
SAS® Micro Analytic Service
1.3
Programming and Administration
Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® Micro Analytic Service 1.3: Programming and
Administration Guide. Cary, NC: SAS Institute Inc.

SAS® Micro Analytic Service 1.3: Programming and Administration Guide

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19
(DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to
the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

March 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

About This Book . v
Accessibility . vii

Chapter 1 • Introduction to SAS Micro Analytic Service . 1
What Is SAS Micro Analytic Service? . 1

Chapter 2 • Concepts . 3
Overview . 3
User or Business Context . 3
Module Context . 4
Revision . 4
Interfaces . 5
Example: JAVA Interface . 6

Chapter 3 • DS2 Programming for SAS Micro Analytic Service . 11
Overview . 11
Publishing DS2 Source Code to SAS Micro Analytic Service . 11
SAS Micro Analytic Service and SAS Foundation . 12
I/O . 12
Programming Blocks . 13
Public and Private Methods and Packages . 14
Argument Types Supported in Public Methods . 17
DS2 Interface to Python . 18

Chapter 4 • Best Practices for DS2 Programming . 23
Overview . 23
Global Packages Versus Local Packages . 23
Replacing SCAN (and TRANWRD) with DS2 Code . 24
Hash Package . 27
Character-to-Numeric Conversions . 27
Passing Character Values to Methods . 27
Performing the Computation Once . 28
Moving Invariant Computations Out of Loops . 28

Chapter 5 • Python Support in SAS Micro Analytic Service . 29
Implementing Python Support . 29
Configuring Python . 30

Chapter 6 • Java Interface Reference . 33
Overview . 33
Topology . 34
Start-Up . 34
Shutdown . 35
User Context Methods . 35
Module Context Methods . 37
Revision Methods . 40
Execution Methods . 45
Execute Method . 50
Revision Monitoring Methods . 51

Complete Java Example . 51

Chapter 7 • SAS Micro Analytic Service REST API . 57
Overview . 58
Terminology . 59
Client Application Features . 60
Security and Authentication . 61
Life Cycle . 62
Media Types . 62
SAS Micro Analytic Service Media Types . 64
Resources and Collections . 79

Chapter 8 • Administration . 123
SAS Micro Analytic Service Logging . 123
Secure DS2 HTTP Package Usage . 124
Monitoring . 124

Chapter 9 • Deployment and Tuning . 129
Pre-Installation Steps . 129
Deployment . 130
Post-Installation Steps . 131
Cluster Deployment for SAS Micro Analytic Service . 132
Tuning SAS Micro Analytic Service . 133

Chapter 10 • Migration . 137
Overview . 137
Limitations . 137
Back Up Disk Stores . 138
Restore Script . 138
Additional Migration Considerations . 139

Appendix 1 • SAS Micro Analytic Service Return Codes . 143

Appendix 2 • REST Server Error Messages and Resolutions . 153

Appendix 3 • Table Service Driver Reference . 157
DB2 Driver Reference . 158
FedSQL Driver Reference . 163
Greenplum Driver Reference . 166
Netezza Driver Reference . 170
ODBC Driver Reference . 175
Oracle Reference . 182
PostgreSQL Driver Reference . 187
SAS Data Set Reference . 192
Teradata Reference . 196

Recommended Reading . 201
Index . 203

iv Contents

About This Book

Audience

This guide is intended for developers and information technology administrators.
Developers can use the information to author SAS DS2, C, or Python code that extends
or customizes the functionality of SAS Enterprise Decision Manager to meet their
business needs. Developers can find information about the SAS Micro Analytic Service
runtime environment, as well as tips, best practices, and restrictions on programming
DS2 or Python to run in SAS Micro Analytic Service. Information technology
administrators can find information about SAS Micro Analytic Service deployment,
operation, and tuning.

v

vi About This Book

Accessibility

For information about the accessibility of any of the products mentioned in this
document, see the usage documentation for that product.

vii

viii About This Book

Chapter 1

Introduction to SAS Micro Analytic
Service

What Is SAS Micro Analytic Service? . 1

What Is SAS Micro Analytic Service?
SAS Micro Analytic Service 1.3 is a memory-resident, high-performance program
execution service. As a SAS platform service, it is not available for individual license,
but is included in selected SAS solutions. SAS Micro Analytic Service 1.3 provides
hosting for DS2, Python, and C programs and supports a “compile-once, execute-many-
times” usage pattern. SAS Micro Analytic Service is multi-threaded and can be clustered
for high availability. It can host multiple programs simultaneously, as well as multiple
user or business contexts that are isolated from one another.

SAS Micro Analytic Service has a layered architecture that is suitable for a variety of
deployment topologies. The core engine is written in C for high performance. Java
clients can integrate with its Java Plain Old Java Object (POJO) interface. The SAS
Micro Analytic Service POJO interface communicates with the C engine in-process
through an optimized JNI layer. A web application with a REST interface is provided for
integration with SAS solutions and other client applications, and adds persistence and
clustering for scalability and high availability.

For example, SAS Enterprise Decision Manager generates DS2 programs that implement
user-created rule sets and rule flows. It can combine SAS analytics, such as score code
generated by SAS Enterprise Miner, with business rules in order to form decision logic.
SAS Micro Analytic Service is used to compile and execute the generated code.

In addition to providing generated code, SAS Micro Analytic Service enables users of
solutions such as SAS Enterprise Decision Manager to author DS2, Python, or C code
that is customized to their specific needs. SAS Micro Analytic Service supports a subset
of the DS2 programming language, which includes language features that are suitable for
the high-performance execution of transactions. Specific rules and restrictions are
detailed in Chapter 3, “DS2 Programming for SAS Micro Analytic Service,” on page
11.

1

2 Chapter 1 • Introduction to SAS Micro Analytic Service

Chapter 2

Concepts

Overview . 3

User or Business Context . 3

Module Context . 4

Revision . 4

Interfaces . 5

Example: JAVA Interface . 6
Instantiate SAS Micro Analytic Service . 6
Create a User Context . 7
Create Modules . 7
Basic Steps for Using SAS Micro Analytic Service . 8

Overview

SAS Micro Analytic Service has several component types, which are arranged in a three-
level hierarchy.

Note: If you are writing DS2 code to deploy to SAS Micro Analytic Service, follow the
programming guidelines described in Chapter 3, “DS2 Programming for SAS Micro
Analytic Service,” on page 11.

1. User or business context

2. Module context

3. Revision

User or Business Context
A context is a container for the programs that SAS Micro Analytic Service executes. It is
also an isolated execution environment. That is, programs executing in one context are
not visible to any other context. Therefore, contexts can be used to provide a separate
environment for each user or different business unit, or for any other usage requiring

3

isolation. The programs hosted by SAS Micro Analytic Service are known as modules. A
context is a container of modules.

Because business context and user context are interchangeable terms that describe the
two common uses of this single component, this document uses the term user context for
simplicity.

Module Context
A module represents program code. In the case of DS2, each module represents exactly
one DS2 package, and the name of each module is the same as the name of the DS2
package that it represents. If you are unfamiliar with DS2 packages, see “Understanding
DS2 Methods and Packages” in SAS 9.4 DS2 Language Reference. Every module is
owned by exactly one user context.

SAS Micro Analytic Service supports module revisions, and is capable of hosting and
executing multiple revisions of a module concurrently. When SAS Micro Analytic
Service compiles a DS2 package, it creates a revision of that module. Therefore, a
module is a container of revisions. It also houses any compiler warning or error
messages generated from the latest revision compilation or compilation attempt.

Note: The Micro Analytic Service 1.3 REST interface supports running the latest
revision only. The Java and C interfaces support multiple revisions.

Revision
A revision is a version of a module. It is at the leaf level of the object hierarchy. Each
revision contains source code, an executable code stream (optimized binary executable),
and metadata. The metadata describes the methods, method signatures, and entry points
in the code.

Revisions provide several advantages, including the ability to roll back to a previous
version of a module. Further, when the Java or C interfaces are used, revisions allow two
or more versions of a module to execute concurrently, which might be useful in
champion and challenger testing of predictive models.

SAS Micro Analytic Service assigns a revision number to each revision, which is a
monotonically increasing integer value beginning with 1. A revision is uniquely
identified by module ID and revision number. When you reference a revision, specifying
revision number zero selects the latest revision.

Note: A lookup is incurred when revision zero is specified. Therefore, for maximum
performance, a nonzero revision number should be used when possible.

4 Chapter 2 • Concepts

Figure 2.1 Component Hierarchy

User
context

Revision 2

Module
DS2

packages

User
context

User
context

Module
C

functions
ModuleModule Module

Revision 3

Revision 1

Revision 1 Revision 1

Revision 7

Revision 8

Revision 1

Revision 2

Revision 1

Interfaces
SAS Micro Analytic Service has a layered set of interfaces:

C
The SAS Micro Analytic Service core engine is written in C for high performance.

Note: The C interface is not accessible. However, it is important to be aware of it
because it does have an impact on threading, tuning, logging configuration, and
options for monitoring.

Java
a thin Java layer that communicates with the C interface through the Java Native
Interface (JNI). The Java interface supports the same functionality as the C interface.

REST/JSON
adds functionality such as persistence and clustering support and communicates with
the SAS Micro Analytic Service core engine through the Java interface.

All three interfaces are functionally similar. However, the REST interface handles
certain functionality automatically, such as initialization and user context management.
By contrast, the Java and C interfaces provide methods to control these elements
directly.

The following example illustrates SAS Micro Analytic Service interfaces enabling you
to publish code and execute it many times. Although you might be using SAS Micro
Analytic Service 1.3 through the REST interface, this example uses the Java interface in
order to show all of the steps, including those that the REST interface handles
automatically.

Interfaces 5

Figure 2.2 Interfaces Example

S A S Mic ro A na lytic S ervice

S
A

S
 M

ic
ro

 A
na

ly
tic

 S
er

vi
ce

 c
or

e

S
A

S
 T

K
 li

br
ar

ie
s

Ja
va

 P
O

JO
 in

te
rfa

ce

C
 A

P
I

C function calls

Ja
va

-J
N

I
C

-J
N

I

Java method calls

R
E

S
T

A
P

I

SAS Decision
Manager and

customer client
applications

HTTP

Java
client

C client

Example: JAVA Interface

Instantiate SAS Micro Analytic Service
When using the Java interface, instantiating the tksfjni Java class starts SAS Micro
Analytic Service.

Note: When using the REST interface, the service is started automatically when the web
application is started.

int threads = 4;
TkLight tk = new tksfjni(threads, null);

The threads argument creates a threaded kernel thread pool of size 4. The SAS threaded
kernel architecture is the internal architecture that enables SAS analytics. SAS Micro
Analytic Service uses the worker threads in the threaded kernel thread pool to dispatch
code compilation and execution tasks. For most applications, the best performance is
achieved by setting the thread pool size to be approximately equivalent to the number of
cores in the server where SAS Micro Analytic Service is running. Passing zero as the
threads argument causes SAS Micro Analytic Service to set the thread pool size equal to
the total number of logical processors that are present on the hosting server. For
example, Intel hyper-threaded processors have two logical processors per core.
Therefore, if threads is specified as zero on a system that has one Intel quad-core hyper-
threaded processor, the thread pool size is 8. Changing the thread pool size requires
restarting SAS Micro Analytic Service.

The second argument, which is null in the example above, can be used to specify the
location of a logging configuration file that controls SAS Micro Analytic Service
logging. SAS Micro Analytic Service uses the SAS 9.4 Logging Facility. For more
information, see SAS 9.4 Logging: Configuration and Programming Reference.

6 Chapter 2 • Concepts

Create a User Context
All modules are owned by a user context, so you must create a context to contain the
module that is published below.

// Create a user context
long userCtx = tk.newUserContext("My user context");
if (userCtx == -1) {
 System.out.println(" User context creation failed.");
 tk.term();
 return;
}

Note: When you use the REST interface, the creation of a context is done automatically.

The steps that follow illustrate how to publish code to SAS Micro Analytic Service,
where it is compiled and prepared for high-performance execution.

Create Modules
Create a module to hold the revisions of the code by calling the newModuleContext()
method, with the user context ID. Doing this causes the new module to be owned by the
user context you just created.

long moduleCtx = tk.newModuleContext(userCtx, Language.DS2,
 "myPgk", 0);
if (moduleCtx == -1) {
 System.out.println(" Module context creation failed.");
 tk.term();
 return;
}

The second argument, Language.DS2, specifies that you are using this module to publish
a DS2 package. The third argument is the package name, which should match the
package name in the source code. If it does not, SAS Micro Analytic Service corrects the
name upon successfully creating the revision.

Now you need source code to publish. See Chapter 3, “DS2 Programming for SAS
Micro Analytic Service,” for information about writing code for SAS Micro Analytic
Service. This example uses the following simple program:

String myCode = "ds2_options sas;\n" +
 "package myPkg;\n" +
 "method myMth(int i, in_out int j);\n" +
 " j = i + 5;\n" +
 "end;\n" +
 "endpackage;\n";

The source code is passed to SAS Micro Analytic Service as a string argument to the
newRevision() method. Notice the escaped newline characters at the end of each line. If
you read in the source code from a file, the newline characters are included. However, if
you use a literal string as above, the best practice is to include newline characters so that
any compiler messages can be easily traced to the given line number.

To publish your code to SAS Micro Analytic Service, call the newRevision() method,
passing in the module ID, source code string, and a description. The last two parameters
are for options that are not used with DS2.

int rev = tk.newRevision(moduleCtx, myCode,

Example: JAVA Interface 7

 "my DS2 package", null, 0);
if (rev > 0) {
 System.out.println(" Revision " + rev + " created.");
}
else {
 System.out.println(" Revision not created.");
}

If the revision number that is returned is greater than zero, the code compiled correctly
and is now ready to be executed. Otherwise, call the following function in order to check
the compiler messages for errors:

String[] msgs = tk.getCompilationMessages(moduleCtx);

The example package contains one method, called “myMth,” which has one input and
one output argument. Before executing the method, you must create the method
arguments. The Java interface uses a tksfValues object to pass arguments to and from the
method to execute.

tksfValues args = new tksfValues(2, 1);

The first parameter to the tksfValues constructor is the total number of method
arguments, including both inputs and outputs. The second parameter specifies the
number of output arguments from the method. Because DS2 output arguments are
passed by reference, both inputs and outputs must be populated in the tksfValues object.
For more information, see Chapter 3, “DS2 Programming for SAS Micro Analytic
Service,” on page 11.

args.setInt(3);
args.setOutInt();

Note: The REST API does not support method overloading.

Continue to change the value in the argument vector and call the execute() function, as
many times as needed. The execute() function takes the following arguments: user
context ID, module ID, revision number (passing zero selects the latest revision), the
name of the method to execute, and the populated tksfValues object.

rc = tk.execute(userCtx, moduleCtx, rev, "myMth", args);

Successful execution returns zero for the return code, and the results can be retrieved
from the tksfValues object. Arguments are positional and are retrieved by the zero-based
index. In this case, the single integer output value can be retrieved from index position 1
(the second slot in the argument’s object).

if (rc == 0)
int result = args.getInt(1);

Basic Steps for Using SAS Micro Analytic Service
Using SAS Micro Analytic Service involves four steps. When you are using the REST
interface, the first two are handled automatically.

8 Chapter 2 • Concepts

Figure 2.3 Annotated Steps

1. Instantiate SAS Micro Analytic Service.

2. Get a user or business context.

3. Create modules.

4. Execute many times.

A user context is a module container, and
provides an isolated execution environment.

A module context is a revision container, and
represents a DS2 package.

A revision has an executable code stream with an
entry point for each DS2 package method, source
code, and signature metadata.

TkLight tk = new tksfjni(32, myLoggingCfg.xml);

userCtx = tk.newUserContext("A user context");

moduleCtx = tk.newModuleContext(userCtx, Language.DS2, "Network risk score test", 0);
revision = tk.newRevision(moduleCtx, testDS2, "Network risk score code", null, 0);

rc = tk.execute(userCtx, moduleCtx, revisionNumber, methodName, arguments);

TK thread pool size.

Example: JAVA Interface 9

10 Chapter 2 • Concepts

Chapter 3

DS2 Programming for SAS Micro
Analytic Service

Overview . 11

Publishing DS2 Source Code to SAS Micro Analytic Service 11

SAS Micro Analytic Service and SAS Foundation . 12

I/O . 12

Programming Blocks . 13

Public and Private Methods and Packages . 14
Overview . 14
Public Method Rules . 14
Public Method Example . 15
Private Method Example . 16
Method Overloading . 16

Argument Types Supported in Public Methods . 17
Overview . 17
Supported DS2 Data Types . 17
Unsupported DS2 Data Types . 18

DS2 Interface to Python . 18

Overview
SAS Micro Analytic Service 1.3 supports a subset of the DS2 programming language
that is suitable for high-performance transaction processing in real time. This chapter
covers only that subset. Note that DS2 batch processing is not supported.

For more information about the DS2 programming language, see SAS 9.4 DS2
Programming Reference.

Publishing DS2 Source Code to SAS Micro
Analytic Service

The DS2 source code submitted to SAS Micro Analytic Service should begin with

"ds2_options sas"

11

It should end with

"endpackage"

The code cannot contain DATA statements, PROC statements, or THREAD statements.
The source code should contain one and only one DS2 package, and this package can
contain as many methods as desired.

It is a best practice to include a line feed character at the end of each source code line.
This line feed character makes it easier to use compiler warning and error messages that
include line numbers.

SAS Micro Analytic Service and SAS Foundation
Although DS2 is supported by both SAS Foundation and SAS Micro Analytic Service,
SAS Micro Analytic Service has a lightweight, high-performance engine, which does not
support either the full SAS language or PROC statements. Therefore, PROC statements
cannot be used. However, here is an effective DS2 authoring and testing mechanism:
develop your DS2 packages in SAS Foundation using PROC DS2, and publish those
packages to SAS Micro Analytic Service after removing the surrounding PROC DS2
syntax.

It is recommended that every DS2 module that you publish to SAS Micro Analytic
Service include the following on the first line of code, just above the PACKAGE
statement:

ds2_options sas;

This option instructs DS2 to use SAS missing value handling, and helps ensure that your
DS2 program behaves the same as if it were run in SAS Foundation.

I/O
SAS Micro Analytic Service supports I/O through the DS2 SQLStmt package.
Supported databases include DB2, Greenplum, Netezza, Oracle, Postgres, SQL Server,
and Teradata.

Connection strings are used to specify database connection information such as URL,
credentials, and options. Only one connection string can be specified per user context.
However, connection strings can be federated, allowing multiple databases to be used
concurrently.

The SQLStmt package supports the FedSQL dialect. Therefore, the connection string
should begin with DRIVER=SQL;CONOPTS=(, where sql specifies the FedSQL
language driver as the managing driver, and one or more target driver connection strings
are specified within the CONOPTS= option. The following example illustrates a
federated connection string that includes Oracle and PostgreSQL data sources:

driver=sql;conopts=((driver=oracle;catalog=acat;uid=scott;
pwd=tiger;path=oraclev11.abc.123.com:1521/ORA11G);
(driver=postgres;catalog=bcat;uid=myid;pwd='mypass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

If you use the SAS Micro Analytic Service REST interface, you can enter your
connection string in the Configuration Manager plug-in in SAS Management Console. If
you use the Java API, you can set your connection string by calling setDS2Connection().

12 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Connection string forms vary from database to database. Most of the data source drivers
require some client configuration, such as modifications to the environment variables
that enable the driver software to be found and used correctly. You must ensure that the
environment has been set up appropriately for the data source drivers that are being used.
For more information, see Appendix 3, “Table Service Driver Reference,” on page 157.

Package SQLStmt enables you to specify a connection string in the DS2 code. However,
this technique is not recommended. If the connection string is set through Configuration
Manager or the Java API, SAS Micro Analytic Service manages the database
connection, detects whether the connection has been lost, and tries to reconnect
periodically. If the connection string is set in the DS2 code, the connection is managed
by the DS2 run time, which will not recover from lost connections. If connection strings
are specified both in the DS2 code and through Configuration Manager or the Java API,
SAS Micro Analytic Service overrides the connection string that was set in DS2.

When you are calling package SQLStmt to perform database I/O from a DS2 method,
certain types of severe errors can cause DS2 to render the SQLStmt instance, and the
DS2 package that called it, unusable. To maximize reliability, SAS Micro Analytic
Service will detect this condition and recompile the offending package. This is useful if
SQLStmt temporarily encounters fatal errors while performing database I/O. If a
recompilation is successful, SAS Micro Analytic Service returns the error code
MASDS2FatalRecompiled to indicate that the method failed but the package was
successfully recompiled. If the recompilation fails, the error code
MASDS2FatalRecompFailed is returned. If a given DS2 package must be recompiled
more than 1000 times, SAS Micro Analytic Service removes the module from the
system, and returns the error code MASDS2RevisionEjected.

Access to SAS data sets is supported. However, since they use file-level locking, they
are not suitable for writing from multiple threads. Set appropriate connection options
carefully before reading SAS data sets from multiple threads. Otherwise, a deadlock will
occur. For these reasons, the use of a third-party database management system is highly
recommended.

Note: If SAS Micro Analytic Service is installed with SAS Decision Manager, SAS
Micro Analytic Service must be installed on servers that have the same operating
system family as the SAS Decision Manager server tier. For more information, see
SAS Decision Manager Administrator’s Guide. This requirement ensures that
appropriate data access components are licensed for use by both SAS Micro Analytic
Service and SAS Decision Manager.

For detailed driver reference information, see Appendix 3, “Table Service Driver
Reference,” on page 157.

SAS Micro Analytic Service enables access to HTTP and HTTPS web services through
the DS2 HTTP package, which can execute HTTP requests to, and receive responses
from, HTTP and HTTPS web services. Direct file I/O is not supported. As a result, DS2
hash packages cannot be populated from the contents of a file.

For more information about DS2 and FedSQL, see SAS 9.4 DS2 Language Reference.
and SAS 9.4 FedSQL Language Reference.

Programming Blocks
Each DS2 module represents exactly one package, so the DS2 PACKAGE statement
plays a major role in SAS Micro Analytic Service. A DS2 package contains one or more
methods, and methods can contain a wide variety of DS2 language constructs. Package
methods work well with rapid transaction processing because they can be called over

Programming Blocks 13

and over again with little overhead, as transactions flow through the system. By contrast,
the DS2 THREAD and TABLE statements are batch-oriented and are not supported.

The following code blocks are supported:

• PACKAGE…ENDPACKAGE

• METHOD…END

• DO…END

The following code blocks are batch-processing oriented and are not supported:

• TABLE…ENDTABLE

• THREAD…ENDTHREAD

Similarly, the following statements are not supported: OUTPUT and SET

• OUTPUT

• SET

Public and Private Methods and Packages

Overview
Private methods and packages are SAS Micro Analytic Service concepts, rather than
DS2 features.

SAS Micro Analytic Service can host public DS2 packages and private DS2 packages.
Private DS2 packages have fewer restrictions on the DS2 features that can be used than
public packages have. Although a private DS2 package cannot be called directly, it can
be called by another DS2 package. Private DS2 packages are useful as utility functions,
as solution-specific built-in functions, or for solution infrastructure. See your SAS
solution documentation for a description of the solution-specific built-in functions that
you can use when authoring custom DS2 modules.

A public DS2 package can contain private methods, as long as it contains at least one
public method. Any method that does not conform to the rules for public methods is
automatically treated as private. Private methods are allowed and do not produce errors
if they contain correct DS2 syntax. Private methods are not callable externally.
Therefore, they do not show up when querying the list of methods within a package.
However, they can be called internally by other DS2 package methods. Here are several
typical uses of private methods:

• Small utility functions that return a single, non-void, result.

• Methods containing DS2 package arguments. These are not callable externally.

Public Method Rules
Public methods must conform to the following rules:

• The return type must be void. Rather than using a single return type, public methods
can return multiple outputs, where each output argument specifies the in_out
keyword in the method declaration. Non-void methods are treated as private.

14 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

• Arguments that are passed by reference (meaning ones that specify in_out) are
treated as output only. True update arguments are not supported by public methods.
This restriction results in more efficient parameter marshaling and supports all
interface layers, including REST.

• Input arguments must precede output arguments in the method declaration. It is
permissible for a method to have only inputs or only outputs. However, if both are
present, all inputs must precede the outputs.

• DS2 packages might not be passed as arguments in public methods. The presence of
a DS2 package argument results in the method becoming private.

• The VARARRAY statement might not be present in the argument list of a public
method. VARARRAY is a DS2 statement, not a data type. The presence of
VARARRAY in a methods argument list causes the method to become private.

• For a full list of data types that can be used as public method arguments, see
“Supported DS2 Data Types” on page 17.

Public Method Example
The example below illustrates a valid public method. It has a void return type (no
RETURNS clause), uses only publicly supported data types, and treats in_out arguments
as output only.

method quickSortStep (int lowerIndex, int higherIndex, in_out double numbers[10]);

 dcl int i;
 dcl int j;
 dcl int pivot;
 dcl double temp;

 i = lowerIndex;
 j = higherIndex;

 /* Calculate the pivot number, taking the pivot as the
 * middle index number. */
 pivot = numbers[ceil(lowerIndex+(higherIndex-lowerIndex)/2)];

 /* Divide into two arrays */
 do while (i <= j);
 /**
 * In each iteration, identify a number from the left side that
 * is greater than the pivot value. Also identify a number
 * from the right side that is less than the pivot value.
 * Once the search is done, then exchange both numbers.
 */
 do while (numbers[i] < pivot);
 i = i+1;
 end;
 do while (numbers[j] > pivot);
 j = j-1;
 end;
 if (i <= j) then do;
 temp = numbers[i];
 numbers[i] = numbers[j];
 numbers[j] = temp;

Public and Private Methods and Packages 15

 /* Move the index to the next position on both sides. */
 i = i+1;
 j = j-1;
 end;
 end;

 /* Call quickSort recursively. */
 if (lowerIndex < j) then do;
 quickSortStep(lowerIndex, j, numbers);
 end;
 if (i < higherIndex) then do;
 quickSortStep(i, higherIndex, numbers);
 end;
 end;

Here is another example of a public method that illustrates the use of the HTTP package
calling out to a web service using a POST request and then getting a response.

 method httppost(nvarchar(8192) url,
 nvarchar(67108864) payload,
 in_out nvarchar respbody,
 in_out int hstat, in_out int rc);
 declare package http h();
 rc = h.createPostMethod(url);
 if rc ne 0 then goto Exit;
 rc = h.setRequestContentType('application/json;charset=utf-8');
 if rc ne 0 then goto Exit;
 rc = h.addRequestHeader('Accept', 'application/json');
 if rc ne 0 then goto Exit;
 rc = h.setRequestBodyAsString(payload);
 if rc ne 0 then goto Exit;
 rc = h.executeMethod();
 if rc ne 0 then goto Exit;
 hstat = h.getStatusCode();
 if hstat lt 400 then h.getResponseBodyAsString(respbody, rc);
 else respbody = '';
 Exit:
 h.delete();
 end;

Private Method Example
The example below generates a private method in SAS Micro Analytic Service. It has a
non-void return type. That is, it has a RETURNS clause in the declaration, which
specifies a single integer return value.

method isNull(double val) returns int;
 return null(val) OR missing(val);
end;

Method Overloading
SAS Micro Analytic Service supports method overloading. In DS2, when two or more
methods in the same package have the same name, those methods are said to be
overloaded. When overloaded methods are used, the method signature (list of input and

16 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

output parameters and their types) is used to select the correct method to execute.
Because a method signature includes both input and output parameters, any output
parameter types must always be set in tksfValues before executing the method.

Note: Each module constitutes a separate namespace and corresponds to one DS2
package. Therefore, two DS2 methods with the same name, in different modules, are
not considered overloaded.

Note: The C language does not support method overloading. Syntax errors occur if two
C functions with the same name exist in the source code of the same C module.
Therefore, only DS2 package methods can be overloaded in SAS Micro Analytic
Service 1.3.

Note: SAS Micro Analytic Service 1.3 supports one Python script per module.
Therefore, method overloading is not applicable to Python.

The following functions enable you to query information about overloaded methods. For
more information about these methods, see Chapter 6, “Java Interface Reference,” on
page 33.

getStepInputs()
The version of getStepInputs() that takes an index parameter retrieves descriptions of
the input parameters of the overloaded method indicated by name and index value.
That is, you can use getStepInputs() to query the input arguments for overloaded
method 1, 2, 3, and so on. To do this, specify 1, 2, 3, and so on, for the index value.

getStepOutputs()
works similarly to getStepInputs(), but retrieves descriptions of the specified
method's output parameters.

getOverloadedStepCount()
returns the number of overloaded methods that exist in the specified module having
the specified name.

isOverloaded()
returns True if the specified method is overloaded and False if not.

Argument Types Supported in Public Methods

Overview
SAS Micro Analytic Service supports a subset of the DS2 data types for use as public
method arguments. Data types in the unsupported list can still be used in the body of a
(public or private) DS2 package method, and as arguments to private methods. The lists
of publicly supported and unsupported data types are given below.

Note: Any additional types added to the DS2 programming language in future releases
should be considered unsupported unless otherwise stated in the SAS Micro Analytic
Service documentation.

Supported DS2 Data Types
• BIGINT

• CHAR(n)

• DOUBLE

Argument Types Supported in Public Methods 17

• INTEGER

• NCHAR(n)

• NVARCHAR(n)

• VARCHAR(n)

Unsupported DS2 Data Types
• BINARY(n)

• DATE

• DECIMAL(p, s)

• NUMERIC(p, s)

• PACKAGE

• TIME(p)

• TIMESTAMP(p)

• TINYINT

• VARBINARY(n)

DS2 Interface to Python
DS2 modules, running in SAS Micro Analytic Service, can publish and execute Python
modules.

Note that Python 2.7 or Python 3.4 must be available for SAS Micro Analytic Service to
load. If both are available, SAS Micro Analytic Service loads Python 3.4. See Chapter 5,
“Python Support in SAS Micro Analytic Service,” on page 29, for information about
installing Python and configuring the environment variables necessary to allow Python
to run embedded in SAS Micro Analytic Service. As is the case when calling any
package from DS2, it is recommended that you always check return codes where
available, and return any error codes using an output argument from your DS2 method.

Each package instance represents exactly one module revision. You can create as many
instances as desired, allowing multiple modules to be used. The module name (or the
Python script name) is given as a package constructor argument. The constructor
automatically sets up user and module contexts to house the instance.

Here are some operations that a DS2 module would typically perform.

Instantiate the following DS2 package:

py = _new_ maspy(“myPythonScript”);

Calling publish() compiles your Python script and creates the revision. The Python code
is passed as a string in the first argument. A list of argument names is required by Python
and is passed as an array of strings in the second argument. As is the case with any
method signature in SAS Micro Analytic Service, all of the input arguments must
precede the output arguments in the list.

rc = py.publish(python_script, arguments, numinputs);

18 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Call setType methods to set input values before executing the script. Because these
setters store arguments by name, they can be called in any order and will insert the
values in the correct positions:

py.setDouble(“airflow”, sensor_maf);

Since the DS2 package instance represents a single revision, the execute() method needs
no arguments.

rc = py.execute();

After execution, call getters to retrieve the results.

score = py.getDouble(“credit_score”);

Scalar argument setters are of the form:

return_code = set<type>(name, value)

Scalar argument getters are of the form:

value = get<type>(name)

Array argument setters are of the form:

rc = set<type>Array(name, array-value)

Array argument getters are of the following form.

Note: DS2 passes arrays and output values by reference.

get<type>Array(name, array-value, rc)

The following setOut methods reserve space in the argument list for output arguments.

rc = setOut<type>(name)
rc = setOut<type>Array(name)

Note: If an array is not originally allocated, or if it is allocated with insufficient size, it
will be allocated or reallocated with sufficient size to accommodate DS2.

The example below assumes that you have declared your package as py:

dcl package pymas py;
dcl int rc;
dcl bigint result;

rc = py.publish(python_script, symbols, number_of_inputs);
py.setString(“inString”, “A string”);
rc = py.setOutLong(“outLong”);

py.execute()

result = py.getLong(“outLong”);

The requestInterrupt(userContext, moduleContext, revision, entryPoint) method can be
used to halt the execution of a runaway module or method, such as a method containing
an infinite loop. It can be used to halt the execution of DS2 modules, Python modules, or
DS2 modules that call Python. When interrupting a Python module, the entryPoint
parameter is ignored, since a Python module represents one entire Python script.

The complete set of DS2 package methods follows, where rc is the integer return code,
and py is the package instance.

Methods for Python module management and execution:

rc = py.publish(python_script, arguments, numinputs);

DS2 Interface to Python 19

rc = py.remove();
rc = py.isLoaded(); // returns true is Python is available and false otherwise
rc = py.getModuleContextID();
rc = py.getRevisionNumber();
rc = py.setTimeZone(time_zone_identifier);
rc = py.execute();

Scalar argument setters:

 rc = py.setString(argument_name, value);
rc = py.setBool(argument_name, value);
rc = py.setLong(argument_name, value);
rc = py.setInt(argument_name, value);
rc = py.setDouble(argument_name, value);
rc = py.setDateTime(argument_name, value);
rc = py.setDate(argument_name, value);
rc = py.setTime(argument_name, value);

Scalar argument getters:

string_value = py.getString(argument_name);
int_value = py.getBool(argument_name);
long_value = py.getLong(argument_name);
int_value = py.getInt(argument_name);
double_value = py.getDouble(argument_name);
date_time_value = py.getDateTime(argument_name);
date_value = py.getDate(argument_name);
time_value = py.getTime(argument_name);

Scalar output argument setters:

rc = py.setOutString(argument_name);
rc = py.setOutBool(argument_name);
rc = py.setOutLong(argument_name);
rc = py.setOutInt(argument_name);
rc = py.setOutDouble(argument_name);
rc = py.setOutDateTime(argument_name);
rc = py.setOutDate(argument_name);
rc = py.setOutTime(argument_name);

Array argument setters:

rc = py.setStringArray(argument_name, string_array);
rc = py.setBoolArray(argument_name, integer_array);
rc = py.setLongArray(argument_name, bigint_array);
rc = py.setIntArray(argument_name, integer_array);
rc = py.setDoubleArray(argument_name, double_array);
rc = py.setDateTimeArray(argument_name, date_time_array);
rc = py.setDateArray(argument_name, date_array);
rc = py.setTimeArray(argument_name, time_array);

Array argument getters:

py.getStringArray(argument_name, string_array, rc);
py.getBoolArray(argument_name, integer_array, rc);
py.getLongArray(argument_name, bigint_array, rc);
py.getIntArray(argument_name, integer_array, rc);
py.getDoubleArray(argument_name, double_array, rc);
py.getDateTimeArray(argument_name, date_time_array, rc);
py.getDateArray(argument_name, date_array, rc);
py.getTimeArray(argument_name, time_array, rc);

20 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Array output argument setters:

rc = py.setOutStringArray(argument_name);
rc = py.setOutBoolArray(argument_name);
rc = py.setOutLongArray(argument_name);
rc = py.setOutIntArray(argument_name);
rc = py.setOutDoubleArray(argument_name);
rc = py.setOutDateTimeArray(argument_name);
rc = py.setOutDateArray(argument_name);
rc = py.setOutTimeArray(argument_name);

Python 2.x uses ASCII as the default encoding. Therefore, you must specify another
encoding at the top of the file to use non-ASCII Unicode characters in literals. As a best
practice, when using Python 2.x, always use the following as the first line of your Python
script:

-*- coding: utf-8 -*-

Also, in Python 2.x, the Unicode literal must be preceded by the letter u. Therefore,
literal strings should be written using the following form:

u”xxxxx”

Note: Python 3.x uses UTF-8 as the default encoding, so these issues affect Python 2.x
only. When using Python 3.x, the default encoding can be used, and literals can
simply be enclosed in quotation marks.

DS2 Interface to Python 21

22 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Chapter 4

Best Practices for DS2
Programming

Overview . 23

Global Packages Versus Local Packages . 23
Overview . 23
Example of Optimized Code . 24
Example of Poorly Optimized Code . 24

Replacing SCAN (and TRANWRD) with DS2 Code . 24

Hash Package . 27

Character-to-Numeric Conversions . 27

Passing Character Values to Methods . 27

Performing the Computation Once . 28

Moving Invariant Computations Out of Loops . 28

Overview
This section describes best practices that are recommended when programming in DS2
for any environment. They are not unique to SAS Micro Analytic Service.

Global Packages Versus Local Packages

Overview
The scope of a package instance makes a difference. Package instances that are created
in the global scope typically are created and deleted (allocated and freed) once and used
over and over again. Package instances that are created in a local scope are created and
deleted each time the scope is entered and exited. For example, a package instance that is
created in a method's scope is created and deleted each time a method is called. The
creation and deletion time can be costly for some packages.

The following examples use the hash package. This technique can be used for all
packages.

23

Example of Optimized Code
This example creates a hash package instance that is global, created and deleted with the
package instance, and reused between calls to load_and_clear.

/** FAST **/
package mypack;
 dcl double k d;
 dcl package hash h([k], [d]);

 method load_and_clear();
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Example of Poorly Optimized Code
This example creates a hash package instance that is local to the method and created and
deleted for each call to load_and_clear.

/** SLOW **/
package mypack;
 dcl double k d;

 method load_and_clear();
 dcl package hash h([k], [d]);
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Replacing SCAN (and TRANWRD) with DS2 Code
Consider the following code:

i = 1;
onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
do while (onerow ~= '');
 j = 1;
 elt = scan(onerow, j, ';');
 do while (elt ~= '');
 * processing of each element in the row;
 j = j+1;
 elt = SCAN(onerow, j, ';');

24 Chapter 4 • Best Practices for DS2 Programming

 end;
 i = i+1;
 onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
end;

You can make the following observations:

• SCAN consumes adjacent delimiters. Therefore, TRANWRD is required to
manipulate each row into a form that can be traversed element by element.

• SCAN starts at the front of the string each time. Therefore, the aggregate cost is
O(N^2).

• SCAN and TRANWRD require NCHAR or NVARCHAR input. If full_table is
declared as a CHAR or VARCHAR input, it must be converted to NVARCHAR,
then processed, and then converted back to VARCHAR in order to be captured into
the onerow value.

Here is code that replaces this type of loop with a native DS2 solution and that thus
avoids these problems by collecting the necessary details into a package:

dcl package STRTOK row_iter();
dcl package STRTOK col_iter();
row_iter.load(full_table, '|');
do while (row_iter.hasmore());
 row_iter.getnext(onerow);
 col_iter.load(onerow, ';');
 do while (col_iter.hasmore());
 col_iter.getnext(elt)
 * processing of each element;
 end;
end;

The supporting package, STRTOK, is shown below. It can be used to replace SCAN and
TRANWRD pairs anywhere in DS2.

/** STRTOK package - extract subsequent tokens from a string.
 * So named because it mirrors (in a safe way) what is done by the original
 * strtok(1) function available in C.
 */
package sasuser.strtok/overwrite=yes;
 dcl varchar(32767) _buffer;
 dcl int strt blen;
 dcl char(1) _delim;

 /* Loads the current object with the supplied buffer and delimiter
 * information. This avoids the cost of constructing and destructing the
 * object, and allows the declaration of a STRTOK outside of the loop in which
 * it is used.
 */
 method load(in_out varchar bufinit, char(1) delim);
 _buffer = bufinit .. delim;
 _delim = delim;
 strt = 1;
 blen = length(_buffer);
 end;

 /* Are there more fields? 1 means there are more fields. 0 means there are
 * no more fields.
 */

Replacing SCAN (and TRANWRD) with DS2 Code 25

 method hasmore() returns integer;
 if (strt >= blen) then return 0;
 return 1;
 end;

 /* The void-returning GETNEXT method places the next token in the supplied
 * variable, tok.
 */
 method getnext(in_out varchar tok);
 dcl char(1) c;
 dcl int e;
 tok = '';
 if (hasmore()) then do;
 e = strt;
 c = substr(_buffer,e,1);
 do while (c ~= _delim);
 tok = tok .. c;
 e = e + 1;
 c = substr(_buffer,e,1);
 end;
 strt = e + 1;
 end;
 end;

 /* The value-returning GETNEXT method returns the next token. This version is
 * more computationally expensive because it requires an extra copy, as opposed to
 * the void-returning version, above.
 */
 method getnext() returns varchar(32767);
 dcl varchar(32767) tok;
 getnext(tok);
 return tok;
 end;

 /* Construct a STRTOK object using the parameters as initial values.
 */
 method strtok(varchar(32766) bufinit, char(1) delim);
 load(bufinit, delim);
 end;

 /* Construct a STRTOK object without an initial buffer to be consumed.
 */
 method strtok();
 strt = 0; blen = 0;
 end;
endpackage; run;

Using STRTOK instead of SCAN and TRANWRD avoids the CHAR to NCHAR
conversions and reduces CPU because of how STRTOK retains the intermediate state
between calls to the getnext() methods. Therefore, it is O(N) instead of O(N^2).

26 Chapter 4 • Best Practices for DS2 Programming

Hash Package
With both the DATA step and DS2, note the size of the key. A recent program carried out
many hash lookups with a 356-byte key. Hashing is an O(1) algorithm; the "1" with the
hash package is the length of the key. The longer the key, the longer the hash function
takes to operate.

dcl char(200) k1 k2;
dcl double d1 d2;

/* If k1 and k2 are always smaller than 200, then */
/* size them smaller to reduce the time spent in */
/* the hash function when adding and finding values */
/* in the hash package. */
dcl package hash([k1 k2], [d1 d2]);

Character-to-Numeric Conversions
When converting a string to a numeric value, note the encoding of the string. When the
string is a single-byte encoding, DS2 translates the value to a TKChar (UCS-2 or
UCS-4) for conversion. The longer the string, the longer the time it takes to do the
conversion.

dcl char(512) s;
dcl nchar(512) ns;
dcl double x;
s = '12.345';
ns = '12.345';

x = s; /* slow */
x = substr(s,1,16); /* faster */
x = substr(ns,1,16); /* even faster, avoids transcoding */

Passing Character Values to Methods
In SAS Micro Analytic Service, DS2 method input parameters are passed by value.
What this means is that a copy of the value is passed to the method. When passing
character parameters, a copy of the parameter is made to ensure that the original value is
not modified. Making sure that character data is sized appropriately ensures that less
copying occurs.

DS2 method output parameters, which are specified by the in_out keyword, are passed
by reference. Therefore, no copy is made.

method copy_made(char(256) x);
 ...
end;

method no_copy(in_out char x);

Passing Character Values to Methods 27

 ...
end;

Performing the Computation Once
If a computation is repeated multiple times to compute the same value, you can perform
the computation once and save the computed value. For example, the following code
block performs the computation, compute(x), four times:

if compute(x) > computed_max then computed_max = compute(x);
if compute(x) < computed_min then computed_min = compute(x);

If compute(x) always computes the same value for a given value of x, then the code
block can be modified to perform the computation once and save the computed value:

computed_x = compute(x);
if computed_x > computed_max then computed_max = computed_x;
if computed_x < computed_min then computed_min = computed_x;

Moving Invariant Computations Out of Loops
If a computation inside a loop computes the same value for each iteration, improve
performance by moving the computation outside the loop. Compute the value once
before the loop begins and use the computed value in the loop. For example, in the
following code block, compute(x) is evaluated during each iteration of the DO loop:

do i = 1 to dim(a);
 if (compute(x) eq a[i]) then ...;
end;

If compute(x) is invariant (meaning that it always computes the same value for each
iteration of the loop), then the code block can be modified to perform the computation
once outside the loop:

computed_x = compute(x);
do i = 1 to dim(a);
 if (computed_x eq a[i]) then ...;
end;

28 Chapter 4 • Best Practices for DS2 Programming

Chapter 5

Python Support in SAS Micro
Analytic Service

Implementing Python Support . 29

Configuring Python . 30
Python 2.7 and 3.4 on 64–Bit Windows . 30
Python 2.7 and 3.4 on 64–Bit Linux . 30
Further Considerations for Configuring Python . 31

Implementing Python Support
SAS Micro Analytic Service 1.3 supports modules that are written in the Python
programming language. A Python module represents a single Python script. Python
modules can be published and called from DS2 (see “DS2 Interface to Python” on page
18). If your SAS solution supports it, Python modules can be published and called
directly through the SAS Micro Analytic Service Java interface. To use Python modules
directly from the Java interface:

1. Use a value of SF_PYTHON_MODULE when calling newModuleContext() to
create a new Module Context.

Sasdsmas mas = new tksfjni(numServerThreads,
 logCfgLocation);;
// Create module context
long moduleCtx = mas.moduleCtx(userCtx, Language.PYTHON,
 "My_Moudle_Name", null);

2. Call sfNewRevision(), and use the Python script code and an array of strings
containing the parameter names.

Note: The order of the parameter names is important. Match the order in which the
parameters were set in the symbol table that is sent to the Execute method. This
matching is needed in order to send parameter values between SAS Micro
Analytic Service and Python.

// Create new Revision
int rev = mas.newRevision(moduleCtx, pythonCode,
 "My_Moudle_Name", paramNames, null);

3. Call execute() to execute the Python script, using the symbol table containing the
input values.

tksfValues symbolTable = new tksfValues(numOfParameters, numInputs);
… (fill in symbol table with both input and output parameters)

29

int rc = mas.execute(userCtx, moduleCtx, 0, null, symbolTable);

Missing input values are translated to NONE in Python. To indicate a missing output
value, set the variables value to NONE within your Python script.

Configuring Python

Python 2.7 and 3.4 on 64–Bit Windows
1. Run Anaconda for Windows, Python 3.5, Windows 64-bit Graphical Installer from

https://www.continuum.io/downloads.

Note: During the installation process, you are prompted for the destination folder.
These instructions assume you installed the folder in C:\Anaconda3.

2. Create a Python environment by entering the following at a Windows command
prompt (note that there are two hyphens before name). Provide the Python version
that you installed. In the following example, Python 3.4 is used.

conda create --name python34 python=3.4

3. Activate the environment (providing the appropriate Python version).

activate python34

4. This step is for Python 3.4 only.

Set environment variable PYTHONHOME, according to the location where Python
is installed. Here is an example:

set PYTHONHOME=C:\anaconda3

Note: When enabling the SAS Web Application Server to use Python, disable the
service and start the SAS Web Application Server in the foreground from a DOS
command shell in which you have activated your Python environment. For example,
once you have activated your Python environment in a DOS command shell as
described in above, change your shell's present working directory to the server's bin
directory and enter tcruntime-ctl run. You can stop the server using Control-C. The
tcruntime-ctl.bat script is located in the SAS-configuration-directory/
LevN/Web/WebAppServer/SASServer13_N/bin directory.

Python 2.7 and 3.4 on 64–Bit Linux
1. Download Anaconda for Linux, PYTHON 3.5, Linux 64-bit installer from https://

www.continuum.io/downloads.

2. After downloading the installer, enter the following in a terminal window. Provide
the Python version that you installed. In the following example, Python 3.5 is used.

bash Anaconda3-2.5.0-Linux-x86_64.sh

Answer yes to Do you wish the installer to prepend the Anaconda3 install
location to PATH in your .bashrc? These instructions assume that you have used
the location /users/myuserid/anaconda3.

3. Create a Python 3.4 environment by entering the following (note that there are two
hyphens before name). Provide the appropriate Python version.

30 Chapter 5 • Python Support in SAS Micro Analytic Service

https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads

bash
conda create --name python34 python=3.4

4. Activate the environment (provide the appropriate Python version).

source activate python34

5. Prepend the Python environment's "lib" directory to the LD_LIBRARY_PATH
environment variable. Provide the Python version that you installed. In the following
example, Python 3.4 is used.

LD_LIBRARY_PATH=/users/myuserid/anaconda3/envs/python34/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}

Note: Regarding 64-bit Linux, the conda create and source activate
commands must be run from a bash or zsh shell.

Further Considerations for Configuring Python
The Anaconda documentation states that Python 3.4 can be run from an Anaconda 2.7
installation by creating and activating a Python 3.4 environment. This does not work
with embedded Python. Therefore, it is recommended that you use the Python 3.5
installer for both Python 2.7 and 3.4.

When starting the SAS Web Application Server, do so from a shell, in which you have
activated Python, thus allowing the server to use Python. For example, when starting the
server using a script such as tcruntime-ctl.sh, do so from the shell in which you activated
Python, as described above.

A rich set of Python packages is available, covering a wide variety of computing needs.
You might want to add some of these packages to your Python environment.

When you add packages to an Anaconda environment, the packages are placed in
<your-environment-path>/lib/python3.4/site-packages. To make the
Python scripts that use these packages work, add their locations to the PYTHONPATH
environment variable.

If your Python script imports your own .py files, you also must add their location to
PYTHONPATH. An example location might be .(dot).

Some packages include a lib directory, which also needs to be added to PYTHONPATH.

Finally, you must add <your-environment-path>/lib/python3.4 to
PYTHONPATH.

Anaconda sets the environment variable CONDA_ENV_PATH when you activate an
environment, and you can use CONDA_ENV_PATH when setting PYTHONPATH.

Here is an example of the locations that you might set for PYTHONPATH, after adding
packages to your Python 3.4 environment for 64-bit Linux:

export SITE_PACKAGES=$CONDA_ENV_PATH/lib/python3.4/site-packages
export PYTHONPATH=.:$CONDA_ENV_PATH/lib/python3.4
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES/numpy
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES/numpy/lib

Configuring Python 31

32 Chapter 5 • Python Support in SAS Micro Analytic Service

Chapter 6

Java Interface Reference

Overview . 33

Topology . 34

Start-Up . 34

Shutdown . 35

User Context Methods . 35

Module Context Methods . 37

Revision Methods . 40
Overview . 40
Parameter Descriptions . 40
Method Descriptions . 41

Execution Methods . 45
Overview . 45
Java Data Types . 45
Method Arguments . 46
Argument Setter Methods . 47
Argument Getter Methods . 49

Execute Method . 50

Revision Monitoring Methods . 51

Complete Java Example . 51

Overview
The Java interface allows tightly coupled Java client applications to drive SAS Micro
Analytic Service directly though Java method calls. This is made possible because the
Java interface provides fine-grained control of SAS Micro Analytic Service, and does
not hide detailed functionality. By contrast, the REST interface, in the interest of
simplicity, handles many interactions automatically.

The Java interface enables client-supplied DS2, Python, and C programs to be published
to SAS Micro Analytic Service, where they are compiled into modules and made
available for repeated execution. The interface also includes methods for querying
information about currently loaded content, such as user contexts, modules, methods,
and step signatures (input and output arguments).

33

Topology
As you can see from the following figure, the Java interface is positioned between the
REST interface and the C interface. Dependencies between the three interface layers are
strictly one way. The C interface does not depend on the REST or Java interfaces. In
fact, C clients can omit the Java layers altogether. The Java interface communicates with
SAS Micro Analytic Service strictly through the C interface and does not depend on the
REST interface. Similarly, the REST interface communicates with SAS Micro Analytic
Service strictly through the Java interface.

Figure 6.1 Java Interface

S A S Mic ro A na lytic S ervice

S
A

S
 M

ic
ro

 A
na

ly
tic

 S
er

vi
ce

 c
or

e

S
A

S
 T

K
 li

br
ar

ie
s

Ja
va

 P
O

JO
 in

te
rfa

ce

C
 A

P
I

C function calls
Ja

va
-J

N
I

C
-J

N
I

Java method calls
R

E
S

T
A

P
I

SAS Decisions
 Manager and

customer client
applications

HTTP

Java
client

C client

Start-Up
The SAS Micro Analytic Service 1.3 Java interface is a public Java interface named
TkLight, obtained by instantiating Java class tksfjni, which implements the interface.

int threads = 4;
String logconfigloc = null;
TkLight tk = new tksfjni(threads, logconfigloc);

CAUTION:
The tksfjni instance must be kept a singleton, as it is not advisable to start two
instances of SAS Micro Analytic Service within the same process space. This
would yield unpredictable results and is not supported.

The first tksfjni constructor argument specifies the size of the threaded kernel thread
pool to be maintained by SAS Micro Analytic Service. For best performance, the size of
the thread pool should be about equal to the number of processor cores in the server
hosting SAS Micro Analytic Service. The exact number of threaded kernel threads to
specify for best performance varies somewhat, depending on the characteristics of the

34 Chapter 6 • Java Interface Reference

code to be published. When the number of threads that is specified exceeds four times
the number of cores of the hosting server, SAS Micro Analytic Service fails to start.

If zero is specified for the number of threads, SAS Micro Analytic Service queries the
operating system for the number of processor cores of the hosting server and uses a
thread pool size equal to the number of cores. If zero is specified for the number of
threads, and the host operating system does not support querying the number of
processors, SAS Micro Analytic Service uses a default thread pool size of 5.

The second tksfjni constructor argument, when non-null, specifies the location of a
logging configuration file, which controls SAS Micro Analytic Service logging. SAS
Micro Analytic Service uses the SAS 9.4 Logging Facility. For more information, see
SAS 9.4 Logging: Configuration and Programming Reference. Your SAS solution might
provide a default logging configuration. For more information, see your solution’s
documentation.

Shutdown
SAS Micro Analytic Service is shut down by calling tk.term();.

Because SAS Micro Analytic Service is an in-memory service, all published artifacts
(user contexts, modules, and revisions) are purged. If SAS Micro Analytic Service is
restarted when using the Java interface, any previously purged artifacts are not restored
and must be re-published if desired. However, the REST interface includes an artifact
persistence feature that restores the state of SAS Micro Analytic Service automatically.
For more information, see Chapter 7, “SAS Micro Analytic Service REST API,” on page
57.

User Context Methods
User (or business) contexts have two primary functions:

• A user context is a container of modules. Every module is parented to one and only
one user context.

• User contexts provide isolated execution environments. The operations of one user
context are not visible to any other user context.

Note: Recall that there is no functional difference between a user context and a business
context. Whether contexts are used to provide each user with their own environment,
or whether they are used to insulate business units from one another, is application-
specific. The set of functionality is the same. SAS Micro Analytic Service uses the
UserContext construct for both business and user contexts.

Here is a list of available methods:

newUserContext
long newUserContext(java.lang.String displayName)

Creates a new user or business context and returns an opaque pointer to it. Modules
are organized by user context. User contexts are isolated from one another.

Parameter
displayName - The name that is used in log messages.

User Context Methods 35

Return
handle - The opaque context identifier (opaque pointer) that is used to pass to
functions that require a user context identifier.

deleteUserContext
void deleteUserContext(long userContext)

Deletes a user context and all modules that are associated with it.

Parameter
userContext - The opaque user context handle of the context to delete.

userContextExists
boolean userContextExists(long userContext)

Queries the existence of a user context.

Parameter
userContext - The opaque user context handle.

Return
Boolean - True if the context exists, False otherwise.

getUserContextDisplayName
java.lang.String getUserContextDisplayName(long userContext)

Retrieves the display name of the given user context.

Parameter
userContext - The opaque user context handle.

getModuleIDs
long[] getModuleIDs(long userContext)

Retrieves the IDs of all modules that are currently loaded in the system.

Return
The long array of the module IDs.

getModuleNames
java.lang.String[] getModuleNames(long userContext)

Retrieves the names of all modules that are currently loaded in the system.

Returns
The string array of the module IDs.

Note: The C modules are named according to the value of the displayName
argument passed to newModuleContext(). DS2 modules are named for the
DS2 package that the module represents (such as the package name given in
the source code).

Note: If the value of the displayName argument to newModuleContext() differs
from the DS2 package name that was given in the source code, the module
name changes when the first revision of the DS2 package is created.

getUserContextCreationDateTime
java.util.Date getUserContextCreationDateTime(long userContext)

Gets the user context creation datetime.

Parameter
userContext - The opaque user context handle.

Return
The creation datetime in SAS form (GMT seconds since 1960).

36 Chapter 6 • Java Interface Reference

getUserContextLastModifiedDateTime
java.util.Date getUserContextLastModifiedDateTime(long userContext)

Gets the user context last modified datetime.

Parameter
userContext - The opaque user context handle.

Return
The datetime of the last modification in SAS form (GMT seconds since 1960).

Here is an example of creating a new user context:

long userCtx = tk.newUserContext("A user context");
if (userCtx <= 0) {
 System.out.println(" User context creation failed.");
 return;
}

The user context handle that is returned from newUserContext() actually represents a C
language pointer that is maintained in the SAS Micro Analytic Service core. The pointer
is opaque to Java and represented as a value of type long. This value can be used to pass
to any method that requires a user context identifier. It should not be modified.

Module Context Methods
The terms module and module context are used interchangeably. In SAS Micro Analytic
Service 1.3, a module context represents any of the following:

named C module
a collection of related C functions.

DS2 package
a collection of related DS2 methods (also referred to in SAS Micro Analytic Service
as a DS2 module).

Python script
a Python script with associated data dictionary.

A module context contains revisions of C, DS2, or Python code. The revisions within a
module context might contain different source code, but all revisions must represent the
same named DS2 package or C module. That is, for DS2 modules the package name that
is given in the source code is not allowed to change from revision to revision. If it does,
an error is returned and the revision is not created.

In addition to zero or more revisions, a module context maintains information such as a
description, highest revision number used, number of revisions present, programming
language (C or DS2, for SAS Micro Analytic Service), messages from the most recent
compilation, creation date and time, and last modified date and time.

Here is a list of available module contexts:

newModuleContext
long newModuleContext(long userContext,
 TkLight.Language language,
 java.lang.String displayName,
 java.util.EnumSet<TkLight.ModuleOptions> options)

Module Context Methods 37

Creates a new module context within the given user context. A module is a collection
of related steps (a DS2 package or collection of C routines). Add code to the module
context by calling newRevision().

Note: For DS2 packages, the module displayName is assigned the DS2 package
name when the first revision is created.

Note: DS2 packages containing non-void methods or methods with DS2 package
arguments are treated as internal and are not returned in queries for the list of
methods. It is permissible to include private methods that do not produce errors,
as long as the code is valid. See “Public and Private Methods and Packages” on
page 14.

Parameters
userContext - The opaque handle returned from newUserContext().

language - Source language (C or DS2).

displayName - For DS2, set it to the DS2 package name. For C, any text
identifier is acceptable.

options - If the EnumSet contains enum INTERNAL, the module context and all
revisions are private.

Return
module context - The module context created (opaque handles), returns zero on
error.

Note: The module context handle that is returned from newModuleContext()
actually represents a C language pointer in SAS Micro Analytic Service core.
This handle is opaque to Java and represented as a value of type long. This
value is used to pass to any method that requires a module context identifier,
and should not be modified.

deleteModuleContext
void deleteModuleContext(long moduleContext)

Deletes the specified module context and its modules and revisions.

Parameter
moduleContext - The opaque module context handle

moduleContextExists
boolean moduleContextExists(long moduleContext)

Queries the existence of a module context.

Parameter
moduleContext - The opaque module context handle

Return
Boolean - True if context exists, False otherwise.

getModuleContextDisplayName
java.lang.String
getModuleContextDisplayName(long moduleContext)

Retrieves the display name of the given module context.

Parameter
moduleContext - The opaque module context handle.

getModuleContextByName
long getModuleContextByName
(long userContext,java.lang.String name)

38 Chapter 6 • Java Interface Reference

Retrieves the module context opaque handle, when given the display name. This
method is provided as a convenience for clients that choose to identify modules by
name. Callers are responsible for guaranteeing name uniqueness.

Parameters
userContext - The opaque handle returned from newUserContext().

name - DS2 package name or C module display name.

Note: For DS2 packages, the module context name is the name of the DS2
package, which is set when the first revision is created. If a module context
must be retrieved by name before the first revision is created, then the
displayName argument to newModuleContext() must be set to the correct
name (the name of the DS2 package to be subsequently published) when the
module context is created.

getModuleContextCreationDateTime
java.util.Date
getModuleContextCreationDateTime(long moduleContext)

Gets the module context creation datetime.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

Returns
Creation datetime in SAS form (GMT seconds since 1960).

getModuleContextLastModifiedDateTime
java.util.Date
getModuleContextLastModifiedDateTime(long moduleContext)

Gets the module context’s last modified datetime.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

Return
The creation datetime in SAS form (GMT seconds since 1960).

registerModuleName
int registerModuleName(long moduleContext,
 java.lang.String name)

Registers a module name so that it can participate in calls across code streams. Call
this function to enable other C modules to call functions on the given module. Calls
across code streams can be made by C modules only.

Note: Although DS2 cannot call across code streams, DS2 package methods can call
methods in other packages. An in-memory DS2 program repository enables DS2
package references to be resolved at compile time, so that a complete set of
referenced packages is compiled into every code stream. Therefore, calls across
code streams are not necessary with DS2 modules. However, C modules require
external modules to be registered, using this method, in order to locate the
external module at run time.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

name - The name to assign the module (must be unique within the user context).

Return
result code - Zero indicates successful registration nonzero indicates registration
failed.

Module Context Methods 39

Revision Methods

Overview
A revision represents the executable code of a module. A module might contain zero or
more revisions. More than one revision of a given module can be executed concurrently
by different callers, or at different times by the same caller. Passing in zero for a revision
number gets the latest revision of the specified module.

For example, caller A might rely on specific behavior in revision 3 of module X. You
might set up caller B to always use the latest version of module X. To execute the
desired code, caller A would specify the ID of module X and revision 3:

revision = 3;
rc = tk.execute(userCtx, moduleX, revision, methodName, args);

Caller B would specify the same module ID and revision zero:

revision = 0;
rc = tk.execute(userCtx, moduleX, revision, methodName, args);

Revision numbers are monotonically increasing values starting at 1. Revisions can be
created and deleted. However, revision numbers are never reused. This behavior
prevents the code of a revision from unexpectedly changing out from under a caller.
Once a revision has been deleted, attempts to execute or query that revision receive a
result code indicating the revision was not found.

Parameter Descriptions
Some of the revision-specific methods, such as getStepInputs() and getStepOutputs(),
return instances of the public class tksfParmdef, which stands for parameter definition.
Each tksfParmdef instance describes one parameter of a C function or DS2 package
method. tksfParmdef contains the following member variables, along with getters and
setters for each:

public int index; // parameter position (zero-based)
 public String name; // parameter name
 public sftype type; // parameter type
 public int dim; // if array, dimension; ignored otherwise
 public int size; // if varchar, max length; ignored otherwise

The parameter type member variable, sftype, is defined as the following enumeration,
which represents the Java data types that are supported by SAS Micro Analytic Service:

// Supported data types
 public enum sftype {
 string_t,
 char_t,
 long_t,
 double_t,
 int_t,
 stringArray_t,
 charArray_t,
 longArray_t,
 doubleArray_t,

40 Chapter 6 • Java Interface Reference

 intArray_t

Method Descriptions
Here are the available revision methods:

newRevision
int newRevision(long moduleContext,
 java.lang.String sourceCode,
 java.lang.String description,
 java.lang.String[] CEntryPoints,
 java.util.EnumSet<TkLight.RevisionOptions> options)

The source code is compiled into executable form and, if it is successful, a revision
number is assigned by SAS Micro Analytic Service. Revisions are uniquely
identified by module context ID and revision number. Once created, a revision can
be executed many times.

If source code compilation fails during newRevision(), the revision is not created,
and any compiler warning or error messages are maintained by the owning module
context until the next time newRevision() is called for the given module context.

Note: For DS2 packages, the parent module context displayName is assigned the
DS2 package name (given in the source code) when the first revision of that
module context is successfully created. After the first revision is created, the
name cannot be changed. Attempts to create a revision of a DS2 module with a
different package name than the original revision result in an error.

Note: DS2 packages containing non-void methods or methods with DS2 package
arguments are treated as private and are not returned in queries for methods. It is
permissible to include private methods, and private methods do not produce
errors as long as the code is valid. For more information, see “Public and Private
Methods and Packages” on page 14.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

sourceCode - The string containing the source code (must match language of
original source code).

description - User-supplied text.

CEntryPoints - If C code, this refers to the names of the entry points (functions)
to make available externally.

Return
revisionNumber - The new revision number.

deleteRevision
void deleteRevision(long moduleContext,
 int revision)

Deletes the module revision that is specified by module context and revision number.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

getCompilationMessages
java.lang.String[]
getCompilationMessages(long moduleContext)

Retrieves any compiler diagnostic messages from the latest compilation
(newRevision call) of the given module context.

Revision Methods 41

Note: Only compilation messages from the most recent compilation, per module
context, are retained.

Parameter
moduleContext - The opaque handle returned from newModuleContext().

Return
An array of strings containing compiler diagnostic messages.

revisionIsValid
boolean revisionIsValid(long moduleContext,
 int revision)

Returns True if the revision is valid, False if otherwise.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
Boolean - True if the revision is valid, and False if otherwise.

getStepIDs
java.lang.String[] getStepIDs
(long moduleContext, int revision)

Retrieves the IDs of steps (DS2 package methods or C functions) contained by the
revision.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The string array containing a list of step IDs (DS2 package method names or C
function names).

getStepDescription
java.lang.String getStepDescription
(long moduleContext, int revision, java.lang.String stepId)

Retrieves the step description.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepId - The name of the DS2 package method or C function.

Return
The description of the step.

getStepInputs
java.util.ArrayList<tksfParmdef> getStepInputs
(long moduleContext, int revision, java.lang.String stepId)

Retrieves the step input arguments.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepId - The name of the DS2 package method or C function.

42 Chapter 6 • Java Interface Reference

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 40.

getStepInputs
java.util.ArrayList<tksfParmdef> getStepInputs
(long moduleContext, int revision, java.lang.String stepId, int index)

Retrieves step input arguments for an overloaded method, at a zero-based index.

Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepId - The name of the DS2 package method or C function.

index - The zero-based index of the overloaded method.

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 40.

getStepOutputs
java.util.ArrayList<tksfParmdef> getStepOutputs
(long moduleContext, int revision, java.lang.String stepId)

Retrieves the step output arguments.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepId - The name of the DS2 package method or C function.

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 40.

getStepOutputs
java.util.ArrayList<tksfParmdef> getStepOutputs
(long moduleContext, int revision, java.lang.String stepId, int index)

Retrieves the step output arguments for an overloaded method, at a zero-based index.

Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepId - The name of the DS2 package method or C function.

index – The zero-based index of the overloaded method.

Return
An ArrayList of parameter definitions. For more information, see “Parameter
Descriptions” on page 40.

Revision Methods 43

getOverloadedStepCount
int getOverloadedStepCount(long moduleContext,
 int revision,
 java.lang.String stepID)

Retrieves the number of overloaded steps matching the given step ID.

Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepId - The name of the DS2 package method or C function.

Return
The number of overloaded steps (DS2 package methods having the same name).

isOverloaded
boolean isOverloaded(long moduleContext,
 int revision,
 java.lang.String stepID)

Retrieves the number of overloaded steps matching the given step ID.

Note: This method is valid only for DS2, which supports method overloading.

Note: Overloaded methods are methods within a DS2 package that have the same
name.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

stepId - The name of the DS2 package method or C function.

Return
True, if the method is overloaded, False otherwise.

getRevisionCreationDateTime
java.util.Date getRevisionCreationDateTime
(long moduleContext, int revision)

Gets the revision creation datetime.

Parameters
moduleContext - The opaque handle returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The creation datetime in SAS form (GMT seconds since 1960).

44 Chapter 6 • Java Interface Reference

Execution Methods

Overview
As previously discussed, code is published to SAS Micro Analytic Service by calling
newRevision(), which returns a revision number greater than zero upon successful
compilation. When a revision number less than or equal to zero is returned, a revision
was not created. In this case, messages output by the compiler during the failed
compilation attempt can be retrieved by calling getCompilerMessages() with the module
context ID.

Note: Compiler messages from the most recent call to newRevision() are maintained by
the module context. Therefore, if newRevision() fails to create a revision, the
compiler message can still be retrieved. Each call to newRevision() overwrites any
previously saved compiler messages.

When a revision has been created, its methods can be executed repeatedly. To execute a
method, call execute(), passing in the module context ID, revision number (or zero for
latest revision), method name, and method arguments.

Note: The method name is also referred to as an entry point.

rc = tk.execute(userCtx, moduleCtx, revisionNumber, "myMethod", args);

Revision numbers are assigned by SAS Micro Analytic Service. The first revision
number is always 1. Subsequent revisions are assigned numbers 2, 3, 4, and so on.
Revision numbers are never reused. Therefore, if four revisions of a module have been
created and revision 3 is deleted, the next revision number assigned is 5 (3 is never
reused). Specifying zero for revision number gets the latest revision.

Note: If you know the number of the revision that you want to execute, always pass that
number to execute() rather than zero. Passing in zero specifies the latest revision, and
causes SAS Micro Analytic Service to look up the latest revision number. This
lookup takes time and can be bypassed altogether by passing in the explicit, nonzero
revision number.

Java Data Types
Here are the Java scalar data types supported by SAS Micro Analytic Service:

• String

• Character

• Long

• Integer

• Double

The following Java array types are supported:

• String[]

• long[]

• int[]

• double[]

Execution Methods 45

Method Arguments
Method arguments, including input and output parameters, are passed to SAS Micro
Analytic Service as a com.sas.mas.tksfValues Java object.

tksfValues p = new tksfValues(numArgsTotal, numInputs);

The first parameter to the tksfValues constructor is the total number of arguments,
including both inputs and outputs. The second parameter specifies the number of input
arguments of the method.

Note: Before calling execute(), all method arguments, including outputs, must be set on
the tksfValues instance. Output arguments are set by calling the setOut<type>
methods of tksfValues.

Output arguments must be set for two reasons:

• DS2 passes output arguments by reference. Therefore, the correct types must be
allocated in order to receive the output values. Because DS2 follows this pass-by-
reference convention, SAS Micro Analytic Service follows the same convention
regardless of the programming language.

• SAS Micro Analytic Service supports method overloading. When overloaded
methods are used, the method signature (list of input and output parameters and their
types) is used to select the correct method to execute. Because a method signature
includes both input and output parameters, the output parameter types must be set in
tksfValues.

In DS2, when two or more methods in the same package have the same name, those
methods are said to be overloaded. Each module constitutes a separate namespace.
Therefore, two DS2 methods that have the same name, but are in different packages, are
not considered overloaded. Similarly, two C functions with the same name, but in
different C modules, will not have a name conflict.

Note: The C language does not support method overloading. Syntax errors occur if two
C functions with the same name exist in the source code of the same C module.

DS2 in_out parameters are treated strictly as output. This convention is necessary to
support the REST interface, which does not support true in/out arguments.

When you are coding in DS2 or C, all input arguments must be positioned before any
output arguments. Failure to do so causes your method to malfunction. SAS Micro
Analytic Service might not detect this error because the DS2 compiler does not carry this
restriction.

Note: Arrays are always passed by reference in DS2, regardless of whether the in_out
keyword is specified. However, SAS Micro Analytic Service treats arrays without
the in_out keyword as input and arrays with the in_out keyword as output, as long as
all inputs precede outputs in the method signature.

Incorrect:

method solve(double tempRate, in_out int finalRate, int custId);

Correct:

method solve(double tempRate, int custId, in_out int finalRate);

tksfValues provides methods for setting and getting arguments, including methods that
enable the use of explicit or implicit argument indices and methods that support missing
values. These methods are described in the sections that follow.

46 Chapter 6 • Java Interface Reference

Argument Setter Methods

Overview
Use the setter methods to prepare input and output arguments before calling execute().
Output variables, of the correct types, must be set before calling execute(). Here are the
reasons:

• Output variables are passed by reference. Therefore, variables must exist to receive
the output values.

• DS2 supports method overloading (two or more methods having the same name but
different signatures). The entire signature must be reflected in the arguments list to
allow selection of the correct same-named method.

• TKG does not supply metadata for C functions. Therefore, the data type must be set
for every argument, including the output arguments.

Setters with an Implicit Index
Use the tksfValues methods below to set the values of input arguments.

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first setter method call uses index 0, the next index 1, and so on.

public void setString(String value);
public void setChar(Character value);
public void setLong(Long value);
public void setInt(Integer value);
public void setDouble(Double value);
public void setStringArray(String[] value);
public void setLongArray(long[] value);
public void setIntArray(int[] value);
public void setDoubleArray(double[] value);

Setters with an Explicit Index
Use the tksfValues methods below to set the values of input arguments.

These methods use explicit indexes and set the value of the input argument at the zero-
based index position that is given.

public void setString(int index, String value);
public void setChar(int index, Character value);
public void setLong(int index, Long value);
public void setInt(int index, Integer value);
public void setDouble(int index, Double value);
public void setStringArray(int index, String[] value);
public void setLongArray(int index, long[] value);
public void setIntArray(int index, int[] value);
public void setDoubleArray(int index, double[] value);

Missing Value Setters with an Implicit Index
Use the tksfValues methods below to set the values of input arguments to missing.

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first setter method call uses index 0, the next index 1, and so on.

Execution Methods 47

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setMissingString();
public void setMissingChar();
public void setMissingLong();
public void setMissingInt();
public void setMissingDouble();
public void setMissingStringArray(int dim);
public void setMissingLongArray(int dim);
public void setMissingIntArray(int dim);
public void setMissingDoubleArray(int dim);

Missing Value Setters with an Explicit Index
Use the tksfValues methods below to set the values of input arguments to missing.

These methods use explicit indexes, and set the value of the input argument at the zero-
based index position given.

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setMissingString(int index);
public void setMissingChar(int index);
public void setMissingLong(int index);
public void setMissingInt(int index);
public void setMissingDouble(int index);
public void setMissingStringArray(int index, int dim);
public void setMissingLongArray(int index, int dim);
public void setMissingIntArray(int index, int dim);
public void setMissingDoubleArray(int index, int dim);

Output Setters with an Implicit Index
Use the tksfValues methods below to set the type of an output argument (and to set its
value to missing) before calling execute().

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first setter method call uses index 0, the next index 1, and so on.

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setOutString();
public void setOutChar();
public void setOutLong();
public void setOutInt();
public void setOutDouble();
public void setOutStringArray(int dim);
public void setOutLongArray(int dim);
public void setOutIntArray(int dim);
public void setOutDoubleArray(int dim);

Output Setters with an Explicit Index
Use the tksfValues methods below to set the type of an output argument, and to set its
value to missing, before calling execute().

These methods use explicit indexes, and set the value of the input argument at the zero-
based index position given.

48 Chapter 6 • Java Interface Reference

The argument to the array setters (dim) specifies the size of the one-dimensional array.
Each element of the array is set to a missing value.

public void setOutString(int index);
public void setOutChar(int index);
public void setOutLong(int index);
public void setOutInt(int index);
public void setOutDouble(int index);
public void setOutStringArray(int index, int dim);
public void setOutLongArray(int index, int dim);
public void setOutIntArray(int index, int dim);
public void setOutDoubleArray(int index, int dim);

Argument Getter Methods

Overview
Use the getter methods to retrieve results after calling execute(). A return code of zero
from execute() indicates successful execution.

tksfValues provides methods for retrieving method output values, and for checking to see
whether an output argument has been set to missing.

Similar to the getter methods, setter methods use either implicit or explicit indices.

Missing Value Check
The following method can be used to see whether a given output argument contains a
missing value. isMissing() checks the argument at the given zero-based position for
missing, regardless of the arguments data type.

public boolean isMissing(int ndx);

Getters with an Implicit Index
Use the tksfValues methods below to get the values of output arguments.

Note: The first output argument often follows one or more input arguments. Therefore,
in order to use implicit indices to retrieve output values, it is often necessary to call
setIndex() before calling the first getter method. setIndex() sets the implicit zero-
based index to the given value, enabling the first getter method (with implicit index)
to retrieve the first output argument.

public void setIndex(int ndx);

Arguments are positional and referenced by a zero-based index. These methods use
implied indexes. The first getter method call uses index 0, the next index 1, and so on.

public String getString();
public Character getChar();
public Long getLong();
public Integer getInt();
public Double getDouble();
public String[] getStringArray();
public long[] getLongArray();
public int[] getIntArray();
public double[] getDoubleArray();

Getters with an Explicit Index
Use the tksfValues methods below to get the values of output arguments.

Execution Methods 49

These methods use explicit indexes and get the value of the output argument at the zero-
based index position given.

public String getString(int pos);
public Character getChar(int pos);
public Long getLong(int pos);
public Integer getInt(int pos);
public Double getDouble(int pos);
public String[] getStringArray(int pos);
public long[] getLongArray(int pos);
public int[] getIntArray(int pos);
public double[] getDoubleArray(int pos);

Miscellaneous tksfValues Methods
Use clear() to reset all argument values in the tksfValues instance and to set the implicit
index to zero.

public void clear();

Use the following methods to retrieve the total number of arguments and the number of
input arguments, respectively, of the tksfValues instance:

public int getSize();
 public int getInputCount();

Execute Method
The following example executes a method (or step). The results are returned in output
arguments. The return code indicates the success or failure of step execution.

int execute(long userContext,
 long moduleContext,
 int revision,
 java.lang.String entryPoint,
 tksfValues arguments)

Here are the parameters:

userContext
The opaque handle returned from newUserContext().

moduleContext
The opaque handle returned from newModuleContext().

revision
The revision number returned from newRevision().

entryPoint
The name of the DS2 package method or C function to execute.

arguments
The tksfValues object containing input arguments and placeholders for output
arguments.

50 Chapter 6 • Java Interface Reference

Revision Monitoring Methods
Here are the revision monitoring methods:

getRevisionHitCount
long getRevisionHitCount(long moduleContext,
 int revision)

Returns the aggregate total number of times any method of the revision has been
called since the revision was created.

Parameters
moduleContext - The opaque pointer returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The number of times the revision methods have been called.

getRevisionAvgLatency
double getRevisionAvgLatency(long moduleContext,
 int revision)

Returns the average execution latency, in seconds, of method calls on the specified
revision.

Parameters
moduleContext - The opaque pointer returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The average length of time, in seconds, spent in method execution. The average
includes all methods of the specified revision.

getTotalRevisionExecutionTimeSeconds
double getTotalRevisionExecutionTimeSeconds(long moduleContext,
 int revision)

Returns the total time, in seconds, spent executing methods of the specified revision.

Parameters
moduleContext - The opaque pointer returned from newModuleContext().

revision - The revision number returned from newRevision().

Return
The total length of time, in seconds, spent in method execution. The total
includes all methods of the specified revision.

Complete Java Example
This section examines a simple but complete Java program that uses SAS Micro
Analytic Service to call a simple DS2 package method. Comments within the body of
the code explain each step.

The example code performs the following sequence of steps:

Complete Java Example 51

1. Starts SAS Micro Analytic Service

2. Creates a user context

3. Creates a module context

4. Creates a new revision (DS2 package is compiled)

5. Checks for compiler messages and prints any that are found to the console

6. Retrieves and prints metadata about the DS2 package

7. Prepares method arguments

8. Calls a method

9. Retrieves and prints results

10. Prepares a different set of argument values

11. Calls a different method of the package

12. Retrieves and prints results of the second call

13. Shuts down SAS Micro Analytic Service

The console output from running the example follows the source code.

package com.sas.mas.test;

import java.util.ArrayList;

import com.sas.mas.TkLight;
import com.sas.mas.tksfParmdef;
import com.sas.mas.tksfValues;
import com.sas.mas.TkLight.Language;
import com.sas.mas.jni.tksfjni;

public class SimpleDS2Example {

 /*
 This is a simple DS2 package with two methods. The code could have
 been read from a file, but is included here for easy reference.

 The source code starts with "ds2_options sas" and ends with
 with "endpackage." This pattern should be used with all DS2 to be
 published to SAS Micro Analytic Service.

 Note: each source code line ends with a line-end character.
 This best practice facilitates use of the line numbers included in
 compiler messages, making it easier to locate syntax errors.
 */
 static String DS2 =
"ds2_options sas; \n" +
"package simple_example /overwrite=yes; \n" +
" \n" +
" method str2double (char(12) numericString, in_out double number); \n" +
" number = put(numericString, 8.0); \n" +
" /* Include an undeclared variable to illustrate a compiler warning */ \n" +
" anotherNumber = number; \n" +
" end; \n" +
" \n" +

52 Chapter 6 • Java Interface Reference

" method flip_string(varchar(32767) in_string, in_out varchar out_string); \n" +
" /* Reverse the input string and set in output string */ \n" +
" out_string=reverse(in_string); \n" +
" end; \n" +
" \n" +
"endpackage; \n";

 /**
 * @param parms
 */
 public static void main(String[] parms) {
 int rc;
 String stringToReverse = new String("This is a test...");
 String stringToConvert = new String("0.9997");
 long userCtx = -1;
 long moduleCtx = -1;

 // Start SAS Micro Analtyic Service with four threads and
 // no logging configuration file location (null second argument)
 int threads = 4;
 TkLight tk = new tksfjni(threads, null);

 System.out.println("*** Simple example of using SAS Micro Analytic Service ***");

 // Create a user context.
 userCtx = tk.newUserContext("A user context");
 if (userCtx <= 0) {
 System.out.println(" User context creation failed.");
 return;
 }
 else {
 System.out.println(" User context created at " +
 tk.getUserContextCreationDateTime(userCtx) + ".");
 }

 /* Create a module context.
 This module context is owned by the user context just created.
 The language is specified as DS2. Therefore, all revisions
 of the module must be DS2.
 The module is named for the DS2 package it represents, or
 "simple_example" in this case.
 Pass null for the last argument, which specifies the default options.
 */
 moduleCtx = tk.newModuleContext(userCtx,
 Language.DS2,
 "simple_example",
 null);
 if (moduleCtx <= 0) {
 System.out.println(" Module context creation failed.");
 tk.term();
 return;
 }
 else {
 System.out.println(" Module context created at " +
 tk.getModuleContextCreationDateTime(moduleCtx) + ".");
 }

Complete Java Example 53

 /* Publish the DS2 to SAS Micro Analytic Service by calling newRevision().
 Pass in the module context ID, the source code String, and an
 optional description.
 Pass null for the fouth argument, a list of entry points, which
 is only used for C modules.
 Pass null for the last argument, which specifies default options.
 */
 int revision = tk.newRevision(moduleCtx, DS2,
 "A simple DS2 example to illustrate SAS Micro Analytic Service usage.",
 null, null);
 if (revision <= 0) {
 System.out.println(" Compilation failed");
 String[] messages = tk.getCompilationMessages(moduleCtx);
 if (messages.length > 0) {
 System.out.println(" Compiler messages:");
 for (String msg : messages) {
 System.out.println(" " + msg);
 }
 }
 System.out.println(" Revision creation failed.");
 tk.term();
 return;
 }
 else {
 System.out.println(" Revision " + revision + " created at " +
 tk.getRevisionCreationDateTime(moduleCtx, revision)
+ ".");
 }

 System.out.println(" DS2 Package: " +
 tk.getModuleContextDisplayName(moduleCtx));

 /* Even successful compilations can produce warning messages from the compiler.
 The undeclared variable included in the source code generates such a
 warning. However, it will not prevent the code from publishing and executing
 properly.
 */
 String[] messages = tk.getCompilationMessages(moduleCtx);
 if (messages.length > 0) {
 System.out.println(" Compiler messages:");
 for (String msg : messages) {
 System.out.println(" " + msg);
 }
 }

 /* Once published, SAS Micro Analtic Service can be queried for information
 about the revision. Here you are asked for the inputs to the str2double
 method. Parameter metadata is represented by class tksfParmdef.
 */
 ArrayList<tksfParmdef> inputs = tk.getStepInputs(moduleCtx,
 revision,
 "str2double");
 System.out.println(" Input arguments to method 'str2double':");
 for (tksfParmdef p : inputs) {
 System.out.println(" Input name: '" + p.name + "' type: " +

54 Chapter 6 • Java Interface Reference

 p.getType());
 }

 /* Setup arguments to call method "str2double", which has one String input and
 one double output.
 Note: Setters are being used with implicit indices.
 */
 int numArgs = 2;
 int numInputs = 1;
 tksfValues args = new tksfValues(numArgs, numInputs); // DS2 method arguments
 args.setString(stringToConvert);
 args.setOutDouble();
 String methodName = "str2double";

 // Execute the DS2 package method "str2double"
 rc = tk.execute(userCtx, moduleCtx, revision, methodName, args);
 if (rc != 0) {
 System.out.println(" Bad return code from execute:" + rc);
 if (rc == 29) {
 System.out.println(" Exception occurred during execution of " +
 methodName + " in the TK environment.");
 }
 tk.term();
 return;
 }
 else {
 // Print results (Getters are being used with explicit indices.)
 System.out.println(" Results of calling str2double:");
 System.out.println(" Input String: " + args.getString(0));
 System.out.println(" Output double (rounded): " + args.getDouble(1));
 }

 // Setup arguments to call the method "flip_string", which has one String input
 // and one double output. Setters are being used with implicit indices.
 numArgs = 2;
 numInputs = 1;
 args = new tksfValues(numArgs, numInputs); // DS2 method arguments
 args.setString(stringToReverse);
 args.setOutString();
 methodName = "flip_string";

 // Execute the DS2 package method "flip_string"
 rc = tk.execute(userCtx, moduleCtx, revision, methodName, args);
 if (rc != 0) {
 System.out.println(" Bad return code from execute:" + rc);
 if (rc == 29) {
 System.out.println(" Exception occurred during execution of " +
 methodName + " in the TK environment.");
 }
 tk.term();
 return;
 }
 else {
 // Print results (Getters are being used with explicit indices.)
 System.out.println(" Results of calling flip_string:");
 System.out.println(" Input String: " + args.getString(0));

Complete Java Example 55

 System.out.println(" Output String: " + args.getString(1));
 }
 System.out.println("*** Simple DS2 example complete ***\n");
 // Shutdown
 tk.term();
 }
}

Here is the console output from running the example code above:

*** Simple example of using SAS Micro Analytic Service ***
 User context created at Tue Apr 07 17:50:28 EDT 2015.
 Module context created at Tue Apr 07 17:50:28 EDT 2015.
 Revision 1 created at Tue Apr 07 17:50:28 EDT 2015.
 DS2 Package: simple_example
 Compiler messages:
 Line 6: No DECLARE for assigned-to variable anothernumber;
 creating it as a global variable of type double.
 Input arguments to method 'str2double':
 Input name: 'numericString' type: string_t
 Results of calling str2double:
 Input String: 0.9997
 Output double (should round to nearest whole number): 1.0
 Results of calling flip_string:
 Input String: This is a test...
 Output String: ...tset a si sihT
*** Simple DS2 example complete ***

56 Chapter 6 • Java Interface Reference

Chapter 7

SAS Micro Analytic Service REST
API

Overview . 58

Terminology . 59
Micro Analytic Service . 59
Micro Analytic Module . 59
Micro Analytic Step . 59
Package . 59
Method . 59
Signature . 59
Input Signature . 59
Output Signature . 59
Module . 59
Module ID . 60
Module Name . 60
Step . 60
Step ID . 60
Source Code . 60

Client Application Features . 60
Post Load or Create Modules . 60
Get Input or Output Step Signatures . 60
Post Validate Input Variables . 61
Post Execute Modules . 61
Put Update Modules . 61
Delete Modules . 61

Security and Authentication . 61

Life Cycle . 62

Media Types . 62
Externally Defined Media Types . 62

SAS Micro Analytic Service Media Types . 64
application/vnd.sas.microanalytic.module . 64
application/vnd.sas.microanalytic.module.definition . 67
application/vnd.sas.microanalytic.module.source . 68
application/vnd.sas.microanalytic.module.step . 70
application/vnd.sas.microanalytic.module.step.input . 75
application/vnd.sas.microanalytic.module.step.input.validity 76
application/vnd.sas.microanalytic.module.step.output . 77

Resources and Collections . 79
Resource / . 79

57

Collection /modules . 80
Resource /modules/{moduleId} . 92
Resource /modules/{moduleId}/source . 100
Collection /modules/{moduleId}/steps . 102
Resource /modules/{moduleId}/steps/{stepId} . 115

Overview
The SAS Micro Analytic Service REST API provides an interface for web client
applications to compile and execute micro analytic modules into steps that provide near
real-time analytic capabilities. The REST API supports the execution of DS2 source and
provides the ability to run SAS Enterprise Miner score code (converted from a SAS
DATA step to DS2) and user-written functions.

The API provides the following POST methods:

Create module
publishes analytic code in memory with a request body containing the DS2 source
code as input.

Validate steps
validates the request body of input values required by the DS2 source code and
returns validation results.

Execute step
validates and executes the micro analytic step with a request body of input values
required by the DS2 source code.

The API provides the following PUT method:

Update module
publishes updated analytic code in memory with a request body containing the DS2
source code as input.

The API provides the following DELETE method:

Delete module
removes analytic code from memory.

The API provides the following GET methods:

Query an individual module
returns detailed information about a module

Query steps by module
returns a list of steps available by module.

Query an individual step by module
returns detailed information about the inputs required by the step and the outputs
produced by the step.

Retrieve module details
returns information such as the module's name, current revision, and a list of
compiled steps.

The implementation supports only JSON resource representations.

Note: The REST API does not support method overloading.

58 Chapter 7 • SAS Micro Analytic Service REST API

Terminology

Micro Analytic Service
A small footprint, near real-time or machine-embedded, analytical service providing the
ability to embed SAS analytics into very small portable systems requiring near real-time
or transactional analytics.

Micro Analytic Module
A collection item that contains multiple steps of analytical logic. The SAS Micro
Analytic Service REST API representation of a collection of units of step code to
execute analytical logic.

Micro Analytic Step
A unit of analytical logic that is executed. It includes input and output values. Here is an
example: the name value pairs that contain the input values required to execute the step
and the output values that are generated as a result of its execution. For DS2 source, a
step is defined as a method. When the step is executed, a specific method in the module
is executed.

Package
An assembly of methods defined by a DS2 source.

Method
A unit of DS2 source that has input and output variables.

Signature
Variables defined as inputs into a method and outputs from the execution of a method.

Input Signature
A description of the input values required to execute the step. The attributes of the input
signature include the input variable, its data type, and the dimensions where applicable.

Output Signature
A description of the output values. Here is an example: the name value pairs that
describe the name of the output variable, its data type, and the dimensions where
applicable.

Module
A container of units of analytical code to be executed. For a DS2 source, it is a package.

Terminology 59

Module ID
A generated unique string that identifies a module in an installation. When the
installation is a cluster, no two modules created on two different cluster nodes have the
same ID.

Module Name
A name associated with a module. For a DS2 source, this corresponds to the package
name. A DS2 package name can be quoted. Because of that, it is not convenient to use it
on the URL to specify the module for an HTTP operation. Even though the module
name is not used to identify a module, each module name has to be unique in an
installation.

Step
A unit of analytical code to be executed. For a DS2 source, it is a method.

Step ID
The name of a step that is included in the micro analytic module. For a DS2 source, this
corresponds to the name of a method. The combination of module ID and step ID is used
to retrieve the individual step.

Source Code
The input analytic source code that is compiled into a micro analytic module containing
one or more steps.

Client Application Features

Post Load or Create Modules
To load or create a micro analytic module, the client application posts a module with a
request body that contains the DS2 source code to the module’s resource collection.

The DS2 source code is represented as a source code representation that compiles into
one DS2 package. The package is represented as a micro analytic module with multiple
methods that are represented as steps in the REST API. Therefore, a module contains
multiple steps. These modules and steps are stored in memory. The response body that is
returned contains a module resource for the module.

Get Input or Output Step Signatures
The client application references a step directly by using an ID of the module generated
by the REST server. This ID is referred to as the module ID, and the name of the step
(compiled DS2 method) is referred to as the step ID.

Before executing the step, the client application performs a GET method on the step to
retrieve these signatures:

60 Chapter 7 • SAS Micro Analytic Service REST API

• The signature describing the input variables or types that must be put in the request
body to execute the step.

• The signature describing the output variables or types that the step returns in its
response body.

Post Validate Input Variables
The client application posts to the step's validations resource, along with a request body
that contains the input values that are required to execute the step (compiled DS2
method).

When the POST is received, the input values are validated against the input signature of
the step. A validation error is reported to the client as a response body that contains the
validation results. This allows the client to validate its input before execution.

Post Execute Modules
The service supports a synchronous way to execute a step (compiled DS2 method). In
this case, the client application posts to the step resource, along with a request body that
contains the input values that are required to execute the step (compiled DS2 method).

Put Update Modules
The client application creates a new revision of a module through its module ID.

Delete Modules
The client application deletes a module through its module ID.

Security and Authentication
To reduce Cross Site Request Forgery (CSRF) attack, a filter is used to check whether
the HTTP referrer header value of an incoming request is registered in the white list that
is set up during product configuration. A referrer identifies the page that caused the
incoming request to be sent. If the referrer header is used but the referring address does
not match any of the patterns allowed in the white list, the request is rejected with an
HTTP 403 error. For more information, see SAS 9.4 Intelligence Platform Middle-Tier
Administration Guide.

Note: If you encounter white list issues, from SAS Management Console navigate to
Application Management ð SAS Application Infrastructure, and then right-click
and select Properties. On the Advanced tab, add trusted hosts to the white list. For
example, the value *.example.com added to the white list allows requests originating
from the example.com domain to get through.

The creation and execution of the analytical logic are tasks controlled through security.
In an enterprise application, the API uses authentication supported by the SAS platform
to create tickets and use them with the API. The API internally processes user roles and
authorization and returns a status of 401 if the operation is not allowed for a particular
user. However, it will not specify implementation or representation.

All modules are discoverable and usable by an authenticated user.

Security and Authentication 61

Life Cycle
A compiled micro analytic module remains compiled during the lifetime of the server
session in which it was compiled, even when dependent modules are updated afterward.

The REST server manages the persistence of the modules by keeping metadata about the
modules. Therefore, when the REST server restarts, there is enough information to re-
create the existing modules. The module IDs remain the same. However, when the
modules are loaded into memory again they can be put in addresses that are different
from the last time. Furthermore, each reload of the modules requires them to be
recompiled.

The compilation of the modules is delayed until necessary (for example, when a module
is to be executed).

Media Types

Externally Defined Media Types

application/vnd.sas.collection
The application/vnd.sas.collection media type represents a collection of resources. The
collection is usually a page of limit items from a larger collection.

Here are the link relations for the application/vnd.sas.collection media type.

Relationship HTTP Method Description

self GET The current page of the (filtered) collection.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

next GET The next page of resources. It should be omitted if the
current view is on the last page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

first GET The first page of resources. It should be omitted if the
current view is on the first page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

62 Chapter 7 • SAS Micro Analytic Service REST API

Relationship HTTP Method Description

last GET The last page of resources. It should be omitted if the
current view is on the last page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex[modifiers]

Media type: application/vnd.sas.collection

up GET The resource that this collection resides in.

URI: {SASApi}/rest/containerUri

Media type: application/vnd.sas.collection

Here is an example of application/vnd.sas.collection+json and application/
vnd.sas.collection+json;version=2:

{
 "version" : 2,
 "accept": "space-separated media type names allowed in this collection",
 "count" : integer,
 "start" : integer,
 "limit" : integer,
 "name" : "items",
 "items": [
 { resource1 fields }, ...,
 { resourceN fields }
],
 "links" : [
 { link representation }, ...
 { link representation },
]
}

Note: The order of the fields can vary.

application/vnd.sas.error
Here are attributes for application/vnd.sas.error:

errorCode
The system error code for reference (64-bit integer). It is often used for correlation
with back-end service error message identifiers.

httpStatusCode
The HTTP status code error number (integer), 1xx, 2xx, 3xx, 4xx, or 5xx values.

message
The back-end system error message string. The message should be localized as per
the Accept-Language of the request.

details
Detailed information specific to this error, in a list of strings. If appropriate, these
strings should be localized as per the Accept-Language of the request.

remediation
Recommended actions to resolve the error, in a list of strings. The remediation string
should be localized as per the Accept-Language of the request.

Media Types 63

version
Version information for this error format (integer, value 1).

links
An array of application/vnd.sas.link objects.

application/vnd.sas.link
application/vnd.sas.link is a media type used to denote a link to a resource.

text/vnd.sas.source.ds2
text/vnd.sas.source.ds2 is a media type used to denote SAS source code consisting of
DS2 code.

SAS Micro Analytic Service Media Types

application/vnd.sas.microanalytic.module
The application/vnd.sas.microanalytic.module media type describes the module that is
returned by the SAS Micro Analytic Service when source code is posted or put to the
module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module media type.

Relationship HTTP Method Description

self GET A link to the individual module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}

Media type: application/vnd.sas.microanalytic.module

steps GET A link to the collection of steps. This is created when a
module is compiled.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps

Media type: application/vnd.sas.collection

source GET A link to the source code that was used to compile a
module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
source

Media type: application/
vnd.sas.microanalytic.module.source

update PUT A link to update a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}

Media type: application/vnd.sas.microanalytic.module

delete DELETE A link to remove a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}

64 Chapter 7 • SAS Micro Analytic Service REST API

The application/vnd.sas.microanalytic.module media type contains the following
members.

Name Type Description

version integer The media type's schema version number. This
representation is version 1.

id string A generated unique string identifying a module in an
installation.

description string Text describing the rules and logic performed by the
module. The description is specified in the POST or PUT
request body and carried over.

name string The name associated with the module.

creationTimeStamp string The formatted time stamp that tells when the module was
initially created.

modifiedTimeStamp string The formatted time stamp that tells when the module was
last revised.

revision integer The revision number of the module. It is a whole number
starting from one and increases by one each time the
module is revised.

scope string (ENUM) The scope restricts how a module can be used. There are
two possible values:

public
The module is available to be called outside another
module.

private
The module can be called only from within another
module.

steps array of string An array of step IDs in the module.

properties array The properties that were specified for the module. Here are
the representation members:

name
string - The name of the property.

value
string - The value of this property.

warnings object Optional object, as described in “application/vnd.sas.error”
on page 63. This is included if the compiling of this
resource produces any warning.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module+json:

SAS Micro Analytic Service Media Types 65

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825/source",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825/steps",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825"
 }
],
 "scope":"public",
 "description":"575",
 "id":"359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "steps":[
 "execute",
 "executeFinalRuleSets",
 "executeFirstDotRuleSets",

66 Chapter 7 • SAS Micro Analytic Service REST API

 "executeInitRuleSets",
 "executeLastDotRuleSets",
 "initRuleFiredRecording",
 "initializeLookupHash",
 "recordRuleFired",
 "resetRuleFiredHash",
 "term"
],
 "properties":[
 {
 "name":"connectionString",
 "value":"DRIVER=base;"
 }
],
 "revision":1,
 "creationTimeStamp":"2015-04-16T16:05:38.000-0400",
 "modifiedTimeStamp":"2015-04-16T16:05:38.000-0400",
 "name":"Rule575",
 "version":1
}

application/vnd.sas.microanalytic.module.definition
The application/vnd.sas.microanalytic.module.definition media type describes the
resource that is used to define a revision of the SAS Micro Analytic Service module in
the module’s collection. It is used in the request body of POST and PUT in the module’s
collection.

The application/vnd.sas.microanalytic.module.definition media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

description string The text describing the logic of the module.

code string The source code. (For example, DS2 source code)

type string The source code type. In this version, the only valid value
is text/vnd.sas.source.ds2.

properties array This can be used to hold additional metadata about the
module. If a property definition is not needed, this can be
omitted or specified as an empty array. Here are the
representation members:

name
string - The name of the property. It cannot contain
spaces and must be unique.

value
string - The value of this property.

SAS Micro Analytic Service Media Types 67

Name Type Description

scope string (ENUM) The scope restricts how a module can be used. There are
two possible values:

public
The module is available to be called outside another
module.

private
The module can be called only from within another
module.

Here is an example of application/vnd.sas.microanalytic.module.definition+json:

{
"version": "1",
"description": "Sample module",
"scope" : "public",
"type" : "text/vnd.sas.source.ds2",
"properties" : [],
"code" : "ds2_options sas;\n package sampleModule / overwrite=yes;
 \n \n method copy_charN_array(char(12) in_array[4], in_out char(12)
 out_array[4]);\n out_array := in_array;\n end;\n \n
 method copy_varchar_array(varchar(512) in_array[3],
 in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
 method copy_int_array(int in_array[5], in_out int out_array[5]);\n
 out_array := in_array;\n end;\n \n method copy_float_array(double in_array[2],
 in_out double out_array[2]);\n out_array := in_array;\n end;\n \n
 method copy_bigint_array(bigint in_array[1], in_out bigint out_array[1]);\n
 out_array := in_array;\n end;\n \n method copy_arrays(char(12)
 in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5],
 \n double in_double_array[2], \n bigint in_bigint_array[1], \n
 in_out char(12) out_charN_array[4],\n in_out varchar(512)
 out_varchar_array[1],\n in_out int out_int_array[5],\n
 in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
 copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array,
 out_int_array);\n copy_float_array(in_double_array, out_double_array);\n
 copy_bigint_array(in_bigint_array, out_bigint_array);\n \n end;\n \n
 endpackage;\n \n \n"
}

Note: There are many \n strings throughout the source code. They help signal line
breaks to the DS2 compiler. Line breaks are useful because, in JSON representation,
the entire source code must be presented as one long string and the \n returns the line
breaks to you. If there are errors, the compiler messages will not all refer to line 1. If
your platform is UNIX or Linux, you can use the sed command to convert \n into a
real line break character. Here is the pattern for the sed command: -e "s#\\n#
\n#g".

application/vnd.sas.microanalytic.module.source
The application/vnd.sas.microanalytic.module.source media type describes the source
code resource that is created by the SAS Micro Analytic Service when a POST or PUT
is performed on the module’s collection.

68 Chapter 7 • SAS Micro Analytic Service REST API

Here are the link relations for the application/vnd.sas.microanalytic.module.source
media type.

Relationship HTTP Method Description

self GET A link to the source code that was used to compile the
module.

URI: SASMicroAnalyticService/rest//modules/
{moduleId}/source

Media type: application/
vnd.sas.microanalytic.module.source

up GET A link back to the module.

URI: SASMicroAnalyticService/rest//modules/
{ModuleID}

Media type: application/vnd.sas.microanalytic.module

The application/vnd.sas.microanalytic.module.source media type contains the following
members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

moduleId string A generated unique string identifying a module in an
installation.

source string The source code used to create the module.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

type string The source code type. The only valid value is text/
vnd.sas.source.ds2.

Here is an example of application/vnd.sas.microanalytic.module.source +json:

{
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "source":"ds2_options sas;\n package sampleModule / overwrite=yes; \n \n
 method copy_charN_array(char(12) in_array[4], in_out char(12) out_array[4]);\n
 out_array := in_array;\n end;\n \n method copy_varchar_array(varchar(512) in_array[3],
 in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
 method copy_int_array(int in_array[5], in_out int out_array[5]);\n out_array := in_array;\n
 end;\n \n method copy_float_array(double in_array[2], in_out double out_array[2]);\n
 out_array := in_array;\n end;\n \n method copy_bigint_array(bigint in_array[1],
 in_out bigint out_array[1]);\n out_array := in_array;\n end;\n \n method copy_arrays(char(12)
 in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5],
 \n double in_double_array[2], \n bigint in_bigint_array[1], \n in_out char(12)
 out_charN_array[4],\n in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[5],\n
 in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
 copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array, out_int_array);\n

SAS Micro Analytic Service Media Types 69

 copy_float_array(in_double_array, out_double_array);\n copy_bigint_array(in_bigint_array,
 out_bigint_array);\n \n end;\n \n endpackage;\n \n \n",
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 }
],
 "version":1
}

application/vnd.sas.microanalytic.module.step
The application/vnd.sas.microanalytic.module.step media type describes the step that is
returned by SAS Micro Analytic Service when a GET is performed on the step’s
collection. Step instances are created by posting a module to the module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module.step media
type.

Relationship HTTP Method Description

self GET A link to the individual step of a specific module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps/{stepId}

Media type: application/vnd.sas.microanalytic.module.step

up GET A link back to the module's collection of steps.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps

Media type: application/vnd.sas.collection

validate POST A link used to validate that the input values are correct for
a specific step of a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps/{stepId}/validations

Media type: application/
vnd.sas.microanalytic.module.step.input.validity

70 Chapter 7 • SAS Micro Analytic Service REST API

Relationship HTTP Method Description

execute POST A link used to execute a specific step of a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps/{stepId}

Media type: application/
vnd.sas.microanalytic.module.step.output

The application/vnd.sas.microanalytic.module.step media type contains the following
members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

id string The name of a step that is included in the compiled
module.

moduleId string A generated unique string identifying a module in an
installation.

description string Text describing the rules and logic performed by the step.

SAS Micro Analytic Service Media Types 71

Name Type Description

inputs array Provides information about the specific input values that
should be specified in the request body when executing a
step. Here are the representation members:

name
string - The name of a variable that is expected to be
passed into the step.

type
string (ENUM) - This is the data type of the variable. If
the variable's type is (array of) integer, long, or decimal,
the value must be a JSON (array of) number. If the
variable's type is (array of) string or char, the value
must be a JSON (array of) string. Only arrays with one
dimension are supported. Null is used to represent
missing values. The following data types are supported:

• decimal - For DS2, this corresponds to the double
data type.

• bigint

• integer

• string

• decimalArray

• bigintArray

• integerArray

• stringArray

size
integer - For a string type, this field indicates the length
of the string, which is at least one. For a non-string
type, this field has the value of zero.

dim
integer - For an array type, this field indicates the length
of the array, which is one or greater. For a non-array
type, this field has a value of zero.

72 Chapter 7 • SAS Micro Analytic Service REST API

Name Type Description

outputs array Provides information about the specific output values that
should be expected in the response body of a step
execution. Here are the representation members:

name
string - The name of a variable that is expected to
receive output from the step.

type
string (ENUM) - This is the data type of the variable. If
the variable's type is (array of) integer, long, or decimal,
the value must be a JSON (array of) number. If the
variable's type is (array of) string or char, the value
must be a JSON (array of) string. Only arrays with one
dimension are supported. The following data types are
supported:

• decimal - For DS2, this corresponds to the double
data type.

• bigint

• integer

• string

• decimalArray

• bigintArray

• integerArray

• stringArray

size
integer - For a string type, this field indicates the length
of the string. For a non-string type, this field has the
value of zero.

For DS2, the variable length is not required since an
output variable is passed by reference. A zero is
reported if a length is not specified. Otherwise, the
length specified is reported.

dim
integer - For an array type, this field indicates the length
of the array, which is one or greater. For a non-array
type, this field has a value of zero.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.step+json:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step"

SAS Micro Analytic Service Media Types 73

 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_arrays",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"in_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"in_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"in_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"in_bigint_array",
 "type":"bigintArray",

74 Chapter 7 • SAS Micro Analytic Service REST API

 "dim":1,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"out_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"out_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"out_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"out_bigint_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
]
}

application/vnd.sas.microanalytic.module.step.input
The application/vnd.sas.microanalytic.module.step.input media type describes the input
values that are required by SAS Micro Analytic Service step when a POST is used to
validate or execute a step.

The application/vnd.sas.microanalytic.module.step.input media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

SAS Micro Analytic Service Media Types 75

Name Type Description

inputs array Holds the values that are to be passed to the step for input
validation or execution. The order of the variables should
match the order presented in the input signature. Here are
the representation members:

name
string - The name of an input variable for the step.

value
varies - This represents the actual value to set on the
variable. If the variable's type is (array of) integer, long,
or decimal, the value must be a JSON (array of)
number. If the variable's type is (array of) string, the
value must be a JSON (array of) string.

Here is an example of application/vnd.sas.microanalytic.module.step.input+json:

{
 "version" : 1,
 "inputs":[
 {
 "name":"supported_browsers",
 "value":[
 "Apple Safari",
 "Google Chrome",
 "Microsoft Internet Explorer",
 "Mozilla Firefox"
]
 },
 {
 "name":"random_integers",
 "value":[
 10,
 15,
 3
]
 },
 {
 "name": "AMBALANCE",
 "value" : 1055.93
 }
]
}

application/vnd.sas.microanalytic.module.step.input.validity
The application/vnd.sas.microanalytic.module.step.input.validity media type describes
the output values that are returned by SAS Micro Analytic Service for a POST to
validate the inputs required to execute a step.

Here is the link relation for the application/vnd.sas.microanalytic.module.step.output
media type.

76 Chapter 7 • SAS Micro Analytic Service REST API

Relationship HTTP Method Description

up GET A link back to the module's
collection of steps.

URI:
SASMicroAnalyticService/
rest/modules/{moduleId}/
steps

Media type: application/
vnd.sas.collection

The application/vnd.sas.microanalytic.module.step.input.validity media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

moduleId string A generated unique string identifying a module in an
installation.

stepId string The name of a step.

valid Boolean The value is true if all the input parameters are valid. If any
parameter is invalid, the value is false.

results objects The object contains a member for each input parameter that
is invalid. The name of the member is that of an input
parameter. The value is the reason why the input is invalid.
The object is empty if there is no invalid input parameter.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.step.input.validity+json:

{
 "version" : 1,
 "moduleId": "83e7d274-fe17-429e-92ca-93ec2153c731",
 "stepId":"predict",
 "valid":false,
 "results":
 {
 "s2": "String value expected but found string array value [String].",
 "s4": "Bigint value expected but found double value 77.0."
 }
}

application/vnd.sas.microanalytic.module.step.output
The application/vnd.sas.microanalytic.module.step.output media type describes the
output values that are returned by SAS Micro Analytic Service when a step is executed.

SAS Micro Analytic Service Media Types 77

Here is the link relation for the application/vnd.sas.microanalytic.module.step.output
media type.

Relationship HTTP Method Description

up GET A link back to the module's
collection of steps.

URI:
SASMicroAnalyticService/
rest/modules/{moduleId}/
steps

Media type: application/
vnd.sas.collection

The application/vnd.sas.microanalytic.module.step.output media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

moduleId string A generated unique string identifying a module in an
installation.

stepId string The name of the step.

outputs array Holds the output values returned from executing a step.
The order of the variables matches the order presented in
the output signature. Here are the representation members:

name
string - The name of the variable that is expected to
receive output from the step.

value
This represents the actual value returned from the step
execution.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.step.output+json:

{
 "moduleId": "70a58acd-5618-4dc3-9d7a-9e675e8e13bb",
 "stepId": "test_all_types",
 "outputs": [
 {
 "name": "out_string",
 "value": "This is a test..."
 },
 {
 "name": "out_bigint",
 "value": 987654321

78 Chapter 7 • SAS Micro Analytic Service REST API

 },
 {
 "name": "out_int",
 "value": 7654321
 },
 {
 "name": "out_double",
 "value": 0.9997
 },
 {
 "name": "string_arr",
 "value": [
 "John Jacob Hale",
 "Male",
 "Master Swimmer"
]
 },
 {
 "name": "bigint_arr",
 "value": [
 1078653221,
 2256390877,
 9719886300
]
 },
 {
 "name": "int_arr",
 "value": [
 77,
 436702,
 67552
]
 },
 {
 "name": "double_arr",
 "value": [
 0.9997,
 1.0,
 0.0023
]
 }
],
 "version": 1
}

Resources and Collections

Resource /
The root / returns links to the top-level resources surfaced through this API. The
module’s collection is the only top-level resource. The GET link is for querying the
module’s collection. The POST link is for creating a module.

Resources and Collections 79

The / resource uses the GET / method, which requires authentication, and has a request
URL of GET http://www.example.com/SASMicroAnalyticService/rest/.

The response to the GET request is a collection of links to the resources. In this version,
the module’s collection is the only top-level resource.

Here is a JSON representation of the top-level resource containing links:

{
 "version":1,
 "links":[
 {
 "method":"GET",
 "rel":"modules",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules"
 },
 {
 "method":"POST",
 "rel":"createModule",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules"
 }
]
}

Here are the HTTP response codes:

200
OK

401
Unauthorized

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

GET / returns the application/json media type representation by setting the Accept:
header of the request.

Collection /modules
The /modules resource collection is a collection of modules that are loaded in memory
by SAS Micro Analytic Service.

The /modules resource allows the GET method, which requires authentication, and has a
request URL of GET http://www.example.com/SASMicroAnalyticService/rest/modules.

Each module object in the collection contains fields and links that enable you to get
detailed information about a specific module.

Here are the HTTP response codes:

200
OK

401
Unauthorized

80 Chapter 7 • SAS Micro Analytic Service REST API

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

Here are the query parameters for /modules:

Name Type Description

?start integer The starting index of the first item in a page. The index is
0-based. The default is 0.

?limit integer The maximum number of modules to return in this page of
results. The actual number of returned modules might be
less, if the collection has been exhausted. The default is 10.

?label string Filter by the name of the modules. Each module is checked
if its name contains the label.

Here is an example of the JSON representation:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"next",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules?start=0&limit=5",
 "uri":"/modules?start=0&limit=5",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"last",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules?start=0&limit=5",
 "uri":"/modules?start=0&limit=5",
 "type":"application/vnd.sas.collection"
 }
],
 "name":"items",
 "accept":"application/vnd.sas.microanalytic.module",
 "start":0,
 "count":5,
 "items":[
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",

Resources and Collections 81

 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da/source",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da/steps",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da"
 }
],
 "description":"Module A",
 "version":1,
 "scope":"public",
 "id":"3eadfae7-583f-44ee-8c37-e201184c94da",
 "steps":[
 "falls_on"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:44.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:44.000-0400",

82 Chapter 7 • SAS Micro Analytic Service REST API

 "name":"pkga"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08/source",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08/steps",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08"
 }
],
 "description":"Module B",
 "version":1,
 "scope":"public",
 "id":"de279ebf-f2a6-42ec-9342-29c363866a08",
 "steps":[

Resources and Collections 83

 "this_year"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:45.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:45.000-0400",
 "name":"pkgb"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/source",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/steps",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016"

84 Chapter 7 • SAS Micro Analytic Service REST API

 }
],
 "description":"Module C",
 "version":1,
 "scope":"public",
 "id":"f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "steps":[
 "get_date"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:46.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:46.000-0400",
 "name":"pkgc"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/
 modules/617aad65-36fa-4079-b1cb-03fe948874d4",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4/source",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4/steps",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4",
 "type":"application/vnd.sas.microanalytic.module"

Resources and Collections 85

 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4"
 }
],
 "description":"Module D",
 "version":1,
 "scope":"public",
 "id":"617aad65-36fa-4079-b1cb-03fe948874d4",
 "steps":[
 "holiday_reminder"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:46.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:46.000-0400",
 "name":"pkgd"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },

86 Chapter 7 • SAS Micro Analytic Service REST API

 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Sample module",
 "version":1,
 "scope":"public",
 "warnings":{
 "errorCode":0,
 "message":"Module compiled with warnings.",
 "details":[
 "In declaration of method copy_arrays: parameter out_charN_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method copy_arrays: parameter out_varchar_array is 'in_out';
 therefore, the type size (512) will be ignored.",
 "In declaration of method copy_charN_array: parameter out_array is 'in_out';
 therefore, the type size (12) will be ignored."
],
 "remediation":"",
 "links":[

],
 "version":1,
 "httpStatusCode":0
 },
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint_array",
 "copy_charN_array",
 "copy_float_array",
 "copy_int_array",
 "copy_varchar_array"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:41:02.000-0400",
 "name":"samplemodule"
 }
],
 "limit":5,
 "version":1

Resources and Collections 87

}

GET returns the following media type representations by setting the Accept: header of
the request:

• application/vnd.sas.collection

• application/json

This operation can return the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

The POST method returns a module resource for the module that is loaded in memory by
SAS Micro Analytic Service. The module resource that is returned contains links to the
compiled and loaded steps.

The POST method requires authentication and has a request URL of POST http://
www.example.com/SASMicroAnalyticService/rest/modules.

Here is an example of the JSON representation:

{
"version": "1",
"description": "Sample module",
"scope" : "public",
"type" : "text/vnd.sas.source.ds2",
"properties" : [],
"code" : "ds2_options sas;\n package sampleModule / overwrite=yes; \n \n
method copy_charN_array(char(12) in_array[4], in_out char(12) out_array[4]);\n
out_array := in_array;\n end;\n \n method copy_varchar_array(varchar(512) in_array[3],
in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
method copy_int_array(int in_array[5], in_out int out_array[5]);\n out_array := in_array;\n
end;\n \n method copy_float_array(double in_array[2], in_out double out_array[2]);\n
out_array := in_array;\n end;\n \n method copy_bigint_array(bigint in_array[1],
in_out bigint out_array[1]);\n out_array := in_array;\n end;\n \n method copy_arrays(char(12)
in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5], \n
double in_double_array[2], \n bigint in_bigint_array[1], \n in_out char(12) out_charN_array[4],\n
in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[5],\n
in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array,
out_int_array);\n copy_float_array(in_double_array, out_double_array);\n
copy_bigint_array(in_bigint_array, out_bigint_array);\n \n end;\n \n endpackage;\n \n \n"
 }

The POST method accepts the following content types, as named by the Content-Type:
header:

• application/json

• application/vnd.sas.microanalytic.module.definition+json

Here are the HTTP response codes:

201
Created

400
Bad Request

401
Unauthorized

88 Chapter 7 • SAS Micro Analytic Service REST API

403
Forbidden

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when there is an error creating the module. An example is when the
source code contains a syntax error. Another example is when the module name is
already taken.

Here is an example of a successfully compiled module with no warnings:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {

Resources and Collections 89

 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Sample module",
 "version":1,
 "scope":"public",
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint_array",
 "copy_charN_array",
 "copy_float_array",
 "copy_int_array",
 "copy_varchar_array"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:14:17.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:14:17.000-0400",
 "name":"samplemodule"
}

Here is an example of a successfully compiled module with warnings:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",

90 Chapter 7 • SAS Micro Analytic Service REST API

 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Sample module",
 "version":1,
 "scope":"public",
 "warnings":{
 "errorCode":0,
 "message":"Module compiled with warnings.",
 "details":[
 "In declaration of method copy_arrays: parameter out_charN_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method copy_arrays: parameter out_varchar_array is 'in_out';
 therefore, the type size (512) will be ignored.",
 "In declaration of method copy_charN_array: parameter out_array is 'in_out';
 therefore, the type size (12) will be ignored."
],
 "remediation":"",
 "links":[
],
 "version":1,
 "httpStatusCode":0
 },
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint_array",
 "copy_charN_array",
 "copy_float_array",
 "copy_int_array",

Resources and Collections 91

 "copy_varchar_array"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:41:02.000-0400",
 "name":"samplemodule"
}

Here is an example of an error response:

{
 "errorCode":-30,
 "message":"Invalid source code. ",
 "details":[
 "Line 1: Parse failed: int out_int); out_int=3; end;
 >>> endpackages <<< ; package ship_backen",
 "Parse encountered identifier when expecting end of input."
],
 "remediation":"",
 "links":[

],
 "version":1,
 "httpStatusCode":400
}

Resource /modules/{moduleId}
The /modules/{moduleId} resource is a single compiled module that is loaded in
memory by SAS Micro Analytic Service.

The /modules/{moduleId} resource has the following methods:

• GET

• PUT

• DELETE

The GET method requires authentication and has a request URL of GET http://
www.example.com/SASMicroAnalyticService/modules/{moduleId}.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

92 Chapter 7 • SAS Micro Analytic Service REST API

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the resource cannot be located either because the module ID is
incorrect or the module has been deleted.

Here is an example of a JSON response:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f/source",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f/steps",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

Resources and Collections 93

 45e7118a-c61b-4e59-b5b1-9a415355551f",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f"
 }
],
 "version":1,
 "description":"Decision Tree Model",
 "scope":"private",
 "id":"45e7118a-c61b-4e59-b5b1-9a415355551f",
 "steps":[
 "score"
],
 "properties":[
],
 "creationTimeStamp":"2015-04-13T01:11:44.000-0400",
 "modifiedTimeStamp":"2015-04-13T01:11:44.000-0400",
 "revision":1,
 "name":"tree"
}

Here is an example of a JSON error response:

{
 "errorCode": 4001,
 "message": "No module with the module id 48B9A582-ADA4-C64D-9759-BBEB8E1DAA8B exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

The PUT method updates a module resource for the module that is loaded in memory by
SAS Micro Analytic Service. It is an error to change the name of the module in a PUT
operation. The module resource that is returned contain links to the compiled and loaded
steps. The latest revision supersedes previous revisions. Previous revisions are not
retrievable.

The PUT method requires authentication and has a request URL of PUT http://
www.example.com/SASMicroAnalyticService/rest/modules/{moduleId}.

The PUT method accepts the following media type representations by setting the
Content-Type: header of the request:

• application/json

• application/vnd.sas.microanalytic.module.definition+json

Here are the HTTP response codes:

200
OK

400
Bad request

401
Unauthorized

403
Forbidden

94 Chapter 7 • SAS Micro Analytic Service REST API

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the PUT is initiated from an
untrusted site.

Here is an example of the JSON representation:

{
"version": "1",
"description": "Expanded sample module",
"scope" : "public",
"type" : "text/vnd.sas.source.ds2",
"properties" : [{"name" : "connectionString", "value" : "DRIVER=base;"}],
"code" : "ds2_options sas;\n package sampleModule / overwrite=yes; \n \n
method produce_warnings(char(12) in_string, in_out char(12) out_string);\n
out_string = in_string;\n end;\n \n method copy_char12(char(12) in_string,
in_out char out_string);\n out_string=in_string;\n end;\n \n
method copy_varchar(varchar(32767) in_string, in_out varchar out_string);\n
out_string=in_string;\n end;\n \n method copy_bigint(bigint in_int,
in_out bigint out_int);\n out_int=in_int;\n end;\n \n method copy_float(double in_float,
in_out double out_float);\n out_float=in_float;\n end;\n \n
method copy_int(int in_int, in_out int out_int);\n out_int=in_int;\n end;\n \n
method copy_scalars(char(12) in_char12, varchar(32767) in_varchar, int in_int,\n
bigint in_bigint, double in_float, \n in_out char out_char, in_out char out_char12,\n
in_out varchar out_varchar, in_out int out_int,\n in_out bigint out_bigint,
in_out double out_float);\n \n copy_char12(in_char12, out_char12);\n
copy_varchar(in_varchar, out_varchar);\n copy_bigint(in_bigint, out_bigint);\n
copy_float(in_float, out_float);\n copy_int(in_int, out_int);\n end;\n \n
method copy_charN_array(char(12) in_array[4], in_out char(12) out_array[4]);\n
out_array := in_array;\n end;\n \n method copy_varchar_array(varchar(512) in_array[3],
in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
method copy_int_array(int in_array[5], in_out int out_array[5]);\n out_array := in_array;\n
end;\n \n method copy_float_array(double in_array[2], in_out double out_array[2]);\n
out_array := in_array;\n end;\n \n method copy_bigint_array(bigint in_array[1],
bigint out_array[1]);\n out_array := in_array;\n end;\n \n method copy_arrays(char(12)
in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5], \n
double in_double_array[2], \n bigint in_bigint_array[1], \n in_out char(12)
out_charN_array[4],\n in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[5],\n
in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array,
out_int_array);\n copy_float_array(in_double_array, out_double_array);\n
copy_bigint_array(in_bigint_array, out_bigint_array);\n \n end;\n \n endpackage;\n \n \n"
 }

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type when there is an error.
For example, this media type is returned when you attempt to change the name of the

Resources and Collections 95

module, or the source code contains a syntax error. Another example is when the server
fails to acquire a resource.

Here is an example of a successfully compiled module response body:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Expanded sample module",
 "version":1,
 "scope":"public",

96 Chapter 7 • SAS Micro Analytic Service REST API

 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint",
 "copy_bigint_array",
 "copy_char12",
 "copy_charN_array",
 "copy_float",
 "copy_float_array",
 "copy_int",
 "copy_int_array",
 "copy_scalars",
 "copy_varchar",
 "copy_varchar_array",
 "produce_warnings"
],
 "properties":[
 {
 "name" : "connectionString",
 "value" : "DRIVER=base;"
 }
],
 "revision":2,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-07T00:15:47.000-0400",
 "name":"samplemodule"
}

Here is an example of a successfully compiled module with a warnings response body:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",

Resources and Collections 97

 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Expanded sample module",
 "version":1,
 "scope":"public",
 "warnings":{
 "errorCode":0,
 "message":"Module compiled with warnings.",
 "details":[
 "In declaration of method copy_arrays: parameter out_charN_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method copy_arrays: parameter out_varchar_array is 'in_out';
 therefore, the type size (512) will be ignored.",
 "In declaration of method copy_charN_array: parameter out_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method produce_warnings: parameter out_string is 'in_out';
 therefore, the type size (12) will be ignored."
],
 "remediation":"",
 "links":[
],
 "version":1,
 "httpStatusCode":0
 },
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint",
 "copy_bigint_array",
 "copy_char12",
 "copy_charN_array",
 "copy_float",
 "copy_float_array",
 "copy_int",
 "copy_int_array",
 "copy_scalars",

98 Chapter 7 • SAS Micro Analytic Service REST API

 "copy_varchar",
 "copy_varchar_array",
 "produce_warnings"
],
 "properties":[
 {
 "name" : "connectionString",
 "value" : "DRIVER=base;"
 }
],
 "revision":3,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-07T00:22:19.000-0400",
 "name":"samplemodule"
}

Here is an example of an error response body:

{
 "errorCode":-33,
 "message":"Module name cannot be changed from a PUT operation.",
 "details":[
],
 "remediation":"",
 "links":[
],
 "version":1,
 "httpStatusCode":400
}

The DELETE method deletes all revisions of a module resource through the module ID.

The DELETE method requires authentication and has a request URL of DELETE http://
www.example.com/SASMicroAnalyticService/modules/{moduleId}.

Here are the HTTP response codes:

204
No content

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the PUT is initiated from an
untrusted site.

Note: A module name is reserved during the four minutes while the REST server is
creating the module. This prevents name collision in a clustered deployment.
Normally, if the module fails to be created, possibly because of incorrect syntax, the

Resources and Collections 99

name reservation is released immediately. If the name reservation is not released
immediately, you must wait for the reservation to expire before using that name.

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server cannot locate the module either because the module ID
is incorrect, the module does not exist anymore, or the module cannot be deleted (for
example, when another operation is taking place on this module).

Resource /modules/{moduleId}/source
The /modules/{moduleId}/source resource is the source code of the module.

The GET method returns the source code of a module. It requires authentication and has
a request URL of GET http://www.example.com/SASMicroAnalyticService/modules/
{moduleId}/source.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.source+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

Here is an example of the JSON response:

{
 "moduleId":"fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64",
 "source":"ds2_options sas;package methods ;\n method echo_char(char in_string,
in_out char out_string);\n out_string=in_string;\n end;\n method echo_char12_implicit(char(12)
in_string, in_out char out_string);\n out_string=in_string;\n end;\n
method echo_char12_explicit(char(12) in_string, in_out char(12) out_string);\n
out_string=in_string;\n end;\n method echo_varchar_implicit(varchar(32767) in_string,
in_out varchar out_string);\n out_string=in_string;\n end;\n
method echo_varchar_explicit(varchar(32767) in_string, in_out varchar(32767) out_string);\n
out_string=in_string;\n end;\n method echo_bigint(bigint in_int, in_out bigint out_int);\n
out_int=in_int;\n end;\n method echo_float(double in_float, in_out double out_float);\n
out_float=in_float;\n end;\n method echo_int(int in_int, in_out int out_int);\n
out_int=in_int;\n end;\n method echo_scalars(char in_char, char(12) in_char12, varchar(32767)
in_varchar, int in_int,\n bigint in_bigint, double in_float, \n in_out char out_char,
in_out char(12) out_char12,\n in_out varchar out_varchar, in_out int out_int,\n
in_out bigint out_bigint, in_out double out_float);\n out_char = in_char;\n

100 Chapter 7 • SAS Micro Analytic Service REST API

out_char12 = in_char12;\n out_string=in_string;\n out_int=in_int;\n out_bigint=in_bigint;\n
out_float=in_float;\n end;\n method echo_char1_array(char in_array[4],
in_out char out_array[4]);\n dcl int count;\n do count = 1 to 4;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_charN_array(char(12)
in_array[4], in_out char(12) out_array[4]);\n dcl int count;\n do count = 1 to 4;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_int_array(int in_array[17],
in_out int out_array[37]);\n dcl int count;\n do count = 1 to 17;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_float_array(double in_array[2048],
in_out double out_array[2048]);\n dcl int count;\n do count = 1 to 2048;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_bigint_array(bigint in_array[1],
bigint out_array[1]);\n dcl int count;\n do count = 1 to 1;\n out_array[count] = in_array[count];\n
end;\n end;\n method echo_arrays(char in_char1_array[4], \n char(12) in_charN_array[4],\n
varchar(512) in_varchar_array[1],\n int in_int_array[17], \n double in_double_array[2048], \n
bigint in_bigint_array[1], \n in_out char out_char1_array[4],\n in_out char(12)
 out_charN_array[4],\n in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[37],\n
in_out double out_double_array[2048],\n bigint out_bigint_array[1]);\n \n dcl int count;\n \n
do count = 1 to 4;\n out_char1_array[count] = in_char1_array[count];\n end;\n \n do count = 1 to 4;\n
out_charN_array[count] = in_charN_array[count];\n end;\n \n do count = 1 to 1;\n
out_varchar_array[count] = in_varchar_array[count];\n end;\n \n do count = 1 to 17;\n
out_int_array[count] = in_int_array[count];\n end;\n \n do count = 1 to 2048;\n
out_double_array[count] = in_double_array[count];\n end;\n \n do count = 1 to 1;\n
out_bigint_array[count] = in_bigint_array[count];\n end;\n \n end;\n \n endpackage;\n \n ",
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64/source",
 "uri":"/modules/fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64",
 "uri":"/modules/fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64",
 "type":"application/vnd.sas.microanalytic.module"
 }
],
 "version":1
}

Here is an example of an error response body:

{
 "errorCode": 4001,
 "message": "No module with the module ID a1511cb8-58b3-475a-a4d6-8a5817d936 exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

Resources and Collections 101

Collection /modules/{moduleId}/steps
The /modules/{moduleId}/steps collection is a collection of steps within a specific
module that is loaded in memory by SAS Micro Analytic Service.

The /modules/{moduleId}/steps collection uses the GET method, which returns a
resource collection of steps corresponding to a specific module. It requires
authentication, and has a request URL of GET http://www.example.com/
SASMicroAnalyticService/modules/{moduleId}/steps.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

Here are the query parameters for /modules/{moduleId}/steps:

Name Type Description

?start integer The starting index of the first item in a page. The index is
0-based. Default is 0.

?limit integer The maximum number of steps to return in this page of
results. The actual number of returned steps might be less
if the collection has been exhausted. The default is 10.

?label string Filter by the name of the steps. Each step is checked if its
name contains the label.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.collection

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

Here is an example of the JSON response:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

102 Chapter 7 • SAS Micro Analytic Service REST API

 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"first",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=0&limit=10",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=0&limit=10",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"next",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=10&limit=10",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=10&limit=10",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"last",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=3&limit=10",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=3&limit=10",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 }
],
 "name":"items",
 "accept":"application/vnd.sas.microanalytic.module.step",
 "start":0,
 "count":13,
 "items":[
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

Resources and Collections 103

 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_arrays",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"in_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"in_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"in_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"in_bigint_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
],
 "outputs":[

104 Chapter 7 • SAS Micro Analytic Service REST API

 {
 "name":"out_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"out_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"out_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"out_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"out_bigint_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
] },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"

Resources and Collections 105

 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_bigint",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_int",
 "type":"bigint",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_int",
 "type":"bigint",
 "dim":0,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {

106 Chapter 7 • SAS Micro Analytic Service REST API

 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_bigint_array",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 },
 {
 "name":"out_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
],
 "outputs":null,
 "version":1
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",

Resources and Collections 107

 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_char12",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_string",
 "type":"string",
 "dim":0,
 "size":12
 }
],
 "outputs":[
 {
 "name":"out_string",
 "type":"string",
 "dim":0,
 "size":0
 }
] },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",

108 Chapter 7 • SAS Micro Analytic Service REST API

 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_charN_array",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 }
],
 "outputs":[
 {
 "name":"out_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }

Resources and Collections 109

],
 "id":"copy_float",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_float_array",

110 Chapter 7 • SAS Micro Analytic Service REST API

 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_int",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[

Resources and Collections 111

 {
 "name":"in_int",
 "type":"integer",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_int",
 "type":"integer",
 "dim":0,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_int_array",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",

112 Chapter 7 • SAS Micro Analytic Service REST API

 "type":"integerArray",
 "dim":5,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_scalars",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_char12",
 "type":"string",
 "dim":0,

Resources and Collections 113

 "size":12
 },
 {
 "name":"in_varchar",
 "type":"string",
 "dim":0,
 "size":32767
 },
 {
 "name":"in_int",
 "type":"integer",
 "dim":0,
 "size":0
 },
 {
 "name":"in_bigint",
 "type":"bigint",
 "dim":0,
 "size":0
 },
 {
 "name":"in_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_char",
 "type":"string",
 "dim":0,
 "size":0
 },
 {
 "name":"out_char12",
 "type":"string",
 "dim":0,
 "size":0
 },
 {
 "name":"out_varchar",
 "type":"string",
 "dim":0,
 "size":0
 },
 {
 "name":"out_int",
 "type":"integer",
 "dim":0,
 "size":0
 },
 {
 "name":"out_bigint",
 "type":"bigint",
 "dim":0,

114 Chapter 7 • SAS Micro Analytic Service REST API

 "size":0
 },
 {
 "name":"out_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
]
 }
],
 "limit":10,
 "version":1
}

Here is an example error response:

{
 "errorCode": 4001,
 "message": "No module with the module ID a1511cb8-58b3-475a-a4d6-8a5817d936 exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

Resource /modules/{moduleId}/steps/{stepId}
The /modules/{moduleId}/steps/{stepId} resource is a single step of a compiled module.

The /modules/{moduleId}/steps/{stepId} collection uses the GET method. It returns
detailed information about input and output signatures used to execute a specific step of
the module. It requires authentication, and has a request URL of GET http://
www.example.com/SASMicroAnalyticService/rest/modules/{moduleId}/steps/{stepId}.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step+json

Resources and Collections 115

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the module cannot be located, either because the module ID is
incorrect or the module does not exist anymore. This media type is also returned when
the module ID corresponds to an existing module. However, the step ID is incorrect.

Here is an example of the JSON response:

{
 "id": "test_all_types",
 "moduleId": "8eee3045-83fa-4725-88ef-471ddb5ac4f9",
 "inputs": [
 {
 "name": "in_string",
 "type": "string",
 "dim": 0,
 "size": 32767
 },
 {
 "name": "in_bigint",
 "type": "bigint",
 "dim": 0,
 "size": 0
 },
 {
 "name": "in_int",
 "type": "integer",
 "dim": 0,
 "size": 0
 },
 {
 "name": "in_double ",
 "type": "decimal",
 "dim": 0,
 "size": 0
 }
],
 "outputs": [
 {
 "name": "out_string",
 "type": "string",
 "dim": 0,
 "size": 8
 },
 {
 "name": "out_bigint",
 "type": "bigint",
 "dim": 0,
 "size": 0
 },
 {
 "name": "out_int",
 "type": "integer",
 "dim": 0,
 "size": 0
 },
 {
 "name": "out_double",

116 Chapter 7 • SAS Micro Analytic Service REST API

 "type": "decimal",
 "dim": 0,
 "size": 0
 },
 {
 "name": "string_arr",
 "type": "stringArray",
 "dim": 3,
 "size": 32767
 },
 {
 "name": "bigint_arr",
 "type": "bigIntArray",
 "dim": 3,
 "size": 0
 },
 {
 "name": "int_arr",
 "type": "intArray",
 "dim": 3,
 "size": 0
 },
 {
 "name": "double_arr",
 "type": "decimalArray",
 "dim": 3,
 "size": 0
 }
],
 "links": [
 {
 "method": "GET",
 "rel": "self",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test_all_types",
 "type": "application/vnd.sas.microanalytic.module.step"
 },
 {
 "method": "GET",
 "rel": "up",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps",
 "type": "application/vnd.sas.collection"
 },
 {
 "method": "POST",
 "rel": "validate",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types/validations",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test_all_types/validations",
 "type": "application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method": "POST",

Resources and Collections 117

 "rel": "execute",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test_all_type",
 "type": "application/vnd.sas.microanalytic.module.step.output"
 }
],
 "version": 1
}

Here is an example of an error response:

{
 "errorCode": 4001,
 "message": "No module with the module ID a1511cb8-58b3-475a-a4d6-8a5817d936 exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

There are two POST methods. The first POST method validates step inputs. The request
body for each POST contains the input values that are used to execute the steps. The
input values are validated against the expected input signature of the step. The POST
method requires authentication, and has a request URL of POST http://
www.example.com/SASMicroAnalyticService/rest/modules/{moduleId}/steps/{stepId}/
validations.

Here are the HTTP response codes:

200
OK

400
Bad Request

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

Here is an example of the JSON request:

{
 "inputs": [
 {
 "name": "in_string",
 "value": "This is a test..."
 },

118 Chapter 7 • SAS Micro Analytic Service REST API

 {
 "name": "in_bigint",
 "value": 987654321
 },
 {
 "name": "in_int",
 "value": 7654321
 },
 {
 "name": "in_double",
 "value": 0.9997
 }
]
}

This operation accepts the following media type representations by setting the Content-
Type: header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.input+json

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.input.validity+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned whenever there is an error in performing the validation, not when the
input parameter is invalid.

Here is an example of the JSON response:

{
 "moduleId": "052209DE-DF4D-6D44-B469-9094AC95F18E",
 "stepId": "test_all_types",
 "version": 1,
 "results": {},
 "valid": true
}

Here is an example response body for an instance when an input value is invalid:

{
 "moduleId": "052209DE-DF4D-6D44-B469-9094AC95F18E",
 "stepId": "test_all_types",
 "version": 1,
 "results": {
 "in_integer ": "Integer value expected but found 0.9997."
 },
 "valid": false
}

The second POST method executes a step. This method creates the output from
executing a step on the provided input values. The request body contains the input
values. The response body contains the results as output values. This POST method has
a request URL of POST http://www.example.com/SASMicroAnalyticService/rest/
modules/{moduleId}/steps/{stepId} .

Here are the HTTP response codes:

Resources and Collections 119

200
OK

400
Bad Request

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

Here is an example of the JSON request:

{
 "inputs": [
 {
 "name": "in_string",
 "value": "This is a test..."
 },
 {
 "name": "in_bigint",
 "value": 987654321
 },
 {
 "name": "in_int",
 "value": 7654321
 },
 {
 "name": "in_double ",
 "value": 0.9997
 }
]
}

This operation accepts the following media type representations by setting the Content-
Type: header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.input+json

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.output+json

This operation might return the following media types for failure:

120 Chapter 7 • SAS Micro Analytic Service REST API

application/vnd.sas.microanalytic.module.step.input.validity+json
This media type is returned when the input is invalid.

application/vnd.sas.error
This media type is returned when there is problem executing the step.

Here is an example of the JSON response:

{
 "moduleId": "0BCA724F-53D7-3540-8A62-4E2731D69813",
 "stepId": "test_all_types",
 "output": [
 {
 "name": "out_string",
 "value": "This is a test..."
 },
 {
 "name": "out_bigint",
 "value": 987654321
 },
 {
 "name": "out_int",
 "value": 7654321
 },
 {
 "name": "out_double",
 "value": 0.9997
 },
 {
 "name": "string_arr",
 "value": [
 "This is a test...",
 "This is a test...",
 "This is a test..."
]
 },
 {
 "name": "bigint_arr",
 "value": [
 987654321,
 987654321,
 987654321
]
 },
 {
 "name": "int_arr",
 "value": [
 7654321,
 7654321,
 7654321
]
 },
 {
 "name": "double_arr",
 "value": [
 0.9997,
 0.9997,

Resources and Collections 121

 0.9997
]
 }
],
 "version": 1
}

Here is an example response body for the instances when the input is invalid:

{
 "moduleId": "0BCA724F-53D7-3540-8A62-4E2731D69813",
 "stepId": "test_all_types",
 "version": 1,
 "results": {
 "in_double ": "Integer value expected but found 0.9997."
 },
 "valid": false
}

Here is an example error response:

{
 "errorCode":-1958744015,
 "message":"Step ID echo_arrays failed to execute.",
 "details":[
 "Method not found."
],
 "remediation":"",
 "links":[],
 "version":1,
 "httpStatusCode":400
}

122 Chapter 7 • SAS Micro Analytic Service REST API

Chapter 8

Administration

SAS Micro Analytic Service Logging . 123

Secure DS2 HTTP Package Usage . 124

Monitoring . 124
Monitoring SAS Micro Analytic Service . 124
Monitoring SAS Micro Analytic Service Using SAS Environment Manager 125

SAS Micro Analytic Service Logging
An optional SAS Micro Analytic Service start-up parameter specifies the location of an
XML logging configuration file, which controls the logging levels and the location of
the log file or files. SAS Micro Analytic Service uses the SAS 9.4 Logging Facility. For
more information, see SAS 9.4 Logging: Configuration and Programming Reference.
Your SAS solution might provide a default logging configuration file, and that file might
include loggers or appenders in addition to those described in this chapter. For example,
on UNIX the file might be /data1/SAS-configuration-directory/
Lev1/Web/Common/LogConfig/SASMicroAnalyticService-log4sas.xml.
For more information, see your solution’s documentation.

SAS Micro Analytic Service uses two loggers named App.tk.MAS and
App.tk.MAS.CodeGen. Code that is hosted by SAS Micro Analytic Service, or the
functions that it calls, can use additional loggers.

The logger App.tk.MAS is used for logging all aspects of SAS Micro Analytic Service
operation besides code compilation and code generation, which use
App.tk.MAS.CodeGen. Normal operations, such as start-up and shutdown, are logged at
the INFO level. Detailed information about such operations as compilation start and
finish, and others, are logged at the DEBUG level. Warning and error conditions are
logged at the WARN or ERROR levels, as appropriate. By default, App.tk.MAS is set to
the INFO level.

App.tk.MAS.CodeGen is used for logging compiler-generated messages, such as
compilation warnings and errors. Compiler messages can also be retrieved
programmatically through the Java and REST interfaces. (See getCompilationMessages
in “Method Descriptions” on page 41.) Your SAS solution might report compilation
messages automatically. Because these messages are available programmatically, and to
prevent compiler messages from cluttering the log, App.tk.MAS.CodeGen is set to the
FATAL logging level by default.

123

In order to see the data source connection string information that has been logged, set
both the App.tk.MAS and Audit.Table.Connection loggers' level to debug.

Secure DS2 HTTP Package Usage
The DS2 HTTP package supports HTTP and HTTPS endpoints. The configuration of
SAS Micro Analytic Service defines the SSLCALISTLOC environment variable, which
specifies the location of the digital certificates for trusted certificate authorities.

The SSLCALISTLOC environment variable is defined in a host-specific configuration
script that is located in the application server's bin directory. For example, a UNIX
platform SAS-configuration-directory/LevN/Web/WebAppServer/
SASServer13_1/bin/setenv.sh defines SSLCALISTLOC with a value of
SSLCALISTLOC=$JRE_HOME/../../../SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem. For more information about SSLCALISTLOC, see Encryption in SAS
9.4.

When an HTTP endpoint requires client authentication, it responds to the client with its
list of supported authentication mechanisms. The DS2 HTTP package currently supports
two of the three most common authentication mechanisms. It supports Basic and
Negotiate, but does not support the Digest mechanism. Because Basic authentication in
itself does not provide any credential confidentiality, it should be used only when the
data is being encrypted through TLS. The DS2 HTTP package does not provide an
interface allowing the user to specify credentials, other than including them in the URL.
An example is http://username:password@example.com/. The Negotiate mechanism
supports Kerberos and, when it is used on Windows, NTLM is also supported. For more
information, see “Using the HTTP Package” in SAS 9.4 DS2 Language Reference.

Monitoring

Monitoring SAS Micro Analytic Service
SAS Micro Analytic Service provides several logs to help you with monitoring. One of
these is the web server error log located at SAS-configuration-directory/
LevN/Web/WebServer/logs. These logs have a filename format of error_yyyy-mm-
dd.number.log. In them you can find connection errors between the web server and the
tcServer.

The tcServer log is called SAS-configuration-directory/LevN/Web/
WebAppServer/SASServer13_X/logs/server.log. To determine whether the
tcServer has started, look for a message similar to the following:

2015-06-03 16:43:13,176 INFO (main) [org.apache.catalina.startup.Catalina]
Server startup in 36647 ms.

The catalina.out file captures the output to the console. The content is identical to the
entries that are logged in the REST service log file. Whether information should be sent
to console is controlled by the Log4j configuration file of the REST service.

The gemfire.log file in SAS-configuration-directory/LevN/Web/
WebAppServer/SASServer13_X/logs logs the activity of GemFire, which is a
third-party distributed data management platform. When the tcServer does not start up,

124 Chapter 8 • Administration

check gemfire.log to see whether GemFire is waiting for data availability. Look for a log
entry in a form that is similar to the following:

[info 2015/06/04 15:44:09.187 EDT <localhost-startStop-1> tid=0x15]
Region /sas_gemfire_region_surrogatekeytomodulereplica initialized with data
from /10.xx.xxx.yy:/data1/SAS-configuration-directory/Lev1/Web/WebAppServer/SASServer13_1/logs
created at timestamp 1433364173611 version 0 diskStoreId 19892c25-b655-4ae7-96ed-c978dde636d2
is waiting for the data previously hosted at
[/10.xx.xxx.xx:/data/SAS-configuration-directory/Lev1/Web/WebAppServer/SASServer13_1/logs created
at timestamp 1433364164520 version 0 diskStoreId 20d2f45e-876f-4cc1-84b0-ccf6920da3e8]
to be available

The wait will eventually time out, and SAS Micro Analytic Service will not start
correctly. This is most likely to happen in a clustered environment. For more
information, see “Cluster Deployment for SAS Micro Analytic Service” on page 132.

The REST service log file is located at SAS-configuration-directory/
LevN/Web/Logs/SASServer13_1/SASMicroAnalyticService1.3.log. The
current day log entries are in that file. The first log entry that occurs after midnight
causes the previous day's log file to roll over to another file with the format
SASMicroAnalyticService1.3.log.yyyy-mm-dd. SASMicroAnalyticService1.3.log is
created fresh with the first log entry. The service logs are at INFO level. Therefore, they
capture start-up entries, module creation, update and deletion boundary entries, as well
as errors from all operations. When there is an error, and more information must be
captured to identify the cause of the error, update the REST service's Log4j
configuration file to set logging level to DEBUG, and restart the service.

Log entries are tagged with an INFO, WARN, or ERROR keyword. When the REST
service is started properly, there is no entry with the ERROR keyword added to the log
file. When a web service request is processed successfully, the HTTP status returned is
either 200, 201 or 204, depending on the context. If the HTTP status returned is 4XX
(such as 400, 401, 404) or 5XX (such as 503), an error message is included in the HTTP
response body. In addition, one or more ERROR entries are in the log file.

A related log file in the same directory is the SAS Micro Analytic Service log. The
filename has the format SASMicroAnalyticService1.3MAS.log.yyyy-mm-dd.pid. Pid is
the process ID of the JVM process that hosts SAS Micro Analytic Service. Each time the
REST service restarts, a new log file is used and then the log file rolls over to another
file at midnight. The SAS Micro Analytic Service log file can capture compilation errors
of modules, as well as any anomaly that is encountered by the SAS Micro Analytic
Service.

The application's Log4j configuration file is in the directory SAS-configuration-
directory/LevN/Web/Common/LogConfig. The configuration file for the REST
service log is SASMicroAnalyticService-log4j.xml. The configuration file for SAS
Micro Analytic Service is SASMicroAnalyticService-log4sas.xml.

Monitoring SAS Micro Analytic Service Using SAS Environment
Manager

Overview
SAS Environment Manager provides several pieces of monitoring functionality that can
be used to help understand SAS Micro Analytic Service usage, check service
availability, and set custom alerts.

Initialize SAS Environment Manager
To initialize SAS Environment Manager:

Monitoring 125

1. Open the file /config/LevN/Web/SASEnvironmentManager/emi-framework/
ConfigureFiles/Kits/WebServer/WebServer.properties.

2. Make sure that kitenabled is set to TRUE.

3. Follow the instructions found inside the file /config/LevN/Web/
SASEnvironmentManager/emi-framework/
SAS_Environment_Manager_Service_Architecture_Quickstart.pdf.

Access a Report
To access reports in SAS Environment Manager:

1. Open SAS Environment Manager inside a browser (SAS Environment Manager
default port is 7080).

2. Select Report Center from the Analyze drop-down menu.

3. Navigate to Stored Processes ð Products ð SAS Environment Manager ð Kits
ð Web Server. Click HTTP Web Server return codes.

4. To see all of the TKMAS HTTP requests with response codes, navigate to
Classification Variables and move clientsrc from Available to Selected.

5. Under Tabulate Report, click Subsets. Set the Where clause to filter SAS
Environment Manager Data Mart table to clientsubsrc =
'SASMicroAnalyticService'.

6. Click Run to see the report.

Monitor SAS Micro Analytic Service Downtime
To monitor SAS Micro Analytic Service downtime, select Currently Down from the
Resources drop-down menu. This provides you with a list of all of the resources that are
currently down.

Set Alerts
To set up custom alerts for SAS Micro Analytic Service servers:

1. Select Browse from the Resources drop-down menu.

2. On the Platforms tab, click the platform where SAS Micro Analytic Service is
installed.

3. Select New Platform Service from the Tools Menu.

4. Enter a name for the new service, and select HTTP from the Service Type drop-
down menu. Click OK.

5. You should receive two messages on the service window. The first should tell you
that your service has been created. The second should ask you to set the
configuration properties. Click Configuration Properties in the second message.

6. Under Configuration Properties, set the following:

a. Set the port field. The default is 7980.

b. Set the hostname field to the location where SAS Micro Analytic Service is
installed.

c. Set the path field to /SASMicroAnalyticService.

d. Select GET from the method drop-down menu.

e. Click OK.

126 Chapter 8 • Administration

7. Click Alert and then Configure.

8. Click New.

9. Provide the information about the New Alert Definition window. Click OK.

When the condition that is specified for the alert is satisfied, an alert should be visible on
the top banner of SAS Environment Manager.

Monitoring 127

128 Chapter 8 • Administration

Chapter 9

Deployment and Tuning

Pre-Installation Steps . 129

Deployment . 130
Deploying SAS Micro Analytic Service . 130
Adding Whitelist Websites to SAS Micro Analytic Service 131

Post-Installation Steps . 131

Cluster Deployment for SAS Micro Analytic Service . 132
Deploying Clusters . 132
License Files for Clusters . 133

Tuning SAS Micro Analytic Service . 133
Adjust Thread Pool Size . 133
Adjust Serial or Parallel Content Creation . 134
Adjust DS2 Module Compilation Mode . 134
Adjust Session Time-out Value . 135
Increase Module ExecutionThroughput of the REST Interface 135
Prevent HTTP Error Messages . 135
Create and Update Connection Strings . 135

Pre-Installation Steps
Locate the file information that is listed in the table and then complete the pre-
installation steps before running the SAS Deployment Wizard to install and configure
SAS Micro Analytic Service 1.3.

During configuration, you are prompted for the location of your SAS installation data
(SID) file. The SID file can be found in the sid_files directory of the SAS Software
Depot or media. Copy the SID file to a permanent location that can be accessed from all
middle-tier machines that run instances of the SAS Micro Analytic Service. The license
location should be the fully qualified location and filename of the SAS installation data
file. For more information, see “License Files for Clusters” on page 133.

SAS Micro Analytic Service 1.3 supports database data access. During configuration,
you are prompted for database information depending on the database type selected.
SAS Micro Analytic Service supports SAS, DB2, Greenplum, Netezza, Oracle,
PostgreSQL, Microsoft SQL Server, and Teradata. You can choose not to specify a
database for data access by selecting No Database Data Access. For more information,
see “I/O” on page 12.

129

The table below lists the information that you must obtain and have available before
running the SAS Deployment Wizard.

Description Default Value Actual Value

Database Type No database data access.

Database Host Machine Host Name

Database Port The default port for the
database type.

Database User ID

Database Password

SAS Only

SAS Library Name

Path to SAS Data

Oracle Only

Oracle Default Schema Name

SQL Server Only

SQL Server ODBC Data
Source Name

Greenplum, PostgreSQL, DB2, Teradata, or Netezza

Database Name

Deployment

Deploying SAS Micro Analytic Service
The full SAS Micro Analytic Service software stack, including the REST, Java, and C
interfaces, and the core C engine, is deployed as a SAS web application in SAS Web
Application Server. SAS web applications can be clustered and tuned for performance
and high availability. For information about how to tune the SAS Micro Analytic Service
web application for optimum performance, see SAS 9.4 Web Applications Tuning for
Performance and Scalability.

130 Chapter 9 • Deployment and Tuning

Adding Whitelist Websites to SAS Micro Analytic Service
For information about adding websites that link directly to SAS Micro Analytic Service,
see the “Whitelist of Websites and Methods Allowed to Link to SAS Web Applications”
section of SAS 9.4 Intelligence Platform Middle-Tier Administration Guide.

Post-Installation Steps
Open SAS/config/LevN/documents/Instructions.html, and follow the steps found in the
topic on validation.

Note: Steps 1 and 2 are needed only if you are configuring the middle-tier on an AIX
machine.

1. Create the following symbolic links for every middle-tier machine where SAS Micro
Analytic Service REST API has been deployed:

• libdflic-1.4.so to libdflic-1.4.a

• libdfssys-1.3.so to libdfssys-1.3.a

Here is an example:

cd <LevConfig>/Web/WebAppServer/SASServer13_#/sas_webapps/
sas.microanalyticserver.war/WEB-INF/lib/loadlib
In -s libdflic-1.4.a libdflic-1.4.so
In -s libdfssys-1.3.a libdfssys-1.3.so

2. Restart the SASServer13 nodes on every middle-tier machine where SAS Micro
Analytic Service REST API is deployed.

3. Validate the web service URL for the SAS Micro Analytic Service REST API. If the
service is deployed correctly, the following JSON object is returned:

{"version":1,"links":[{"method":"GET","rel":"modules",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules","uri":"/modules"},
{"method":"POST","rel":"createModule","href":
"http://www.example.com/SASMicroAnalyticService/rest/modules","uri":"/modules"}]}

4. When you have completed the validation steps found in instructions.html, grant
access to the service to a user, and add that user as a member of the Decision
Manager Users group.

a. In SAS Management Console, expand Environment Manager.

b. Right-click User Manager and click New ð User.

c. On the General tab, enter the name and any other optional information.

d. On the Groups and Roles tab, find the Decision Manager Users group from the
Available Groups and Roles list and add it to the Member of list.

e. On the Accounts tab, click New.

f. In the New Login Properties dialog box, you must complete at least the User ID
field. Click OK.

g. Click OK in the New User Properties dialog box.

Post-Installation Steps 131

Note: If connecting an administrative console such as JConsole or JVisualVM causes
the server to terminate, add -Xrs to the JVM options and restart the server.

• On UNIX platforms, -Xrs can be added to the JVM_OPTS variable in the
setenv.sh file located in SAS-configuration-directory/LevN/Web/
WebAppServer/SASServer13_N/bin/ directory.

• On Windows platforms, -Xrs can be added to setenv.bat, located in the directory
mentioned above, if you invoke your server using the tcruntime-ctl.bat script. If
you invoke the server as a service, then add it to the wrapper.conf file located at
SAS-configuration-dirctory/LevN/Web/WebAppServer/
SASServer13_N/conf/wrapper.conf.

Cluster Deployment for SAS Micro Analytic
Service

Deploying Clusters
In a cluster deployment, the web server runs on only one node, and it serves as the
balancer. The URL to the service sends the request to the web server. The web server
dispatches the requests in round-robin to the nodes in the cluster, unless a different
policy is specified in the web server configuration.

The metadata server for a middle-tier node is specified during deployment. The same
metadata server that is referenced by the middle tier can be referenced by a middle-tier
node. When that is the case, user management data and application properties that are set
on the middle tier are applicable automatically to the middle-tier node. If different
metadata servers are referenced by the middle tier and the middle-tier nodes, then any
user and application management data changes should be made in both metadata servers.

By contrast with the middle tier, the Instructions.html file for the middle-tier node
includes neither a web service URL, nor a section on validating steps for the web
service. The web server directs requests to the middle-tier node based on the specified
load-balancing policy in its configuration.

If a user wants to use the same node to serve a group of requests, this can be achieved by
including the same route information in the HTTP request for that group of requests. The
cluster is enabled for a sticky session by default. When a service request is made, the
header section of the HTTP response includes a Set-Cookie header, such as the
following:

Set-Cookie: c74b1b873e98ef08505dee685863e7b2_Cluster13=EC5213E970F0655
8E63F145001F64CEC.c74b1b873e98ef08505dee685863e7b2_SASServer13_1;
Path=/SASMicroAnalyticService/; HttpOnly

The first item is a variable=value construct. The variable is a session ID. The value is a
route.

To use the same node to serve a group of requests, extract the route information from the
first request of the group. From the second request to the last request, set the cookie
header with the sessionID and route value, similar to the following example:

EC5213E970F06558E63F145001F64CEC.c74b1b873e98ef08
505dee685863e7b2_SASServer13_1

Using the same node to serve a group of requests can be useful because it avoids
introducing errors by a delay in replicating content from one cluster node to another.

132 Chapter 9 • Deployment and Tuning

For example, the cluster consists of two nodes, Node 1 and Node 2. You want to deploy
two modules, A and B. Also, B depends on A. Suppose A is a very big module and takes
more than 20 seconds to compile. If A is deployed on Node 1, it must be replicated to
Node 2 and then compiled on Node 2, before it is available on Node 2. If B is deployed
to Node 2 before A is ready there, there is an error. To avoid this type of error, set the
cookie to tell the web server to use Node 1 to deploy B.

Clustering relies on GemFire, a third-party distributed data management platform.
GemFire persists data to files that are stored in SAS/config/LevN/Web/
WebAppServer/SASServer13_X/logs. The filenames contain the masgemfire sub-
string. Those files should be left alone. Also, make sure that enough disk space is
allocated to the SAS/config/LevN/Web/WebAppServer/SASServer13_X/logs
directory so that the cache files grow.

CAUTION:
These files should not be truncated or deleted regardless of their size.
Sometimes they might appear to be zero bytes. GemFire also uses the word
BACKUP in some of the filenames. Deleting or truncating these files deletes the
modules repository.

In a typical deployment, a middle-tier node uses the middle tier's GemFire locator. A
locator is used in the peer-to-peer cache to discover other processes. If the whole cluster
must be restarted, the commands to start the middle tier and middle-tier node should be
submitted immediately one after another. The order does not matter.

Note: The GemFire locator must be started cleanly before the other nodes are started.
The other nodes should then be stagger started, to reduce the load on the GemFire
locator. In addition, it is important to periodically back up the GemFire persistence
storage for production systems.

License Files for Clusters
If you run applications that perform database I/O, your license (SID) file must include
licensing for the database access solutions that you intend to use. SID files are not
automatically distributed to cluster nodes. When clustering, choose one of these
approaches:

• Place your license file on a shared disk, and enter the path to it when prompted by
the SAS Deployment Wizard.

• Copy the license file to each cluster node, and enter the relative path to the license
file when prompted by the SAS Deployment Wizard.

If you choose the second option, you must copy the updated license file to each cluster
node whenever your SAS software licenses are renewed or modified.

Tuning SAS Micro Analytic Service

Adjust Thread Pool Size
Tasks in SAS Micro Analytic Service, such as revision compilations and method
executions, are performed by special worker threads, which are part of the SAS threaded
kernel architecture. These worker threads are maintained in a thread pool. The size of the
thread pool to use is provided to SAS Micro Analytic Service as a start-up parameter. By
default, the thread pool size is set to 4. Optimum performance is usually achieved by

Tuning SAS Micro Analytic Service 133

setting the thread pool size about equal to the number of cores in the hosting server.
However, the optimum setting might vary depending on the characteristics of the
programs that are run by SAS Micro Analytic Service.

To change the worker thread pool size:

1. In SAS Management Console, expand Application Management.

2. Expand SAS Application Infrastructure.

3. Right-click SAS Micro Analytic Service 1.3.

4. Select Properties.

5. Click the Advanced tab.

6. Unlock masintf.tk.threads in the Property Name column.

7. Change the value. To tell SAS Micro Analytic Service to automatically set the
worker thread pool size equal to the number of logical processors, enter 0 for the
value.

For example, specifying 0 on a system that has one Intel quad-core, hyper-threaded
processor results in a thread pool size of 8, given that there are two logical
processors per core when hyper-threading is on.

8. Click OK.

Adjust Serial or Parallel Content Creation
The POST operation on the modules collection and the PUT and DELETE operations on
a module are serialized by default. They are taken in the order of arrival to the REST
server's processing queue, one after another is done. To adjust this setting to allow them
to be done in parallel:

1. In SAS Management Console, expand Application Management.

2. Expand SAS Application Infrastructure.

3. Right-click SAS Micro Analytic Service 1.3.

4. Select Properties.

5. Click the Advanced tab.

6. Unlock masintfc.tk.serializecontentcreation in the Property Name column.

7. Change the value. The choices are true and false. The default value is True.

8. Click OK.

Adjust DS2 Module Compilation Mode
The REST server always inserts a DS2 option in front of a DS2 module to force it to be
compiled in SAS mode. You can stop this behavior by changing a property:

1. In SAS Management Console, expand Application Management.

2. Expand SAS Application Infrastructure.

3. Right-click SAS Micro Analytic Service 1.3.

4. Select Properties.

134 Chapter 9 • Deployment and Tuning

5. Click the Advanced tab.

6. Unlock masintfc.tk.sasmode in the Property Name column.

7. Change the value. The choices are true and false. The default value is true.

8. Click OK.

Adjust Session Time-out Value
To shorten the amount of time the web server holds on to memory that is used in
fulfilling a request, adjust the session time-out value. This allows for a more frequent
and shorter garbage collection duration instead of fewer and longer garbage collection
durations that might reduce the responsiveness of the REST server.

Increase Module ExecutionThroughput of the REST Interface
The module execution throughput of the SAS Micro Analytic Service REST interface
can be increased. However, those making connections to the REST server to execute
micro analytics must always be authorized and authenticated by some other means, such
as a private network. If this is the case, you can edit the JVM option that starts the REST
server to include the argument

 -Dsas.mas.access.mode=private

As a result, the authentication is not required to execute micro analytics. Authentication
is still required for other operations.

As a result of specifying this option, the CPU cycles and sockets that are used for
authentication are available for other uses, such as executing micro analytics.

The place to edit the JVM option is host specific:

• Linux - SAS/config/LevN/Web/WebAppServer/SASServer13_X/bin/
setenv.sh

• Windows - SAS\Config\LevN\Web\WebAppServer\SASServer13_X\conf
\wrapper.conf

Prevent HTTP Error Messages
To prevent HTTP error messages, make sure that the web server is located on a separate
host machine from the web application server. When the web server and web application
server are located on the same machine, they both compete to use the ephemeral ports on
the system. Separating them reduces the contention for this finite resource.

Create and Update Connection Strings
To create and update connection strings:

1. In SAS Management Console, expand Application Management ð Configuration
Management ð SAS Application Infrastructure.

2. Right-click SAS Micro Analytic Service 1.3 and select Properties.

3. On the Advanced tab, update the masintfc.db.connectionstring property's value.

4. Click OK.

Tuning SAS Micro Analytic Service 135

The connection string can contain a federation of multiple connection strings. For more
information about federated connection strings, see “I/O” on page 12.

136 Chapter 9 • Deployment and Tuning

Chapter 10

Migration

Overview . 137

Limitations . 137

Back Up Disk Stores . 138

Restore Script . 138

Additional Migration Considerations . 139
Migration Considerations for 64-Bit Windows . 139
Additional Migration Considerations for 64-Bit HP-UX Itanium 140
Additional Migration Steps in a Clustered Environment . 140

Overview
To upgrade from SAS Micro Analytic Service 1.2 to 1.3, you must migrate the modules
that are loaded in the system. This requires first backing up a source system and then
restoring that backup to a destination system. Because the modules are held in GemFire
persistence, GemFire backup and restore procedures are used.

The GemFire persistence folder for a SAS Micro Analytic Service system is found in
SAS-Configuration-Directory/LevN/Web/WebAppServer/
SASServer13_n/logs, where LevN is the SAS configuration level directory, and
13_n denotes the application server processes. This is where GemFire holds files that
contain an image of the GemFire shared cache.

Before beginning the backup process, see “Additional Migration Considerations” on
page 139.

Limitations
Use the migration method described in this chapter to migrate across the same operating
system. If you need to migrate between Windows and UNIX, contact your SAS
Technical Support representative.

137

Back Up Disk Stores
To begin the migration process, navigate to the GemFire bin directory.

Note: The current directory must be in the path. All tc Server instances hosting the SAS
Micro Analytic Service must be running in order to run the backup command.

1. If you have disabled auto-compaction, run manual compaction:

Note: This step is necessary only for clustered environments.

gemfire compact-all-disk-stores

2. Run the backup command, providing your backup directory location. The following
example stores the backed-up files under the gemfireBackupFilesDirectory.

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire backup /gemfireBackupFilesDirectory

The tool reports on the success of the operation. If the operation is successful, a
message similar to the following is generated:

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire backup /gemfireBackupFilesDirectory
Connecting to distributed system: locators=<ServerName>[26340]
The following disk stores were backed up:
DiskStore at <ServerName> SAS-Configuration-Directory/LevN/Web/WebAppServer/SASServer13_1/logs
Backup successful.

If the operation does not succeed at backing up all known members, a message
similar to the following is generated:

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire backup /gemfireBackupFilesDirectory
Connecting to distributed system: mcast=/239.192.81.1:10334
ERROR: Operation "backup" failed because: There are no members in the distributed system.

3. To ensure that the backup can be recovered, validate the backed-up files. Run the
validate-disk-store command on the backed-up files, for each disk store. Use the full
directory path to where the GemFire backup was stored (for example, /
gemfireBackupFilesDirectory/<date>/
<ServerName>_v31_13729_16281/diskstores/masgemfire/dir0).

Run the validate-disk-store command as follows:

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire validate-disk-store masgemfire/
 gemfireBackupFilesDirectory/<date>/<SeverName>_v31_13729_16281/
 diskstores/masgemfire/dir0

Repeat these steps for all disk stores of all members.

Restore Script
The restore script copies files back to their original locations. The backup process
creates a folder that is named with the date and time of the backup, as indicated in the
above example. This folder can contain one or more subfolders, each corresponding to a
folder containing GemFire persistence files. Each such folder contains a restore script

138 Chapter 10 • Migration

called restore.sh or restore.bat (for example,gemfireBackupFilesDirectory/
<date>/<ServerName>_v31_13729_16281/restore.bat /).

Note: For a cluster, the GemFire persistence folders can be on different nodes. This has
the following implications:

• In order to restore, the restore script must have access to the backup folders as
well as the GemFire persistence folders. Therefore, it is recommended that you
create the backup in a shared folder that is accessible from every node in the
cluster. Then, run the script on the nodes that contain the GemFire persistence
folder.

• You might need to modify the restore script since the paths to the GemFire
persistence folder can be different on different nodes of the cluster. Because the
restore script copies files from the backup folder to the GemFire persistence
folder, it can be easily modified to correct the path. You can also copy the files
directly, without using the restore script.

Here are best practices for running the restore script:

• Restore your disk stores when your members are offline, and the system is down.

• Read the restore scripts to see where they place the files. Make sure that the
destination locations are ready. The restore scripts do not copy over files with the
same names. Therefore, delete all files prefixed with BACKUPmasgemfire in the
SASServer13_n/logs folder, after they have stopped any SASServer13
processes, before running the restore script (for example, /
gemfireBackupFilesDirectory/<date>/<ServerName>_v31_13729_16281/
restore.sh).

• Run the restore scripts. Run each script on the host where the backup originated, as
shown in the step above.

The restore process copies disk store files for all stores containing persistent region data
back to their original location.

Additional Migration Considerations

Migration Considerations for 64-Bit Windows
The provided Windows distribution of GemFire does not contain the gemfire.properties
file. The GemFire script also does not allow the use of -J switches to supply JVM
arguments. To run the GemFire backup command, you must extract the locator and
license information from the wrapper.conf file for the locator and supply them to the
GemFire command line script as JVM arguments. To do this:

1. Locate the GemFire folder under SAS-Configuration-Directory\LevN\Web
\gemfire\.

2. Find the instance folder and locate the wrapper.conf file in it. The instance folder is
located at SAS-Configuration-Directory\LevN\Web\gemfire
\instances. It is commonly called ins_41415.

3. Locate the following lines containing the parameter values from the wrapper.conf
file:

• set.GEMFIRE_LOCATORS=<ServerName>[41415]

• set.USE_IPV4_STACK=false

Additional Migration Considerations 139

• set.USE_IPV6_ADDRESS=false

• wrapper.java.additional.2=-Dgemfire.mcast-port=0

• wrapper.java.additional.3=-Dgemfire.license-application-
cache=6M0C3-4VW9H-M8J40-0D52F-DTM0H

• wrapper.java.additional.4=-Dgemfire.locators=%GEMFIRE_LOCATORS%

• wrapper.java.additional.5=-Djava.net.preferIPv4Stack=%USE_IPV4_STACK%

• wrapper.java.additional.6=-Djava.net.preferIPv6Addresses=
%USE_IPV6_ADDRESS%

4. When you use the above construct, your command line should look like the
following:

set JAVA_ARGS=-Djava.net.preferIPv4Stack=false
 -Djava.net.preferIPv6Addresses=false -Dgemfire.mcast-port=0
 -Dgemfire.locators=<ServerName>[41415]
 -Dgemfire.license-application-cache=6M0C3-4VW9H-M8J40-0D52F-DTM0H

Substitute the appropriate values for the arguments based on the contents of
wrapper.conf. This line must be run before running the GemFire script, so that the
utility can find the locator.

Additional Migration Considerations for 64-Bit HP-UX Itanium
This distribution does not contain the gemfire.properties file. Instead, the scripts in the
locator instance can be used to define the appropriate values. They can also be used as
shell variables, and as JVM arguments.

1. Locate the GemFire folder under SAS-Configuration-Directory/
LevN/Web/gemfire.

2. Find the instance folder and locate the wrapper.conf file in it. The instance folder is
located at SAS-Configuration-Directory/LevN/Web/gemfire/
instances. It is commonly called ins_41415.

3. Run the gemfire-locator.sh script, so that it defines the appropriate values as
variables in the current shell, as follows:

. gemfire-locator.sh

Note: There is a space between . and gemfire.

4. Run the GemFire script in the SAS-Configuration-Directory/LevN/Web/
gemfire/bin folder, using the following arguments:

-J-Dgemfire.mcast-port=0 -J-Djava.net.preferIPv4Stack=$USE_IPV4_STACK
-J-Djava.net.preferIPv6Addresses=$USE_IPv6_ADDRESS
-J-Dgemfire.locators=$LOCATORS
-J-Dgemfire.license-application-cache=$GEMFIRE_LICENCE_KEY backup
/localdata/config/Lev1/gbkh6i_1

Additional Migration Steps in a Clustered Environment
Make sure that all cluster members are running. Before backing up a cluster, run the
GemFire utility using the compact-all-disk-stores command. The backup process creates
multiple folders containing content from the different cluster members in the destination

140 Chapter 10 • Migration

folder. Use the restore script in each such folder to restore the folder to the appropriate
cluster member.

Additional Migration Considerations 141

142 Chapter 10 • Migration

Appendix 1

SAS Micro Analytic Service
Return Codes

The SAS Micro Analytic Service core component, tkmas, supports the following return
codes. Depending on logging settings, an associated message might be logged. When a
message is logged, any substitution parameters (indicated by %s for string and %d for
number) are filled in. The other SAS Micro Analytic Service interface layers, such as the
Java interface and the REST interface, might log additional messages that are not listed
below.

Return Code #define Symbol Message or Description

-1958744063 MASBadArgs Invalid arguments.

-1958744062 MASInternalError Internal error.

-1958744061 MASFailure SAS Micro Analytic Service encountered a
failure.

-1958744060 MASFail %s encountered a failure.

-1958744059 MASUnexFail %s encountered an unexpected failure.

-1958744058 MASUnexInternal %s encountered an unexpected internal failure.

-1958744057 MASUnexFailIn %s encountered an unexpected failure in %s.

-1958744056 MASFailIn %s encountered a failure in %s.

-1958744055 MASFailWithText %s encountered a failure in %s: %s.

-1958744054 MASSFGCBLock Failed to obtain the SFGCB lock.

-1958744053 MASExeLock Failed to obtain the .exe lock.

-1958744052 MASLockCreate Failed to create the %s lock.

-1958744051 MASEventCreate Failed to create the %s event for thread %d.

-1958744050 MASThreadCreate Failed to create SAS Micro Analytic Service
worker thread %d of %d.

-1958744049 MASCPUCount Failed to determine the number of CPUs.
Setting the number of worker threads to %d.

143

Return Code #define Symbol Message or Description

-1958744048 MASThreadCount The number of threads requested, %d, exceeds
the limit. The maximum allowable threads =
%d times the number of CPUs = %d.

-1958744047 MASThreadPoolSize Worker thread pool size set to: %d.

-1958744046 MASInitAlready SAS Micro Analytic Service was already
initialized.

-1958744045 MASInitFailed SAS Micro Analytic Service failed to
initialize.

-1958744044 MASNotLicensed SAS Micro Analytic Service is not licensed.

-1958744043 MASLicSvcInitFailed License service failed to initialize.

-1958744042 MASNotInitialized SAS Micro Analytic Service is not initialized.

-1958744041 MASTermFailed SAS Micro Analytic Service failed to
terminate successfully.

-1958744040 MASArgTrunc The maximum size of parameter %d in the %s
call is not large enough, and the value has been
truncated at %d characters.

-1958744039 MASCompStatus Compiler encountered status 0x%X.

-1958744038 MASUnsupportedType Unsupported type.

-1958744037 MASUnknownType Unknown type.

-1958744036 MASNoSuchPackage Package not found.

-1958744035 MASNoSuchMethod Method not found.

-1958744034 MASNoSuchRevision Revision not found.

-1958744033 MASRevisionGet Failed to get revision.

-1958744032 MASNoSuchModule Module not found.

-1958744031 MASNoSuchUserContext User context not found.

-1958744030 MASModuleCtxtCreate Failed to create module context.

-1958744029 MASUserCtxtCreate Failed to create user context.

-1958744028 MASArgTypeMismatch Argument type mismatch.

-1958744027 MASArgCoutMismatch Argument count mismatch.

144 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958744026 MASClientCodegenError Code generation error.

-1958744025 MASDS2CompileError DS2 compilation error.

-1958744024 MASDS2RuntimeError DS2 run-time error.

-1958744023 MASTKGNoEntryPoint Code generation did not find an entry point.

-1958744022 MASTKGGenericError Code generation generic error.

-1958744021 MASInvalidRequest Invalid request.

-1958744020 MASMissingEntryPoints Missing entry points.

-1958744019 MASUnassignedInput Unassigned input.

-1958744018 MASInternalOnly Internal only.

-1958744017 MASOnlyValidForDS2 Valid only for DS2 code.

-1958744016 MASOnlyValidForC Valid only for C code.

-1958744015 MASExecutionException Exception occurred during execution.

-1958744014 MASCompilationException Exception occurred during compilation.

-1958744013 MASDS2ThreadUnsupported DS2 thread unsupported.

-1958744012 MASTKEDSError DS2 error.

-1958744011 MASUnrecognizedLanguage Unrecognized language.

-1958744010 MASUnspecifiedDataType Unspecified data type.

-1958744009 MASTKThreadingError Threading error.

-1958744008 MASFatalProgRepoLost Program repository lost.

-1958744007 MASSaveToRepo Failed to save to repository.

-1958744006 MASLog4SASCfgFailed Logging configuration failed.

-1958744005 MASDS2CompileStart User context '%s' compiling module '%s' on
thread %d.

-1958744004 MASDS2CompileFinish User context '%s' module '%s' thread %d
compilation succeeded.

-1958744003 MASDS2CompileFailed User context '%s' module '%s' thread %d new
revision failed, RC = %d.

SAS Micro Analytic Service Return Codes 145

Return Code #define Symbol Message or Description

-1958744002 MASStartup *** SAS Micro Analytic Service Started ***

-1958744001 MASShutdown *** Micro Analytic Service Shutting Down

-1958744000 MASAsyncException SAS Micro Analytic Service received async
exception code %d.

-1958743999 MASAsyncInitFailed SAS Micro Analytic Service failed to install
async exception handler.

-1958743998 MASShutdownJNI SAS Micro Analytic Service calling JVM
System.exit(0).

-1958743997 MASExecDeletePending Attempt to execute method %s while deletion
pending for module context %s revision %d.

-1958743996 MASMTXDeletePending Attempt to add module context &s while
deletion pending for user context %s.

-1958743995 MASRevDeletePending Attempt to create revision while deletion
pending for module context %s.

-1958743994 MASRevDelDeletePending Attempt to delete revision while deletion
pending for module context %s.

-1958743993 MASRevDelRefCount Pending delete called for module context %s
with ref count %d.

-1958743992 MASRevDelRefCountError Delete called for module context %s with ref
count %d.

-1958743991 MASMTXDelete Garbage collection is deleting module context
%s.

-1958743990 MASCTXDeletePending Attempt to delete user context %s while being
deleted by another thread.

-1958743989 MASCTXGetCDTDelPending Attempt to retrieve creation time from user
context %s while deletion pending.

-1958743988 MASCTXGetMDTDelPending Attempt to retrieve modified time from user
context %s while deletion pending.

-1958743987 MASMTXGetCDTDelPending Attempt to retrieve creation time from module
context %s while deletion pending.

-1958743986 MASMTXGetMDTDelPending Attempt to retrieve modified time from
module context %s while deletion pending.

-1958743985 MASMTXGetRevDelPending Attempt to retrieve highest revision from
module context %s while deletion pending.

146 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958743984 MASMTXGetIUODelPending Attempt to retrieve internal use flag from
module context %s while deletion pending.

-1958743983 MASRevGetCDTDelPending Attempt to retrieve revision %d creation time
from module context %s while deletion
pending.

-1958743982 MASMTXGetMsgDelPending Attempt to retrieve compilation messages from
module context %s while deletion pending.

-1958743981 MASMTXRegDeletePending Attempt to register name while deletion
pending for module context %s.

-1958743980 MASMTXLangDelPending Attempt to retrieve language of module
context %s while deletion pending.

-1958743979 MASMTXGetDispDelPending Attempt to retrieve display name from module
context %s while deletion pending.

-1958743978 MASMTXGetCSrcDelPending Attempt to retrieve C source code from
module context %s revision %d while deletion
pending.

-1958743977 MASCTXGetPkgsDelPending Attempt to retrieve packages from user context
%s while deletion pending.

-1958743976 MASMTXGetMthsDelPending Attempt to retrieve methods from module
context %s while deletion pending.

-1958743975 MASNoSuchEntryPoint Entry point not found.

-1958743974 MASMTXGetSigDelPending Attempt to retrieve method %s signature from
module context %s while deletion pending.

-1958743973 MASCTXLdOOTBDelPending Private load out-of-the-box packages for user
context %s while deletion pending.

-1958743972 MASCTXRegIntDelPending Attempt to publish internal package %s to user
context %s while deletion pending.

-1958743971 MASCTXRemIntDelPending Attempt to remove internal package %s from
user context %s while deletion pending.

-1958743970 MASCreateGCAFailed Attempt to create garbage collection control
structures failed.

-1958743969 MASGarbageCollection Garbage collection interval.

-1958743968 MASGarbageCollectionDel Garbage collection found assets ready to
delete.

SAS Micro Analytic Service Return Codes 147

Return Code #define Symbol Message or Description

-1958743967 MASGCException Exception occurred during garbage collection
run.

-1958743966 MASProgRepoUpdateError Error obtaining exclusive lock to update DS2
program repository.

-1958743965 MASCTXDelete Garbage collection is deleting user context %s.

-1958743964 MASRevDelete Garbage collection is deleting module context
%s revision %d.

-1958743963 MASDS2Fatal Module context %s revision %d generated
fatal run-time exception. Deleting revision.

-1958743962 MASGarbageCollectionTerm Garbage collection is freeing control assets
during shutdown.

-1958743961 MASShutdownHang Worker thread did not interrupt after %d
seconds during shutdown.

-1958743960 MASGCInvalidIntervalHigh Specifies that the garbage collection interval is
above the maximum. Setting to default value.

-1958743959 MASGCInvalidIntervalLow Specifies that the garbage collection interval is
below the minimum. Setting to default value.

-1958743958 MASGCInvalidGraceHigh Specifies that the grace period is above the
maximum. Setting to default value.

-1958743957 MASGCInvalidGraceLow Specifies that the grace period is below the
minimum. Setting to default value.

-1958743956 MASGCMissingInterval Garbage collection interval is not specified.
Setting to default value.

-1958743955 MASGCMissingGracePeriod Grace period is not specified. Setting to default
value.

-1958743954 MASModuleStats Check the log for module statistics.

-1958743953 MASInvalidDS2Connection Attempt to create TKTS driver connection
failed.

-1958743952 MASDS2FatalRecompiled DS2 package fatal error. Auto-recompile
succeeded.

-1958743951 MASDS2FatalRecompFailed DS2 package fatal error. Transaction failed.
Recompile failed. Ejecting revision.

-1958743950 MASDS2RevisionEjected DS2 package fatal error. Max retry exceeded.
Ejecting revision. Correct and republish.

148 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958743949 MASDBConnLost Connection to the database lost. Check the log
for details.

-1958743948 MASDBConnReestablished Lost connection reestablished for user context.

-1958743947 MASDBConnRetryLimit Maximum connection retry attempts exceeded
for user context.

-1958743946 MASDBConnDoesNotExist Attempt to execute SQLStmt, when no
connection exists.

-1958743945 MASDBConnRetryThreadErr Error while creating database connection retry
thread.

-1958743944 MASDBConnRetryAttempt Connection retry attempt unsuccessful.

-1958743943 MASNameRegisterFailed Unable to register tkmas in the TK named
registry. DS2 programs that call Python scripts
will not function.

-1958743942 MASDS2PythonNameRequired AS DS2 Python constructor missing Python
module name.

-1958743941 MASDS2PythonCreateError Unable to create SAS Micro Analytic Service
DS2 Python package.

-1958743940 MASDS2PythonInitError Unable to initialize support for SAS Micro
Analytic Service DS2 Python package.

-1958743939 MASUnsupportedFunction Unsupported function.

-1958743938 MASDS2NotInitialized Attempt to perform action on uninitialized
SAS Micro Analytic Service DS2 Python
package.

-1958743937 MASDS2PythonParmError SAS Micro Analytic Service DS2 Python
package parameter mismatch.

-1958743936 MASDS2PythonArgNameReqd SAS Micro Analytic Service DS2 Python
missing argument name.

-1958743935 MASDS2PythonArgValueReqd AS DS2 Python missing argument value.

-1958743934 MASDS2PythonArgInvalid SAS Micro Analytic Service DS2 Python
invalid argument value.

-1958743933 MASDS2PythonThreadError Illegal operation: DS2 callback into SAS
Micro Analytic Service received an
unrecognized thread.

-1958743932 MASPythonCompileEx Exception thrown while initializing Python or
compiling Python script.

SAS Micro Analytic Service Return Codes 149

Return Code #define Symbol Message or Description

-1958743931 MASDS2InvalidMaxRecomp Invalid maximum DS2 recompile count given.
Setting to default value.

-1958743930 MASDBInvalidIntervalHigh Specified DBMS connection retry interval is
above the maximum. Setting to default value.

-1958743929 MASDBInvalidIntervalLow Specified DBMS connection retry interval is
below the minimum. Setting to default value.

-1958743928 MASDBInvalidMaxRetry Invalid setting for maximum DBMS
reconnection attempts. Setting to default value.

-1958743927 MASDBCreateConnErr SAS Micro Analytic Service failed to create a
connection.

-1958743926 MASDBCreateConn SAS Micro Analytic Service created a
connection.

-1958743925 MASGCCanBeDeleted Garbage collection is checking module context
for deletion pending.

-1958743924 MASRepoLockRemovePriv Locking program repository to remove internal
package.

-1958743923 MASRepoUnlockRemovePriv Released program repository lock after
removing internal package.

-1958743922 MASRepoLockRemoveRev Locking program repository to remove module
context.

-1958743921 MASRepoUnlockRemoveRev Released program repository lock, after
removing module context.

-1958743920 MASRepoLockCreate Creating a lock for user context.

-1958743919 MASRepoLockDestroy Destroying a lock for user context.

-1958743918 MASRepoLockPackageComp Locking program repository during
compilation of package.

-1958743917 MASRepoUnlockPackageComp Released program repository lock after
compilation of package.

-1958743916 MASRepoUnlockCompCrash Released program repository lock due to DS2
compiler crash while compiling package.

-1958743915 MASRepoLockPackageSave Locking program repository to save package
after successful compilation.

-1958743914 MASRepoUnlockPackageSave Released program repository after saving
package.

150 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958743913 MASRepoLockPackagePriv Locking program repository to save internal
package.

-1958743912 MASRepoUnlockPackagePriv Released program repository after saving
internal package.

-1958743911 MASPythonNotLoaded Python extension not loaded. Python must be
installed in order to execute Python within
SAS Micro Analytic Service.

-1958743910 MASTKTSConnHndlFail Failed to create a table services connection
handle.

-1958743909 MASDBDisconnected SAS Micro Analytic Service disconnected
database from user context.

-1958743908 MASDBDisconnect SAS Micro Analytic Service encountered a
failure when attempting to disconnect the
database from the user context.

-1958743907 MASPercentS Internal error. Check the SAS Micro Analytic
Service Core log.

-1958743906 MASPythonCompileErr Error compiling the Python script for the
module.

-1958743905 MASDS2MissingArray A missing array argument is not supported
with DS2.

-1958743904 MASDS2EmptyArray An empty array argument is not supported
with DS2.

-1958743903 MASDS2ArrayReplaced Missing or insufficiently sized DS2 array
argument has been replaced with new array of
size %d.

-1958743902 MASDS2OutputTransError Error %d when converting char string of
length %d to TKChar string.

-1958743901 MASDS2InputTransError Error %d when converting TKChar string of
length %d to char string.

-1958743900 MASDS2PythonOutputTrans Error %d when converting Python char string
of length %d to TKChar string.

-1958743899 MASDS2PythonInputTrans Error %d when converting TKChar string of
length %d to char string for Python.

-1958743898 MASDBCr8ConnNoSub SAS Micro Analytic Service created a default
data source connection.

-1958743897 MASDBCr8ConnErrNoSub SAS Micro Analytic Service failed to create a
default data source connection.

SAS Micro Analytic Service Return Codes 151

Return Code #define Symbol Message or Description

1958743896 MASDBDisconnNoSub SAS Micro Analytic Service disconnected
from the default data source.

1958743895 MASDBDisconnErrNoSub SAS Micro Analytic Service encountered a
failure when attempting to disconnect from the
default data source.

152 Appendix 1 • SAS Micro Analytic Service Return Codes

Appendix 2

REST Server Error Messages
and Resolutions

The following table contains SAS Micro Analytic Service REST server error messages,
as well as possible causes and remedies.

Error Messages Cause and Remedy

Another operation on this module is
going on.

Wait a while, find out what has changed on the
module, and then decide whether it is appropriate to
retry your operation. If the problem persists even
though you are sure there is not another simultaneous
operation on the module, restart the server to refresh
its state.

API version 2 is not supported. The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

Bad Request encountered. Check the
format and syntax of the source.

Check the SAS Micro Analytic Service log file for
additional details as there can be multiple causes for
this error. If the cause is not that an incorrect source
was used when updating a module, a restart of the
server might be necessary to refresh its state. It might
also be necessary to reduce the level of concurrent
module update.

Code is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors that are identified.

Data type does not match the signature. Correct the input parameters according to the step's
input signature.

Error creating object for HTTP
response body.

If you submitted a POST, PUT, or DELETE
operation to change the module collection, use the
appropriate GET operation to check whether the
operation produced the effect that is desired. If the
desired effect is not produced, check the SAS Micro
Analytic Service log for error messages. (Errors are
logged as well as returned through the response
body.) If you submitted a POST operation to validate
the inputs of a step, execute a step or another GET
operation. It is safe to repeat the operation.

153

Error Messages Cause and Remedy

Information about the steps in this
public module is not available.

The cause of this error is too many simultaneous
module creations or updates. Reduce the amount of
concurrency.

Information about the steps in this
public module is not available because
module was compiled successfully
before but failed recompilation this
time.

The likely cause is that a dependent module is no
longer available to recompile a module after the
server restarts. Create the dependent module again.

Invalid source code. The cause is either one or more compilation errors.

Label cannot be used together with
start and limit.

Use either the label parameter or start and limit
parameters in the GET operation on the modules or
steps collections.

Metadata update failure. Restart the server to go through the metadata
correction procedure. Follow this with a GET
operation on the module affected to see whether the
module was created, updated, or deleted properly.

Module compilation failed with errors. The cause is one or more compilation errors during
re-compilation of a previously compiled module.
This might be due to too many simultaneous module
creations or updates. Reduce the amount of
concurrency. A restart of the server might be
necessary to go through the metadata correction
procedure.

Module context was not created. There can be multiple causes. A restart of the server
might be necessary to refresh its state.

Module name cannot be changed from
a PUT operation.

Use the same module name as the previous revision.

Module name cannot be determined. If the source is DS2 code, the package does not have
a name. Add a name to the package.

Module name XYZ is already taken. Delete the existing module using that name, or
choose a different module name when creating a
module. If the error persists, this might be a symptom
of incorrect metadata. A restart of the server might be
necessary to go through the metadata correction
procedure.

Module named XYZ already exists. Delete the existing module using that name, or
choose a different module name when creating a
module. If the problem persists, restart the server to
clear its state.

Module type XYZ is not valid. Valid
value is text/vnd.sas.source.ds2.

The cause is one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

154 Appendix 2 • REST Server Error Messages and Resolutions

Error Messages Cause and Remedy

No module with the module ID XYZ
exists.

Verify that the module ID is correct. If the module ID
is correct, the module might have been deleted. In
that case, create the module again and use the new ID
that is assigned to it.

In the case of a clustered deployment, the module
was never replicated to all peers and the load
balancer sends your request to one of those peer
nodes. Check the SAS Micro Analytic Service log to
confirm that. A restart is necessary to go through the
metadata correction procedure.

Private module named XYZ was not
removed successfully.

This error can be left uncorrected, if XYZ does not
pose a problem in the other operations of the server.
Otherwise, restart the server to clear its state.

Scope is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors identified.

Scope XYZ is not valid. Valid scopes
are public and private.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

Server encountered an internal error. There can be multiple causes. Check the SAS Micro
Analytic Service log for error messages. If the cause
is compilation related, and the errors are on a
dependent module, make sure that the dependent
module exists. It can also be caused by too many
simultaneous module creations or updates. In that
case, reduce the amount of simultaneous module
creations or updates. For other causes, a restart of the
server might be necessary to refresh its state.

Server is not initialized properly. There can be multiple causes. Check the SAS Micro
Analytic Service log for more information. Correct
the component that prevents the service from
initializing properly.

Step ID XYZ failed to execute. See “SAS Micro Analytic Service Return Codes” on
page 143 for the meaning of the result code. Also,
verify that the module ID is correct and verify the
existence of the module by doing a GET operation on
the module.

Step ID XYZ is not visible. The step is a member of a private module and its
information is hidden from you. Furthermore, you
cannot execute this step. If you need to see the
signature of this step, you can get the source of the
module as an alternative.

The XYZ member is repeated. The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

REST Server Error Messages and Resolutions 155

Error Messages Cause and Remedy

The XYZ property expects a string
value but TYPE value is provided.

The value of a property should be a string. Change
the value to a string by quoting the value in double
quotation marks.

The XYZ property is not supported. The only property that is allowed in the API is
connectionString. Remove the property definition
from the array.

There is more than one DS2 package in
the code.

Provide only one DS2 package in a module
definition.

This node is out of sync with the rest of
the cluster.

The likely cause is network delay in replicating data
from one node to its cluster peers. Another operation
on the module on the node that has the up-to-date
metadata might cause a correction of the module on
the peer nodes. If that does not work, restart the
cluster node to go through the metadata correction
procedure.

Total number of input parameters
(number) does not match the number
of parameters required by input
signature (number).

Correct the input parameters according to the step's
input signature.

Type is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors identified.

User context was not created. There can be multiple causes. A restart of the server
might be necessary to refresh its state.

Version is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

156 Appendix 2 • REST Server Error Messages and Resolutions

Appendix 3

Table Service Driver Reference

DB2 Driver Reference . 158
Understanding the Table Services Driver for DB2 . 158
Data Service Connection Options for DB2 . 159
DB2 Wire Protocol Driver Usage Notes . 162

FedSQL Driver Reference . 163
Overview . 163
Connection Options . 163

Greenplum Driver Reference . 166
Understanding the Table Services Driver for Greenplum 166
Data Service Connection Options for Greenplum . 166
Greenplum Wire Protocol Driver Usage Notes . 170

Netezza Driver Reference . 170
Understanding the Table Services Driver for Netezza . 170
Data Service Connection Options for Netezza . 171

ODBC Driver Reference . 175
About ODBC . 175
Understanding the Table Services Driver for ODBC . 175
Data Service Connection Options for ODBC . 175
Wire Protocol Driver Usage Notes . 181

Oracle Reference . 182
Understanding the Table Services Driver for Oracle . 182
Data Service Connection Options for Oracle . 182
Oracle Wire Protocol Driver Usage Notes . 187

PostgreSQL Driver Reference . 187
Understanding the SAS Federation Server Driver for PostgreSQL 187
Data Service Connection Options for PostgreSQL . 188

SAS Data Set Reference . 192
Overview . 192
Understanding the Driver for Base SAS . 192
Data Service Connection Options for SAS Data Sets . 192

Teradata Reference . 196
Understanding the Table Services Driver for Teradata . 196
Data Service Connection Options for Teradata . 196

157

DB2 Driver Reference

Understanding the Table Services Driver for DB2
The table services driver for DB2 (driver for DB2) enables table services to read and
update legacy DB2 tables. In addition, the driver creates DB2 tables that can be accessed
by both table services and the DB2 database management system (DBMS).

The driver for DB2 supports most of the FedSQL functionality. The driver also enables
an application to submit native DB2 SQL statements.

The table services driver for DB2 is a remote driver, which means that it connects to a
server process in order to access data. The process might be running on the same
machine as the table services driver, or it might be running on another machine in the
network.

The table services driver for DB2 uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables and, if necessary, specify the DB2 version that you have installed.
Before setting the environment variables, as shown in the examples below, you must also
set the following environment variables:

• The INSTHOME environment variable must be set to your DB2 home directory.

• The DB2DIR environment variable should also be set to the value of INSTHOME.

• The DB2INSTANCE environment variable should be set to the DB2 instance that
was configured by the administrator.

AIX
Bourne Shell
$ LIBPATH=$INSTHOME/lib:$LIBPATH
$ export LIBPATH
C Shell
$ setenv LIBPATH $INSTHOME/lib:$LIBPATH
HP-UX and HP-UX for the Itanium Processor
 Family Architecture
Bourne Shell
$ SHLIB_PATH=$INSTHOME/lib:$SHLIB_PATH
$ export SHLIB_PATH
C Shell
$ setenv SHLIB_PATH $INSTHOME/lib:$SHLIB_PATH
Linux for Intel Architecture, Linux for x64, Solaris,
 and Solaris for x64
Bourne Shell
$LD_LIBRARY_PATH=$INSTHOME/lib:$LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH
C Shell
$ setenv LD_LIBRARY_PATH $INSTHOME/lib:$LD_LIBRARY_PATH

158 Appendix 3 • Table Service Driver Reference

Data Service Connection Options for DB2

Overview
The data service connection arguments for DB2 include connection options and
advanced options.

Note: When performing connections through DSNs or connection strings, the FedSQL
language processor automatically quotes SQL identifiers that do not meet the regular
naming convention as defined in SAS FedSQL Reference Guide.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options. Here is an example:

driver=sql;conopts=(driver=db2;uid=myuid;
pwd=Blue31;conopts=(DSN=MYDSN);CATALOG=TSSQL)

The table services driver for DB2 supports the following connection options for DB2
data sources.

Option Description

CATALOG CATALOG=catalog-identifer;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=DB2). You must specify a catalog. For the DB2
database, this is a logical catalog name to use as an SQL catalog identifier.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

DATABASE|DB DATABASE=database-specification;

Specifies the name of the DB2 database (for example, database=sample, DB=sample).

Note: You must specify a database name.

DRIVER DRIVER=DB2;

Identifies the DB2 data source to which you want to connect.

Note: You must specify the driver.

DB2 Driver Reference 159

Advanced Connection Options
The table services driver for DB2 supports the following advanced connection options
for DB2 data sources.

Option Description

CLIENT_ENCODIN
G

CLIENT_ENCODING=encoding-value

Used to specify the encoding of the DB2CODEPAGE to the DB2 driver. When using this
option, you must also set the DB2CODEPAGE environment variable on the client.

When the encoding of the DB2 client layer (stored in DBCODEPAGE) is different from the
encoding value of the DB2 operating system value, the DB2 client layer attempts to convert
incoming data to the DB2 encoding value that is stored in DB2CODEPAGE. To prevent the
client layer from converting data incorrectly, you must first determine the correct value for
DB2CODEPAGE and then set the CLIENT_ENCODING= option to match the corresponding
encoding value in DB2CODEPAGE.

For example, suppose you are storing Japanese characters in a DB2 database, and the client
machine where the DB2 driver is executing is a Windows machine that is running CP1252
encoding. When the application tries to extract the data into the table services driver, the DB2
client layer attempts to convert these Japanese characters into Latin1 representation, which does
not contain Japanese characters. As a result, a garbage character appears in order to indicate a
failure in transcoding.

To resolve this situation, you must first set the DB2CODEPAGE environment variable value to
1208 (the IBM code page value that matches UTF-8 encoding). That enables you to specify that
the DB2 client layer send the data to the application in UTF-8 instead of converting it into
Latin1. In addition, you must specify the corresponding encoding value of DB2CODEPAGE
because the table services driver for DB2 cannot derive this information from a DB2 session.
For this particular Windows case, set the CLIENT_ENCODING= option to the UTF-8 encoding
in order to match the DB2CODEPAGE value (1208) and also to specify the DB2CODEPAGE
value to the DB2 driver.

However, changing the value of DB2CODEPAGE affects all applications that run on that
machine. You should reset the value to the usual DB2CODEPAGE value, which was derived
when the database was created.

Note: Setting the DB2CODEPAGE value or the CLIENT_ENCODING= value incorrectly can
cause unpredictable results. You should set these values only when a situation such as the
example above occurs.

Note: You can specify any valid encoding value for CLIENT_ENCODING=option.

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure that all characters can be stored in
the new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

160 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

• ALL Activates all trace levels.

• DRIVER Specifies that driver-specific information be sent to the trace log.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DB2 Driver Reference 161

Option Description

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

Default: The trace log is overwritten with no thread identification or time stamp.

PASSWORD PWD=password

Specifies the password for DB2.

UID UID=user-id;

Specifies the DB2 login user ID.

DB2 Wire Protocol Driver Usage Notes
There are a number of third-party wire protocol ODBC drivers that communicate
directly with a database server, without having to communicate through a client library.
When you configure the ODBC drivers on Windows or UNIX, you can set certain
options. SAS runs best when these options are selected. Some, but not all, are selected
by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

When configuring an ODBC DSN using the DB2 Wire Protocol driver, set the following
advanced option:

162 Appendix 3 • Table Service Driver Reference

• Application Using Threads

FedSQL Driver Reference

Overview
The FedSQL language driver supports the FedSQL dialect, as documented in SAS
FedSQL Language Reference Guide. When loaded, the FedSQL driver parses SQL
requests, and then sends the parsed query to the appropriate data source driver to
determine whether the functionality can be handled by the data service. The FedSQL
driver includes an SQL processor that supports the FedSQL dialect. The main emphasis
of the FedSQL driver is to support federation of data sources. For example, if an SQL
submission is requesting data from DB2 to be joined with data from Oracle, the SQL
processor requests the data from the data sources and then performs the join. The
FedSQL driver supports the FedSQL dialect regardless of the data source it comes from.
For example, if the SQL request is from a single data source that does not support a
particular SQL function, the FedSQL processor guarantees implementation of the
request.

Connection Options
• CONOPTS=((connection string 1);(connection string 2); ... (connection string <n>))

- Specifies one or more data source connection strings. For example, the following
illustrates a federated connection string including Oracle, Teradata, Netezza, and
Base SAS data sources:

driver=sql;conopts=((driver=oracle;catalog=acat;uid=myuid;
pwd=myPass9;path=oraclev11.abc.123.com:1521/ORA11G);
(driver=teradata;catalog=bcat;uid=model;
pwd='{sas002}C5DDFFF91B5D31DFFFCE9FFF';
server=terasoar;database=model);(driver=netezza;uid=myuid;
pwd=myPass2;server=mysrvr;database=testdb;catalog=(ccat={TEST}));
(driver=base;catalog=dcat;schema=(name=dblib;primarypath=/u/mypath/mydir)))

• DEFAULT_CATALOG=catalog-name - Used to specify the name of the catalog to
set as the current catalog upon connecting. This option is useful for SQL Server
connections and federated connections.

• DEFAULT_ATTR=(attr=value;...) - Used to specify connection handle or statement
handle attributes supported for initial connect-time configuration., where
attr=value corresponds to any of the following options:

FedSQL Driver Reference 163

SQL_CURSORS=n

FedSQL connection handle option. This option controls the driver’s use of client-side, result
set cursors. The possible values are 0, 1, or 2.

• A value of 0 causes the driver to use client-side static cursor emulation if a scrollable
cursor is requested but the database server cannot provide one.

• A value of 1 causes the driver to always use client-side static cursor emulation if a
scrollable cursor is requested. The database server’s native cursor is never used.

• A value of 2 (default) causes the driver to never use client-side static cursor emulation if a
scrollable cursor is requested. The database server’s native cursor is used if available,
otherwise the cursor is forward only.

DEFAULT_ATTR=(SQL_CURSORS=2)

SQL_AC_BEHAVIOR=n

FedSQL connection handle option. Specifies whether FedSQL should use transactions when
processing complex operations (for example, “CREATE TABLE xxx AS SELECT
yyy FROM zzz” or a multi-row delete statement that requires multiple operations to delete
the underlying rows). Possible values are 0 (default), 1, and 2.

• A value of 0 (default) means that no transactions are attempted under-the-covers and
operations such as emulated UPDATE, DELETE, or INSERT are not guaranteed to be
atomic.

• A value of 1 means that FedSQL tries to use transactions to better support the correct
behavior when AUTOCOMMIT is set to ON (where individual operations like UPDATE,
DELETE, and INSERT should be atomic).

• A value of 2 means that transactions are required. This option fails if the underlying
drivers do not support transactions.

DEFAULT_ATTR=(SQL_AC_BEHAVIOR=0)

SQL_MAX_COL_SIZE=n

FedSQL statement handle option. Enables a user to specify the size of the varchar or
varbinary that is used for potentially truncated long data when direct bind is not possible.

• The default value is 32767.

• The limit for this size is 1 MG. If the value exceeds 1 MG, FedSQL resets the value and
returns an Option value changed warning.

DEFAULT_ATTR=(SQL_MAX_COL_SIZE=1048576)

SQL_PUSHDOWN=n

FedSQL statement handle option. This option tells FedSQL if and when it should try to push
down SQL to the underlying driver. The values are 8, 2, or 0 (default).

• A value of 8: (PLAN_FORCE_PUSHDOWN_SQL) - Complete statement pushdown is
required. If that is not possible, the INSERT, UPDATE, DELETE, or CREATE TABLE AS
statement fails.

• A value of 2: (PLAN_DISABLE_PUSHDOWN_SQL) - Specifies that the INSERT,
UPDATE, DELETE, or CREATE TABLE AS statement not be pushed down to the
underlying driver.

• A value of 0 (default): Specifies that the FedSQL processor determine whether the
INSERT, UPDATE, DELETE, or CREATE TABLE AS statement should be pushed down
to the underlying driver.

DEFAULT_ATTR=(SQL_PUSHDOWN=0)

164 Appendix 3 • Table Service Driver Reference

SQL_STMT_MEM_LIMIT=n

FedSQL statement handle option. Used to control the amount of memory that is available to
FedSQL to answer SQL requests.

• (n) is treated as an integer and is specified in bytes.

• The following example allows 200 MB of memory:

DEFAULT_ATTR=(SQL_STMT_MEM_LIMIT=209715200)

SQL_TXN_EXCEPTIONS=n

FedSQL connection handle option. Supports dynamic connections regardless of the specified
transaction isolation. Possible values are 0 or 2 (default).

• Specify a value of 0 to disable support for dynamic connections.

• Specify a value of 2 to enable support for dynamic connections.

DEFAULT_ATTR=(SQL_TXN_EXCEPTIONS=2)

SQL_USE_EVP=n

FedSQL statement handle option. This option optimizes the driver for large result sets. The
possible values are 0 or 1 (default) and are used as follows:

• Specify 0 to turn optimization OFF.

• Specify 1 to enable optimization (ON).

DEFAULT_ATTR=(SQL_USE_EVP=0)

SQL_VDC_DISABLE=n

FedSQL statement handle option. This option is used to allow or disallow use of cached data
for a statement. The possible values are 0 (default) or 1 and are used as follows:

• Specify a value of 0 to enable cached data.

• Specify a value of 1 to disable cached data.

DEFAULT_ATTR=(SQL_VDC_DISABLE=1)

SQL_XCODE_WARN=n

FedSQL statement handle option. Used to warn when there is an error while transcoding data
during row input or output operations. Possible values are 0 (default), 1, or 2 and are used as
follows:

• Specify 0 to return an error if data cannot be transcoded.

• Specify 1 to return a warning if data cannot be transcoded.

• Specify 2 to ignore transcoding errors.

DEFAULT_ATTR=(SQL_XCODE_WARN=1)

FedSQL Driver Reference 165

Greenplum Driver Reference

Understanding the Table Services Driver for Greenplum
The table services driver (driver for Greenplum) enables table services to read and
update Greenplum tables. In addition, the driver creates Greenplum tables that can be
accessed by both table services and Greenplum.

The driver for Greenplum supports most of the FedSQL functionality. The driver also
enables an application to submit native Greenplum SQL statements.

The table services driver for Greenplum is a remote driver, which means that it connects
to a server process in order to access data. The process might be running on the same
machine as the table services, or it might be running on another machine in the network.

The table services driver for Greenplum uses shared libraries that are referenced as
shared objects in UNIX. You must add the location of the shared libraries to one of the
system environment variables, and set any other environment variables required by the
Greenplum client libraries. The following Korn shell commands provide an example:

export ODBCHOME=/dbi/odbc/gpl94m3
export ODBCINI=/dbi/odbc/gpl94m3/odbc.ini
export ODBCINST=/dbi/odbc/gpl94m3/odbcinst.ini
export GPHOME_LOADERS=/dbi/greenplum/4.2.6/gpfdist
export GPLOAD_HOST=mynode.abc.123.com
export GPLOAD_HOME=/tmp
LD_LIBRARY_PATH=/dbi/odbc/gpl94m3/lib:${LD_LIBRARY_PATH}
LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export LD_LIBRARY_PATH

Data Service Connection Options for Greenplum

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=greenplum;uid=myuid;
pwd=MyPasswd;server=greenlight;port=5432;
database=sample;catalog=acat)

The driver for Greenplum supports the following connection options.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=gps_test). You must specify a catalog. For the
Greenplum database, this is a logical catalog name to use as an SQL catalog identifier.

Note: SAS Federation Server automatically quotes SQL identifiers that do not meet the regular
naming convention as defined in SAS FedSQL Reference Guide.

166 Appendix 3 • Table Service Driver Reference

Option Description

DATABASE DATABASE=database—name;

Identifies the database to which you want to connect, which resides on the server that was previously
specified by the SERVER option.

DRIVER DRIVER=GREENPLUM;

Specifies the data service for the Greenplum database to which you want to connect. You must
specify a driver.

DSN DSN=data_source_identifer;

Identifies the data source name to which you want to connect.

SERVER SERVER=server_name;

Identifies the name of the server where the Greenplum database resides.

Advanced Connection Options
The driver for Greenplum supports the following advanced connection options.

Option Description

ALLOW_UNQUOTE
D_NAMES

ALLOW_UNQUOTED_NAMES=NO|YES;

Specifies whether to enclose table and column names in quotation marks. Tables and columns
are quoted when this option is set to NO (default). If the option is set to YES, the driver will
not automatically add quotation marks to table and column names if they are not specified.
This allows Greenplum tables and columns to be created in the default lowercase.

CLIENT_ENCODING CLIENT_ENCODING=cei;

Specifies an encoding, different from the default, to use on the client.

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or
scale. When character encodings are changed, the new column size is recalculated to ensure
all characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is
chosen, even if it could potentially result in a loss of precision or scale. When character
encodings are changed, the new column size is recalculated to ensure that all characters can
be stored in the new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for
the new encoding is the same as the original encoding. This option can be used to avoid
column size creep. However, the resulting column might be too large or too small for the
target data.

Greenplum Driver Reference 167

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side
static cursor emulation if a scrollable cursor is
requested. The database server’s native cursor is used if
available. Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be
used for debugging purposes. The SAS Federation Server driver writes a record of each
command that is sent to the trace log based on the specified tracing level, which determines the
type of tracing information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates
tracing information for API calls and SQL statements.

168 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOPT
IONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the
file are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

MAX_BINARY_LEN MAX_BINARY_LEN=value;

Specifies a value to limit the length of long binary fields (LONG VARBINARY). As opposed
to other databases, Greenplum does not have a size limit for long binary fields.

MAX_CHAR_LEN MAX_CHAR_LEN=value;

Specifies a value to limit the length of character fields (CHAR and VARCHAR). As opposed
to other databases, Greenplum does not have a size limit for character fields.

MAX_TEXT_LEN MAX_TEXT_LEN=value;

Specifies a value to limit the length of long character fields (LONG VARCHAR). As opposed
to other databases, Greenplum does not have a size limit for long character fields.

NUM BYTES PER
CHAR

NUMBYTESPERCHAR=value;

Specifies the default number of bytes per character.

PASSWORD PASSWORD=password;

Specifies a password for the ID passed through the USER= option. The alias is PWD=.

Note: You must specify the PASSWORD= option.

SCHEMA SCHEMA=value;

Specifies the default schema for the connection. If the option is not specified, the schema (or
list of schemas) is determined based on the value of the schema search path defined on the
database server.

STRIP_BLANKS STRIP_BLANKS=value;

Specifies whether to strip blanks from character fields.

Greenplum Driver Reference 169

Option Description

USER USER=user-id;

Specifies a Greenplum user ID. If the ID contains blanks or national characters, enclose it in
quotation marks. The alias is UID=.

Note: You must specify the USER= option.

Greenplum Wire Protocol Driver Usage Notes
There are a number of wire protocol ODBC drivers that communicate directly with a
database server, without having to communicate through a client library. When you
configure the ODBC drivers on Windows or UNIX, you can set certain options. SAS
runs best when these options are selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

When configuring an ODBC DSN using the Greenplum Wire Protocol driver, select the
following advanced options:

• Application Using Threads

• Enable SQLDescribeParam

• Fetch TSFS as Time

• Fetch TSWTZ as Timestamp

Netezza Driver Reference

Understanding the Table Services Driver for Netezza
The table services driver for Netezza (driver for Netezza) enables table services to read
and update legacy Netezza tables. In addition, the driver creates Netezza tables that can
be accessed by both table services and Netezza.

The driver for Netezza supports most of the FedSQL functionality. The driver also
enables an application to submit native Netezza SQL statements.

The driver for Netezza is a remote driver, which means that it connects to a server
process in order to access data. The process might run on the same machine as table
services, or it might run on another machine in the network.

170 Appendix 3 • Table Service Driver Reference

The table services driver for Netezza uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables required by the Netezza
client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/dbi/netezza/7.0.4/lib64:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export ODBCINI=/env/netezza/odbc.ini
export NZ_ODBC_INI_PATH=/env/netezza

Data Service Connection Options for Netezza

Overview
To access data that is hosted on table services, a client must submit a connection string,
which defines how to connect to the data. The data service connection arguments for
Netezza include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=netezza;uid=myid2;
pwd=mypwd2;server=mysrvr;database=mydb;
catalog=(bcat={TEST}))

The driver for Netezza supports the following connection options.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid.

Note: Table services automatically quotes SQL identifiers that do not meet the regular naming
convention as defined in SAS FedSQL Reference Guide.

DATABASE DATABASE=database—name;

Identifies the database to which you want to connect, which resides on the server previously
specified through the SERVER option.

DRIVER DRIVER=NETEZZA;

Specifies the data service for the Netezza database to which you want to connect.

Note: You must specify the driver.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These options,
combined with the ODBC_DSN option, must specify a complete connection string to the data
source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option, do not
use the ODBC_DSN= connection option. However, you can specify the ODBC database-specific
connection options by using CONOPTS=. Then you can specify an ODBC DSN that contains other
connection information by using the ODBC_DSN= connection option.

Netezza Driver Reference 171

Option Description

DSN DSN=data_source_identifer;

Identifies the data source name to which you want to connect.

SERVER SERVER=server_name;

Identifies the name of the server where the Netezza database resides.

PORT PORT=port_number

Identifies the listen port of the server where the Netezza database resides.

Advanced Connection Options
The driver for Netezza supports the following advanced connection options.

Option Description

CLIENT_ENCODIN
G

CLIENT_ENCODING=cei

Used to specify encoding for the client.

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure that all characters can be stored in
the new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

172 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

Netezza Driver Reference 173

Option Description

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

USER USER=“user-id”;

Specifies a Netezza user ID. If the ID contains blanks or national characters, enclose it in
quotation marks. Alias: UID.

Note: You must specify the USER option.

PASSWORD PASSWORD=password;

Specifies a password for the ID passed through the USER= option. Alias: PWD.

Note: You must specify the PASSWORD option with USER.

STRIP_BLANKS STRIP_BLANKS=YES|NO;

Specifies whether to strip blanks from character fields.

READONLY READONLY=YES|NO;

Specifies whether to connect to the Netezza database in Read-Only mode. The default is NO.
Alias: READ_ONLY

SHOWSYSTEMTAB
LES

SHOWSYSTEMTABLES=YES|NO;

Specifies whether tables are included in the available table list. If set to YES or TRUE, system
tables are included in the available table list. The default setting is NO. Alias: SST

NUMBERBYTESPE
RCHARACTER

NUMBYTESPERCHAR=value;

Specifies the default number of bytes per character.

174 Appendix 3 • Table Service Driver Reference

ODBC Driver Reference

About ODBC
This section provides functionality details and guidelines for the open database
connectivity (ODBC) databases that are supported by the table services driver for ODBC
(driver for ODBC).

ODBC standards provide a common interface to a variety of databases, including
dBASE, Microsoft Access, Oracle, Paradox, and Microsoft SQL Server databases.
Specifically, ODBC standards define APIs that enable an application to access a
database if both the application and the database conform to the specification. ODBC
also provides a mechanism to enable dynamic selection of a database that an application
is accessing. As a result, users can select databases other than those that are specified by
the application developer.

Understanding the Table Services Driver for ODBC
The driver for ODBC enables table services to read and update legacy ODBC database
tables. In addition, the driver creates tables that can be accessed by both table services
and an ODBC database.

The driver for ODBC supports most of the FedSQL functionality. The driver also
enables an application to submit native database-specific SQL statements.

The driver for ODBC is a remote driver, which means that it connects to a server process
in order to access data. The process might be running on the same machine as table
services, or it might be running on another machine in the network.

Data Service Connection Options for ODBC

Overview
To access data that is hosted on table services, a client must submit a connection string,
which defines how to connect to the data. The data service connection arguments for an
ODBC-compliant database include connection options and advanced connection options.

To configure ODBC data sources, you might have to edit the .odbc.ini file in your home
directory. Some ODBC driver vendors allow system administrators to maintain a
centralized copy, by setting the environment variable ODBCINI. For specific
configuration information, see your vendor documentation. The table services driver for
ODBC uses shared libraries that are referenced as shared objects in UNIX. You must add
the location of the shared libraries to one of the system environment variables, so that
drivers for ODBC are loaded dynamically at run time. You must also set the
ODBCHOME environment variable to your ODBC home directory before setting the
environment variables, as shown in the following example.

export ODBCHOME=/dbi/odbc/dd7.1.4
 export ODBCINI=/ODBC/odbc_714_MASTER.ini
 LD_LIBRARY_PATH=/dbi/odbc/dd7.1.4/lib:${LD_LIBRARY_PATH}
 export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}

ODBC Driver Reference 175

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=odbc;
catalog=acat;conopts=(dsn=ODBCPgresDD;pwd=Tester2))

The driver for ODBC supports the following connection options.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. For
databases that do not support native catalogs, any identifier is valid (for example,
catalog=myodbc). For databases like Microsoft SQL Server that do support native catalogs,
CATALOG= is not required. The connection defaults to CATALOG=* unless you specify a
logical name for the catalog and map it to the native catalog name in the database. For example,
to map the logical catalog mycat to the native catalog named newusers, use the following
command: catalog=(mycat=newusers);. Catalog name maps can be used only with
FedSQL. They are not valid with native SQL.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These
options, combined with the ODBC_DSN option, must specify a complete connection string to the
data source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option,
do not use the ODBC_DSN= connection option. However, you can specify the ODBC database-
specific connection options by using CONOPTS=. Then you can specify an ODBC DSN that
contains other connection information by using the ODBC_DSN= connection option.

Here is an example string using the CONOPTS option:

driver=sql;conopts=((driver=odbc;catalog=acat;
conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid;pwd='123pass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

DRIVER DRIVER=ODBC;

Calls the table services driver for ODBC. This specifies that the data service to which you want
to connect must be an ODBC-compliant database.

Note: DRIVER is a required option. You must specify the driver.

ODBC_DSN ODBC_DSN=odbc dsn name

Specifies a valid ODBC-compliant database DSN that contains connection information for
connecting to the ODBC-compliant database. You can use the CONOPTS= option in addition to
ODBC_DSN= option to specify database-specific connection options not provided by table
services. Do not specify the ODBC DSN in both CONOPTS= and ODBC_DSN=.

176 Appendix 3 • Table Service Driver Reference

Advanced Connection Options
The driver for ODBC supports the following advanced connection options for an
ODBC-compliant database.

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

ENABLE_MARS ENABLE_MARS= NO|YES

Enables or disables the use of multiple active result sets (MARS) on Microsoft SQL Server.
FedSQL cannot permit transactions on top of Microsoft SQL Server because Microsoft SQL
Server allows only one cursor per transaction. Set this option to YES so that FedSQL can allow
transactions under a given Microsoft SQL Server connection.

ODBC Driver Reference 177

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

178 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_CURSO
R_TYPE

DEFAULT_CURSOR_TYPE=FORWARD_ONLY | KEYSET_DRIVEN | DYNAMIC |
STATIC;

Specifies a valid default cursor type for new statements. These options are valid:

FORWARD_ONLY
Specifies a non-scrollable cursor that moves only forward through the result set. Forward-only
cursors are dynamic in that all changes are detected as the current row is processed. If an
application does not require scrolling, the forward-only cursor retrieves data quickly, with the
least amount of overhead processing.

KEYSET_DRIVEN
Specifies a scrollable cursor that detects changes that are made to the values of rows in the
result set but that does not always detect changes to deletion of rows and changes to the order
of rows in the result set. A keyset-driven cursor is based on row keys, which are used to
determine the order and set of rows that are included in the result set. As the cursor scrolls the
result set, it uses the keys to retrieve the most recent values in the table.

It is sometimes helpful to have a cursor that can detect changes in the rows of a result set. A
keyset-driven cursor uses a row identifier rather than caching the entire row into memory. It
therefore uses much less disk space than other row caching mechanisms. Deleted rows can be
detected when a SELECT statement that references the bookmark, row ID, or key column
values fails to return a row.

DYNAMIC
Specifies a scrollable cursor that detects changes that are made to the rows in the result set.
All INSERT, UPDATE, and DELETE statements that are made by all users are visible
through the cursor. The dynamic cursor is good for an application that must detect all
concurrent updates that are made by other users.

STATIC
Specifies a scrollable cursor that displays the result set as it existed when the cursor was first
opened. The static cursor provides forward and backward scrolling. If the application does not
need to detect changes but requires scrolling, the static cursor is a good choice.

Note: The application can still override this value, but if the application does not explicitly set a
cursor type, this value will be in effect

ODBC Driver Reference 179

Option Description

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE='filename';

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed relative
to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

USER USER=user-ID;

Specifies the user ID for logging on to the ODBC-compliant database, such as Microsoft SQL
Server, with a user ID that differs from the default ID.

Note: The alias is UID=.

180 Appendix 3 • Table Service Driver Reference

Option Description

PASSWORD PASSWORD=password;

Specifies the password that corresponds to the user ID in the database.

Note: The alias is PWD=.

Here are example connection strings that use the table services driver for ODBC:

driver=sql;conopts=((driver=odbc;catalog=acat;
conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid;pwd='123pass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

This connection string specifies catalog name maps to access multiple catalogs on
Microsoft SQL Server:

driver=odbc; uid=jfox; pw=mypw; odbc_dsn=mySQLdsn;
 catalog=(cat1=mycat; cat2=testcat; cat3=users;

Wire Protocol Driver Usage Notes

Overview
There are a number of wire protocol ODBC drivers that communicate directly with a
database server, without having to communicate through a client library. When you
configure the ODBC drivers on Windows or UNIX, you can set certain options. SAS
runs best when these options are selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator window.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

SQL Server and SQL Server Legacy
Configure the following Advanced options for the SQL Server Wire Protocol driver and
the SQL Server Legacy Wire Protocol driver:

• Application Using Threads

• Enable Quoted Identifiers

• Fetch TWFS as Time

• Fetch TSWTZ as Timestamp

Note:

1. Significant performance improvements have been realized when using the SQL
Server Legacy Wire Protocol driver, as compared to the SQL Server Wire
Protocol driver.

ODBC Driver Reference 181

2. The SQL Server Legacy Wire Protocol driver does not support transactions when
it is used with FedSQL enabled because the driver allows only a single statement
per connection while FedSQL requires multiple statements per connection when
using transactions.

Oracle Reference

Understanding the Table Services Driver for Oracle
The table services driver for Oracle enables table services to read and update legacy
Oracle tables. In addition, the driver creates Oracle tables that can be accessed by both
table services and Oracle.

The driver for Oracle supports most of the FedSQL functionality. The driver also enables
an application to submit native Oracle SQL statements.

The driver for Oracle is a remote driver, which means that it connects to a server process
in order to access data. The process might be running on the same machine as the table
services, or it might be running on another machine in the network.

The table services driver for Oracle uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables required by the Oracle
client libraries. The following Bourne shell commands provide an example:

ORAENV_ASK=NO; export ORAENV_ASK
ORACLE_HOME=/dbi/oracle/11g; export ORACLE_HOME
SASORA=V9; export SASORA
PATH=$ORACLE_HOME/bin:/bin:/usr/bin:/usr/ccs/
 bin:/opt/bin:$PATH; export PATH
TMPDIR=/var/tmp; export TMPDIR
LD_LIBRARY_PATH=/usr/openwin/lib:$ORACLE_HOME/
 lib:$LD_LIBRARY_PATH; export LD_LIBRARY_PATH
TWO_TASK=oraclev11; export TWO_TASK

Data Service Connection Options for Oracle

Overview
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for an Oracle server include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options. Here is an example:

driver=sql;conopts=(driver=oracle;
catalog=acat;uid=myuid;pwd=myPass9;
path=oraclev11.abc.123.com:1521/ORA11G)

182 Appendix 3 • Table Service Driver Reference

The driver for Oracle supports the following connection options.

Option Description

CATALOG CATALOG=catalog—identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid such as catalog=oracle_test. You must specify a catalog. For the
Oracle database, this is a logical catalog name to use as an SQL catalog identifier.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

DRIVER DRIVER=ORACLE;

Identifies the data service to which you want to connect, which is an Oracle database.

Note: You must specify the driver.

PATH PATH=database-specification;

Specifies the Oracle connect identifier. A connect identifier can be a net service name, a database
service name, or a net service alias.

UID UID=user-id;

Specifies an optional Oracle user ID. If the user ID contains blanks or national characters,
enclose it in quotation marks. If you omit an Oracle user ID and password, the default Oracle
user ID OPS$sysid is used, if it is enabled.

PWD PWD=password;

Specifies an optional Oracle database password that is associated with the Oracle user ID. PWD=
is always used with UID= and the associated password is case-sensitive. If you omit PWD=, the
password for the default Oracle user ID OPS$sysid is used, if it is active.

Advanced Connection Options
The driver for Oracle supports the following advanced connection options.

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure all characters can be stored in the new
encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

Oracle Reference 183

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL'

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

184 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed relative
to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

ORA_ENCODING ORA_ENCODING=UNICODE;

Specifies that the Oracle data be returned in Unicode to table services. UNICODE is the default
setting and is independent of the NLS_LANG environment variable setting.

ORNUMERIC ORANUMERIC=NO | YES

Specifies how numbers that are read from or inserted into the Oracle NUMBER column are
treated. This option defaults to YES so that a NUMBER column with precision or scale is
described as TKTS_NUMERIC. This option can be specified as both a connection option and a
table option. When specified as both a connection and table option, the table option value
overrides the connection option.

• NO Indicates that the numbers are treated as TKTS_DOUBLE values. They might not have
precision beyond 14 digits.

• YES Indicates that non-integer values with explicit precision are treated as TKTS_NUMERIC
values. This is the default setting.

USE_CACHED_CA
TALOG

USE_CACHED_CATALOG=YES | NO;

Specifies whether to use the cached catalog rather than compiling a new catalog on every run.
Setting this option to YES can improve the performance of the TKTSForeignKeys API. The
default setting is YES.

Note: Before you can use this option, you must complete the following steps:

1. Create a materialized view. See the example code in “Creating
a Materialized View (USE_CACHED_CATALOG)” on page
186.

2. Use the ALTER DSN statement to add the
USE_CACHED_CATALOG connection option.

Oracle Reference 185

Creating a Materialized View (USE_CACHED_CATALOG)
The following example shows you how to create a materialized view. Use this script if
USE_CACHED_CATALOG is set to YES above.

/*-----------------------SAS_CACHED_CATALOG.SQL--------------------------------*/
/* This script is used to create the materialized and the synonym needed to
 get the ForeignKey metadata. Work with your DBA to set this up.
 Materialized views can be complex and so thorough understanding will help us
 use them effectively. Especially deciding how to do the refreshes.
 Here we provide the simplest possible steps to create the required materialized
 view and the command to refresh it manually. The materialized view below can
 be created in any schema with any name. Feel free to add whatever REFRESH
 options suits your purpose. Note that you might need additional steps based
 on the REFRESH option setting. Here we provide the simplest possible way to
 do this. The PUBLIC synonym pointing to this Materialized view must be
 named "SAS_CACHED_FK_CATALOG_PSYN". This synonym must be visible to
 PUBLIC (or the set of users who will be needing Foreignkey metadata) so that
 it is accessible from any schema.
*/

Create materialized view SAS_CACHED_FK_CATALOG_MATVIEW REFRESH ON DEMAND as SELECT
PKAC.OWNER as PKTABLE_SCHEM,
PKAC.TABLE_NAME as PKTABLE_NAME,
PKACC.COLUMN_NAME as PKCOLUMN_NAME,
FKAC.OWNER as FKTABLE_SCHEM,
FKAC.TABLE_NAME as FKTABLE_NAME,
FKACC.COLUMN_NAME as FKCOLUMN_NAME,
FKACC.POSITION as KEY_SEQ,
FKAC.CONSTRAINT_NAME as FK_NAME,
PKAC.CONSTRAINT_NAME as PK_NAME
from
sys.all_constraints PKAC, sys.all_constraints FKAC,
sys.all_cons_columns PKACC, sys.all_cons_columns FKACC

where

FKAC.r_constraint_name=PKAC.constraint_name and
FKAC.constraint_name=FKACC.constraint_name and
PKAC.constraint_name=PKACC.constraint_name and PKAC.constraint_type='P' and
FKAC.constraint_type='R' and FKAC.owner=FKACC.owner and PKAC.owner=PKACC.owner
and PKAC.table_name=PKACC.table_name and FKAC.table_name=FKACC.table_name and
FKACC.position = PKACC.position ;

/* The synonym name *must* be SAS_CACHED_FK_CATALOG_PUBLIC_SYNONYM */
create public synonym SAS_CACHED_FK_CATALOG_PSYN for SAS_CACHED_FK_CATALOG_MATVIEW;
grant all on SAS_CACHED_FK_CATALOG_PSYN to PUBLIC;

/*---------Manual REFRESH of the Materialized View----------------------------*/
/* Note there are several ways to do this, consult with your DBA.
 Here are a couple of ways:
*/
execute DBMS_MVIEW.REFRESH('SAS_CACHED_FK_CATALOG_MATVIEW');
execute DBMS_SNAPSHOT.REFRESH('SAS_CACHED_FK_CATALOG_MATVIEW', '?');

186 Appendix 3 • Table Service Driver Reference

Oracle Wire Protocol Driver Usage Notes
Wire protocol ODBC drivers communicate directly with a database server without
having to communicate through a client library. When you configure the ODBC drivers
on Windows or UNIX, you can set certain options. SAS runs best when these options are
selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when you are configuring data sources using the
ODBC Administrator tool. Values can also be set by editing the odbc.ini file
in which their data sources are defined.

Note: When you use a wire protocol driver to create an ODBC connection, the
following special considerations apply:

1. A DSN configuraton that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

2. Verify that the Enable Bulk Load option is active in the ODBC DSN for
databases that support this option. The Enable Bulk Load option is not enabled
by default in the newer wire protocol drivers. As a result, insert performance
suffers.

When configuring an ODBC DSN using the Oracle Wire Protocol driver, set the
following advanced options:

• Application Using Threads

• Enable SQLDescribeParam

• Describe at Prepare

• Enable N-CHAR Support

• Enable Scrollable Cursors

PostgreSQL Driver Reference

Understanding the SAS Federation Server Driver for PostgreSQL
The table services driver for PostgreSQL enables table services to read and update
legacy PostgreSQL tables. In addition, the driver creates PostgreSQL tables that can be
accessed by both the table services and the PostgreSQL data management system.

The driver for PostgreSQL supports most of the FedSQL functionality. The driver also
enables an application to submit native SQL statements.

The driver for PostgreSQL is a remote driver, which means that it connects to a server
process in order to access data. The process might be running on the same machine as
the table services, or it might be running on another machine in the network.

PostgreSQL Driver Reference 187

The table services driver for PostgreSQL uses shared libraries that are referenced as
shared objects in UNIX. You must add the location of the shared libraries to one of the
system environment variables, and set any other environment variables required by the
PostgreSQL client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/dbi/odbc/unixodbc2310/lib:/dbi/
 postgres/9.03.04/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export ODBCSYSINI=/dbi/postgres/9.03.04
export PATH=/dbi/postgres/9.03.04/bin:$PATH
unset LANG
export PGCLIENTENCODING=UTF8

Data Service Connection Options for PostgreSQL

Overview
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for PostgreSQL include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=postgres;catalog=acat;
uid=myuid;pwd='123pass';server=sv.abc.123.com;
port=5432;DB=mydb;schema=public)

The following connection options are supported for PostgreSQL data sources.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups schemas that are logically related
(for example, catalog=ptgtest).

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These options,
combined with the ODBC_DSN option, must specify a complete connection string to the data
source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option, do not
use the ODBC_DSN= connection option. However, you can specify the ODBC database-specific
connection options by using CONOPTS=. Then you can specify an ODBC DSN that contains other
connection information by using the ODBC_DSN= connection option.

Here is an example string using the CONOPTS option:

driver=sql;conopts=
((driver=odbc;catalog=acat;conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid2;pwd='123mypass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))"

188 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER DRIVER=postgres;

Specifies the data service for the PostgreSQL database to which you want to connect.

Note: DRIVER is a required option. You must specify a driver.

DATABASE DATABASE=database-name;

Specifies the name of the PostgreSQL database. Enclose the database name in single quotation
marks if it contains spaces or non-alphanumeric characters. You can also specify DATABASE= with
the DB= alias.database=sample, DB=sample.

DSN DSN=data-source-identifier;

Specifies the data source name to which you want to connect.

PWD PWD=password;

Specifies the password associated with the user ID. Enclose password in single quotation marks if it
contains spaces or non-alphanumeric characters. You can also specify PASSWORD= with the
PWD=, PASS=, and PW= aliases.

PORT PORT=port_number

Specifies the port number that is used to connect to the specified PostgreSQL Server. If you do not
specify a port, the default is 5432.

SERVER SERVER=‘server-name’

Specifies the server name or IP address of the PostgreSQL server to which you want to connect.
Enclose the server name in single quotation marks if the name contains spaces or non-alphanumeric
characters: SERVER=’server name’.

USER USER=user-name

Specifies the PostgreSQL user name (also called the user ID) that you use to connect to your
database. If the user name contains spaces or non-alphanumeric characters, you must enclose it in
quotation marks.

Advanced Options
The following advanced options are supported for PostgreSQL data sources.

Option Description

ALLOW_UNQUOTE
D_NAMES

ALLOW_UNQUOTED_NAMES=NO|YES

Specifies whether to enclose table and column names in quotation marks. Tables and columns
are quoted when this option is set at NO. If set to YES, the driver does not automatically add
quotation marks to table and column names if they are not specified. This allows PostgreSQL
tables and columns to be created in the default lowercase. The default option is NO.

CLIENT_ENCODIN
G

CLIENT_ENCODING=cei

Used to specify encoding for the client.

PostgreSQL Driver Reference 189

Option Description

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

190 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

MAX_BINARY_LEN MAX_BINARY_LEN=value;

Specifies a value, in bytes, that limits the length of long binary fields (LONG VARBINARY).
Unlike other databases, PostgreSQL does not have a size limit for long binary fields. The
default is 1048576.

PostgreSQL Driver Reference 191

Option Description

MAX_CHAR_LEN MAX_CHAR_LEN=value;

Specifies a value that limits the length of character fields (CHAR and VARCHAR). The default
is 2000.

MAX_TEXT_LEN MAX_TEXT_LEN=value;

Specifies a value that limits the length of long character fields (LONG VARCHAR). The default
is 409500.

SCHEMA SCHEMA=value;

Specifies the default schema for the connection. If not specified, the schema, or list of schemas,
is determined based on the value of the schema search path that is defined on the database
server.

STRIP_BLANKS STRIP_BLANKS=YES|NO;

Specifies whether to strip blanks from character fields.

SAS Data Set Reference

Overview
The SAS data set is a SASProprietary file format, which contains data values that are
organized as a table of rows (SAS observations) and columns (SAS variables). A
supported SAS data set uses the extension .sas7bdat.

Understanding the Driver for Base SAS
The table services driver for Base SAS is a SASProprietary driver that provides Read
and Update access to legacy SAS data sets. With the table services driver for Base, you
can create SAS data sets that can be accessed by both the legacy and the table services
data access services.

The driver supports much of the Base SAS functionality, such as SAS indexing and
general integrity constraints, as well as much of the Federated Query Language
(FedSQL) functionality.

The table services driver for Base SAS is an in-process driver, which means that it
accesses data in the same process that executes the data access services. All server
connections that are made with the table services driver for Base SAS use
LOCKTABLE=SHARED and PATH_BIND=ACCESS connection options.

Data Service Connection Options for SAS Data Sets

Connection Options
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for a SAS data set include connection options and advanced options. Here is an example:

192 Appendix 3 • Table Service Driver Reference

driver=sql;conopts=(driver=base;catalog=acat;
schema=(name=dblib;primarypath=/u/path/mydir))

The following connection options are supported for SAS data sets:

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. A
catalog name can be up to 32 characters long. You must specify a catalog.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

DRIVER DRIVER=BASE;

Identifies the data service to which you want to connect, which is a SAS data set.

Note: You must specify DRIVER=BASE to access a SAS data set.

(SCHEMA) NAME NAME=schema-identifier;

Specifies an arbitrary identifier for an SQL schema. Any identifier is valid (for example,
name=myfiles). The schema identifier is an alias for the physical location of the SAS library,
which is much like the Base SAS libref. A schema name must be a valid SAS name and can be
up to 32 characters long. You must specify a schema identifier.

PRIMARY PATH PRIMARYPATH=physical-location;

Specifies the physical location for the SAS library, which is a collection of one or more SAS
files. For example, in directory-based operating environments, a SAS library is a group of SAS
files that are stored in the same directory.

Note: You must specify a primary path.

SCHEMA
(ATTRIBUTES)

SCHEMA=(attributes);

Specifies schema attributes that are specific to a SAS data set. A schema is a data container
object that groups tables. The schema contains a name, which is unique within the catalog that
qualifies table names. For a SAS data set, a schema is similar to a SAS library, which is a
collection of tables with assigned attributes.

Advanced Options
Advanced driver options are additional options that are not required in order to connect
to the data source. They are used to establish connections to catalogs, data source names
(DSNs), and schemas. Although advanced options can also be used when connecting to a
data service, doing so causes the specified options to apply to all data service
connections.

SAS Data Set Reference 193

The following advanced options are supported for SAS data sets:

Option Description

ACCESS ACCESS=READONLY | TEMP;

• READONLY Assigns a read-only attribute to the schema. You cannot open a SAS data set to
update or write new information.

• TEMP specifies that the SAS data sets be treated as scratch files. That is, the system will not
consume CPU cycles to ensure that the files do not become corrupted.

T I P Use ACCESS=TEMP to save resources only when the data
is recoverable. If TEMP is specified, data in memory might not
be written to disk on a regular basis. This saves I/O, but could
cause a loss of data if there is a crash.

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

COMPRESS COMPRESS=NO | YES | CHAR | BINARY;

Controls the compression of rows in created SAS data sets.

• NO Specifies that the rows in a newly created SAS data set are uncompressed (fixed-length
records). This setting is the default.

• YES | CHAR Specifies that the rows in a newly created SAS data set are compressed
(variable-length records) by using RLE (Run Length Encoding). RLE compresses rows by
reducing repeated consecutive characters (including blanks) to two- or three-byte
representations.

T I P Use this compression algorithm for character data.

• BINARY Specifies that the rows in a newly created SAS data set are compressed (variable-
length records) by using RDC (Ross Data Compression). RDC combines run-length encoding
and sliding-window compression to compress the file.

T I P This method is highly effective for compressing medium to
large (several hundred bytes or larger) blocks of binary data
(numeric columns). Because the compression function operates
on a single record at a time, the record length must be several
hundred bytes or larger for effective compression.

194 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

ENCODING ENCODING=encoding-value;

Overrides and transcodes the encoding for input or output processing of SAS data sets.

Note: The default value is the current operating system setting.

LOCKTABLE LOCKTABLE=SHARED|EXCLUSIVE

Places exclusive or shared locks on SAS data sets. You can lock tables only if you are the owner
or have been granted the necessary privilege. The default value for the table services is
SHARED.

• SHARED Locks tables in shared mode, allowing other users or processes to read data from
the tables, but preventing other users from updating.

• EXCLUSIVE Locks tables exclusively, preventing other users from accessing any table that
you open.

PATH_BIND PATH_BIND=CONNECT|ACCESS

Specifies when and how schemas are validated during connection. CONNECT validates the
entire connection string at the time of connection and returns an error if one or more schemas is
invalid. ACCESS validates schemas when they are accessed so that processing continues
regardless of errors in the schema portion of the connection string. ACCESS is the default for the
table services.

SAS Data Set Reference 195

Teradata Reference

Understanding the Table Services Driver for Teradata
The table services driver for Teradata provides Read and Update access to Teradata
database tables and creates tables that can be accessed by both table services and
Teradata.

The table services driver for Teradata supports most of the FedSQL functionality. The
driver also enables an application to submit native Teradata SQL statements.

The table services driver for Teradata is a remote driver, which means that it connects to
a server process to access data. The process might be running on the same machine as
the table services, or it might be running on another machine in the network.

The table services driver for uses shared libraries that are referenced as shared objects in
UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables that are required by the
Teradata client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/opt/teradata/client/14.10/
 lib64:/opt/teradata/client/14.10/tbuild/lib64:/
 opt/teradata/client/14.10/tdicu/lib64:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export COPERR=/opt/teradata/client/14.10/lib
export COPLIB=/opt/teradata/client/14.10/lib
export NLSPATH=/opt/teradata/client/14.10/tbuild/msg64/%N

Data Service Connection Options for Teradata

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=teradata;catalog=acat;
uid=myuid;pwd='{sas002}C5DDFFF91B5D31DFFFCE9FFF';
server=terasoar;database=model)

The following connection options are supported for a Teradata database.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=tera).

Note: You must specify a catalog.

DATABASE DATABASE=database-name;

Specifies the Teradata database. If you do not specify DATABASE=, you connect to the default
Teradata database, which is often named the same as your user ID. If the database value that you
specify contains spaces or non-alphanumeric characters, you must enclose it in quotation marks.

196 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER DRIVER=TERA;

Identifies the data service to which you want to connect, which is a Teradata database.

Note: You must specify the driver.

SERVER SERVER=server-name;

Specifies the Teradata server identifier.

Advanced Connection Options
The following advanced options are supported for Teradata database.

Option Description

ACCOUNT ACCOUNT=account-ID;

Specifies an optional account number that you want to charge for the Teradata session.

CLIENT_ENCODIN
G

CLIENT_ENCODING=encoding-value

Used to specify the character set for the session. UTF8 is the default if encoding is not specified.
These character sets are supported:

ASCII
EBCDIC
EBCDIC037_0E
KATAKANAEBCDIC
KANJIEUC_0U
LATIN9_0A
THAI874_4A0
LATIN1250_1A0
CYRILLIC1251_2A0
LATIN1254_7A0
HEBREW1255_5A0
ARABIC1256_6A0
LATIN1258_8A0
TCHBIG5_1R0
SCHINESE936_6R0
KANJI932_1S0
HANGUL949_7R0
TCHINESE950_8R0
LATIN1252_3A0
SCHEBCDIC935_2IJ
TCHEBCDIC937_3IB
HANGULEBCDIC933_1II
EBCDIC273_0E
EBCDIC277_0E
KANJIEBCDIC5035_0I
KANJIEBCDIC5026_0I
UTF8
UTF16

Teradata Reference 197

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

198 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the trace log
based on the specified tracing level, which determines the type of tracing information. Here are
the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE=‘filename';

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed relative
to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

PASSWORD PASSWORD=password;

Specifies a Teradata password. The password must match your USER= value. The alias is
PWD=.

Note: You must specify the PASSWORD= option.

Teradata Reference 199

Option Description

ROLE ROLE=security-role;

Specifies a security role for the session.

USER USER=user-id;

Specifies a Teradata user ID. If the ID contains blanks or national characters, enclose it in
quotation marks. The alias is UID=.

Note: You must specify the USER= option.

200 Appendix 3 • Table Service Driver Reference

Recommended Reading

• Encryption in SAS 9.4

• SAS Decision Manager Administrator’s Guide

• SAS 9.4 DS2 Language Reference

• SAS 9.4 FedSQL Language Reference

• SAS 9.4 Intelligence Platform Middle-Tier Administration Guide

• SAS 9.4 Logging: Configuration and Programming Reference

• SAS 9.4 Web Applications Tuning for Performance and Scalability

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

201

http://sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

202 Recommended Reading

Index

Numbers
32-bit wire protocol driver 187

A
administration logging 123
argument types 17

B
back up disk stores 138
business context 3

C
character-to-numeric conversions 27
configuring Python 30

D
deploying 130
DS2 best practices 23, 24, 27, 28
DS2 programming 11, 12, 13, 14, 17

G
global packages 23
Greenplum

64-bit wire protocol driver 170

H
hash package 27

I
interfaces 5
invariant computations 28

J
Java business context methods 35
Java interface topology 34
Java POJO 33

execution methods 45
module context methods 37
revision methods 40
shutdown 35
start-up 34
user context methods 35

L
local packages 23

M
migration 138
module 4

O
ODBC 175

SQL server legacy wire protocol driver
181

Oracle
32-bit wire protocol driver 187
64-bit wire protocol driver 187

P
passing character values to methods 27
pre-installation 129
private methods 14
private packages 14
programming blocks 13
public methods 14
public packages 14
publishing DS2 source code 11
Python 29, 30
Python support 29

R
REST API 58
revision 4

203

S
SAS

table driver 192
SAS Micro Analytic Service

concepts 3, 4, 5
SCAN 24
single computation 28
SQL server legacy wire protocol driver

181

T
TRANWRD 24

tuning
adjusting thread pool size 133

U
user context 3

W
wire protocol driver 187

204 Index

	Contents
	About This Book
	Audience

	Accessibility
	Introduction to SAS Micro Analytic Service
	What Is SAS Micro Analytic Service?

	Concepts
	Overview
	User or Business Context
	Module Context
	Revision
	Interfaces
	Example: JAVA Interface
	Instantiate SAS Micro Analytic Service
	Create a User Context
	Create Modules
	Basic Steps for Using SAS Micro Analytic Service

	DS2 Programming for SAS Micro Analytic Service
	Overview
	Publishing DS2 Source Code to SAS Micro Analytic Service
	SAS Micro Analytic Service and SAS Foundation
	I/O
	Programming Blocks
	Public and Private Methods and Packages
	Overview
	Public Method Rules
	Public Method Example
	Private Method Example
	Method Overloading

	Argument Types Supported in Public Methods
	Overview
	Supported DS2 Data Types
	Unsupported DS2 Data Types

	DS2 Interface to Python

	Best Practices for DS2 Programming
	Overview
	Global Packages Versus Local Packages
	Overview
	Example of Optimized Code
	Example of Poorly Optimized Code

	Replacing SCAN (and TRANWRD) with DS2 Code
	Hash Package
	Character-to-Numeric Conversions
	Passing Character Values to Methods
	Performing the Computation Once
	Moving Invariant Computations Out of Loops

	Python Support in SAS Micro Analytic Service
	Implementing Python Support
	Configuring Python
	Python 2.7 and 3.4 on 64–Bit Windows
	Python 2.7 and 3.4 on 64–Bit Linux
	Further Considerations for Configuring Python

	Java Interface Reference
	Overview
	Topology
	Start-Up
	Shutdown
	User Context Methods
	Module Context Methods
	Revision Methods
	Overview
	Parameter Descriptions
	Method Descriptions

	Execution Methods
	Overview
	Java Data Types
	Method Arguments
	Argument Setter Methods
	Argument Getter Methods

	Execute Method
	Revision Monitoring Methods
	Complete Java Example

	SAS Micro Analytic Service REST API
	Overview
	Terminology
	Micro Analytic Service
	Micro Analytic Module
	Micro Analytic Step
	Package
	Method
	Signature
	Input Signature
	Output Signature
	Module
	Module ID
	Module Name
	Step
	Step ID
	Source Code

	Client Application Features
	Post Load or Create Modules
	Get Input or Output Step Signatures
	Post Validate Input Variables
	Post Execute Modules
	Put Update Modules
	Delete Modules

	Security and Authentication
	Life Cycle
	Media Types
	Externally Defined Media Types

	SAS Micro Analytic Service Media Types
	application/vnd.sas.microanalytic.module
	application/vnd.sas.microanalytic.module.definition
	application/vnd.sas.microanalytic.module.source
	application/vnd.sas.microanalytic.module.step
	application/vnd.sas.microanalytic.module.step.input
	application/vnd.sas.microanalytic.module.step.input.validity
	application/vnd.sas.microanalytic.module.step.output

	Resources and Collections
	Resource /
	Collection /modules
	Resource /modules/{moduleId}
	Resource /modules/{moduleId}/source
	Collection /modules/{moduleId}/steps
	Resource /modules/{moduleId}/steps/{stepId}

	Administration
	SAS Micro Analytic Service Logging
	Secure DS2 HTTP Package Usage
	Monitoring
	Monitoring SAS Micro Analytic Service
	Monitoring SAS Micro Analytic Service Using SAS Environment
Manager

	Deployment and Tuning
	Pre-Installation Steps
	Deployment
	Deploying SAS Micro Analytic Service
	Adding Whitelist Websites to SAS Micro Analytic Service

	Post-Installation Steps
	Cluster Deployment for SAS Micro Analytic Service
	Deploying Clusters
	License Files for Clusters

	Tuning SAS Micro Analytic Service
	Adjust Thread Pool Size
	Adjust Serial or Parallel Content Creation
	Adjust DS2 Module Compilation Mode
	Adjust Session Time-out Value
	Increase Module ExecutionThroughput of the REST Interface
	Prevent HTTP Error Messages
	Create and Update Connection Strings

	Migration
	Overview
	Limitations
	Back Up Disk Stores
	Restore Script
	Additional Migration Considerations
	Migration Considerations for 64-Bit Windows
	Additional Migration Considerations for 64-Bit HP-UX Itanium
	Additional Migration Steps in a Clustered Environment

	SAS Micro Analytic Service Return Codes
	REST Server Error Messages and Resolutions
	Table Service Driver Reference
	DB2 Driver Reference
	Understanding the Table Services Driver for DB2
	Data Service Connection Options for DB2
	DB2 Wire Protocol Driver Usage Notes

	FedSQL Driver Reference
	Overview
	Connection Options

	Greenplum Driver Reference
	Understanding the Table Services Driver for Greenplum
	Data Service Connection Options for Greenplum
	Greenplum Wire Protocol Driver Usage Notes

	Netezza Driver Reference
	Understanding the Table Services Driver for Netezza
	Data Service Connection Options for Netezza

	ODBC Driver Reference
	About ODBC
	Understanding the Table Services Driver for ODBC
	Data Service Connection Options for ODBC
	Wire Protocol Driver Usage Notes

	Oracle Reference
	Understanding the Table Services Driver for Oracle
	Data Service Connection Options for Oracle
	Oracle Wire Protocol Driver Usage Notes

	PostgreSQL Driver Reference
	Understanding the SAS Federation Server Driver for PostgreSQL
	Data Service Connection Options for PostgreSQL

	SAS Data Set Reference
	Overview
	Understanding the Driver for Base SAS
	Data Service Connection Options for SAS Data Sets

	Teradata Reference
	Understanding the Table Services Driver for Teradata
	Data Service Connection Options for Teradata

	Recommended Reading
	Index

