, if the collection has been exhausted. The default is 10.

string Filter by the name of the modules. Each module is checked
if its name contains the label.

Here is an example of the JSON representation:

"method":"GET",

"rel":"self",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

Resources and Collections T3

"method":"GET",

"rel":"first",
"href":"http://www.example.com/SASMicroRAnalyticService/rest/modules?start=0&limit=5",
"uri":"/modules?start=0&limit=5",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"last",
"href":"http://www.example.com/SASMicroRAnalyticService/rest/modules?start=0&limit=5",
"uri":"/modules?start=0&limit=5",

"type":"application/vnd.sas.collection"

1,
"name":"items",

"accept":"application/vnd.sas.microanalytic.module",

"start":0,
"count":5,
"items": [

{
"links": [
{
"method":"GET",
llrelﬂ . "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
3eadfae7-583f-44ee-8c37-e201184c94da",
"uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da",
"type":"application/vnd.sas.microanalytic.module"

"method":"GET",

llrel" . l|up|| .
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
3eadfae7-583f-44ee-8c37-e201184c94da/source",

"uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da/source",

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"steps",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
3eadfae7-583f-44ee-8c37-e201184c94da/steps",

"uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da/steps",

"type":"application/vnd.sas.collection"

"method": "PUT",
"rel":"update",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

74 Chapter6 + SAS Micro Analytic Service REST AP/

3eadfae7-583f-44ee-8c37-e201184c94da",
"uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da",
"type":"application/vnd.sas.microanalytic.module"

{
"method" :"DELETE",
"rel":"delete",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
3eadfae7-583f-44ee-8c37-e201184c94da",
"uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da"
}

1,
"description":"Module A",
"version":1,
"scope":"public",
"id":"3eadfae7-583f-44ee-8c37-e201184c94da",
"steps": [

"falls_on"
1,
"properties": [
1,
"revision":1,
"creationTimeStamp":"2015-05-06T22:37:44.000-0400",
"modifiedTimeStamp":"2015-05-06T22:37:44.000-0400",
"name" : "pkga"

"links": [
{
"method":"GET",
llrel" . "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
de279ebf-f2a6-42ec-9342-29c363866a08",
"uri":"/modules/de279ebf-f2a6-42ec-9342-29¢c363866a08",
"type":"application/vnd.sas.microanalytic.module"

{
"method":"GET",
"rel":"up",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",
"type":"application/vnd.sas.collection"

b

{
"method":"GET",
"rel":"source",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

de279ebf-f2a6-42ec-9342-29c363866a08/source",

"uri":"/modules/de279ebf-f2a6-42ec-9342-29¢c363866a08/source",
"type":"application/vnd.sas.microanalytic.module.source"

b

{

"method":"GET",

n rel" : n StepS" ,

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
de279ebf-f2a6-42ec-9342-29¢c363866a08/steps",

Resources and Collections

"uri":"/modules/de279ebf-f2a6-42ec-9342-29¢c363866a08/steps”,
"type":"application/vnd.sas.collection"

b
{
"method": "PUT",
"rel":"update",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
de279ebf-f2a6-42ec-9342-29c363866a08",
"uri":"/modules/de279ebf-f2a6-42ec-9342-29¢c363866a08",
"type":"application/vnd.sas.microanalytic.module"
b
{
"method" :"DELETE",
"rel":"delete",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
de279ebf-f2a6-42ec-9342-29c363866a08",
"uri":"/modules/de279ebf-f2a6-42ec-9342-29¢c363866a08"
}

1,
"description":"Module B",
"version":1,
"scope":"public",
"id":"de279ebf-f2a6-42ec-9342-29c363866a08",
"steps": [

"this_ year"
1,
"properties": [
1,
"revision":1,
"creationTimeStamp":"2015-05-06T22:37:45.000-0400",
"modifiedTimeStamp":"2015-05-06T22:37:45.000-0400",

n name n : n pkgb n
"links": [
{

"method":"GET",

"rel":"self",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
fldcdlaf-6ab2-4ac0-a5c6-5c64d5¢c09016",

"uri":"/modules/fldcdlaf-6ab2-4ac0-a5c6-5c64d5¢c09016",

"type":"application/vnd.sas.microanalytic.module"

{
"method":"GET",
"rel":"up",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",
"type":"application/vnd.sas.collection"

b

{

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
fldcdlaf-6ab2-4ac0-a5c6-5c64d5¢c09016/source",

"uri":"/modules/fldcdlaf-6ab2-4ac0-a5c6-5c64d5c09016/source",

75

76 Chapter 6

1,

» SAS Micro Analytic Service REST API

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"steps",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
fldcdlaf-6ab2-4ac0-a5c6-5c64d5c09016/steps”,

"uri":"/modules/fldcdlaf-6ab2-4ac0-a5c6-5c64d5c09016/steps”,

"type":"application/vnd.sas.collection"

"method": "PUT",

"rel":"update",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
fldcdlaf-6ab2-4ac0-a5c6-5c64d5¢c09016",

"uri":"/modules/fldcdlaf-6ab2-4ac0-a5c6-5c64d5c09016",

"type":"application/vnd.sas.microanalytic.module"

"method" : "DELETE",

"rel":"delete",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
fldcdlaf-6ab2-4ac0-a5c6-5c64d5¢c09016",

"uri":"/modules/fldcdlaf-6ab2-4ac0-a5c6-5c64d5c09016"

"description":"Module C",

"version":1,

"scope":"public",

nidu .

"fldcdlaf-6ab2-4ac0-a5c6-5c64d5c09016",

"steps": [

"get date"

1,

"properties": [

1,

"revision":1,
"creationTimeStamp":"2015-05-06T22:37:46.000-0400",
"modifiedTimeStamp":"2015-05-06T22:37:46.000-0400",

"name" : "pkgc"
"links": [
{
"method":"GET",
"rel":"self",
"href":"http://www.example.com/SASMicroAnalyticService/rest/
modules/617aad65-36fa-4079-blcb-03fe948874d4",
"uri":"/modules/617aad65-36fa-4079-blcb-03fe948874d4",
"type":"application/vnd.sas.microanalytic.module"
b
{

"method":"GET",

llrel" : l|up|| .
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

Resources and Collections

b
{
"method":"GET",
"rel":"source",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
617aad65-36fa-4079-blcb-03fe948874d4/source",
"uri":"/modules/617aad65-36fa-4079-blcb-03fe948874d4/source",
"type":"application/vnd.sas.microanalytic.module.source"
b
{
"method":"GET",
"rel":"steps",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
617aad65-36fa-4079-blcb-03fe948874d4/steps",
"uri":"/modules/617aad65-36fa-4079-blcb-03fe948874d4/steps",
"type":"application/vnd.sas.collection"
b
{
"method": "PUT",
"rel":"update",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
617aad65-36fa-4079-blcb-03£fe948874d4",
"uri":"/modules/617aad65-36fa-4079-blcb-03fe948874d4",
"type":"application/vnd.sas.microanalytic.module"
b
{
"method" :"DELETE",
"rel":"delete",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
617aad65-36fa-4079-blcb-03£fe948874d4",
"uri":"/modules/617aad65-36fa-4079-blcb-03fe9488744d4"
}

1,
"description":"Module D",
"version":1,
"scope":"public",
"id":"617aad65-36fa-4079-blcb-03fe9488744d4",
"steps": [

"holiday reminder"
1,
"properties": [
1,
"revision":1,
"creationTimeStamp":"2015-05-06T22:37:46.000-0400",
"modifiedTimeStamp":"2015-05-06T22:37:46.000-0400",

n name n : n pkgd n
"links": [
{

"method":"GET",

"rel":"self",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"type":"application/vnd.sas.microanalytic.module"

77

78 Chapter 6

b
{

1,

» SAS Micro Analytic Service REST API

"method": "GET",

llrel" . l|up|l ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/source”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"steps",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method": "PUT",

"rel":"update",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"type":"application/vnd.sas.microanalytic.module"

"method" :"DELETE",

"rel":"delete",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"

"description":"Sample module",

"version":1,

"scope":"public",

"warnings": {

"errorCode":0,

"message":"Module compiled with warnings.",
"details": [

1,

"In declaration of method copy arrays: parameter out charN array is 'in out';
therefore, the type size (12) will be ignored.",

"In declaration of method copy arrays: parameter out varchar array is 'in out';
therefore, the type size (512) will be ignored.",

"In declaration of method copy charN array: parameter out array is 'in out';
therefore, the type size (12) will be ignored."

"remediation":"",
"links": [

Resources and Collections 79

1,

"version":1,

"httpStatusCode": 0
b
"id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"steps": [

"copy arrays",

"copy bigint array",

"copy_charN array",

"copy float array",

"copy int array",

"copy varchar array"
1,
"properties": [
1,
"revision":1,
"creationTimeStamp":"2015-05-06T22:41:02.000-0400",
"modifiedTimeStamp":"2015-05-06T22:41:02.000-0400",
"name" : "samplemodule"

1,
"limit":5,

"version":1

GET returns the following media type representations by setting the Accept: header of
the request:

» application/vnd.sas.collection
» application/json

This operation can return the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

The POST method returns a module resource for the module that is loaded in memory by
SAS Micro Analytic Service. The module resource that is returned contains links to the
compiled and loaded steps.

The POST method requires authentication and has a request URL of POST http://
www.example.com/SASMicroAnalyticService/rest/modules.

Here is an example of the JSON representation:

{

"version": "1",

"description": "Sample module",

"scope" : "public",

"type" : "text/vnd.sas.source.ds2",

"properties" : [],

"code" : "ds2 options sas;\n package sampleModule / overwrite=yes; \n \n

method copy charN array(char(12) in array[4], in out char(12) out arrayl[4]);\n

out_array := in array;\n end;\n \n method copy varchar array(varchar(512) in array[3],

in out varchar out_array[3]);\n out array := in array;\n end;\n \n

method copy int array(int in array[5], in out int out_array([5]);\n out_array := in array;\n

end;\n \n method copy float array(double in array[2], in out double out array([2]);\n
out_array := in array;\n end;\n \n method copy bigint array(bigint in array[1],
in out bigint out array[1]);\n out_array := in array;\n end;\n \n method copy arrays(char(12)

80 Chapter6 + SAS Micro Analytic Service REST AP/

in charN array[4],\n varchar(512) in varchar array([1l],\n int in int array[5], \n

double in double array[2], \n bigint in bigint array[1], \n in out char(12) out charN array([4],\n
in out varchar(512) out varchar array([l],\n in out int out int array[5],\n

in out double out double array([2],\n in out bigint out bigint array[1]);\n \n

copy_charN array(in charN array, out charN array);\n copy int array(in int array,

out_int array);\n copy float array(in double array, out double array);\n

copy bigint array(in bigint array, out bigint array);\n \n end;\n \n endpackage;\n \n \n"

}

The POST method accepts the following content types, as named by the Content-Type:
header:

» application/json
» application/vnd.sas.microanalytic.module.definition+json
Here are the HTTP response codes:

201
Created

400
Bad Request

401
Unauthorized

403
Forbidden

500
Server error.

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

This operation returns the following media type representations by setting the Accept:
header of the request:

» application/json
» application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when there is an error creating the module. An example is when the
source code contains a syntax error. Another example is when the module name is
already taken.

Here is an example of a successfully compiled module with no warnings:

"links": [
{
"method":"GET",
l|relll : "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"type":"application/vnd.sas.microanalytic.module"

1,

Resources and Collections

"method":"GET",

l|re1ll : llupll ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source™",

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"steps",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" : "PUT",

"rel":"update",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"type":"application/vnd.sas.microanalytic.module"

"method" :"DELETE",

"rel":"delete",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"

"description":"Sample module",

"version":1,

"scope":"public",
||idu .
"steps": [

1,

"36afB8e3c-6a37-4494-a8e0-9cc96ad62232",

"copy arrays",

"copy bigint array",

"copy_charN array",

"copy float array",

"copy int array",

"copy_varchar_ array"

"properties": [

1,

"revision":1,
"creationTimeStamp":"2015-05-06T22:14:17.000-0400",
"modifiedTimeStamp":"2015-05-06T22:14:17.000-0400",
"name" : "samplemodule"

81

82 Chapter6 + SAS Micro Analytic Service REST AP/

Here is an example of a successfully compiled module with warnings:

"links": [
{
"method":"GET",
l|relll : llselfll ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"type":"application/vnd.sas.microanalytic.module"

¥
{
"method":"GET",
"rel":"up",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",
"type":"application/vnd.sas.collection"
¥
{
"method":"GET",
"rel":"source",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source™",
"type":"application/vnd.sas.microanalytic.module.source"
¥
{
"method":"GET",
"rel":"steps",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,
"type":"application/vnd.sas.collection"
¥
{
"method": "PUT",
"rel":"update",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"type":"application/vnd.sas.microanalytic.module"
¥
{
"method": "DELETE",
"rel":"delete",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
}

1,

"description":"Sample module",
"version":1,

"scope":"public",

"warnings": {

Resources and Collections 83

"errorCode":0,
"message":"Module compiled with warnings.",
"details": [
"In declaration of method copy arrays: parameter out charN array is 'in out';
therefore, the type size (12) will be ignored.",
"In declaration of method copy arrays: parameter out varchar array is 'in out';
therefore, the type size (512) will be ignored.",
"In declaration of method copy charN array: parameter out array is 'in out';
therefore, the type size (12) will be ignored."
1,
"remediation":"",
"links": [
1,
"version":1,
"httpStatusCode": 0
b
"id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"steps": [
"copy arrays",
"copy bigint array",
"copy_charN array",
"copy float array",
"copy int array",
"copy_varchar array"
1,
"properties": [
1,
"revision":1,
"creationTimeStamp":"2015-05-06T22:41:02.000-0400",
"modifiedTimeStamp":"2015-05-06T22:41:02.000-0400",
"name" : "samplemodule"

Here is an example of an error response:

"errorCode":-30,
"message":"Invalid source code. ",
"details": [
"Line 1: Parse failed: int out int); out int=3; end;
>>> endpackages <<< ; package ship backen",
"Parse encountered identifier when expecting end of input."
1,
"remediation":"",
"links": [

1,
"version":1,
"httpStatusCode":400

resource /modules/{moduleld}

The /modules/{moduleld} resource is a single compiled module that is loaded in
memory by SAS Micro Analytic Service.

84 Chapter6 + SAS Micro Analytic Service REST AP/

The /modules/ {moduleld} resource has the following methods:

 GET
« PUT
« DELETE

The GET method requires authentication and has a request URL of GET http://
www.example.com/SASMicroAnalyticService/modules/{moduleld} .

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

This operation returns the following media type representations by setting the Accept:
header of the request:

» application/json
» application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the resource cannot be located either because the module ID is
incorrect or the module has been deleted.

Here is an example of a JSON response:

"links": [

{

"method":"GET",

"rel":"gelf",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
45e7118a-c61b-4e59-b5b1-9a415355551f",

"uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f",

"type":"application/vnd.sas.microanalytic.module"

"method" : "GET",

||rell| : llup" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
45e7118a-c61b-4e59-b5b1-9a415355551f/source™”,

"uri":"/modules/45e7118a-c61b-4e59-b5bl-9a415355551f/source",

1,

Resources and Collections

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"steps",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
45e7118a-c61b-4e59-b5b1-9a415355551f/steps”,

"uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f/steps",

"type":"application/vnd.sas.collection"

"method": "PUT",

"rel":"update",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
45e7118a-c61b-4e59-b5b1-9a415355551f",

"uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f",

"type":"application/vnd.sas.microanalytic.module"

"method" : "DELETE",

"rel":"delete",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
45e7118a-c61b-4e59-b5b1-9a415355551f",

"uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f"

"version":1,

"description":"Decision Tree Model",

"scope":"private",
"id":"45e7118a-c61b-4e59-b5b1-9a415355551f",

"steps": [

"score"

1,

"properties": [

1,

"creationTimeStamp":"2015-04-13T01:11:44.000-0400",
"modifiedTimeStamp":"2015-04-13T01:11:44.000-0400",
"revision":1,

"name":"tree"

Here is an example of a JSON error response:

"errorCode": 4001,

"message":
"details":

"No module with the module id 48B9A582-ADA4-C64D-9759-BBEB8E1DAASB exists.",
1,

"remediation": "",
"links": [],

"version":

1,

"httpStatusCode": 404

85

The PUT method updates a module resource for the module that is loaded in memory by

SAS Micro Analytic Service. It is an error to change the name of the module in a PUT

operation. The module resource that is returned contain links to the compiled and loaded

86 Chapter6 + SAS Micro Analytic Service REST AP/

steps. The latest revision supersedes previous revisions. Previous revisions are not
retrievable.

The PUT method requires authentication and has a request URL of PUT http://
www.example.com/SASMicroAnalyticService/rest/modules/ {moduleld} .

The PUT method accepts the following media type representations by setting the
Content-Type: header of the request:

» application/json
» application/vnd.sas.microanalytic.module.definition+json
Here are the HTTP response codes:

200
OK

400
Bad request

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the PUT is initiated from an
untrusted site.

Here is an example of the JSON representation:

{

"version": "1",

"description": "Expanded sample module",

"scope" : "public",

"type" : "text/vnd.sas.source.ds2",

"properties" : [{"name" : "connectionString", "value" : "DRIVER=base;"}],
"code" : "ds2 options sas;\n package sampleModule / overwrite=yes; \n \n

method produce warnings (char(12) in string, in out char(12) out_ string);\n

out_string = in string;\n end;\n \n method copy charl2(char(12) in string,

in out char out_string);\n out string=in string;\n end;\n \n

method copy varchar (varchar(32767) in string, in out varchar out string);\n
out_string=in string;\n end;\n \n method copy bigint (bigint in int,

in out bigint out_int);\n out int=in int;\n end;\n \n method copy float (double in float,
in out double out float);\n out float=in float;\n end;\n \n

method copy int(int in int, in out int out int);\n out int=in int;\n end;\n \n

method copy scalars(char(12) in charl2, varchar(32767) in varchar, int in int,\n
bigint in bigint, double in float, \n in out char out char, in out char out charl2,\n
in out varchar out varchar, in out int out int,\n in out bigint out bigint,

in out double out float);\n \n copy charl2(in charl2, out charl2);\n
copy_varchar (in varchar, out varchar);\n copy bigint (in bigint, out bigint);\n

copy float (in float, out float);\n copy int(in int, out_int);\n end;\n \n

method copy charN array(char(12) in array[4], in out char(12) out arrayl[4]);\n

Resources and Collections 87

out_array := in array;\n end;\n \n method copy varchar array(varchar(512) in array[3],

in out varchar out_array[3]);\n out array := in array;\n end;\n \n

method copy int array(int in array[5], in out int out_array([5]);\n out _array := in array;\n
end;\n \n method copy float array(double in array[2], in out double out array[2]);\n
out_array := in array;\n end;\n \n method copy bigint array(bigint in array[1],

bigint out_array([1l]);\n out_array := in array;\n end;\n \n method copy arrays(char(12)

in charN array[4],\n varchar(512) in varchar array([1l],\n int in int array[5], \n

double in double array[2], \n bigint in bigint array[1], \n in out char(12)

out_charN array[4],\n in out varchar(512) out varchar array[1l],\n in out int out int array[5],\n
in out double out double array([2],\n in out bigint out bigint array[1]);\n \n

copy _charN array(in charN array, out_charN array);\n copy_int array(in_int_ array,

out_int array);\n copy float array(in double array, out double array);\n

copy bigint array(in bigint array, out bigint array);\n \n end;\n \n endpackage;\n \n \n"

}

This operation returns the following media type representations by setting the Accept:
header of the request:

» application/json
» application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type when there is an error.
For example, this media type is returned when you attempt to change the name of the
module, or the source code contains a syntax error. Another example is when the server
fails to acquire a resource.

Here is an example of a successfully compiled module response body:

"links": [
{
"method":"GET",
l|relll : "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36afB8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"type":"application/vnd.sas.microanalytic.module"

"method":"GET",

l|re1ll : |lupll ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source™",

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

n relll : "Steps" ,

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

88 Chapter6 + SAS Micro Analytic Service REST AP/

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,
"type":"application/vnd.sas.collection"

1
{
"method" : "PUT",
"rel":"update",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"type":"application/vnd.sas.microanalytic.module"
¥
{
"method": "DELETE",
"rel":"delete",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
}

1,
"description":"Expanded sample module",
"version":1,
"scope":"public",
"id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"steps": [

"copy arrays",

"copy bigint",

"copy bigint array",

"copy_ charl2",

"copy_charN array",

"copy_ float",

"copy float array",

"copy int",

"copy int array",

"copy_scalars",

"copy_varchar",

"copy varchar_ array",

"produce warnings"
1,
"properties": [

{

"mame" : "connectionString",
"value" : "DRIVER=base;"

1,

"revision":2,
"creationTimeStamp":"2015-05-06T22:41:02.000-0400",
"modifiedTimeStamp":"2015-05-07T00:15:47.000-0400",
"name" : "samplemodule"

Here is an example of a successfully compiled module with a warnings response body:

"links": [
{
"method":"GET",
"rel":"self",

Resources and Collections

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"type":"application/vnd.sas.microanalytic.module"

"method":"GET",

l|re1ll : llupll ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
"uri":"/modules",

"type":"application/vnd.sas.collection"

"method":"GET",

"rel":"source",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source™",

"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"steps",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" : "PUT",

"rel":"update",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"type":"application/vnd.sas.microanalytic.module"

"method" :"DELETE",

"rel":"delete",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"

1,
"description":"Expanded sample module",
"version":1,
"scope":"public",
"warnings": {
"errorCode":0,
"message":"Module compiled with warnings.",
"details": [
"In declaration of method copy arrays: parameter out charN array is 'in out';
therefore, the type size (12) will be ignored.",
"In declaration of method copy arrays: parameter out varchar array is 'in out';
therefore, the type size (512) will be ignored.",
"In declaration of method copy charN array: parameter out array is 'in out';

89

90 Chapter6 -

SAS Micro Analytic Service REST API

therefore, the type size (12) will be ignored.",

"In declaration of method produce warnings: parameter out string is 'in out';

therefore, the type size (12) will be ignored."

1,
"remediation":"",
"links": [

1,

"version":1,

"httpStatusCode": 0

b

"id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",

"steps": [
"copy arrays",
"copy bigint™",

"copy bigint array",

"copy charl2",

"copy_charN array",

"copy_ float",

"copy float array",

"copy int",
"copy int array",
"copy_scalars",
"copy_varchar",

"copy varchar_ array",

"produce warnings"
1,
"properties": [
"name"
"value"

1,

"revision":3,

"connectionString",
"DRIVER=base;"

"creationTimeStamp":"2015-05-06T22:41:02.000-0400",
"modifiedTimeStamp":"2015-05-07T00:22:19.000-0400",

"name" : "samplemodule"

Here is an example of an error response body:

{

}

"errorCode":-33,

"message":"Module name cannot be changed from a PUT operation.",
"details": [

1,

"remediation":"",

"links": [

1,

"version":1,

"httpStatusCode":400

The DELETE method deletes all revisions of a module resource through the module ID.

The DELETE method requires authentication and has a request URL of DELETE http://
www.example.com/SASMicroAnalyticService/modules/{moduleld} .

Here are the HTTP response codes:

Resources and Collections 91

204
No content

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the PUT is initiated from an
untrusted site.

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server cannot locate the module either because the module ID
is incorrect, the module does not exist anymore, or the module cannot be deleted (for
example, when another operation is taking place on this module).

Resource /modules/{moduleld}/source
The /modules/{moduleld}/source resource is the source code of the module.

The GET method returns the source code of a module. It requires authentication and has
arequest URL of GET http://www.example.com/SASMicroAnalyticService/modules/
{moduleld}/source.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

This operation returns the following media type representations by setting the Accept:
header of the request:

» application/json
» application/vnd.sas.microanalytic.module.source+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

Here is an example of the JSON response:

92 Chapter 6 + SAS Micro Analytic Service REST API

"moduleId":"fafbf5d4-01c0-48ea-a3e5-ef36fc3dfbe4,
"source":"ds2 options sas;package methods ;\n method echo char(char in string,
in out char out string);\n out string=in string;\n end;\n method echo charl2 implicit (char(12)
in string, in out char out string);\n out string=in string;\n end;\n
method echo charl2 explicit(char(12) in string, in out char(12) out_string);\n
out_string=in string;\n end;\n method echo varchar implicit (varchar(32767) in string,
in out varchar out string);\n out string=in string;\n end;\n
method echo varchar_explicit(varchar(32767) in string, in out varchar(32767) out_string);\n
out_string=in string;\n end;\n method echo bigint (bigint in int, in out bigint out int);\n
out_int=in int;\n end;\n method echo float (double in float, in out double out float);\n
out float=in float;\n end;\n method echo int (int in int, in out int out_ int);\n
out_int=in int;\n end;\n method echo scalars(char in char, char(12) in charl2, varchar(32767)
in varchar, int in int,\n bigint in bigint, double in float, \n in out char out char,
in out char(12) out charl2,\n in out varchar out varchar, in out int out_int,\n
in out bigint out bigint, in out double out float);\n out char = in char;\n
out_charl2 = in charl2;\n out string=in string;\n out int=in int;\n out bigint=in bigint;\n
out_float=in float;\n end-\n method echo charl array(char in arrayl[4],
in out char out_array[4]);\n dcl int count;\n do count = 1 to 4;\n
out_array[count] = 1n_array[count 1;\n end-\n end; \n method echo charN array(char(12)
in array(4], in out char(12) out_array[4]);\n dcl int count;\n do count = 1 to 4;\n
out_array[count] = in arrayl[count];\n end,\n end;\n method echo int array(int in array[17],
in out int out array([37]);\n dcl int count;\n do count = 1 to 17;\n
out_array[count] = in arrayl[count];\n end;\n end;\n method echo float array(double in array[2048],
in out double out array[2048]);\n dcl int count;\n do count = 1 to 2048;\n
out_array[count] = in arrayl[count];\n end;\n end;\n method echo bigint array(bigint in array[1],
bigint out_array([1l]);\n dcl int count;\n do count = 1 to 1;\n out array[count] = in array count] ; \n
end;\n end;\n method echo arrays(char in charl array[4], \n char(12) in charN array[4],\n
varchar (512) in varchar array[l],\n int in int array[17], \n double in double array[2048], \n
bigint in bigint array[], \n in out char out charl arrayl[4 \n in out char(12)
out_charN array[4],\n in out varchar(512) out varchar array[l \n in out int out_int array[37],\n
in out double out_double_array[2048 ,\n bigint out bigint array([1]);\n \n dcl int count;\n \n
do count = 1 to 4;\n out charl array[count] = 1n_char1_array[count];\n end;\n \n do count = 1 to 4;\n
out_charN array[count] = in charN array[count];\n end;\n \n do count = 1 to 1;\n
out_varchar array[count] = in varchar array([count];\n end;\n \n do count = 1 to 17;\n
out_int arrayl[count] = in int array[count];\n end;\n \n do count = 1 to 2048;\n
out_double array[count] = in double array[count];\n end;\n \n do count = 1 to 1;\n
out_bigint array[count] = in bigint array[count];\n end;\n \n end;\n \n endpackage;\n \n ",
"links": [
{
"method":"GET",
"rel":"self",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64/source”,
"uri":"/modules/fafbf5d4-01c0-48ea-al3e5-ef36fc3dfb64/source”,
"type":"application/vnd.sas.microanalytic.module.source"

"method":"GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
fafbf5d4-01c0-48ea-a3e5-ef36fc3dfbe4",

"uri":"/modules/fafbf5d4-01c0-48ea-a3e5-ef36fc3dfbe4”,

"type":"application/vnd.sas.microanalytic.module"

1,

"version":1

Resources and Collections 93

Here is an example of an error response body:

"errorCode": 4001,

"message": "No module with the module ID al511cb8-58b3-475a-a4d6-8a5817d936 exists.",
"details": [],

"remediation": "",

"links": [],

"version": 1,

"httpStatusCode": 404

Collection /modules/{moduleld}/steps

The /modules/ {moduleld}/steps collection is a collection of steps within a specific
module that is loaded in memory by SAS Micro Analytic Service.

The /modules/{moduleld}/steps collection uses the GET method, which returns a
resource collection of steps corresponding to a specific module. It requires
authentication, and has a request URL of GET http://www.example.com/
SASMicroAnalyticService/modules/{moduleld}/steps.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

Here are the query parameters for /modules/{moduleld}/steps:

Name Type Description

?start integer The starting index of the first item in a page. The index is
0-based. Default is 0.

2Nimit integer The maximum number of steps to return in this page of
results. The actual number of returned steps might be less
if the collection has been exhausted. The default is 10.

?label string Filter by the name of the steps. Each step is checked if its
name contains the label.

This operation returns the following media type representations by setting the Accept:
header of the request:

+ application/json

94 Chapter 6 + SAS Micro Analytic Service REST API

» application/vnd.sas.collection

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

Here is an example of the JSON response:

"links": [
{
"method":"GET",
l|re1ll : "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,
"type":"application/vnd.sas.collection"

¥
{
"method":"GET",
"rel":"first",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=0&1limit=10"
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=0&1limit=10",
"type":"application/vnd.sas.collection"
¥
{
"method":"GET",
"rel":"next",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=10&1limit=10",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=10&1imit=10",
"type":"application/vnd.sas.collection"
¥
{
"method":"GET",
"rel":"last",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=3&limit=10"
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=3&limit=10",
"type":"application/vnd.sas.collection"
¥
{
"method":"GET",
"rel":"up",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"type":"application/vnd.sas.microanalytic.module"
}

1,

"name":"items",
"accept":"application/vnd.sas.microanalytic.module.step",
"start":0,

"count":13,

"items": [

{

Resources and Collections 95

"links": [
{
"method":"GET",
llrel" . "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",
"type":"application/vnd.sas.microanalytic.module.step"

"method": "GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",

"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays/validations",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method" :"POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy arrays",

"type":"application/vnd.sas.microanalytic.module.step.output"

1,
"id":"copy arrays",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [
{

"mame":"in charN array",

"type":"stringArray",

"dim":4,

"size":12

"mame":"in varchar array",
"type":"stringArray",
"dim":1,

"size":512

"mame":"in int_array",
"type":"integerArray",
"dim":5,

"size":0

96 Chapter 6 + SAS Micro Analytic Service REST API

"name":"in double array",
"type":"decimalArray",
"dim":2,

"size":0

"mame":"in bigint_array",
"type":"bigintArray",

"dim":1,
"size":0
}
1,
"outputs": [

{

"name":"out charN array",
"type":"stringArray",
"dim":4,

"size":12

"name":"out varchar array",
"type":"stringArray",
"dim":1,

"size":512

'"mame":"out int array",
"type":"integerArray",
"dim":5,

"size":0

"name":"out double array",
"type":"decimalArray",
"dim":2,

"size":0

'"mame":"out bigint array",
"type":"bigintArray",
"dim":1,

"size":0

1,
"description":null,
"version":1

"links": [
{
"method":"GET",
llrel" : "Self" ,
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint",
"type":"application/vnd.sas.microanalytic.module.step"

1,

Resources and Collections

"method":"GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",

"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint/validations",

97

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method" :"POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint",

"type":"application/vnd.sas.microanalytic.module.step.output"

"id":"copy bigint",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

"mame":"in int",
"type":"bigint",

"dim":0,
"size":0
}
1,
"outputs": [
{
"mame":"out int",
"type":"bigint",
"dim":0,
"size":0
}

1,

"description":null,

"version":1

"links": [

{

"method":"GET",

"rel":"self",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint array",

"type":"application/vnd.sas.microanalytic.module.step"

98 Chapter 6

b
{

1,

» SAS Micro Analytic Service REST API

"method":"GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",
"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint array/validations",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint array/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method": "POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy bigint array",

"type":"application/vnd.sas.microanalytic.module.step.output™”

"id":"copy bigint array",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

1,

"mame":"in array",
"type":"bigintArray",
"dim":1,

"size":0

"name":"out_array",
"type":"bigintArray",
"dim":1,

"size":0

"outputs":null,

"description":null,

"version":1

"links": [

{

"method":"GET",

"rel":"gelf",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charl2",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charl2",

"type":"application/vnd.sas.microanalytic.module.step"

1,

Resources and Collections

"method": "GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",

"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charl2/validations™",

99

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charl2/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method": "POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charl2",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charl2",

"type":"application/vnd.sas.microanalytic.module.step.output"

"id":"copy charil2",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

"mame":"in string",
"type":"string",

"dim":0,
"size":12

1,

"outputs": [
"mame":"out_string",
"type" . "string" s
"dim":0,

"size":0

1,

"description":null,

"version":1

"links": [

{

"method":"GET",

"rel":"gelf",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charN array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charN array",

"type":"application/vnd.sas.microanalytic.module.step"

100 Chapter 6

1,

» SAS Micro Analytic Service REST API

"method": "GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",
"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charN array/validations",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charN array/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method" :"POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charN array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy charN array",

"type":"application/vnd.sas.microanalytic.module.step.output"

"id":"copy charN array",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

"mame":"in array",
"type":"stringArray",

"dim":4,
"size":12

1,

"outputs": [
"name":"out_array",
"type":"stringArray",
"dim":4,

"size":12

1,

"description":null,

"version":1

"links": [

{

"method":"GET",

"rel":"gelf",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float",

"type":"application/vnd.sas.microanalytic.module.step"

Resources and Collections 101

{
"method": "GET",
"rel":"up",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,
"type":"application/vnd.sas.collection"
b
{
"method" :"POST",
"rel":"validate",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float/validations",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float/validations",
"type":"application/vnd.sas.microanalytic.module.step.input.validity"
b
{
"method" :"POST",
"rel":"execute",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float",
"type":"application/vnd.sas.microanalytic.module.step.output"
}

1,
"id":"copy float",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [
{
"name":"in float",
"type":"decimal",

"dim":0,
"size":0
}
1,
"outputs": [
{
"name":"out float",
"type":"decimal",
"dim":0,
"size":0
}

1,
"description":null,
"version":1

"links": [
{

"method":"GET",

llrelﬂ : "Self" ,

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float array",

"type":"application/vnd.sas.microanalytic.module.step"

102 Chapter 6

1,

» SAS Micro Analytic Service REST API

"method": "GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",
"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float array/validations",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float array/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method" :"POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy float array",

"type":"application/vnd.sas.microanalytic.module.step.output"

"id":"copy float array",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

"mame":"in array",
"type":"decimalArray",

"dim":2,
"size":0

1,

"outputs": [
"name":"out_array",
"type":"decimalArray",
"dim":2,

"size":0

1,

"description":null,

"version":1

"links": [

{

"method":"GET",

"rel":"gelf",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy int",

"type":"application/vnd.sas.microanalytic.module.step"

1,

Resources and Collections 103

"method": "GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",

"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy int/validations",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy _int/validations™",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method" :"POST",

"rel":"execute",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy int",

"type":"application/vnd.sas.microanalytic.module.step.output"

"id":"copy_int",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

"mame":"in int",
"type":"integer",

"dim":0,
"size":0

1,

"outputs": [
"mame":"out int",
"type":"integer",
"dim":0,
"size":0

1,

"description":null,

"version":1

"links": [

{

"method":"GET",

"rel":"self",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy _int array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int array",

"type":"application/vnd.sas.microanalytic.module.step"

104 Chapter 6

1,

» SAS Micro Analytic Service REST API

"method": "GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",
"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy int array/validations",
"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy int array/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method": "POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy _int array",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int array",

"type":"application/vnd.sas.microanalytic.module.step.output™”

"id":"copy int array",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [

{

"mame":"in array",
"type":"integerArray",

"dim":5,
"size":0
}
1,
"outputs": [
{
"name":"out_array",
"type":"integerArray",
"dim":5,
"size":0
}

1,

"description":null,

"version":1

"links": [

{

"method":"GET",

"rel":"gelf",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy scalars",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy scalars",

"type":"application/vnd.sas.microanalytic.module.step"

Resources and Collections 105

"method": "GET",

"rel":"up",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps”,

"type":"application/vnd.sas.collection"

"method" :"POST",

"rel":"validate",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy scalars/validations",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy scalars/validations",

"type":"application/vnd.sas.microanalytic.module.step.input.validity"

"method" :"POST",

"rel":"execute",

"href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy scalars",

"uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy scalars",

"type":"application/vnd.sas.microanalytic.module.step.output"

1,
"id":"copy scalars",
"moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
"inputs": [
{

"mame":"in charl2",

"type":"string",

"dim":0,

"size":12

"mame":"in varchar",
"type" . "string" s
"dim": 0,
"size":32767

"mame":"in int",
"type":"integer",
"dim": 0,

"size":0

"mame":"in bigint",
"type":"bigint",
"dim":0,

"size":0

"name":"in float",
"type":"decimal",
"dim":0,

106 Chapter 6 + SAS Micro Analytic Service REST API

"size":0

1,

"outputs": [
"name":"out char",
"type" . "string" ,
"dim":0,
"size":0
"name":"out charl2",
"type" . "string" ,
"dim":0,
"size":0
"name":"out_ varchar",
"type" . "string" s
"dim":0,
"size":0
"mame":"out int",
"type":"integer",
"dim":0,
"size":0
"mame":"out bigint",
"type" . "bigint n s
"dim":0,
"size":0
"name":"out float",
"type":"decimal",
"dim":0,
"size":0

1,
"description":null,
"version":1

1,
"limit":10,
"version":1
Here is an example error response:

"errorCode": 4001,

"message": "No module with the module ID al511cb8-58b3-475a-a4d6-8a5817d936 exists.",
"details": [],

"remediation": "",

"links": [],

"version": 1,
"httpStatusCode": 404

}

Resources and Collections 107

Resource /modules/{moduleld}/steps/{stepld}

nidn .

"moduleId":
"description": null,

"inputs":

{

[

"name" :
n type n :

"dim":

"size":

"name" :
n type n :

"dim":

"size":

The /modules/{moduleld}/steps/{stepld} resource is a single step of a compiled module.

The /modules/{moduleld}/steps/{stepld} collection uses the GET method. It returns
detailed information about input and output signatures used to execute a specific step of
the module. It requires authentication, and has a request URL of GET http://
www.example.com/SASMicroAnalyticService/rest/modules/ {moduleld}/steps/{stepld} .

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

This operation returns the following media type representations by setting the Accept:
header of the request:

» application/json
» application/vnd.sas.microanalytic.module.step+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the module cannot be located, either because the module ID is
incorrect or the module does not exist anymore. This media type is also returned when
the module ID corresponds to an existing module. However, the step ID is incorrect.

Here is an example of the JSON response:

"test all types",

"8eee3045-83fa-4725-88ef-471ddb5ac4f9",

"in string",

"string",

0,

32767

"in bigint",

"bigint",

0,
0

108 Chapter 6

}
1,

"name" :
n type n :

"dim":

"size":

"name" :
n type n :

"dim":

"size":

"outputs":

{

"name" :
n type n :

"dim" :

"size":

"name" :
n type n :

"dim":

"size":

"name" :
n type n :

"dim":

"size":

"name" :
n type n :

"dim":

"size":

"name" :
n type n :

"dim":

"size":

"name" :
n type n :

"dim":

"size":

"name" :
n type n :

"dim":

"size":

» SAS Micro Analytic Service REST API

"in int",
"integer",
0,

0

"in double ",
"decimal",
0,

0

"out_string",
"string",

0,
8

"out_bigint",
"bigint",

0,
0

"out int™",
"integer",
0,

0

"out double",
"decimal",
0,

0

"string_arr",

"stringArray",
3,

32767

"bigint arr",

"bigIntArray",
3,

0

"int_arr",

"intArray",
3,

0

Resources and Collections 109

{
"name": "double arr",
"type": "decimalArray",
"dim": 3,
"size": 0
}
1,
"links": [
{
"method": "GET",
"rel": "gelf",
"href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
steps/test_all types",
"uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test all types",
"type": "application/vnd.sas.microanalytic.module.step"
¥
{
"method": "GET",
"rel": "up",
"href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
steps/test_all types",
"uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps",
"type": "application/vnd.sas.collection"
¥
{
"method": "POST",
"rel": "validate",
"href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
steps/test_all types/validations",
"uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test all types/validations",
"type": "application/vnd.sas.microanalytic.module.step.input.validity"
¥
{
"method": "POST",
"rel": "execute",
"href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
steps/test_all types",
"uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test all type",
"type": "application/vnd.sas.microanalytic.module.step.output"
}

1,

"version": 1

Here is an example of an error response:

{

"errorCode": 4001,

"message": "No module with the module ID al511cb8-58b3-475a-a4d6-8a5817d936 exists.",
"details": [],

"remediation": "",

"links": [],

"version": 1,

"httpStatusCode": 404

110 Chapter 6 - SAS Micro Analytic Service REST API

There are two POST methods. The first POST method validates step inputs. The request
body for each POST contains the input values that are used to execute the steps. The
input values are validated against the expected input signature of the step. The POST
methodrequires authentication, and has a request URL of POST http://
www.example.com/SASMicroAnalyticService/rest/modules/ {moduleld}/steps/{stepld}/
validations.

Here are the HTTP response codes:

200
OK

400
Bad Request

401
Unauthorized

403
Forbidden

404
Not found

500
Server error.

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

Here is an example of the JSON request:
{

"inputs": [
"mame": "in string",
"value": "This is a test..."
"name": "in bigint",

"value": 987654321

"name": "in_int",
"value": 7654321

"mame": "in double",
"value": 0.9997

]
}

This operation accepts the following media type representations by setting the Content-
Type: header of the request:

» application/json

» application/vnd.sas.microanalytic.module.step.input+json

Resources and Collections 111

This operation returns the following media type representations by setting the Accept:
header of the request:

» application/json
» application/vnd.sas.microanalytic.module.step.input.validity+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned whenever there is an error in performing the validation, not when the
input parameter is invalid.

Here is an example of the JSON response:

{

"moduleId": "052209DE-DF4D-6D44-B469-9094AC95F18E",
"stepId": "test all types",

"version": 1,

"results": {},

"valid": true

}

Here is an example response body for an instance when an input value is invalid:

{

"moduleId": "052209DE-DF4D-6D44-B469-9094AC95F18E",
"stepId": "test all types",
"version": 1,
"results": {
"in integer ": "Integer value expected but found 0.9997."

b

"valid": false

}

The second POST method executes a step. This method creates the output from
executing a step on the provided input values. The request body contains the input
values. The response body contains the results as output values. This POST method has
arequest URL of POST http://www.example.com/SASMicroAnalyticService/rest/
modules/{moduleld}/steps/{stepld} .

Here are the HTTP response codes:

200
OK

400
Bad Request

401
Unauthorized

403
Forbidden

404
Not found

500
Server error.

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

112 Chapter 6 + SAS Micro Analytic Service REST API

Here is an example of the JSON request:

{
"inputs": [

{
"mame": "in string",
"value": "This is a test..."

1

{
"name": "in bigint",
"value": 987654321

1

{
"name": "in_ int",
"value": 7654321

1

{
"mame": "in double ",
"value": 0.9997

}

}

This operation accepts the following media type representations by setting the Content-
Type: header of the request:

» application/json
» application/vnd.sas.microanalytic.module.step.input+json

This operation returns the following media type representations by setting the Accept:
header of the request:

» application/json
» application/vnd.sas.microanalytic.module.step.output+json
This operation might return the following media types for failure:

application/vnd.sas.microanalytic.module.step.input.validity+json
This media type is returned when the input is invalid.

application/vnd.sas.error
This media type is returned when there is problem executing the step.

Here is an example of the JSON response:

{

"moduleId": "OBCA724F-53D7-3540-8A62-4E2731D69813",
"stepId": "test all types",

"output": [
"mame": "out_string",
"value": "This is a test..."
1
"mame": "out bigint™",
"value": 987654321
1

"mame": "out int",
"value": 7654321

Resources and Collections 113

b
{
"name": "out double",
"value": 0.9997
b
{
"mame": "string arr",
"value": [
"This is a test...",
"This is a test...",
"This is a test..."
]
b
{
"mame": "bigint_ arr",
"value": [
987654321,
987654321,
987654321
]
b
{
"mame": "int_arr",
"value": [
7654321,
7654321,
7654321
]
b
{
"name": "double arr",
"value": [
0.9997,
0.9997,
0.9997
]
}
1,
"version": 1
}
Here is an example response body for the instances when the input is invalid:
{

"moduleId": "OBCA724F-53D7-3540-8RA62-4E2731D69813",
"stepId": "test all types",

"version": 1,

"results": {

"in double ": "Integer value expected but found 0.9997."
}
"valid": false
}
Here is an example error response:
{

"errorCode":-1958744015,
"message":"Step ID echo arrays failed to execute.",

114 Chapter 6 + SAS Micro Analytic Service REST API

"details": [

"Method not found."
1,
"remediation":"",
"links":[],
"version":1,
"httpStatusCode":400

115

Chapter 7
Administration

SAS Micro Analytic Service Logging 115
Secure DS2 HTTP Package Usaget 116
Monitoring 116

Monitoring SAS Micro Analytic Service 116

Monitoring SAS Micro Analytic Service Using SAS Environment Manager 117

SAS Micro Analytic Service Logging

An optional SAS Micro Analytic Service start-up parameter specifies the location of an
XML logging configuration file, which controls the logging levels and the location of
the log file or files. SAS Micro Analytic Service uses the SAS 9.4 Logging Facility. For
more information, see SAS 9.4 Logging: Configuration and Programming Reference.
Your SAS solution might provide a default logging configuration file, and that file might
include loggers or appenders in addition to those described in this chapter. For example,
on UNIX the file might be /datal/SAS/config/Levl/Web/Common/
LogConfig/SASMicroAnalyticService-log4sas.xml. For more information,
see your solution’s documentation.

SAS Micro Analytic Service uses two loggers named App.tk. MAS and
App.tk. MAS.CodeGen. Code that is hosted by SAS Micro Analytic Service, or the
functions that it calls, can use additional loggers.

The logger App.tk. MAS is used for logging all aspects of SAS Micro Analytic Service
operation besides code compilation and code generation, which use

App.tk. MAS.CodeGen. Normal operations, such as start-up and shutdown, are logged at
the INFO level. Detailed information about such operations as compilation start and
finish, and others, are logged at the DEBUG level. Warning and error conditions are
logged at the WARN or ERROR levels, as appropriate. By default, App.tk. MAS is set to
the INFO level.

App.tk. MAS.CodeGen is used for logging compiler-generated messages, such as
compilation warnings and errors. Compiler messages can also be retrieved
programmatically through the Java and REST interfaces. (See getCompilationMessages
in “Method Descriptions” on page 33.) Your SAS solution might report compilation
messages automatically. Because these messages are available programmatically, and to
prevent compiler messages from cluttering the log, App.tk. MAS.CodeGen is set to the
FATAL logging level by default.

116 Chapter7

Administration

Secure DS2 HTTP Package Usage

The DS2 HTTP package supports HTTP and HTTPS endpoints. The configuration of
SAS Micro Analytic Service defines the SSLCALISTLOC environment variable, which
specifies the location of the digital certificates for trusted certificate authorities.

The SSLCALISTLOC environment variable is defined in a host-specific configuration
script that is located in the application server's bin directory. For example, a UNIX
platform SAS-configuration-directory/LevN/Web/WebAppServer/
SASServerl3 1/bin/setenv.sh defines SSLCALISTLOC with a value of
SSLCALISTLOC=$JRE _HOMEY/../../../SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem. For more information about SSLCALISTLOC, see Encryption in SAS
9.4.

When an HTTP endpoint requires client authentication, it responds to the client with its
list of supported authentication mechanisms. The DS2 HTTP package currently supports
two of the three most common authentication mechanisms. It supports Basic and
Negotiate, but does not support the Digest mechanism. Because Basic authentication in
itself does not provide any credential confidentiality, it should be used only when the
data is being encrypted through TLS. The DS2 HTTP package does not provide an
interface allowing the user to specify credentials, other than including them in the URL.
An example is http://username:password@example.com/. The Negotiate mechanism
supports Kerberos and, when it is used on Windows, NTLM is also supported. For more
information, see “Using the HTTP Package” in SAS 9.4 DS2 Language Reference.

Monitoring

Monitoring SAS Micro Analytic Service

SAS Micro Analytic Service provides several logs to help you with monitoring. One of
these is the web server error log located at SAS/config/LevN/Web/WebServer/
logs. These logs have a filename format of error_yyyy-mm-dd.number.log. In them you
can find connection errors between the web server and the tcServer.

The tcServer log is called SAS/config/LevN/Web/WebAppServer/SASServer13 X/logs/
server.log. To determine whether the tcServer has started, look for a message similar to
the following:

2015-06-03 16:43:13,176 INFO (main) [org.apache.catalina.startup.Catalinal
Server startup in 36647 ms.

The catalina.out file captures the output to the console. The content is identical to the
entries that are logged in the REST service log file. Whether information should be sent
to console is controlled by the Log4j configuration file of the REST service.

The gemfire.log file in SAS/config/LevN/Web/WebAppServer/
SAsSServerl3 X/logs logs the activity of GemFire, which is a third-party distributed
data management platform. When the tcServer does not start up, check gemfire.log to
see whether GemPFire is waiting for data availability. Look for a log entry in a form that
is similar to the following:

[info 2015/06/04 15:44:09.187 EDT <localhost-startStop-1> tid=0x15]
Region /sas_gemfire region surrogatekeytomodulereplica initialized with data

Monitoring 117

from /10.xx.xxx.yy:/datal/SAS/config/Levl/Web/WebAppServer/SASServerl3 1/logs

created at timestamp 1433364173611 version 0 diskStoreId 19892c25-b655-4ae7-96ed-c978dde636d2
is waiting for the data previously hosted at
[/10.xx.xxx.xx:/data/SAS/config/Levl/Web/WebAppServer/SASServerl3 1/logs created

at timestamp 1433364164520 version 0 diskStoreId 20d2f45e-876f-4ccl-84b0-ccf6920da3es]

to be available

The wait will eventually time out, and SAS Micro Analytic Service will not start
correctly. This is most likely to happen in a clustered environment. For more
information, see “Cluster Deployment for SAS Micro Analytic Service” on page 124.

The REST service log file is located at SAS/config/LevN/Web/Logs/
SASServerl3 1/SASMicroAnalyticServicel.2.log. The current day log
entries are in that file. The first log entry that occurs after midnight causes the previous
day's log file to roll over to another file with the format
SASMicroAnalyticServicel.2.log.yyyy-mm-dd. SASMicroAnalyticServicel.2.log is
created fresh with the first log entry. The service logs are at INFO level. Therefore, they
capture start-up entries, module creation, update and deletion boundary entries, as well
as errors from all operations. When there is an error, and more information must be
captured to identify the cause of the error, update the REST service's Log4j
configuration file to set logging level to DEBUG, and restart the service.

Log entries are tagged with an INFO, WARN, or ERROR keyword. When the REST
service is started properly, there is no entry with the ERROR keyword added to the log
file. When a web service request is processed successfully, the HTTP status returned is
either 200, 201 or 204, depending on the context. If the HTTP status returned is 4XX
(such as 400, 401, 404) or 5XX (such as 503), an error message is included in the HTTP
response body. In addition, one or more ERROR entries are in the log file.

A related log file in the same directory is the SAS Micro Analytic Service log. The
filename has the format SASMicroAnalyticServicel.2MAS.log.yyyy-mm-dd.pid. Pid is
the process ID of the JVM process that hosts SAS Micro Analytic Service. Each time the
REST service restarts, a new log file is used and then the log file rolls over to another
file at midnight. The SAS Micro Analytic Service log file can capture compilation errors
of modules, as well as any anomaly that is encountered by the SAS Micro Analytic
Service.

The application's Log4j configuration file is in the directory SAS/config/LevN/Web/
Common/LogConfig. The configuration file for the REST service log is
SASMicroAnalyticService-log4j.xml. The configuration file for SAS Micro Analytic
Service is SASMicroAnalyticService-log4sas.xml.

Monitoring SAS Micro Analytic Service Using SAS Environment

Manager

Overview

SAS Environment Manager provides several pieces of monitoring functionality that can
be used to help understand SAS Micro Analytic Service usage, check service
availability, and set custom alerts.

Initialize SAS Environment Manager
To initialize SAS Environment Manager:

1. Open the file /config/LevN/Web/SASEnvironmentManager/emi-framework/
ConfigureFiles/Kits/WebServer/WebServer.properties.

2. Make sure that kitenabled is set to TRUE.

118 Chapter 7 - Administration

3. Follow the instructions found inside the file /config/LevN/Web/

SASEnvironmentManager/emi-framework/
SAS Environment Manager Service Architecture Quickstart.pdf.

Access a Report
To access reports in SAS Environment Manager:

1.

Open SAS Environment Manager inside a browser (SAS Environment Manager
default port is 7080).

Select Report Center from the Analyze drop-down menu.

SAS® Environment Manager

Dashboard Resources Analyze Administratio

Operations Center

Select a Dashboard |535¢
Report Center

Event Center
Search Resources

Environment

Resource Mame | |F'Iatf|:|rr

Snapshot

Saved Charts Alert Center

L e e gy e Ve g B e i

Navigate to Stored Processes = Products = SAS Environment Manager = Kits
= Web Server. Click HTTP Web Server return codes.

To see all of the TKMAS HTTP requests with response codes, navigate to
Classification Variables and move clientsrc from Available to Selected.

Under Tabulate Report, click Subsets. Set the Where clause to filter SAS
Environment Manager Data Mart table to clientsubsrc =
'SASMicroAnalyticService'.

Click Run to see the report.

Monitor SAS Micro Analytic Service Downtime

To monitor SAS Micro Analytic Service downtime, select Currently Down from the
Resources drop-down menu. This provides you with a list of all of the resources that are
currently down.

Monitoring 119

Recent Alerts

SAS® Environment Manager

Dashboard Resources Analyze Administration

Browse

Select a Das
Currently Down

Recently Viewed
Search Reso

|Resnurce Mame ||F'Iatf0rms (o]

Set Alerts

To set up custom alerts for SAS Micro Analytic Service servers:

1. Select Browse from the Resources drop-down menu.

Recent Alerts

SAS® Environment Manager

Dashboard Resources Analyze Administration

Browse

Select a Das
Currently Down

Recently Viewed
Search Reso

Resource Name | |F'Iatf|:|rms (>

2. On the Platforms tab, click the platform where SAS Micro Analytic Service is
installed.

3. Select New Platform Service from the Tools Menu.

4. Enter a name for the new service, and select HTTP from the Service Type drop-
down menu. Click OK.

120 Chapter7 < Administration

Dashboard Resources Analyze Administration Manage

New Service

General Properties

=Name: (Sapice Name

Description:

Type & Host Properties
= Service Type: |HTTP

V]

| Ok H Reset || Cancel |

5. You should receive two messages on the service window. The first should tell you
that your service has been created. The second should ask you to set the
configuration properties. Click Configuration Properties in the second message.

Map I Tools Menu I

Monitor Inventory Alert Views

+ Service Test has been created.

&4 This resource has not been configured. Please set its Configuration Properties.

6. Under Configuration Properties, set the following:

a.

b.

Set the port field. The default is 7980.

Set the hostname field to the location where SAS Micro Analytic Service is
installed.

c. Set the path field to /SASMicroAnalyticService.
d. Select GET from the method drop-down menu.
e. Click OK.

7. Click Alert and then Configure.

8. Click New.
Map = Tools Menu [
Monitor Inventory Alert Views
Alerts Configure
[] Alert Definition & Description

New...

==

9. Provide the information about the New Alert Definition window. Click OK.

Monitoring 121

When the condition that is specified for the alert is satisfied, an alert should be visible on
the top banner of SAS Environment Manager.

122 Chapter7 < Administration

123

Chapter 8
Deployment and Tuning

Deploying SAS Micro Analytic Service 123
Cluster Deployment for SAS Micro Analytic Service 124
Tuning SAS Micro Analytic Service 125
Adjust Thread Pool Size i e 125
Adjust Serial or Parallel Content Creationcoviuinennnn... 125
Adjust DS2 Module CompilationMode, 126
Increase Module ExecutionThroughput of the REST Interface............... 126
Prevent HTTP Error Messages ovvvi et e i ieeann 127

Deploying SAS Micro Analytic Service

The full SAS Micro Analytic Service software stack, including the REST, Java, and C
interfaces, and the core C engine, is deployed as a SAS web application in SAS Web
Application Server. SAS web applications can be clustered and tuned for performance
and high availability. For information about how to tune the SAS Micro Analytic Service
web application for optimum performance, see SAS 9.4 Web Applications Tuning for
Performance and Scalability.

After deployment, validate the web service URL for the SAS Micro Analytic Service
REST API by following the instructions found in SAS/config/LevN/documents/
Instructions.html. Follow the steps found in the topic about validation. If the service is
deployed correctly, the following JSON object is returned:

{"version":1,"links": [{"method":"GET", "rel": "modules",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules", "uri":"/modules"},
{"method":"POST","rel":"createModule",“href":

"http://www.example.com/SASMicroAnalyticService/rest/modules"”, "uri":"/modules"}] }

To grant access to the service to a user, add that user as a member of the Decision
Manager Users group.

1. In SAS Management Console, expand Environment Manager.

2. Right-click User Manager, and click New = User.

3. On the General tab, enter the name and any other optional information.
4

. On the Groups and Roles tab, find the Decision Manager Users group from the
Available Groups and Roles list and add it to the Member of list.

5. On the Accounts tab, click New.

124 Chapter 8 + Deployment and Tuning

6. In the New Login Properties dialog box, you must complete at least the User ID
field. Click OK.

7. Click OK in the New User Properties dialog box.

Cluster Deployment for SAS Micro Analytic
Service

In a cluster deployment, the web server runs on only one node, and it serves as the
balancer. The URL to the service sends the request to the web server. The web server
dispatches the requests in round-robin to the nodes in the cluster, unless a different
policy is specified in the web server configuration.

The metadata server for a middle-tier node is specified during deployment. The same
metadata server that is referenced by the middle tier can be referenced by a middle-tier
node. When that is the case, user management data and application properties that are set
on the middle tier are applicable automatically to the middle-tier node. If different
metadata servers are referenced by the middle tier and the middle-tier nodes, then any
user and application management data changes should be made in both metadata servers.

By contrast with the middle tier, the Instructions.html file for the middle-tier node
includes neither a web service URL, nor a section on validating steps for the web
service. The web server directs requests to the middle-tier node based on the specified
load-balancing policy in its configuration.

If a user wants to use the same node to serve a group of requests, this can be achieved by
including the same route information in the HTTP request for that group of requests. The
cluster is enabled for a sticky session by default. When a service request is made, the
header section of the HTTP response includes a Set-Cookie header, such as the
following:

Set-Cookie: c74blb873e98ef08505dee685863e7b2 Clusterl3=EC5213E970F0655
8E63F145001F64CEC.Cc74b1b873e98ef08505dee685863e7b2_SASServerl3 1;
Path=/SASMicroAnalyticService/; HttpOnly

The first item is a variable=value construct. The variable is a session ID. The value is a
route.

To use the same node to serve a group of requests, extract the route information from the
first request of the group. From the second request to the last request, set the cookie
header with the sessionID and route value, similar to the following example:

EC5213E970F06558E63F145001F64CEC.c74b1b873e98ef08
505dee685863e7b2 SASServerl3 1

Using the same node to serve a group of requests can be useful because it avoids
introducing errors by a delay in replicating content from one cluster node to another.

For example, the cluster consists of two nodes, Node 1 and Node 2. You want to deploy
two modules, A and B. Also, B depends on A. Suppose A is a very big module and takes
more than 20 seconds to compile. If A is deployed on Node 1, it must be replicated to
Node 2 and then compiled on Node 2, before it is available on Node 2. If B is deployed
to Node 2 before A is ready there, there is an error. To avoid this type of error, set the
cookie to tell the web server to use Node 1 to deploy B.

Clustering relies on GemFire, a third-party distributed data management platform.
GemPFire persists data to files that are stored in SAS/config/LevN/Web/

Tuning SAS Micro Analytic Service 125

WebAppServer/SASServerl3 X/logs. The filenames contain the masgemfire sub-
string. Those files should be left alone. Also, make sure that enough disk space is
allocated to the SAS/config/LevN/Web/WebAppServer/SASServerl3 X/logs
directory so that the cache files grow.

CAUTION:
These files should not be truncated or deleted regardless of their size.
Sometimes they might appear to be zero bytes. GemFire also uses the word
BACKUP in some of the filenames. Deleting or truncating these files deletes the
modules repository.

In a typical deployment, a middle-tier node uses the middle tier's GemFire locator. A
locator is used in the peer-to-peer cache to discover other processes. If the whole cluster
must be restarted, the commands to start the middle tier and middle-tier node should be
submitted immediately one after another. The order does not matter.

Tuning SAS Micro Analytic Service

Adjust Thread Pool Size

Tasks in SAS Micro Analytic Service, such as revision compilations and method
executions, are performed by special worker threads, which are part of the SAS threaded
kernel architecture. These worker threads are maintained in a thread pool. The size of the
thread pool to use is provided to SAS Micro Analytic Service as a start-up parameter. By
default, the thread pool size is set to 4. Optimum performance is usually achieved by
setting the thread pool size about equal to the number of cores in the hosting server.
However, the optimum setting might vary depending on the characteristics of the
programs that are run by SAS Micro Analytic Service.

To change the worker thread pool size:

1. In SAS Management Console, expand Application Management.
. Expand SAS Application Infrastructure.
. Right-click SAS Micro Analytic Service 1.2.

2

3

4. Select Properties.
5. Click the Advanced tab.

6. Unlock masintf.tk.threads in the Property Name column.
7

. Change the value. To tell SAS Micro Analytic Service to automatically set the
worker thread pool size equal to the number of server cores, enter 0 (zero) for the
value.

8. Click OK.

Adjust Serial or Parallel Content Creation

The POST operation on the modules collection and the PUT and DELETE operations on
a module are serialized by default. They are taken in the order of arrival to the REST
server's processing queue, one after another is done. To adjust this setting to allow them
to be done in parallel:

1. In SAS Management Console, expand Application Management.

126 Chapter 8 + Deployment and Tuning

Expand SAS Application Infrastructure.

Right-click SAS Micro Analytic Service 1.2.

Select Properties.

Click the Advanced tab.

Unlock masintfc.tk.serializecontentcreation in the Property Name column.
Change the value. The choices are true and false. The default value is True.

Click OK.

® =Nk wN

Adjust DS2 Module Compilation Mode

The REST server always inserts a DS2 option in front of a DS2 module to force it to be
compiled in SAS mode. You can stop this behavior by changing a property:

1. In SAS Management Console, expand Application Management.
Expand SAS Application Infrastructure.

Right-click SAS Micro Analytic Service 1.2.

Select Properties.

Click the Advanced tab.

Unlock masintfc.tk.sasmode in the Property Name column.

Change the value. The choices are true and false. The default value is true.

Click OK.

® =Nk wN

Increase Module ExecutionThroughput of the REST Interface

The module execution throughput of the SAS Micro Analytic Service REST interface
can be increased. However, those making connections to the REST server to execute
micro analytics must always be authorized and authenticated by some other means, such
as a private network. If this is the case, you can edit the JVM option that starts the REST
server to include the argument

-Dsas.mas.access.mode=private

As a result, the authentication is not required to execute micro analytics. Authentication
is still required for other operations.

As a result of specifying this option, the CPU cycles and sockets that are used for
authentication are available for other uses, such as executing micro analytics.

The place to edit the JVM option is host specific:

* Linux - SAS/config/LevN/Web/WebAppServer/SASServerl3 X/bin/
setenv.sh

* Windows - SAS\Config\LevN\Web\WebAppServer\SASServerl3 X\conf
\wrapper.conf

Tuning SAS Micro Analytic Service 127

Prevent HTTP Error Messages

To prevent HTTP error messages, make sure that the web server is located on a separate
host machine from the web application server. When the web server and web application
server are located on the same machine, they both compete to use the ephemeral ports on
the system. Separating them reduces the contention for this finite resource.

128 Chapter 8 + Deployment and Tuning

Appendix 1

129

SAS Micro Analytic Service
Return Codes

Return Code

-1958744063

-1958744062

-1958744061

-1958744060

-1958744059

-1958744058

-1958744057

-1958744056

-1958744055

-1958744054

-1958744053

-1958744052

-1958744051

-1958744050

-1958744049

SAS Micro Analytic Service core component, tkmas, supports the following return
codes. Depending on logging settings, an associated message, listed below, might be
logged. When a message is logged, any substitution parameters (indicated by %s for
string and %d for number) are filled in. The other SAS Micro Analytic Service interface
layers, such as the Java interface and the REST interface, might log additional messages

that are not listed below.

#define Symbol

MASBadArgs

MASInternalError

MASPFailure

MASFail

MASUnexFail

MASUnexInternal

MASUnexFailln

MASFailln

MASPFailWithText

MASSFGCBLock

MASExeLock

MASLockCreate

MASEventCreate

MASThreadCreate

MASCPUCount

Message or Description

Invalid arguments.

Internal error.

SAS Micro Analytic Service encountered a
failure.

%s encountered a failure.

%s encountered an unexpected failure.

%s encountered an unexpected internal failure.

%s encountered an unexpected failure in %os.

%s encountered a failure in %s.

%s encountered a failure in %s: %s.

Failed to obtain the SFGCB lock.

Failed to obtain the .exe lock.

Failed to create the %s lock.

Failed to create the %s event for thread %d.

Failed to create SAS Micro Analytic Service
worker thread %d of %d.

Failed to determine the number of CPUs.
Setting the number of worker threads to %d.

130 Appendix 1

Return Code

-1958744048

-1958744047

-1958744046

-1958744045

-1958744044
-1958744043
-1958744042

-1958744041

-1958744040

-1958744039
-1958744038
-1958744037
-1958744036
-1958744035
-1958744034
-1958744033
-1958744032
-1958744031
-1958744030
-1958744029
-1958744028

-1958744027

SAS Micro Analytic Service Return Codes

#define Symbol

MASThreadCount

MASThreadPoolSize

MAShitAlready

MASInitFailed

MASNOotLicensed
MASLicSvclnitFailed
MASNotInitialized

MASTermFailed

MASArgTrunc

MASCompStatus
MASUnsupportedType
MASUnknownType
MASNoSuchPackage
MASNoSuchMethod
MASNoSuchRevision
MASRevisionGet
MASNoSuchModule
MASNoSuchUserContext
MASModuleCtxtCreate
MASUserCtxtCreate
MASArgTypeMismatch

MASArgCoutMismatch

Message or Description

The number of threads requested, %d, exceeds
the limit. The maximum allowable threads =
%d times the number of CPUs = %d.

Worker thread pool size set to: %d.

SAS Micro Analytic Service was already
initialized.

SAS Micro Analytic Service failed to
initialize.

SAS Micro Analytic Service is not licensed.

License service failed to initialize.

SAS Micro Analytic Service is not initialized.

SAS Micro Analytic Service failed to
terminate successfully.

The maximum size of parameter %d in the %s
call is not large enough, and the value has been
truncated at %d characters.

Compiler encountered status 0x%X.

Unsupported type.

Unknown type.

Package not found.

Method not found.

Revision not found.

Failed to get revision.

Module not found.

User context not found.

Failed to create module context.

Failed to create user context.

Argument type mismatch.

Argument count mismatch.

Return Code

-1958744026

-1958744025

-1958744024

-1958744023

-1958744022

-1958744021

-1958744020

-1958744019

-1958744018

-1958744017

-1958744016

-1958744015

-1958744014

-1958744013

-1958744012

-1958744011

-1958744010

-1958744009

-1958744008

-1958744007

-1958744006

-1958744005

-1958744004

-1958744003

#define Symbol

MASClientCodegenError

MASDS2CompileError

MASDS2RuntimeError

MASTKGNoEntryPoint

MASTKGGenericError

MASInvalidRequest

MASMissingEntryPoints

MASUnassignedInput

MASInternalOnly

MASOnlyValidForDS2

MASOnlyValidForC

MASExecutionException

MASCompilationException

MASDS2ThreadUnsupported

MASTKEDSError

MASUnrecognizedLanguage

MASUnspecifiedDataType

MASTKThreadingError

MASFatalProgRepoLost

MASSaveToRepo

MASLog4SASCfgFailed

MASDS2CompileStart

MASDS2CompileFinish

MASDS2CompileFailed

SAS Micro Analytic Service Return Codes

Message or Description
Code generation error.
DS2 compilation error.

DS2 run-time error.

Code generation did not find an entry point.

Code generation generic error.

Invalid request.

Missing entry points.

Unassigned input.

Internal only.

Valid only for DS2 code.

Valid only for C code.

Exception occurred during execution.

Exception occurred during compilation.

DS2 thread unsupported.

DS2 error.

Unrecognized language.

Unspecified data type.

Threading error.

Program repository lost.

Failed to save to repository.

Logging configuration failed.

User context '%s' compiling module '%s' on

thread %d.

User context '%s' module '%s' thread %d

compilation succeeded.

131

User context '%s' module '%s' thread %d new

revision failed, RC = %d.

132 Appendix 1 -

Return Code

-1958744002

-1958744001

-1958744000

-1958743999

-1958743998

-1958743997

-1958743996

-1958743995

-1958743994

-1958743993

-1958743992

-1958743991

-1958743990

-1958743989

-1958743988

-1958743987

-1958743986

-1958743985

SAS Micro Analytic Service Return Codes

#define Symbol
MASStartup

MASShutdown

MASAsyncException

MASAsynclInitFailed

MASShutdownJNI

MASExecDeletePending

MASMTXDeletePending

MASRevDeletePending

MASRevDelDeletePending

MASRevDelRefCount

MASRevDelRefCountError

MASMTXDelete

MASCTXDeletePending

MASCTXGetCDTDelPending

MASCTXGetMDTDelPending

MASMTXGetCDTDelPending

MASMTXGetMDTDelPending

MASMTXGetRevDelPending

Message or Description

*** SAS Micro Analytic Service Started ***

Micro Analytic Service Shutting Down
kokok

SAS Micro Analytic Service received async
exception code %d.

SAS Micro Analytic Service failed to install
async exception handler.

SAS Micro Analytic Service calling JVM
System.exit(0).

Attempt to execute method %s while deletion
pending for module context %s revision %d.

Attempt to add module context &s while
deletion pending for user context %os.

Attempt to create revision while deletion
pending for module context %os.

Attempt to delete revision while deletion
pending for module context %os.

Pending delete called for module context %s
with ref count %d.

Delete called for module context %s with ref
count %d.

Garbage collection is deleting module context
Yos.

Attempt to delete user context %s while being
deleted by another thread.

Attempt to retrieve creation time from user
context %s while deletion pending.

Attempt to retrieve modified time from user
context %s while deletion pending.

Attempt to retrieve creation time from module
context %s while deletion pending.

Attempt to retrieve modified time from
module context %s while deletion pending.

Attempt to retrieve highest revision from
module context %s while deletion pending.

Return Code

-1958743984

-1958743983

-1958743982

-1958743981

-1958743980

-1958743979

-1958743978

-1958743977

-1958743976

-1958743975

-1958743974

-1958743973

-1958743972

-1958743971

-1958743970

-1958743969

-1958743968

#define Symbol

MASMTXGetIUODelPending

MASRevGetCDTDelPending

MASMTXGetMsgDelPending

MASMTXRegDeletePending

MASMTXLangDelPending

MASMTXGetDispDelPending

MASMTXGetCSrcDelPending

MASCTXGetPkgsDelPending

MASMTXGetMthsDelPending

MASNoSuchEntryPoint

MASMTXGetSigDelPending

MASCTXLdAOOTBDelPending

MASCTXRegIntDelPending

MASCTXRemIntDelPending

MASCreateGCAFailed

MASGarbageCollection

MASGarbageCollectionDel

SAS Micro Analytic Service Return Codes 133

Message or Description

Attempt to retrieve internal use flag from
module context %s while deletion pending.

Attempt to retrieve revision %d creation time
from module context %s while deletion
pending.

Attempt to retrieve compilation messages from
module context %s while deletion pending.

Attempt to register name while deletion
pending for module context %s.

Attempt to retrieve language of module
context %s while deletion pending.

Attempt to retrieve display name from module
context %s while deletion pending.

Attempt to retrieve C source code from
module context %s revision %d while deletion
pending.

Attempt to retrieve packages from user context
%s while deletion pending.

Attempt to retrieve methods from module
context %s while deletion pending.

Entry point not found.

Attempt to retrieve method %s signature from
module context %s while deletion pending.

Private load out-of-the-box packages for user
context %s while deletion pending.

Attempt to publish internal package %s to user
context %s while deletion pending.

Attempt to remove internal package %s from
user context %s while deletion pending.

Attempt to create garbage collection control
structures failed.

Garbage collection interval.

Garbage collection found assets ready to
delete.

134 Appendix 1 + SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958743967 MASGCException Exception occurred during garbage collection
run.

-1958743966 MASProgRepoUpdateError Error obtaining exclusive lock to update DS2

program repository.
-1958743965 MASCTXDelete Garbage collection is deleting user context %s.

-1958743964 MASRevDelete Garbage collection is deleting module context
%s revision %d.

-1958743963 MASDS2Fatal Module context %s revision %d generated
fatal runtime exception. Deleting revision.

-1958743962 MASGarbageCollectionTerm Garbage collection is freeing control assets
during shutdown.

-1958743961 MASShutdownHang Worker thread did not interrupt after %d
seconds during shutdown.

135

Appendix 2

REST Server Error Messages
and Resolutions

The following table contains SAS Micro Analytic Service REST server error messages,

as well as possible causes and remedies.

Error Messages

Another operation on this module is
going on.

API version 2 is not supported.

Bad Request encountered. Check the
format and syntax of the source.

Code is missing or assigned the null
value.

Data type does not match the signature.

Error creating object for HTTP
response body.

Cause and Remedy

Wait a while, find out what has changed on the
module, and then decide whether it is appropriate to
retry your operation. If the problem persists even
though you are sure there is not another simultaneous
operation on the module, restart the server to refresh
its state.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

Check the SAS Micro Analytic Service log file for
additional details as there can be multiple causes for
this error. If the cause is not that an incorrect source
was used when updating a module, a restart of the
server might be necessary to refresh its state. It might
also be necessary to reduce the level of concurrent
module update.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors that are identified.

Correct the input parameters according to the step's
input signature.

If you submitted a POST, PUT, or DELETE
operation to change the module collection, use the
appropriate GET operation to check whether the
operation produced the effect that is desired. If the
desired effect is not produced, check the SAS Micro
Analytic Service log for error messages. (Errors are
logged as well as returned through the response
body.) If you submitted a POST operation to validate
the inputs of a step, execute a step or another GET
operation. It is safe to repeat the operation.

136 Appendix 2

REST Server Error Messages and Resolutions

Error Messages

Information about the steps in this
public module is not available.

Information about the steps in this
public module is not available because
module was compiled successfully
before but failed recompilation this
time.

Invalid source code.
Label cannot be used together with

start and limit.

Metadata update failure.

Module compilation failed with errors.

Module context was not created.
Module name cannot be changed from
a PUT operation.

Module name cannot be determined.

Module name XYZ is already taken.

Module named XYZ already exists.

Module type XYZ is not valid. Valid
value is text/vnd.sas.source.ds2.

Cause and Remedy

The cause of this error is too many simultaneous
module creations or updates. Reduce the amount of
concurrency.

The likely cause is that a dependent module is no
longer available to recompile a module after the
server restarts. Create the dependent module again.

The cause is either one or more compilation errors.

Use either the label parameter or start and limit
parameters in the GET operation on the modules or
steps collections.

Restart the server to go through the metadata
correction procedure. Follow this with a GET
operation on the module affected to see whether the
module was created, updated, or deleted properly.

The cause is one or more compilation errors during
re-compilation of a previously compiled module.
This might be due to too many simultaneous module
creations or updates. Reduce the amount of
concurrency. A restart of the server might be
necessary to go through the metadata correction
procedure.

There can be multiple causes. A restart of the server
might be necessary to refresh its state.

Use the same module name as the previous revision.

If the source is DS2 code, the package does not have
a name. Add a name to the package.

Delete the existing module using that name, or
choose a different module name when creating a
module. If the error persists, this might be a symptom
of incorrect metadata. A restart of the server might be
necessary to go through the metadata correction
procedure.

Delete the existing module using that name, or
choose a different module name when creating a
module. If the problem persists, restart the server to
clear its state.

The cause is one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

Error Messages

No module with the module ID XYZ
exists.

Private module named XYZ was not
removed successfully.

Scope is missing or assigned the null
value.

Scope XYZ is not valid. Valid scopes
are public and private.

Server encountered an internal error.

Server is not initialized properly.

Step ID XYZ failed to execute.

Step ID XYZ is not visible.

The XYZ member is repeated.

REST Server Error Messages and Resolutions 137

Cause and Remedy

Verify that the module ID is correct. If the module ID
is correct, the module might have been deleted. In
that case, create the module again and use the new ID
that is assigned to it.

In the case of a clustered deployment, the module
was never replicated to all peers and the load
balancer sends your request to one of those peer
nodes. Check the SAS Micro Analytic Service log to
confirm that. A restart is necessary to go through the
metadata correction procedure.

This error can be left uncorrected, if XYZ does not
pose a problem in the other operations of the server.
Otherwise, restart the server to clear its state.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors identified.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

There can be multiple causes. Check the SAS Micro
Analytic Service log for error messages. If the cause
is compilation related, and the errors are on a
dependent module, make sure that the dependent
module exists. It can also be caused by too many
simultaneous module creations or updates. In that
case, reduce the amount of simultaneous module
creations or updates. For other causes, a restart of the
server might be necessary to refresh its state.

There can be multiple causes. Check the SAS Micro
Analytic Service log for more information. Correct
the component that prevents the service from
initializing properly.

See “SAS Micro Analytic Service Return Codes” on
page 129 for the meaning of the result code. Also,
verify that the module ID is correct and verify the
existence of the module by doing a GET operation on
the module.

The step is a member of a private module and its
information is hidden from you. Furthermore, you
cannot execute this step. If you need to see the
signature of this step, you can get the source of the
module as an alternative.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

138 Appendix 2

REST Server Error Messages and Resolutions

Error Messages

The XYZ property expects a string
value but TYPE value is provided.

The XYZ property is not supported.

There is more than one DS2 package in
the code.

This node is out of sync with the rest of
the cluster.

Total number of input parameters
(number) does not match the number
of parameters required by input
signature (number).

Type is missing or assigned the null
value.

User context was not created.

Version is missing or assigned the null
value.

Cause and Remedy

The value of a property should be a string. Change
the value to a string by quoting the value in double
quotation marks.

The only property that is allowed in the API is
connectionString. Remove the property definition
from the array.

Provide only one DS2 package in a module
definition.

The likely cause is network delay in replicating data
from one node to its cluster peers. Another operation
on the module on the node that has the up-to-date
metadata might cause a correction of the module on
the peer nodes. If that does not work, restart the
cluster node to go through the metadata correction
procedure.

Correct the input parameters according to the step's
input signature.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors identified.

There can be multiple causes. A restart of the server
might be necessary to refresh its state.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

139

Recommended Reading

» SAS 9.4 DS2 Language Reference

* SAS 9.4 Logging: Configuration and Programming Reference

o SAS 9.4 Web Applications Tuning for Performance and Scalability
* Encryption in SAS 9.4

o SAS 9.4 Intelligence Platform Middle-Tier Administration Guide

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books

SAS Campus Drive

Cary, NC 27513-2414

Phone: 1-800-727-0025

Fax: 1-919-677-4444

Email: sasbook@sas.com

Web address: sas.com/store/books

http://sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

140 Recommended Reading

Index

141

A

Administration Logging 115

argument types supported in public
methods 16

business context 3

Cc

character-to-numeric conversions 23

D

Deploying SAS Micro Analytic Service
123

DS2 best practices 19, 20, 23, 24

DS2 programming 11, 12, 13, 16

G
global packages 19

H
hash package 23

I
interfaces 5
invariant computations 24

J
Java Business Context Methods 27
Java Interface Topology 26
Java POJO 25
Execution Methods 37
Module Context Methods 29
Revision Methods 32
Shutdown 27
Start-up 26
User Context Methods 27

L
local packages 19

module 4

P

passing character values to methods 23
private methods 13

private packages 13

programming blocks 12

public methods 13

public packages 13

publishing DS2 source code 11

R

revision 4

S
SAS Micro Analytic Service 1
concepts 3,4, 5

SAS Micro Analytic Service and SAS
Foundation 12

SAS Micro Analytic Service REST API
50

SCAN 20

single computation 24

T

TRANWRD 20

Tuning SAS Micro Analytic Service 125
Adjusting Thread Pool Size 125

U

user context 3

142 Index

4 ‘
r 4 [

Z
Z

Gain Greater Insight into Your
SAS’Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

@ support.sas.com/bookstore Ssas

Q@O for additional books and resources. THE POWER TO KNOW,

SAE and all other SA5 Institute Ing, product or senice names are registered trademarks or frademarks of SAS Instiute [ne. in the LISA and other countries, & indeates USA registration, Other brand and prodect names:ane
ke of their i panies. £ 2013 SAS Insfitute inc: All rights reserved. B1075690U5 D613

	Contents
	About This Book
	Audience

	Accessibility
	Introduction to SAS Micro Analytic Service
	What Is SAS Micro Analytic Service?

	Concepts
	Overview
	User or Business Context
	Module Context
	Revision
	Interfaces
	Example: JAVA Interface
	Instantiate SAS Micro Analytic Service
	Create a User Context
	Create Modules
	Basic Steps for Using SAS Micro Analytic Service

	DS2 Programming for SAS Micro Analytic Service
	Overview
	Publishing DS2 Source Code to SAS Micro Analytic Service
	SAS Micro Analytic Service and SAS Foundation
	I/O
	Programming Blocks
	Public and Private Methods and Packages
	Overview
	Public Method Rules
	Public Method Example
	Private Method Example
	Method Overloading

	Argument Types Supported in Public Methods
	Overview
	Supported DS2 Data Types
	Unsupported DS2 Data Types

	Best Practices for DS2 Programming
	Overview
	Global Packages Versus Local Packages
	Overview
	Fast
	Slow

	Replacing SCAN (and TRANWRD) with DS2 Code
	Hash Package
	Character-to-Numeric Conversions
	Passing Character Values to Methods
	Performing the Computation Once
	Moving Invariant Computations Out of Loops

	Java Interface Reference
	Overview
	Topology
	Start-Up
	Shutdown
	User Context Methods
	Module Context Methods
	Revision Methods
	Overview
	Parameter Descriptions
	Method Descriptions

	Execution Methods
	Overview
	Java Data Types
	Method Arguments
	Argument Setter Methods
	Argument Getter Methods

	Execute Method
	Revision Monitoring Methods
	Complete Java Example

	SAS Micro Analytic Service REST API
	Overview
	Terminology
	Micro Analytic Service
	Micro Analytic Module
	Micro Analytic Step
	Package
	Method
	Signature
	Input Signature
	Output Signature
	Module
	Module ID
	Module Name
	Step
	Step ID
	Source Code

	Client Application Features
	Post Load or Create Modules
	Get Input or Output Step Signatures
	Post Validate Input Variables
	Post Execute Modules
	Put Update Modules
	Delete Modules

	Security and Authentication
	Life Cycle
	Media Types
	Externally Defined Media Types

	SAS Micro Analytic Service Media Types
	application/vnd.sas.microanalytic.module
	application/vnd.sas.microanalytic.module.definition
	application/vnd.sas.microanalytic.module.source
	application/vnd.sas.microanalytic.module.step
	application/vnd.sas.microanalytic.module.step.input
	application/vnd.sas.microanalytic.module.step.input.validity
	application/vnd.sas.microanalytic.module.step.output

	Resources and Collections
	resource /
	Collection /modules
	resource /modules/{moduleId}
	Resource /modules/{moduleId}/source
	Collection /modules/{moduleId}/steps
	Resource /modules/{moduleId}/steps/{stepId}

	Administration
	SAS Micro Analytic Service Logging
	Secure DS2 HTTP Package Usage
	Monitoring
	Monitoring SAS Micro Analytic Service
	Monitoring SAS Micro Analytic Service Using SAS Environment
Manager

	Deployment and Tuning
	Deploying SAS Micro Analytic Service
	Cluster Deployment for SAS Micro Analytic Service
	Tuning SAS Micro Analytic Service
	Adjust Thread Pool Size
	Adjust Serial or Parallel Content Creation
	Adjust DS2 Module Compilation Mode
	Increase Module ExecutionThroughput of the REST Interface
	Prevent HTTP Error Messages

	SAS Micro Analytic Service Return Codes
	REST Server Error Messages and Resolutions
	Recommended Reading
	Index

