
SAS® Micro Analytic Service
2.2: Programming and
Administration Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® Micro Analytic Service 2.2: Programming and
Administration Guide. Cary, NC: SAS Institute Inc.

SAS® Micro Analytic Service 2.2: Programming and Administration Guide

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

January 2017

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

2.2-P1:masag

Contents

About This Book . v
What’s New in SAS Micro Analytic Service 2.2 . vii
Accessibility . ix

Chapter 1 • Introduction to SAS Micro Analytic Service . 1
What Is SAS Micro Analytic Service? . 1

Chapter 2 • Concepts . 3
Overview . 3
User or Business Context . 4
Module Context . 4
Revision . 4
Architecture . 5
Basic Steps for Using SAS Micro Analytic Service . 5

Chapter 3 • DS2 Programming for SAS Micro Analytic Service . 7
Overview . 7
DS2 Source Code Prerequisites . 7
SAS Micro Analytic Service and SAS Foundation . 8
I/O . 9
Programming Blocks . 10
Public and Private Methods and Packages . 11
Argument Types Supported in Public Methods . 13
DS2 Interface to Python . 14

Chapter 4 • Best Practices for DS2 Programming . 21
Overview . 21
Global Packages Versus Local Packages . 21
Replacing SCAN (and TRANWRD) with DS2 Code . 22
Hash Package . 25
Character-to-Numeric Conversions . 25
Passing Character Values to Methods . 25
Performing the Computation Once . 26
Moving Invariant Computations Out of Loops . 26

Chapter 5 • Python Support in SAS Micro Analytic Service . 27
Introduction . 27
Public and Private Methods . 29
Example . 30
Configuring Python . 32
Configuring a SAS Application Server to Support the DS2 Pymas Package 34

Chapter 6 • Administration . 39
SAS Micro Analytic Service Logging . 39
Secure DS2 HTTP Package Usage . 40
Monitoring . 40
Start-up Considerations for Clustered Deployments . 43

Chapter 7 • Deployment and Tuning . 45
Pre-installation Steps . 45
Deployment . 46
Post-installation Steps . 47
Cluster Deployment for SAS Micro Analytic Service . 48
Tuning SAS Micro Analytic Service . 50

Chapter 8 • Backup and Restore . 53
Overview . 53
Backup Disk Stores . 54
Restore Script . 54
Additional Backup Considerations . 55
Common Errors and Remediation . 57

Chapter 9 • Upgrading, Migrating, and Promotion . 59
Upgrading and Migration . 59
Promotion . 59

Chapter 10 • SAS Micro Analytic Service REST API . 61
Overview . 62
Terminology . 63
Client Application Features . 64
Security and Authentication . 66
Life Cycle . 66
Media Types . 66
SAS Micro Analytic Service Media Types . 68
Resources and Collections . 83

Appendix 1 • SAS Micro Analytic Service Return Codes . 127

Appendix 2 • REST Server Error Messages and Resolutions . 139

Appendix 3 • Table Service Driver Reference . 143
DB2 Driver Reference . 144
FedSQL Driver Reference . 149
Greenplum Driver Reference . 152
Netezza Driver Reference . 156
ODBC Driver Reference . 161
Oracle Reference . 168
PostgreSQL Driver Reference . 173
SAS Data Set Reference . 178
Teradata Reference . 182

Recommended Reading . 187
Index . 189

iv Contents

About This Book

Audience

This guide is intended for SAS Micro Analytic Service users who want to author SAS
DS2 or Python code as analytical or rules-based decisioning logic in SAS Decision
Manager. SAS Decision Manager includes SAS Micro Analytic Service as an execution
engine. The guide also explains how SAS Micro Analytic Service executes decisions,
and it offers tips, best practices, and restrictions on programming DS2 or Python to run
in SAS Micro Analytic Service.

In addition, the guide shows how to configure SAS Micro Analytic Service, and how (as
an option) to configure Anaconda Python and SAS Micro Analytic Service to run Python
code that is called from DS2.

v

vi About This Book

What’s New in SAS Micro Analytic
Service 2.2

Overview

SAS Micro Analytic Service 2.2 has the following enhancements:

• Ability to reference modules by name

• Ability to run Python modules in SAS Micro Analytic Service from PROC DS2

• Payload logging

• Simplified pymas DS2 package interface

Reference Modules by Name

Earlier releases of SAS Micro Analytic Services return a globally unique module
identifier when a module is published. If the same module were published on two
different SAS Micro Analytic Service systems, two different identifiers would be
generated. Rather than returning a globally unique identifier, SAS Micro Analytic
Service 2.2 returns the module name as the module identifier when a module is
published. This allows a module to be referenced by the same name across all systems
the module has been published to.

Run Python modules in SAS Micro Analytic
Service from PROC DS2

DS2 code that is run using PROC DS2 can use the pymas DS2 package, as long as the
SAS environment that is executing PROC DS2 has been configured to include Python
and SAS Micro Analytic Service.

The pymas DS2 package enables DS2 methods to publish Python modules and to
execute Python functions within those modules.

vii

Payload Logging

Payload logging enables you to capture JSON payload, for both input and output, and
log it to a file, so that it can be harvested and analyzed.

Simplified Pymas DS2 Package Interface

The pymas DS2 package enables DS2 methods to publish Python modules and to
execute Python functions within those modules. Pymas is easier to use than in previous
releases because it references Python modules by name rather than by a globally unique
identifier and revision number.

When pymas is used in PROC DS2, the new method appendSrcLine can be used to add
lines of Python source code, making it easier to publish Python modules. The new
method getSource can be used to return the lines of Python source code as a single
string.

viii What’s New in SAS Micro Analytic Service 2.2

Accessibility

For information about the accessibility of any of the products mentioned in this
document, see the usage documentation for that product.

ix

x What’s New in SAS Micro Analytic Service 2.2

Chapter 1

Introduction to SAS Micro Analytic
Service

What Is SAS Micro Analytic Service? . 1

What Is SAS Micro Analytic Service?
SAS Micro Analytic Service is a memory-resident, high-performance program execution
service. As a SAS platform service, it is not available for individual license, but is
included in selected SAS solutions. SAS Micro Analytic Service provides hosting for
DS2 and Python programs and supports a “compile-once, execute-many-times” usage
pattern. SAS Micro Analytic Service is multi-threaded and can be clustered for high
availability. It can host multiple programs simultaneously, as well as multiple user or
business contexts that are isolated from one another.

SAS Micro Analytic Service has a layered architecture that is suitable for a variety of
deployment topologies. The core engine is written in C for high performance. A web
application layer with a REST interface provides easy integration with client
applications, and adds persistence and clustering for scalability and high availability.

SAS Decision Manager generates DS2 programs that implement user-created rule sets
and rule flows. It can combine SAS analytics, such as score code generated by SAS
Enterprise Miner, with business rules in order to form decision logic. SAS Micro
Analytic Service is used to compile and execute the generated code.

In addition to providing generated code, SAS Micro Analytic Service enables users to
author DS2 or Python code that is customized to their specific needs. SAS Micro
Analytic Service supports a subset of the DS2 programming language, which includes
language features that are suitable for high-performance execution of transactions.
Specific rules and restrictions are detailed in Chapter 3, “DS2 Programming for SAS
Micro Analytic Service,” on page 7.

1

2 Chapter 1 • Introduction to SAS Micro Analytic Service

Chapter 2

Concepts

Overview . 3

User or Business Context . 4

Module Context . 4

Revision . 4

Architecture . 5

Basic Steps for Using SAS Micro Analytic Service . 5

Overview
DS2 and Python programs that are published to SAS Micro Analytic Service, whether
user-written or generated by SAS analytical solutions, are known as modules. This term
reflects the language-neutral nature of SAS Micro Analytic Service interfaces.

A module is a collection of methods. For DS2, a module represents one DS2 package
and its methods. For Python, a module is a collection of Python functions.

Module methods can be used for a wide variety of purposes, including computing scores,
processing data, or making business decisions.

SAS Micro Analytic Service uses two internal component types to manage the modules
that are published to it. These are the module context and the revision. A third
component, the user context, provides isolated execution environments that contain sets
of module contexts and revisions. In most cases, SAS Micro Analytic Service
automatically manages user and module contexts for the user.

Note: If you plan to write DS2 modules to deploy to SAS Micro Analytic Service,
follow the programming guidelines described in Chapter 3, “DS2 Programming for
SAS Micro Analytic Service,” on page 7. If you plan to write Python modules to
deploy to SAS Micro Analytic Service, follow the programming guidelines described
in Chapter 5, “Python Support in SAS Micro Analytic Service,” on page 27.

3

User or Business Context
A context is a container for the programs that SAS Micro Analytic Service executes. It is
also an isolated execution environment. That is, programs executing in one context are
not visible to any other context. Therefore, contexts can be used to provide a separate
environment for each user or different business unit, or for any other usage requiring
isolation. The programs hosted by SAS Micro Analytic Service are known as modules. A
context is a container of modules.

Because business context and user context are interchangeable terms that describe the
two common uses of this single component, this document uses the term user context for
simplicity.

Module Context
A module represents program code. In the case of DS2, each module represents exactly
one DS2 package. If you are unfamiliar with DS2 packages, see “Understanding DS2
Methods and Packages” in SAS 9.4 DS2 Language Reference. Every module is owned by
exactly one user context.

In the case of Python, each module represents a collection of related Python functions,
and each module method represents one of those functions.

SAS Micro Analytic Service supports module revisions and is capable of hosting and
executing multiple revisions of a module concurrently. When SAS Micro Analytic
Service compiles a DS2 or Python module, it creates a revision of that module.
Therefore, a module context is a container of revisions. A module context also houses
any compiler warning or error messages that were generated from the latest compilation
or compilation attempt.

Note: The Micro Analytic Service REST interface supports running only the latest
revision of a module.

Revision
A revision is a version of a module. Each revision contains source code, an executable
code stream (optimized binary executable), and metadata. The metadata describes the
methods and method signatures of the module.

Revisions provide several advantages, including the ability to roll back to a previous
version of a module.

SAS Micro Analytic Service assigns a revision number to each revision, which is a
monotonically increasing integer beginning with 1. A revision is uniquely identified by
module name and revision number. When you reference a revision, specifying revision
number 0 selects the latest revision.

4 Chapter 2 • Concepts

Figure 2.1 Component Hierarchy

User
context

Revision 2

Module
DS2

packages

User
context

User
context

Module
Python

functions
ModuleModule Module

Revision 3

Revision 1

Revision 1 Revision 1

Revision 7

Revision 8

Revision 1

Revision 2

Revision 1

Architecture
SAS Micro Analytic Service has a layered architecture:

Core Engine
The SAS Micro Analytic Service core engine is written in C and is multi-threaded
for high performance.

Java Layer
a thin Java layer communicates with the core engine through the Java Native
Interface (JNI). Commands from the REST/JSON interface are passed to the core
engine through this Java layer.

REST/JSON
adds functionality such as persistence and clustering support.

Basic Steps for Using SAS Micro Analytic Service
Using SAS Micro Analytic Service involves five steps. The REST interface
automatically handles the first two.

1. Instantiate SAS Micro Analytic Service.

2. Get a user or business context. A user context is a module container, and provides an
isolated execution environment.

Basic Steps for Using SAS Micro Analytic Service 5

3. Create one or more module contexts. A module context is a revision container, and
represents a DS2 package. A revision has an executable code stream with an entry
point for each DS2 package method, source code, and signature metadata.

4. For each module context, create one or more revisions.

5. Execute many times.

6 Chapter 2 • Concepts

Chapter 3

DS2 Programming for SAS Micro
Analytic Service

Overview . 7

DS2 Source Code Prerequisites . 7

SAS Micro Analytic Service and SAS Foundation . 8

I/O . 9

Programming Blocks . 10

Public and Private Methods and Packages . 11
Overview . 11
Public Method Rules . 11
Public Method Example . 12
Private Method Example . 13
Method Overloading . 13

Argument Types Supported in Public Methods . 13
Overview . 13
Supported DS2 Data Types . 14
Unsupported DS2 Data Types . 14

DS2 Interface to Python . 14

Overview
SAS Micro Analytic Service supports a subset of the DS2 programming language that is
suitable for high-performance transaction processing in real time. This chapter addresses
only that subset. Note that DS2 batch processing is not supported.

For more information about the DS2 programming language, see SAS DS2 Language
Reference.

DS2 Source Code Prerequisites
The DS2 source code submitted to SAS Micro Analytic Service should begin with the
following statement, just above the PACKAGE statement:

"ds2_options sas"

7

This statement instructs DS2 to use SAS missing value handling, which helps ensure that
your DS2 program behaves the same as if it were run by SAS Foundation. DS2 source
code should end with this statement:

"endpackage"

The code cannot contain DATA statements, PROC statements, or THREAD statements.
The source code should contain one and only one DS2 package, and this package can
contain as many methods as desired.

It is a best practice to include a line feed character at the end of each source code line. It
is possible to place all of your source code on a single line. However, doing so makes it
difficult to use compiler warning and error messages that include line numbers.

Note: DS2 supports only a specific style of comment. Comments start with the
characters /*, and they end with the characters */. All characters between the starting
and ending characters are part of the comment text. Comments can be nested. When
there is ambiguity in determining a token, the compiler always chooses the longest
possible sequence of characters that can make up a token.

SAS Micro Analytic Service and SAS Foundation
Although DS2 is supported by both SAS Foundation and SAS Micro Analytic Service,
SAS Micro Analytic Service has a lightweight, high-performance engine that does not
support either the full SAS language or PROC statements. Therefore, PROC statements
cannot be used. However, here is an effective DS2 authoring and testing mechanism:
develop your DS2 packages in SAS Foundation using PROC DS2 and publish those
packages to SAS Micro Analytic Service after removing the surrounding PROC DS2
syntax.

Here is an example PROC DS2 step that illustrates the above mechanism:

proc ds2;

ds2_options sas;
package myPackage/overwrite=yes;
method copyArray(char(12) in_array[4], in_out char(12) out_array[4]);
 out_array := in_array;
end;
endpackage;
run;

table _null_;
method init();
 dcl package myPackage p();
 dcl char(12) inarr[4];
 dcl char(12) outarr[4];
 inarr[1] = 'one';
 inarr[2] = 'two';
 inarr[3] = 'three';

 p.copyArray(inarr, outarr);
 put outarr[1]=;
 put outarr[2]=;
 put outarr[3]=;
end;

8 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

run;

quit;

I/O
SAS Micro Analytic Service supports I/O through the DS2 SQLStmt package.
Supported databases include DB2, Greenplum, Netezza, Oracle, Postgres, SQL Server,
and Teradata.

Connection strings are used to specify database connection information such as URL,
credentials, and options. Only one connection string can be specified per user context.
However, connection strings can be federated, allowing multiple databases to be used
concurrently.

The SQLStmt package supports the FedSQL dialect. Therefore, the connection string
should begin with DRIVER=SQL;CONOPTS=(, where sql specifies the FedSQL
language driver as the managing driver, and one or more target driver connection strings
are specified within the CONOPTS= option. The following example illustrates a
federated connection string that includes Oracle and PostgreSQL data sources:

driver=sql;conopts=((driver=oracle;catalog=acat;uid=scott;
pwd=tiger;path=oraclev11.abc.123.com:1521/ORA11G);
(driver=postgres;catalog=bcat;uid=myid;pwd='mypass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

If you use the SAS Micro Analytic Service REST interface, you can enter your
connection string in the Configuration Manager plug-in in SAS Management Console.
Connection string forms vary from database to database. Most of the data source drivers
require some client configuration, such as modifications to the environment variables
that enable the driver software to be found and used correctly. You must ensure that the
environment has been set up appropriately for the data source drivers that are being used.
For more information, see Appendix 3, “Table Service Driver Reference,” on page 143.

Package SQLStmt enables you to specify a connection string in the DS2 code. However,
this technique is not recommended. If the connection string is set through Configuration
Manager, SAS Micro Analytic Service manages the database connection, detects
whether the connection has been lost, and tries to reconnect periodically. If the
connection string is set in the DS2 code, the connection is managed by the DS2 run time,
which will not recover from lost connections. If connection strings are specified both in
the DS2 code and through Configuration Manager or the Java API, SAS Micro Analytic
Service overrides the connection string that was set in DS2.

When you are calling package SQLStmt to perform database I/O from a DS2 method,
certain types of severe errors can cause DS2 to render the SQLStmt instance, and the
DS2 package that called it, unusable. To maximize reliability, SAS Micro Analytic
Service detects this condition and recompiles the offending package. This is useful if
SQLStmt temporarily encounters fatal errors while performing database I/O. If a
recompilation is successful, SAS Micro Analytic Service returns the error code
MASDS2FatalRecompiled to indicate that the method failed but the package was
successfully recompiled. If the recompilation fails, the error code
MASDS2FatalRecompFailed is returned. If a given DS2 package must be recompiled
more than 1000 times, SAS Micro Analytic Service removes the module from the
system, and returns the error code MASDS2RevisionEjected.

Access to SAS data sets is supported. However, since they use file-level locking, they
are not suitable for writing from multiple threads. Set appropriate connection options

I/O 9

carefully before reading SAS data sets from multiple threads. Otherwise, a deadlock
occurs. For these reasons, the use of a third-party database management system is highly
recommended.

Note: If SAS Micro Analytic Service is installed with SAS Decision Manager, SAS
Micro Analytic Service must be installed on servers that have the same operating
system family as the SAS Decision Manager server tier. For more information, see
SAS Decision Manager Administrator’s Guide. This requirement ensures that
appropriate data access components are licensed for use by both SAS Micro Analytic
Service and SAS Decision Manager.

For detailed driver reference information, see Appendix 3, “Table Service Driver
Reference,” on page 143.

SAS Micro Analytic Service enables access to HTTP and HTTPS web services through
the DS2 HTTP package, which can execute HTTP requests to, and receive responses
from, HTTP and HTTPS web services. Direct file I/O is not supported. As a result, DS2
hash packages cannot be populated from the contents of a file.

For more information about DS2 and FedSQL, see SAS 9.4 DS2 Language Reference.
and SAS 9.4 FedSQL Language Reference.

Programming Blocks
Each DS2 module represents exactly one package, and therefore the DS2 PACKAGE
statement plays a major role in SAS Micro Analytic Service. A DS2 package contains
one or more methods, and methods can contain a wide variety of DS2 language
constructs. Package methods work well with rapid transaction processing because they
can be called over and over again with little overhead, as transactions flow through the
system. By contrast, the DS2 THREAD and TABLE statements are batch-oriented and
are not supported.

The following code blocks are supported:

• PACKAGE…ENDPACKAGE

• METHOD…END

• DO…END

The following code blocks are batch-processing oriented and are not supported:

• TABLE…ENDTABLE

• THREAD…ENDTHREAD

Similarly, the following statements are not supported: OUTPUT and SET

• OUTPUT

• SET

10 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Public and Private Methods and Packages

Overview
Private methods and packages are SAS Micro Analytic Service concepts, rather than
DS2 features.

SAS Micro Analytic Service can host public DS2 packages and private DS2 packages.
Private DS2 packages have fewer restrictions on the DS2 features that can be used than
public packages have. Although a private DS2 package cannot be called directly, it can
be called by another DS2 package. Private DS2 packages are useful as utility functions,
as solution-specific built-in functions, or for solution infrastructure. See your SAS
solution documentation for a description of the solution-specific built-in functions that
you can use when authoring custom DS2 modules.

A public DS2 package can contain private methods, as long as it contains at least one
public method. Any method that does not conform to the rules for public methods is
automatically treated as private. Private methods are allowed and do not produce errors
if they contain correct DS2 syntax. Private methods are not callable externally.
Therefore, they do not show up when querying the list of methods within a package.
However, they can be called internally by other DS2 package methods. Here are several
typical uses of private methods:

• Small utility functions that return a single, non-void, result.

• Methods containing DS2 package arguments. These are not callable externally.

Public Method Rules
Public methods must conform to the following rules:

• The return type must be void. Rather than using a single return type, public methods
can return multiple outputs, where each output argument specifies the in_out
keyword in the method declaration. Non-void methods are treated as private.

• Arguments that are passed by reference (meaning ones that specify in_out) are
treated as output only. True update arguments are not supported by public methods.
This restriction results in more efficient parameter marshaling and supports all
interface layers, including REST.

• Input arguments must precede output arguments in the method declaration. It is
permissible for a method to have only inputs or only outputs. However, if both are
present, all inputs must precede the outputs.

• DS2 packages must not be passed as arguments in public methods. The presence of a
DS2 package argument results in the method becoming private.

• The VARARRAY statement must not be present in the argument list of a public
method. VARARRAY is a DS2 statement, not a data type. The presence of
VARARRAY in a methods argument list causes the method to become private.

• For a full list of data types that can be used as public method arguments, see
“Supported DS2 Data Types” on page 14.

Public and Private Methods and Packages 11

Public Method Example
The example below illustrates a valid public method. It has a void return type (no
RETURNS clause), uses only publicly supported data types, and treats in_out arguments
as output only.

method quickSortStep (int lowerIndex, int higherIndex, in_out double numbers[10]);

 dcl int i;
 dcl int j;
 dcl int pivot;
 dcl double temp;

 i = lowerIndex;
 j = higherIndex;

 /* Calculate the pivot number, taking the pivot as the
 * middle index number. */
 pivot = numbers[ceil(lowerIndex+(higherIndex-lowerIndex)/2)];

 /* Divide into two arrays */
 do while (i <= j);
 /**
 * In each iteration, identify a number from the left side that
 * is greater than the pivot value. Also identify a number
 * from the right side that is less than the pivot value.
 * Once the search is done, then exchange both numbers.
 */
 do while (numbers[i] < pivot);
 i = i+1;
 end;
 do while (numbers[j] > pivot);
 j = j-1;
 end;
 if (i <= j) then do;
 temp = numbers[i];
 numbers[i] = numbers[j];
 numbers[j] = temp;

 /* Move the index to the next position on both sides. */
 i = i+1;
 j = j-1;
 end;
 end;

 /* Call quickSort recursively. */
 if (lowerIndex < j) then do;
 quickSortStep(lowerIndex, j, numbers);
 end;
 if (i < higherIndex) then do;
 quickSortStep(i, higherIndex, numbers);
 end;
 end;

12 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Here is another example of a public method that illustrates the use of the HTTP package
calling out to a web service using a POST request and then getting a response.

 method httppost(nvarchar(8192) url,
 nvarchar(67108864) payload,
 in_out nvarchar respbody,
 in_out int hstat, in_out int rc);
 declare package http h();
 rc = h.createPostMethod(url);
 if rc ne 0 then goto Exit;
 rc = h.setRequestContentType('application/json;charset=utf-8');
 if rc ne 0 then goto Exit;
 rc = h.addRequestHeader('Accept', 'application/json');
 if rc ne 0 then goto Exit;
 rc = h.setRequestBodyAsString(payload);
 if rc ne 0 then goto Exit;
 rc = h.executeMethod();
 if rc ne 0 then goto Exit;
 hstat = h.getStatusCode();
 if hstat lt 400 then h.getResponseBodyAsString(respbody, rc);
 else respbody = '';
 Exit:
 h.delete();
 end;

Private Method Example
The example below generates a private method in SAS Micro Analytic Service. It has a
non-void return type. That is, it has a RETURNS clause in the declaration, which
specifies a single integer return value.

method isNull(double val) returns int;
 return null(val) OR missing(val);
end;

Method Overloading
SAS Micro Analytic Service does not support method overloading.

Argument Types Supported in Public Methods

Overview
SAS Micro Analytic Service supports a subset of the DS2 data types for use as public
method arguments. Data types in the unsupported list can still be used in the body of a
(public or private) DS2 package method, and as arguments to private methods. The lists
of publicly supported and unsupported data types are given below.

Note: Any additional types added to the DS2 programming language in future releases
should be considered unsupported unless otherwise stated in the SAS Micro Analytic
Service documentation.

Argument Types Supported in Public Methods 13

Supported DS2 Data Types
• BIGINT

• CHAR(n)

• DOUBLE

• INTEGER

• NCHAR(n)

• NVARCHAR(n)

• VARCHAR(n)

Unsupported DS2 Data Types
• BINARY(n)

• DATE

• DECIMAL(p, s)

• NUMERIC(p, s)

• PACKAGE

• TIME(p)

• TIMESTAMP(p)

• TINYINT

• VARBINARY(n)

DS2 Interface to Python
DS2 modules, running in SAS Micro Analytic Service, can publish and execute Python
modules.

Note that Python 2.7 or Python 3.4 must be available for SAS Micro Analytic Service to
load. If both are available, SAS Micro Analytic Service loads Python 3.4. See Chapter 5,
“Python Support in SAS Micro Analytic Service,” on page 27, for information about
installing Python and configuring the environment variables necessary to allow Python
to run embedded in SAS Micro Analytic Service. As is the case when calling any
package from DS2, it is recommended that you always check return codes where
available, and return any error codes using an output argument from your DS2 method.

To call Python from DS2, use the DS2 package called pymas. Each pymas package
instance represents exactly one Python module revision. You can create as many
instances as you want, allowing multiple modules to be used.

Here are some operations that a DS2 module would typically perform.

Instantiate the following DS2 package:

py = _new_ pymas();

14 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Calling publish() compiles your Python module and sets it as the module that is
represented by this pymas instance. Subsequent pymas function calls, such as setting
values and executing methods, operate on this module. The Python code is passed as a
string in the first argument. Pass the name that you want to give to your new Python
module in the second argument. publish() returns the revision number that SAS Micro
Analytic Service assigned to your new module. You could use this revision number later
to execute or delete a specific revision of your module. If you do not specify a revision
number, the latest revision is assumed. If your Python code fails to publish (because of
syntax errors, for example), then -1 is returned for the revision number.

revision = py.publish(pgm, moduleName);

In very rare cases, you might need to use a prior revision of a module rather than the
latest revision that would be selected by default. Or, rather than publishing a Python
module from DS2, you might need to specify a module that was previously published to
SAS Micro Analytic Service by an external client. In these rare cases, you can call
useModule() instead of publish(). If a module was already associated with your pymas
instance before calling useModule(), then useModule() disassociates the current module
from the instance before making the specified module current.

rc = py.useModule(moduleName, revision);

Before calling Python, you must tell the pymas instance which method to execute. This
is accomplished by calling useMethod(). In addition to specifying the method (Python
function) to call, useMethod() also validates that the method exists within the current
module, prepares the pymas instance to receive the input values for the specific method
arguments, and prepares to return any output values from the method execution.

rc = py.useMethod(methodName);

Call the type-specific setter methods to set input values before executing the method.
Because these setters store arguments by name, they can be called in any order, and they
insert the values in the correct positions:

py.setDouble(“airflow”, sensor_maf);

Since the DS2 package instance represents a single revision, the execute() method needs
no arguments.

rc = py.execute();

After execution, call getters to retrieve the results.

score = py.getDouble(“credit_score”);

Scalar argument setters are of the form:

return_code = set<type>(name, value)

Scalar argument getters are of the form:

value = get<type>(name)

Array argument setters are of the form:

rc = set<type>Array(name, array-value)

Array argument getters are of the following form.

Note: DS2 passes arrays and output values by reference.

get<type>Array(name, array-value, rc)

The example below assumes that you have declared your package as py:

dcl package pymas py;
dcl int rc;

DS2 Interface to Python 15

dcl bigint result;

rc = py.publish(python_source_code, my_module_name);
py.setString(“inString”, “A string”);

py.execute()

result = py.getLong(“outLong”);

The complete set of DS2 package methods follows, where rc is the integer return code,
and py is the package instance.

Methods for Python module management and execution:

rc = py.publish(python_source_code, "module_name");
rc = py.remove();
rc = py.isLoaded(); // returns true is Python is available and false otherwise
revision = py.getRevisionNumber();
rc = py.setTimeZone(time_zone_identifier);
rc = py.execute();

Scalar argument setters:

 rc = py.setString(argument_name, value);
rc = py.setBool(argument_name, value);
rc = py.setLong(argument_name, value);
rc = py.setInt(argument_name, value);
rc = py.setDouble(argument_name, value);
rc = py.setDateTime(argument_name, value);
rc = py.setDate(argument_name, value);
rc = py.setTime(argument_name, value);

Scalar argument getters:

string_value = py.getString(argument_name);
int_value = py.getBool(argument_name);
long_value = py.getLong(argument_name);
int_value = py.getInt(argument_name);
double_value = py.getDouble(argument_name);
date_time_value = py.getDateTime(argument_name);
date_value = py.getDate(argument_name);
time_value = py.getTime(argument_name);

Array argument setters:

rc = py.setStringArray(argument_name, string_array);
rc = py.setBoolArray(argument_name, integer_array);
rc = py.setLongArray(argument_name, bigint_array);
rc = py.setIntArray(argument_name, integer_array);
rc = py.setDoubleArray(argument_name, double_array);
rc = py.setDateTimeArray(argument_name, date_time_array);
rc = py.setDateArray(argument_name, date_array);
rc = py.setTimeArray(argument_name, time_array);

Array argument getters:

py.getStringArray(argument_name, string_array, rc);
py.getBoolArray(argument_name, integer_array, rc);
py.getLongArray(argument_name, bigint_array, rc);
py.getIntArray(argument_name, integer_array, rc);
py.getDoubleArray(argument_name, double_array, rc);

16 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

py.getDateTimeArray(argument_name, date_time_array, rc);
py.getDateArray(argument_name, date_array, rc);
py.getTimeArray(argument_name, time_array, rc);

Python 2.x uses ASCII as the default encoding. Therefore, you must specify another
encoding at the top of the file to use non-ASCII Unicode characters in literals. As a best
practice, when using Python 2.x, always use the following as the first line of your Python
script:

-*- coding: utf-8 -*-

Also, in Python 2.x, the Unicode literal must be preceded by the letter u. Therefore,
literal strings should be written using the following form:

u”xxxxx”

Note: Python 3.x uses UTF-8 as the default encoding, so these issues affect Python 2.x
only. When using Python 3.x, the default encoding can be used, and literals can
simply be enclosed in quotation marks.

If you prefer not to insert the linefeed characters yourself, you can add the Python source
code line-by-line using the appendSrcLine() method. When the entire Python program
has been added, you then call the getSource() method. The getSource() method returns
the Python program as one string, inserting linefeed characters between Python source
code lines. You can then pass that string to the publish method to publish the Python
program in SAS Micro Analytic Service. Here is an example.

data tstinput; a = 8; b = 4; output; a = 10; b = 2; output;
run;

proc ds2;
 ds2_options sas;
 package testpkg /overwrite=yes;
 dcl package pymas py();
 dcl package logger logr('App.TableServices.DS2.Runtime.Log');
 dcl varchar(67108864) character set utf8 pycode;
 dcl int rc revision;

 method testpkg(varchar(2048) modulename, varchar(2048)pyfuncname);
 rc = py.appendSrcLine('# Here is the first Python function:');
 rc = py.appendSrcLine('def domath1(a, b):');
 rc = py.appendSrcLine(' "Output: c, d"');
 rc = py.appendSrcLine(' print("Will compute {0} times {1}".format(a, b))');
 rc = py.appendSrcLine(' c = a * b');
 rc = py.appendSrcLine(' print("domath1 c is {0}".format(c))');
 rc = py.appendSrcLine(' print("domath1 also do {0} div {1}".format(a, b))');
 rc = py.appendSrcLine(' d = a / b');
 rc = py.appendSrcLine(' print("domath1 d is {0}".format(d))');
 rc = py.appendSrcLine(' return c, d');
 rc = py.appendSrcLine('');
 rc = py.appendSrcLine('# Here is the second function:');
 rc = py.appendSrcLine('def domath2(a, b):');
 rc = py.appendSrcLine(' "Output: c, d"');
 rc = py.appendSrcLine(' c,d = domath1(a, b)');
 rc = py.appendSrcLine(' print("domath2: c is {0} and d is {1}".format(c,d))');
 rc = py.appendSrcLine(' return c, d');
 pycode = py.getSource();
 logr.log('I', 'pycode=$s', pycode);
 revision = py.publish(pycode, modulename);

DS2 Interface to Python 17

 if revision lt 1 then
 logr.log('E', 'pymas.publish() failed.');
 rc = py.useMethod(pyfuncname);
 if rc then
 logr.log('E', 'pymas.useMethod() failed.');
 end;

 method exec(double a, double b, in_out int rc,
 in_out double c, in_out double d);
 rc = py.setDouble('a', a); if rc then return;
 rc = py.setDouble('b', b); if rc then return;
 rc = py.execute(); if rc then return;
 c = py.getDouble('c');
 d = py.getDouble('d');
 end;
 endpackage;

 data _null_;
 dcl package logger logr('App.TableServices.DS2.Runtime.Log');
 dcl package testpkg t('my Python Module Context name', 'domath2');
 dcl int rc;
 dcl double a b c d;

 method run();
 a = b = c = d = 0.0;
 set tstinput;
 t.exec(a, b, rc, c, d);
 logr.log('I', '##### Results: a=$s b=$s c=$s d=$s',
 a, b, c, d);
 put a= b= c= d=;
 end;
 enddata;
 run;
quit;

When using PROC DS2 in a SAS session to create a pymas package instance, you
cannot provide the Python program as one big quoted literal string. The reason is that the
SAS tokenizer strips out the embedded line-ending characters, causing indentation
problems in the Python code. In this situation, the pymas package's appendSrcLine() and
getSource() methods can be used to produce a DS2 character variable containing the
lines of code concatenated together with embedded linefeed characters separating the
lines of Python code. Once you have added each line of your Python code to the pymas
package instance using the appendSrcLine() method, you can use the "getSource()
method to retrieve the complete program into a DS2 character variable, which can then
be provided as the first input argument to the pymas publish() method. Here is an
example.

ds2_options sas;
 package testpkg /overwrite=yes;
 dcl package pymas py();
 dcl package logger logr('App.tk.MAS');
 dcl varchar(67108864) character set utf8 pycode;
 dcl int rc revision;

 method testpkg(varchar(256) modulename,
 varchar(256) pyfuncname);
 rc = py.appendSrcLine('# The first Python function:');

18 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

 rc = py.appendSrcLine('def domath1(a, b):');
 rc = py.appendSrcLine(' "Output: c, d"');
 rc = py.appendSrcLine(' c = a * b');
 rc = py.appendSrcLine(' d = a / b');
 rc = py.appendSrcLine(' return c, d');
 rc = py.appendSrcLine('');
 rc = py.appendSrcLine('# Here is the second function:');
 rc = py.appendSrcLine('def domath2(a, b):');
 rc = py.appendSrcLine(' "Output: c, d"');
 rc = py.appendSrcLine(' c,d = domath1(a, b)');
 if rc then logr.log('E', 'py.appendSrcLine() failed.');
 rc = py.appendSrcLine(' return c, d');
 pycode = py.getSource();
 revision = py.publish(pycode, modulename);
 if revision lt 1 then
 logr.log('E', 'py.publish() failed.');
 rc = py.useMethod(pyfuncname);
 if rc then logr.log('E', 'py.useMethod() failed.');
 end;

 method usefunc(varchar(256) pyfuncname);
 rc = py.useMethod(pyfuncname);
 if rc then logr.log('E', 'py.useMethod() failed.');
 end;

 method exec(double a, double b, in_out int rc,
 in_out double c, in_out double d);
 rc = py.setDouble('a', a); if rc then return;
 rc = py.setDouble('b', b); if rc then return;
 rc = py.execute(); if rc then return;
 c = py.getDouble('c');
 d = py.getDouble('d');
 end;
 endpackage;

DS2 Interface to Python 19

20 Chapter 3 • DS2 Programming for SAS Micro Analytic Service

Chapter 4

Best Practices for DS2
Programming

Overview . 21

Global Packages Versus Local Packages . 21
Overview . 21
Example of Optimized Code . 22
Example of Poorly Optimized Code . 22

Replacing SCAN (and TRANWRD) with DS2 Code . 22

Hash Package . 25

Character-to-Numeric Conversions . 25

Passing Character Values to Methods . 25

Performing the Computation Once . 26

Moving Invariant Computations Out of Loops . 26

Overview
This section describes best practices that are recommended when programming in DS2
for any environment. They are not unique to SAS Micro Analytic Service.

Global Packages Versus Local Packages

Overview
The scope of a package instance makes a difference. Package instances that are created
in the global scope typically are created and deleted (allocated and freed) once and used
over and over again. Package instances that are created in a local scope are created and
deleted each time the scope is entered and exited. For example, a package instance that is
created in a method's scope is created and deleted each time a method is called. The
creation and deletion time can be costly for some packages.

The following examples use the hash package. This technique can be used for all
packages.

21

Example of Optimized Code
This example creates a hash package instance that is global, created and deleted with the
package instance, and reused between calls to load_and_clear.

/** FAST **/
package mypack;
 dcl double k d;
 dcl package hash h([k], [d]);

 method load_and_clear();
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Example of Poorly Optimized Code
This example creates a hash package instance that is local to the method and created and
deleted for each call to load_and_clear.

/** SLOW **/
package mypack;
 dcl double k d;

 method load_and_clear();
 dcl package hash h([k], [d]);
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Replacing SCAN (and TRANWRD) with DS2 Code
Consider the following code:

i = 1;
onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
do while (onerow ~= '');
 j = 1;
 elt = scan(onerow, j, ';');
 do while (elt ~= '');
 * processing of each element in the row;
 j = j+1;
 elt = SCAN(onerow, j, ';');

22 Chapter 4 • Best Practices for DS2 Programming

 end;
 i = i+1;
 onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
end;

You can make the following observations:

• SCAN consumes adjacent delimiters. Therefore, TRANWRD is required to
manipulate each row into a form that can be traversed element by element.

• SCAN starts at the front of the string each time. Therefore, the aggregate cost is
O(N^2).

• SCAN and TRANWRD require NCHAR or NVARCHAR input. If full_table is
declared as a CHAR or VARCHAR input, it must be converted to NVARCHAR,
then processed, and then converted back to VARCHAR in order to be captured into
the onerow value.

Here is code that replaces this type of loop with a native DS2 solution and that thus
avoids these problems by collecting the necessary details into a package:

dcl package STRTOK row_iter();
dcl package STRTOK col_iter();
row_iter.load(full_table, '|');
do while (row_iter.hasmore());
 row_iter.getnext(onerow);
 col_iter.load(onerow, ';');
 do while (col_iter.hasmore());
 col_iter.getnext(elt)
 * processing of each element;
 end;
end;

The supporting package, STRTOK, is shown below. It can be used to replace SCAN and
TRANWRD pairs anywhere in DS2.

/** STRTOK package - extract subsequent tokens from a string.
 * So named because it mirrors (in a safe way) what is done by the original
 * strtok(1) function available in C.
 */
package sasuser.strtok/overwrite=yes;
 dcl varchar(32767) _buffer;
 dcl int strt blen;
 dcl char(1) _delim;

 /* Loads the current object with the supplied buffer and delimiter
 * information. This avoids the cost of constructing and destructing the
 * object, and allows the declaration of a STRTOK outside of the loop in which
 * it is used.
 */
 method load(in_out varchar bufinit, char(1) delim);
 _buffer = bufinit .. delim;
 _delim = delim;
 strt = 1;
 blen = length(_buffer);
 end;

 /* Are there more fields? 1 means there are more fields. 0 means there are
 * no more fields.
 */

Replacing SCAN (and TRANWRD) with DS2 Code 23

 method hasmore() returns integer;
 if (strt >= blen) then return 0;
 return 1;
 end;

 /* The void-returning GETNEXT method places the next token in the supplied
 * variable, tok.
 */
 method getnext(in_out varchar tok);
 dcl char(1) c;
 dcl int e;
 tok = '';
 if (hasmore()) then do;
 e = strt;
 c = substr(_buffer,e,1);
 do while (c ~= _delim);
 tok = tok .. c;
 e = e + 1;
 c = substr(_buffer,e,1);
 end;
 strt = e + 1;
 end;
 end;

 /* The value-returning GETNEXT method returns the next token. This version is
 * more computationally expensive because it requires an extra copy, as opposed to
 * the void-returning version, above.
 */
 method getnext() returns varchar(32767);
 dcl varchar(32767) tok;
 getnext(tok);
 return tok;
 end;

 /* Construct a STRTOK object using the parameters as initial values.
 */
 method strtok(varchar(32766) bufinit, char(1) delim);
 load(bufinit, delim);
 end;

 /* Construct a STRTOK object without an initial buffer to be consumed.
 */
 method strtok();
 strt = 0; blen = 0;
 end;
endpackage; run;

Using STRTOK instead of SCAN and TRANWRD avoids the CHAR to NCHAR
conversions and reduces CPU because of how STRTOK retains the intermediate state
between calls to the getnext() methods. Therefore, it is O(N) instead of O(N^2).

24 Chapter 4 • Best Practices for DS2 Programming

Hash Package
With both the DATA step and DS2, note the size of the key. A recent program carried out
many hash lookups with a 356-byte key. Hashing is an O(1) algorithm; the "1" with the
hash package is the length of the key. The longer the key, the longer the hash function
takes to operate.

dcl char(200) k1 k2;
dcl double d1 d2;

/* If k1 and k2 are always smaller than 200, then */
/* size them smaller to reduce the time spent in */
/* the hash function when adding and finding values */
/* in the hash package. */
dcl package hash([k1 k2], [d1 d2]);

Character-to-Numeric Conversions
When converting a string to a numeric value, note the encoding of the string. When the
string is a single-byte encoding, DS2 translates the value to a TKChar (UCS-2 or
UCS-4) for conversion. The longer the string, the longer the time it takes to do the
conversion.

dcl char(512) s;
dcl nchar(512) ns;
dcl double x;
s = '12.345';
ns = '12.345';

x = s; /* slow */
x = substr(s,1,16); /* faster */
x = substr(ns,1,16); /* even faster, avoids transcoding */

Passing Character Values to Methods
In SAS Micro Analytic Service, DS2 method input parameters are passed by value.
What this means is that a copy of the value is passed to the method. When passing
character parameters, a copy of the parameter is made to ensure that the original value is
not modified. Making sure that character data is sized appropriately ensures that less
copying occurs.

DS2 method output parameters, which are specified by the in_out keyword, are passed
by reference. Therefore, no copy is made.

method copy_made(char(256) x);
 ...
end;

method no_copy(in_out char x);

Passing Character Values to Methods 25

 ...
end;

Performing the Computation Once
If a computation is repeated multiple times to compute the same value, you can perform
the computation once and save the computed value. For example, the following code
block performs the computation, compute(x), four times:

if compute(x) > computed_max then computed_max = compute(x);
if compute(x) < computed_min then computed_min = compute(x);

If compute(x) always computes the same value for a given value of x, then the code
block can be modified to perform the computation once and save the computed value:

computed_x = compute(x);
if computed_x > computed_max then computed_max = computed_x;
if computed_x < computed_min then computed_min = computed_x;

Moving Invariant Computations Out of Loops
If a computation inside a loop computes the same value for each iteration, improve
performance by moving the computation outside the loop. Compute the value once
before the loop begins and use the computed value in the loop. For example, in the
following code block, compute(x) is evaluated during each iteration of the DO loop:

do i = 1 to dim(a);
 if (compute(x) eq a[i]) then ...;
end;

If compute(x) is invariant (meaning that it always computes the same value for each
iteration of the loop), then the code block can be modified to perform the computation
once outside the loop:

computed_x = compute(x);
do i = 1 to dim(a);
 if (computed_x eq a[i]) then ...;
end;

26 Chapter 4 • Best Practices for DS2 Programming

Chapter 5

Python Support in SAS Micro
Analytic Service

Introduction . 27

Public and Private Methods . 29

Example . 30

Configuring Python . 32
Python 2.7 and 3.4 on 64-Bit Windows . 32
Python 2.7 and 3.4 on 64-Bit Linux . 32
Further Considerations for Configuring Python . 33

Configuring a SAS Application Server to Support the DS2 Pymas Package 34

Introduction
SAS Micro Analytic Service 2.2 supports modules that are written in the Python
programming language. A Python module represents a collection of Python functions,
and each of the module's methods represents one Python function. Python modules can
be published to SAS Micro Analytic Service and called from DS2. (See “DS2 Interface
to Python” on page 14.) If your SAS solution supports it, Python modules can be
published and called directly.

Here is an example of Python code that can be used by SAS Micro Analytic Service:

def func0():
 print('func1')

def func1(arg1, arg2):
 "Output: arg3, arg4"
 func0()
 arg3=arg1 + arg2
 arg4 = arg3 + 1
 return arg3, arg4

def func2(arg1, arg2):
 "Output: arg3"
 func0()
 arg3=arg1 + arg2
 return arg3

27

The parameters listed with the function definition are considered the input arguments for
the function. The first line after the function declaration must be a quoted string
containing the word "Output:" followed by all of the outputs for the function.

This example has no output. Input arguments are given in the function's argument list.
This example has input variables a and b. Outputs of the function must be listed after
"Output:" in the quoted string that follows the function definition. The output variables
should match the variables listed in the return statement.

def calcATimesB(a, b):
 "Output: "
 print ("Function with no output variables.")
 c = a * b
 print ("Result is: ", c, ", but is not returned")
 return None

Note: Input and output argument names live in a single namespace. Therefore, they
cannot be the same. This means that in_out arguments are not supported. This is true
for all module types in SAS Micro Analytic Service. This is not an issue in Python,
as a new variable can be assigned the value of an input argument and then safely
added to the output list. If the "Output:" line is missing, the function is not exposed
as a callable function through SAS Micro Analytic Service. However, that function
can be called internally. As a result, any function without the "Output:" line is a
private function. The func0() function is an example of such a private function. SAS
Micro Analytic Service parses the code to create a dictionary of the methods and
their signatures.

The following data types are supported between SAS Micro Analytic Service and
Python.

SAS Micro Analytic
Service Type

SAS Micro Analytic
Service Functions Python Type Python Example

String • sfSymGetString()

• sfSymGetStringA
rray()

• sfSymSetString()

• sfSymSetStringAr
ray()

Unicode string outStr =
unicode('abcdef')

BigInt • sfSymGetBigInt()

• sfSymGetBigIntA
rray()

• sfSymSetBigInt()

• sfSymSetBigIntAr
ray()

Long outLong = 10

Double • sfSymGetDouble(
)

• sfSymGetDouble
Array()

• sfSymSetDouble()

• sfSymSetDouble
Array()

Float outFloat = 10.10

28 Chapter 5 • Python Support in SAS Micro Analytic Service

SAS Micro Analytic
Service Type

SAS Micro Analytic
Service Functions Python Type Python Example

Boolean • sfSymGetBool()

• sfSymGetBoolArr
ay()

• sfSymSetBool()

• sfSymSetBoolArr
ay()

Boolean outBool = True

Datetime • sfSymGetDatetim
e()

• sfSymGetDatetim
eArray()

• sfSymSetDatetim
e()

• sfSymSetDatetim
eArray()

Datetime outDatetime =
datetime.datetime(20
13, 12, 22, 11, 30, 59)

Date • sfSymGetDate()

• sfSymGetDateArr
ay()

• sfSymSetDate()

• sfSymSetDateArr
ay()

Date outDate =
datetime.date(2013,
12, 22)

Time • sfSymGetTime()

• sfSymGetTimeArr
ay()

• sfSymSetTime()

• sfSymSetTimeArr
ay()

Time outTime =
datetime.time(11, 30,
59)

Public and Private Methods
Private and public methods are SAS Micro Analytic Service concepts, rather than
Python features. Any method having the "Output:" doc string is considered a public
method. If a method does not have the "Output:" doc string, then it is considered a
private method. SAS Micro Analytic Service can host public and private Python
methods, where a method is a Python function. Although a private method cannot be
called directly, it can be called by another method (public or private). Private methods
are useful as utility functions. Private methods are not callable externally. Therefore,
they do not show up when querying the list of methods within a package. However, they
can be called internally by other methods.

Python modules can be published containing all public methods, or a mixture of public
and private methods. Both public and private methods can call other functions that either

Public and Private Methods 29

exist within the module internally or in external Python packages, including third-party
libraries.

All public functions returning more than one output argument must return a tuple
containing all of the output arguments. This can be done by returning all of the
arguments separated by commas. When returning zero arguments from a public function
you are still required to include the "Output:" doc string to indicate a public function. It
should simply be "Output:", with no output arguments listed. You can omit the return
statement, return "None", or return an empty tuple.

An example of returning an empty tuple is return (). An example of returning
"None" is return None. One output argument can be returned as is. It is not required
to be returned within a tuple. Here is an example: return a.

Therefore, it could be return a,b,c or return (a,b,c).

Note: Order does matter. Therefore, the order in the return statement must match the
order in the "Output:" line. A best practice is to cut and paste from one to the other.

Example
The following simple example illustrates how to pass parameter data as input to and as
output from a public Python function.

Name: scalarsTest.py
Purpose: Test Python program for scalar types
#
Inputs (name) (type)
inString String
inBool Boolean
inLong Long
inDouble Double
inDateTime DateTime
inDate Date
inTime Time
#
Outputs (name) (type)
outString String
outBool Boolean
outLong Long
outDouble Double
outDateTime DateTime
outDate Date
outTime Time

import the datetime module to perform datetime operations
import datetime

def scalarsTest(inString, inBool, inLong, inDouble, inDateTime, inDate, inTime):
 "Output: outString, outBool, outLong, outDouble, outDateTime, outDate, outTime"

 if inString == None:
 outString = None
 else:

30 Chapter 5 • Python Support in SAS Micro Analytic Service

 # convert the casing of the string input
 outString = inString.swapcase()
 print ("\n inString=", inString, " outString=", outString)

 if inBool == None:
 outBool = None
 else:
 # reverse value of boolean
 outBool = not inBool
 print ("\n inBool=", inBool, " outBool=", outBool)

 if inLong == None:
 outLong = None
 else:
 # add 10 to long
 outLong = inLong + 10
 print ("\n inLong=", inLong, " outLong=", outLong)

 if inDouble == None:
 outDouble = None
 else:
 # add 10.1 to the double
 outDouble = inDouble + 10.1
 print ("\n inDouble=", inDouble, " outDouble=", outDouble)

 if inDateTime == None:
 outDateTime = None
 else:
 # add a day to the datetime object
 outDateTime = inDateTime + datetime.timedelta(days=1)
 print ("\n inDateTime=", inDateTime, " outDateTime=", outDateTime)

 if inDate == None:
 outDate = None
 else:
 # add a week to the date object
 outDate = inDate + datetime.timedelta(weeks=1)
 print ("\n inDate=", inDate, " outDate=", outDate)

 if inTime == None:
 outTime = None
 else:
 # add 30 minutes to the time object
 dt = datetime.datetime.combine(datetime.date.today(), inTime)
 dt = dt + datetime.timedelta(minutes=30)
 outTime = dt.time()
 print ("\n inTime=", inTime, " outTime=", outTime)

 # return all of our outputs
 return outString, outBool, outLong, outDouble, outDateTime, outDate, outTime

Example 31

Configuring Python

Python 2.7 and 3.4 on 64-Bit Windows
1. Run Anaconda for Windows, Python 3.5, Windows 64-bit Graphical Installer from

https://www.continuum.io/downloads.

Note: During the installation process, you are prompted for the destination folder.
These instructions assume that your Anaconda Python installation folder is C:
\Anaconda3.

2. Create a Python environment by entering the following at a Windows command
prompt (note that there are two hyphens before name). Provide the Python version
that you installed. In the following example, Python 3.4 is used.

conda create --name python34 python=3.4

3. Activate the environment (providing the appropriate Python version).

activate python34

4. Before adding any other Python packages to your new, activated environment, first
install the nomkl package.

conda install nomkl

Note: Intel Math Kernel Library (MKL) is incompatible with the SAS kernel.
Installing nomkl instructs Anaconda to select a non-MKL dependent package
version whenever Python packages are added to your environment. If you have a
pre-existing environment that has MKL-dependent packages, follow the
instructions at www.continuum.io for removing MKL and replacing the packages
that have MKL dependencies before using SAS Micro Analytic Service.

5. This step is for Python 3.4 only.

Set environment variable PYTHONHOME, according to the location where Python
is installed. Here is an example:

set PYTHONHOME=C:\anaconda3

Note: When enabling the SAS Web Application Server to use Python, disable the
service and start the SAS Web Application Server in the foreground from a DOS
command shell in which you have activated your Python environment. For
example, after you have activated your Python environment in a DOS command
shell as described in above, change your shell's present working directory to the
server's bin directory and enter tcruntime-ctl run. You can stop the server using
Control-C. The tcruntime-ctl.bat script is located in the SAS-configuration-
directory/LevN/Web/WebAppServer/SASServer13_N/bin directory.

Python 2.7 and 3.4 on 64-Bit Linux
1. Download Anaconda for Linux, Python 3.5, and Linux 64-bit installer from https://

www.continuum.io/downloads.

2. After downloading the installer, enter the following code in a terminal window.
Provide the Python version that you installed. In the following example, Python 3.5
is used.

32 Chapter 5 • Python Support in SAS Micro Analytic Service

https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads

bash Anaconda3-2.5.0-Linux-x86_64.sh

Answer yes to the question, Do you wish the installer to prepend the Anaconda3
install location to PATH in your .bashrc? These instructions assume that you used
the location /users/myuserid/anaconda3.

3. Create a Python 3.4 environment by entering the following code (note that there are
two hyphens before name). Provide the appropriate Python version.

bash
conda create --name python34 python=3.4

4. Before adding any other Python packages to your new, activated environment, first
install the nomkl package.

conda install nomkl

Note: Intel Math Kernel Library (MKL) is incompatible with the SAS kernel.
Installing nomkl instructs Anaconda to select a non-MKL dependent package
version whenever Python packages are added to your environment. If you have a
pre-existing environment that has MKL-dependent packages, follow the
instructions at www.continuum.io for removing MKL and replacing the packages
that have MKL dependencies before using SAS Micro Analytic Service.

5. Activate the environment (provide the appropriate Python version).

source activate python34

6. Prepend the Python environment's lib directory to the LD_LIBRARY_PATH
environment variable. Provide the Python version that you installed. In the following
example, Python 3.4 is used.

LD_LIBRARY_PATH=/users/myuserid/anaconda3/envs/python34/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}

Note: Regarding 64-bit Linux, the conda create and source activate
commands must be run from a bash or zsh shell.

If you encounter a message at run-time, such as “Could not find platform independent
libraries” and “Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]”,
then set the PYTHONHOME environment variable. Here is an example:

export PYTHONHOME=$CONDA_PREFIX

Further Considerations for Configuring Python
The Anaconda documentation states that Python 3.4 can be run from an Anaconda 2.7
installation by creating and activating a Python 3.4 environment. However, you cannot
do this with embedded Python. Therefore, it is recommended that you use the Python 3.5
installer for both Python 2.7 and 3.4.

When starting SAS Web Application Server, do so from a shell in which you have
activated Python, thus enabling the process to use Python. For example, when starting
the server using a script such as tcruntime-ctl.sh, do so from the shell in which you
activated Python, as described above.

A rich set of Python packages is available, covering a wide variety of computing needs.
You might want to add some of these packages to your Python environment.

Note: Make sure nomkl has been installed as the first package, as instructed in the
previous sections.

When you add packages to an Anaconda environment, the packages are placed in
<your-environment-path>/lib/python3.4/site-packages. In order to use

Configuring Python 33

the Python scripts that these packages require, add their locations to the PYTHONPATH
environment variable.

If your Python script imports your own .py files, you also must add their location to
PYTHONPATH. An example location might be .(dot).

Some packages include a lib directory, which also needs to be added to PYTHONPATH.

Finally, you must add <your-environment-path>/lib/python3.4 to
PYTHONPATH.

Anaconda sets the environment variable CONDA_PREFIX when you activate an
environment and sets it to the location where Anaconda stores any new Python packages
that you install (for example, the site-packages folder).

Here is an example of the locations that you might set for PYTHONPATH, after adding
packages to your Python 3.4 environment for 64-bit Linux:

export SITE_PACKAGES=$CONDA_PREFIX/lib/python3.4/site-packages
export PYTHONPATH=.:$CONDA_PREFIX/lib/python3.4
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES/numpy
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES/numpy/lib

Configuring a SAS Application Server to Support
the DS2 Pymas Package

The SAS DS2 pymas package provides interfaces that enable users to publish and
execute Python code using the SAS Micro Analytic Service. This section describes how
SAS Micro Analytic Service can be configured in a SAS Application Server, enabling
you to test DS2 pymas package usage using PROC DS2 running in a SAS session.
Examples of a SAS session are a workspace server that has been launched by SAS
Studio or SAS Decision Manager.

Two user modifications are needed when configuring a SAS Application Server to
support the use of the SAS DS2 pymas package in a SAS server, such as the workspace
server. Here is a brief example:

1. Copy the SAS Micro Analytic Service shared libraries from SASHome/
SASFoundation on the middle tier to the appropriate directory under SAS
Foundation, on the server tier.

2. Add environment settings to the server's corresponding _usermods.sh(.bat) file
provided in the server's configuration directory.

Because the _usermods files are sourced within each of the server wrapper scripts, the
server inherits any logic or environment. SAS preserves _usermods files during software
updates, unlike the server wrapper scripts, which SAS overwrites. For this reason,
editing the wrapper scripts is discouraged.

One place that SAS Micro Analytic Service is installed in the middle tier is a platform-
specific location within SASHome/SASFoundation. Here is an example on UNIX
platforms:

• SASHome/SASFoundation/<release>/sasexe

A specific instance on a UNIX platform can look like this:

• /install/SASServer/SASHome/SASFoundation/9.4/sasexe

34 Chapter 5 • Python Support in SAS Micro Analytic Service

Here is a list of the shared libraries that must be copied from that directory on a UNIX
platform:

• libtksf.so

• pymas.so

• tkmaspy2.so

• tkmaspy3.so

• t1j8en.so

The library name t1j8en.so is the English translation of the SAS Micro Analytic Service
message file. Copy any other SAS Micro Analytic Service language files matching
t1j8??.so as well.

On Windows, the list is almost the same as UNIX except that the file extensions are .dll
instead of .so, and libtksf.so is tksf.dll:

• tksf.dll

• pymas.dll

• tkmaspy2.dll

• tkmaspy3.dll

• t1j8en.dll

On Windows, those libraries are located at core\sasext, instead of sasexe. Here is an
example:

• C:\Program Files\SASHome\SASFoundation\9.4\core\sasext

With respect to environment setting changes needed in the _usermodes.sh(.bat) file, the
environment must be updated to enable the server to find Python and any Python
modules needed by your Python code. When configuring the workspace server on
UNIX, you are updating the following environment sas-configuration-
directory/<LevN>/SASApp/WorkspaceServer/
WorkspaceServer_usermods.sh:

First make a backup copy. Here is an example:

cp --preserve=timestamps WorkspaceServer_usermods.sh \
 WorkspaceServer_usermods.orig.sh

Then, make the following changes to WorkspaceServer_usermods.sh. This example
assumes that Anaconda Python is installed and configured on the server machine, and
that at least one Python environment has been created.

1. Update the name of the shell in the first line from sh to bash. Here is an example:

#!/bin/bash -p

Note: The remainder of the updates are the same commands that you use to activate
and configure your Anaconda Python environment normally.

2. Source the Anaconda activate script to activate the desired environment. Here is an
example:

source /anaconda3/bin/activate python27

Note: A dot (.) is an alias for the source command.

3. Add ${CONDA_PREFIX}/lib to the LD_LIBRARY_PATH environment variable.
Here is an example:

LD_LIBRARY_PATH=${CONDA_PREFIX}/lib:${LD_LIBRARY_PATH}

Configuring a SAS Application Server to Support the DS2 Pymas Package 35

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}

4. If the server has multiple Python installations that are conflicting, you could possibly
encounter an error, such as Python DateTime API failed to load. If so,
set the PYTHONHOME to your Python home directory. Here is an example:

PYTHONHOME=/anaconda3
export PYTHONHOME

For more information see, “Further Considerations for Configuring Python” on page 33.

On Windows, when configuring the workspace server, you are updating
WorkspaceServer_usermods.bat. Add the command that you used to activate the
Anaconda Python environment that you created previously. Here is an example:

c:\Anaconda3\Scripts\activate python27

If you have other environment settings needed for your Anaconda Python environment,
add those commands as well.

You can test your configuration by submitting a PROC DS2 program to make sure it can
successfully use the DS2 pymas package. Here is an example:

%macro chkrc; if rc then put rc=; %mend;
%macro addln(line); rc = py.appendSrcLine(&line); %chkrc; %mend;

/* Input data for the test.*/
data tstinput; a = 8; b = 4; output; a = 10; b = 2; output;
run;

proc ds2;
 ds2_options sas;
 package testpkg /overwrite=yes;
 dcl package pymas py();
 dcl package logger logr('App.tk.MAS');
 dcl varchar(67108864) character set utf8 pycode;
 dcl int rc revision;

 method testpkg(varchar(256) modulename,
 varchar(256) pyfuncname);
 %addln('# The first Python function:')
 %addln('def domath1(a, b):')
 %addln(' "Output: c, d"')
 %addln(' c = a * b')
 %addln(' d = a / b')
 %addln(' return c, d')
 %addln('')
 %addln('# Here is the second function:')
 %addln('def domath2(a, b):')
 %addln(' "Output: c, d"')
 %addln(' c,d = domath1(a, b)')
 if rc then logr.log('E', 'py.appendSrcLine() failed.');
 rc = py.appendSrcLine(' return c, d');
 pycode = py.getSource();
 revision = py.publish(pycode, modulename);
 if revision lt 1 then
 logr.log('E', 'py.publish() failed.');
 rc = py.useMethod(pyfuncname);
 if rc then logr.log('E', 'py.useMethod() failed.');
 end;

36 Chapter 5 • Python Support in SAS Micro Analytic Service

 method usefunc(varchar(256) pyfuncname);
 rc = py.useMethod(pyfuncname);
 if rc then logr.log('E', 'py.useMethod() failed.');
 end;

 method exec(double a, double b, in_out int rc,
 in_out double c, in_out double d);
 rc = py.setDouble('a', a); if rc then return;
 rc = py.setDouble('b', b); if rc then return;
 rc = py.execute(); if rc then return;
 c = py.getDouble('c');
 d = py.getDouble('d');
 end;
 endpackage;

 data _null_;
 dcl package logger logr('App.tk.MAS');
 dcl package testpkg t('my Py Module Ctxt name', 'domath1');
 dcl int rc;
 dcl double a b c d;

 method run();
 a = b = c = d = 0.0;
 set tstinput;
 t.exec(a, b, rc, c, d);
 logr.log('I', '##### Results: a=$s b=$s c=$s d=$s',
 a, b, c, d);
 end;

 method term();
 t.usefunc('domath2');
 a = 6; b = 3;
 t.exec(a, b, rc, c, d);
 logr.log('I', '##### Results: a=$s b=$s c=$s d=$s',
 a, b, c, d);
 end;

 enddata;
 run;
quit;

Configuring a SAS Application Server to Support the DS2 Pymas Package 37

38 Chapter 5 • Python Support in SAS Micro Analytic Service

Chapter 6

Administration

SAS Micro Analytic Service Logging . 39

Secure DS2 HTTP Package Usage . 40

Monitoring . 40
Monitoring SAS Micro Analytic Service . 40
Monitoring SAS Micro Analytic Service Using SAS Environment Manager 42

Start-up Considerations for Clustered Deployments . 43

SAS Micro Analytic Service Logging
An optional SAS Micro Analytic Service start-up parameter specifies the location of an
XML logging configuration file, which controls the logging levels and the location of
the log file or files.SAS Micro Analytic Service uses the SAS 9.4 Logging Facility. For
more information, see SAS Logging: Configuration and Programming Reference. Your
SAS solution provides a default logging configuration file, and that file specifies loggers
and appenders in addition to those described in this chapter.

For example, on UNIX the logging configuration file might be /data1/<SAS-
configuration-directory>/Lev1/Web/Common/LogConfig/
SASMicroAnalyticService-log4sas.xml. For more information, see your solution’s
documentation.

SAS Micro Analytic Service uses three loggers named App.tk.MAS,
App.tk.MAS.Python, and App.tk.MAS.CodeGen. Code that is hosted by SAS Micro
Analytic Service, or the functions that it calls, can use additional loggers.

The logger App.tk.MAS is used for logging start-up, shut-down, and method execution
events. App.tk.MAS.CodeGen is used for code compilation and generation logging
events, such as compiler warnings and errors. App.tk.MAS.Python is used for logging
that is related to Python. Normal operations, such as start-up and shut-down, are logged
at the INFO level. Detailed information about operations such as compilation start and
finish is logged at the DEBUG level. Warning and error conditions are logged at the
WARN or ERROR levels, as appropriate. By default, App.tk.MAS is set to the ERROR
level.

Your SAS solution might report compilation messages automatically. Because these
messages are available programmatically, and to prevent compiler messages from
cluttering the log, App.tk.MAS.CodeGen is set to the FATAL logging level by default.

39

In order to see the data source connection string information that has been logged, set
both the App.tk.MAS and Audit.Table.Connection loggers' level to debug.

When diagnosing DS2 problems, it is important to note that the
App.TableServices.DS2.Runtime.* and App.TableServices.DS2.Configuration.* loggers
do not inherit configuration from their ancestors. They must be configured explicitly, if
you want to capture logging events directed to those loggers. It is recommended that you
configure them only when diagnosing a DS2 problem since the additional logging traffic
affects performance. For more information about those DS2 loggers, see the “DS2
Loggers” section of DS2 Language Reference.

Secure DS2 HTTP Package Usage
The DS2 HTTP package supports HTTP and HTTPS endpoints. The configuration of
SAS Micro Analytic Service defines the SSLCALISTLOC environment variable, which
specifies the location of the digital certificates for trusted certificate authorities.

The SSLCALISTLOC environment variable is defined in a host-specific configuration
script that is located in the application server's bin directory. For example, a UNIX
platform SAS-configuration-directory/LevN/Web/WebAppServer/
SASServer13_1/bin/setenv.sh defines SSLCALISTLOC with a value of
SSLCALISTLOC=$JRE_HOME/../../../SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem. For more information about SSLCALISTLOC, see Encryption in SAS
9.4.

When an HTTP endpoint requires client authentication, it responds to the client with its
list of supported authentication mechanisms. The DS2 HTTP package currently supports
two of the three most common authentication mechanisms. It supports Basic and
Negotiate, but does not support the Digest mechanism. Because Basic authentication in
itself does not provide any credential confidentiality, it should be used only when the
data is being encrypted through TLS. The DS2 HTTP package does not provide an
interface allowing the user to specify credentials, other than including them in the URL.
An example is http://username:password@example.com/. The Negotiate mechanism
supports Kerberos and, when it is used on Windows, NTLM is also supported. For more
information, see “Using the HTTP Package” in SAS 9.4 DS2 Language Reference.

Monitoring

Monitoring SAS Micro Analytic Service
SAS Micro Analytic Service provides several logs to help you with monitoring. One of
these is the web server error log located at SAS-configuration-directory/
LevN/Web/WebServer/logs. These logs have a filename format of error_yyyy-mm-
dd.number.log. In them you can find any connection errors between the web server and
the tcServer.

The tcServer log is called SAS-configuration-directory/LevN/Web/
WebAppServer/SASServer13_X/logs/server.log. To determine whether the
tcServer has started, look for a message similar to the following:

2015-06-03 16:43:13,176 INFO (main) [org.apache.catalina.startup.Catalina]
Server startup in 36647 ms.

40 Chapter 6 • Administration

The catalina.out file captures the output to the console. The content is identical to the
entries that are logged in the REST service log file. Whether information should be sent
to console is controlled by the Log4j configuration file of the REST service.

The gemfire.log file in SAS-configuration-directory/LevN/Web/
WebAppServer/SASServer13_X/logs logs the activity of GemFire, which is a
third-party distributed data management platform. In the event that the tcServer does not
start up, check gemfire.log to see whether GemFire is waiting for data availability. Look
for a log entry in a form that is similar to the following:

[info 2015/06/04 15:44:09.187 EDT <localhost-startStop-1> tid=0x15]
Region /sas_gemfire_region_surrogatekeytomodulereplica initialized with data
from /10.xx.xxx.yy:/data1/SAS-configuration-directory/Lev1/Web/WebAppServer/SASServer13_1/logs
created at timestamp 1433364173611 version 0 diskStoreId 19892c25-b655-4ae7-96ed-c978dde636d2
is waiting for the data previously hosted at
[/10.xx.xxx.xx:/data/SAS-configuration-directory/Lev1/Web/WebAppServer/SASServer13_1/logs created
at timestamp 1433364164520 version 0 diskStoreId 20d2f45e-876f-4cc1-84b0-ccf6920da3e8]
to be available

In a clustered environment, GemFire communicates with the other nodes in the cluster to
determine which has the most recent cache. The sas.servers script starts the
SASServer13_<n> nodes in succession. If starting them in succession is taking too long
and encountering time-outs, then first make sure SASServer_1 has initialized, and then
start all of the SASServer13 nodes manually. Slightly staggering manual invocations of
the SASServer13_<n> servers is preferred when sas.server's successive invocation is
encountering time-outs. For information on how to prevent this condition, see “Cluster
Deployment for SAS Micro Analytic Service” on page 48.

The REST service log file is located at SAS-configuration-directory/
LevN/Web/Logs/SASServer13_1/SASMicroAnalyticService2.1.log. The
current day log entries are in that file. The first log entry that occurs after midnight
causes the previous day's log file to roll over to another file with the format
SASMicroAnalyticService2.1.log.yyyy-mm-dd. SASMicroAnalyticService2.1.log is
created fresh with the first log entry of the day. The service logs are at INFO level.
Therefore, they capture start-up entries, module creation, update and deletion boundary
entries, as well as any errors from all operations. When there is an error, and more
information must be captured to identify the specific cause of the error, update the REST
service's Log4j configuration file to set the logging level to DEBUG, and restart the
service.

Log entries are tagged with an INFO, WARN, or ERROR keyword. When the REST
service is started properly, there is no entry with the ERROR keyword added to the log
file. When a web service request is processed successfully, the HTTP status returned is
either 200, 201 or 204, depending on the context. If the HTTP status returned is 4XX
(such as 400, 401, 404) or 5XX (such as 503), an error message is included in the HTTP
response body. In addition, one or more ERROR entries are in the log file.

A related log file in the same directory is the SAS Micro Analytic Service log. The
filename has the format SASMicroAnalyticService2.1MAS.log.yyyy-mm-dd.pid. Pid is
the process ID of the JVM process that hosts SAS Micro Analytic Service. Each time the
REST service restarts, a new log file is used and then the previous log file rolls over to
another file at midnight. The SAS Micro Analytic Service log file can capture
compilation errors of modules, as well as any anomaly that is encountered by SAS Micro
Analytic Service.

The SAS Micro Analytic Service Log4j configuration files are located in the directory
SAS-configuration-directory/LevN/Web/Common/LogConfig. The
configuration file for the REST service log is SASMicroAnalyticService-log4j.xml. The

Monitoring 41

configuration file for SAS Micro Analytic Service is SASMicroAnalyticService-
log4sas.xml.

Monitoring SAS Micro Analytic Service Using SAS Environment
Manager

Overview
SAS Environment Manager provides several pieces of monitoring functionality that can
be used to help understand SAS Micro Analytic Service usage, check service
availability, and set custom alerts.

Initialize SAS Environment Manager
To initialize SAS Environment Manager:

1. Open the file /config/LevN/Web/SASEnvironmentManager/emi-framework/
ConfigureFiles/Kits/WebServer/WebServer.properties.

2. Make sure that kitenabled is set to TRUE.

3. Follow the instructions found inside the file /config/LevN/Web/
SASEnvironmentManager/emi-framework/
SAS_Environment_Manager_Service_Architecture_Quickstart.pdf.

Access a Report
To access reports in SAS Environment Manager:

1. Open SAS Environment Manager inside a browser (SAS Environment Manager
default port is 7080).

2. Select Report Center from the Analyze drop-down menu.

3. Navigate to Stored Processes ð Products ð SAS Environment Manager ð Kits
ð Web Server. Click HTTP Web Server return codes.

4. To see all of the TKMAS HTTP requests with response codes, navigate to
Classification Variables and move clientsrc from Available to Selected.

5. Under Tabulate Report, click Subsets. Set the Where clause to filter SAS
Environment Manager Data Mart table to clientsubsrc =
'SASMicroAnalyticService'.

6. Click Run to see the report.

Monitor SAS Micro Analytic Service Downtime
To monitor SAS Micro Analytic Service downtime, select Currently Down from the
Resources drop-down menu. This provides you with a list of all of the resources that are
currently down.

Set Alerts
To set up custom alerts for SAS Micro Analytic Service servers:

1. Select Browse from the Resources drop-down menu.

2. On the Platforms tab, click the platform where SAS Micro Analytic Service is
installed.

3. Select New Platform Service from the Tools Menu.

42 Chapter 6 • Administration

4. Enter a name for the new service, and select HTTP from the Service Type drop-
down menu. Click OK.

5. You should receive two messages on the service window. The first should tell you
that your service has been created. The second should ask you to set the
configuration properties. Click Configuration Properties in the second message.

6. Under Configuration Properties, set the following:

a. Set the port field. The default is 7980.

b. Set the hostname field to the location where SAS Micro Analytic Service is
installed.

c. Set the path field to /SASMicroAnalyticService.

d. Select GET from the method drop-down menu.

e. Click OK.

7. Click Alert and then Configure.

8. Click New.

9. Provide the information about the New Alert Definition window. Click OK.

When the condition that is specified for the alert is satisfied, an alert should be visible on
the top banner of SAS Environment Manager.

Start-up Considerations for Clustered
Deployments

SAS Micro Analytic Service is often deployed on a clustered application server to
provide high availability and load balancing. Each node of the cluster can host one or
more instances of SAS Micro Analytic Service as a web application.

Since SAS Micro Analytic Service uses a GemFire cache for communication between
cluster nodes as well as persistence, there are some implications for scripts to start up or
shut down member instances. Upon starting up a GemFire cache, cluster members
negotiate and determine the member that has the latest persisted copy of the cache. In
order to do this, all members must be available.

Therefore, any start-up script must start all cluster members in parallel and not in
sequence. For the Windows platform, the instances are often created as Windows
services, which allows for parallel start-up. UNIX-based deployments often use a shell
script to restart the instances. Be careful to avoid unneeded dependencies.

If the script starts the members in sequence (that is, if it starts a member only after the
preceding instance has started successfully), GemFire waits and delays start-up.
Eventually, nodes do start up. However, they might use an incorrect state of the cache.

Start-up Considerations for Clustered Deployments 43

44 Chapter 6 • Administration

Chapter 7

Deployment and Tuning

Pre-installation Steps . 45

Deployment . 46
Deploying SAS Micro Analytic Service . 46
Adding Whitelist Websites to SAS Micro Analytic Service 47

Post-installation Steps . 47

Cluster Deployment for SAS Micro Analytic Service . 48
Deploying Clusters . 48
License Files for Clusters . 49

Tuning SAS Micro Analytic Service . 50
Adjust Thread Pool Size . 50
Adjust Serial or Parallel Content Creation . 50
Adjust DS2 Module Compilation Mode . 51
Adjust Session Time-out Value . 51
Increase Module ExecutionThroughput of the REST Interface 51
Prevent HTTP Error Messages . 51
Creating and Updating Database Connection Strings . 52

Pre-installation Steps
Complete the table below and then complete the pre-installation steps before running the
SAS Deployment Wizard to install and configure SAS Micro Analytic Service 2.2.

During configuration, you are prompted for the location of your SAS installation data
(SID) file. The SID file can be found in the sid_files directory of the SAS Software
Depot or media. Copy the SID file to a permanent location that can be accessed from all
middle-tier machines that run instances of SAS Micro Analytic Service. The license
location should be entered as the fully qualified path to the SID file, including the
filename of the SID file. For more information, see “License Files for Clusters” on page
49.

SAS Micro Analytic Service 2.2 supports database access. During configuration, you are
prompted for database information, depending on the database type that you selected.
SAS Micro Analytic Service supports SAS, DB2, Greenplum, Netezza, Oracle,
PostgreSQL, Microsoft SQL Server, and Teradata. You can choose not to specify a
database for data access by selecting No Database Data Access. For more information,
see “I/O” on page 9.

45

The table below lists the information that you must obtain and have available before
running the SAS Deployment Wizard.

Description Default Value Actual Value

Database Type No database data access.

Database Host Machine Host Name

Database Port The default port for the
database type.

Database User ID

Database Password

The following information is needed if SAS is chosen for data access:

SAS Library Name

Path to SAS Data

The following information is needed if Oracle is chosen for data access:

Oracle Default Schema Name

The following information is needed if SQL Server is chosen for data access:

SQL Server ODBC Data
Source Name

Greenplum, PostgreSQL, DB2, Teradata, or Netezza

Database Name

Deployment

Deploying SAS Micro Analytic Service
The full SAS Micro Analytic Service software stack, including the REST, Java, and C
interfaces, and the core C engine, is deployed as a SAS web application in SAS Web
Application Server. SAS web applications can be clustered and optimized for
performance and high availability. For information about how to tune the SAS Micro
Analytic Service web application for optimum performance, see SAS 9.4 Web
Applications Tuning for Performance and Scalability.

46 Chapter 7 • Deployment and Tuning

Adding Whitelist Websites to SAS Micro Analytic Service
For information about adding websites that link directly to SAS Micro Analytic Service,
see the “Whitelist of Websites and Methods Allowed to Link to SAS Web Applications”
section of SAS 9.4 Intelligence Platform Middle-Tier Administration Guide.

Post-installation Steps
Open SAS/config/LevN/documents/Instructions.html and follow the steps found in the
topic on validation.

Note: Steps 1 and 2 are needed only if you are configuring the middle-tier on an AIX
machine.

1. Create the following symbolic links for every middle-tier machine where the SAS
Micro Analytic Service REST API has been deployed:

• libdflic-1.4.so to libdflic-1.4.a

• libdfssys-1.3.so to libdfssys-1.3.a

Here is an example:

cd <LevConfig>/Web/WebAppServer/SASServer13_#/sas_webapps/
sas.microanalyticserver.war/WEB-INF/lib/loadlib
In -s libdflic-1.4.a libdflic-1.4.so
In -s libdfssys-1.3.a libdfssys-1.3.so

2. Restart the SASServer13 nodes on every middle-tier machine where the SAS Micro
Analytic Service REST API is deployed.

3. Validate the web service URL for the SAS Micro Analytic Service REST API. If the
service is deployed correctly, the following JSON object is returned:

{"version":1,"links":[{"method":"GET","rel":"modules",
"href":"http://www.example.com/SASMicroAnalyticService/rest/modules","uri":"/modules"},
{"method":"POST","rel":"createModule","href":
"http://www.example.com/SASMicroAnalyticService/rest/modules","uri":"/modules"}]}

4. When you have completed the validation steps that are located in instructions.html,
grant access to the service to a user and add that user as a member of the Decision
Manager Users group.

a. In SAS Management Console, expand Environment Manager.

b. Right-click User Manager and click New ð User.

c. On the General tab, enter the user name and any other optional information.

d. On the Groups and Roles tab, find the Decision Manager Users group from the
Available Groups and Roles list and add it to the Member of list.

e. On the Accounts tab, click New.

f. In the New Login Properties dialog box, you must complete at least the User ID
field. Click OK.

g. Click OK in the New User Properties dialog box.

Post-installation Steps 47

Note: If connecting an administrative console such as JConsole or JVisualVM causes
the server to terminate, add -Xrs to the JVM options and restart the server.

• On UNIX platforms, -Xrs can be added to the JVM_OPTS variable in the
setenv.sh file located in SAS-configuration-directory/LevN/Web/
WebAppServer/SASServer13_N/bin/ directory.

• On Windows platforms, -Xrs can be added to setenv.bat, located in the directory
mentioned above, if you invoke your server using the tcruntime-ctl.bat script. If
you invoke the server as a service, add it to the wrapper.conf file located at SAS-
configuration-dirctory/LevN/Web/WebAppServer/
SASServer13_N/conf/wrapper.conf.

Cluster Deployment for SAS Micro Analytic
Service

Deploying Clusters
In a cluster deployment, the web server runs on only one node, and it serves as the
balancer. The URL to the service sends the request to the web server. By default, the web
server dispatches requests in round-robin to the nodes in the cluster. However, load-
balancing policies might be different policy is specified during the web server
configuration.

The SAS metadata server for each middle-tier node is specified during deployment. The
same metadata server that is referenced by the middle tier can be referenced by the
middle-tier nodes. When that is the case, user management data and application
properties that are set on the middle tier are applicable automatically to the middle-tier
nodes. If different metadata servers are referenced by the middle tier and the middle-tier
nodes, any user or application management data changes should be made in both
metadata servers.

By contrast with the middle tier, the Instructions.html file for the middle-tier node
includes neither a web service URL nor a section on validating steps for the web service.
The web server directs requests to middle-tier nodes based on the specified load-
balancing policy in its configuration.

If a user wants to use the same node to serve a group of requests, this can be achieved by
including the same route information in the HTTP request for that group of requests. The
cluster is enabled for a sticky session by default. When a service request is made, the
header section of the HTTP response includes a Set-Cookie header, such as the
following:

Set-Cookie: c74b1b873e98ef08505dee685863e7b2_Cluster13=EC5213E970F0655
8E63F145001F64CEC.c74b1b873e98ef08505dee685863e7b2_SASServer13_1;
Path=/SASMicroAnalyticService/; HttpOnly

The first item is a variable=value construct. The variable is a session ID. The value is a
route.

To use the same node to serve a group of requests, extract the route information from the
first request of the group. From the second request to the last request, set the cookie
header with the sessionID and route value, similar to the following example:

EC5213E970F06558E63F145001F64CEC.c74b1b873e98ef08
505dee685863e7b2_SASServer13_1

48 Chapter 7 • Deployment and Tuning

Using the same node to serve a group of requests can be useful because it avoids
introducing errors by a delay in replicating content from one cluster node to another.

For example, the cluster consists of two nodes, Node 1 and Node 2. You want to deploy
two modules, A and B. Also, B depends on A. Suppose A is a very big module and takes
more than 20 seconds to compile. If A is deployed on Node 1, it must be replicated to
Node 2 and then compiled on Node 2, before it is available on Node 2. If B is deployed
to Node 2 before A is ready there, there is an error. To avoid this type of error, set the
cookie to tell the web server to use Node 1 to deploy B.

Clustering relies on GemFire, a third-party distributed data management platform.
GemFire persists data to files that are stored in SAS/config/LevN/Web/
WebAppServer/SASServer13_X/logs. The filenames contain the masgemfire sub-
string. Those files should not be changed. Also, make sure that sufficient disk space is
allocated to the SAS/config/LevN/Web/WebAppServer/SASServer13_X/logs
directory so that the cache files grow.

CAUTION:
These files should not be truncated or deleted regardless of their size.
Sometimes the file size might appear to be zero bytes. GemFire also uses the word
BACKUP in some of the filenames. Deleting or truncating these files deletes the
modules repository.

In a typical deployment, a middle-tier node uses the middle tier's GemFire locator. A
locator is used in the peer-to-peer cache to discover other processes. If the whole cluster
must be restarted, the commands to start the middle tier and middle-tier nodes should be
submitted immediately one after another. The order does not matter.

Note: The GemFire locator must be started cleanly before the other nodes are started.
The other nodes should then be stagger started, to reduce the load on the GemFire
locator. In addition, it is important to periodically back up the GemFire persistence
storage for production systems.

License Files for Clusters
If you publish modules that perform database I/O, your license (SID) file must include
licensing for the database access solutions that you intend to use. SID files are not
automatically distributed to cluster nodes. When clustering, choose one of these
approaches:

• Place your license file on a shared disk and enter the path to it when prompted by the
SAS Deployment Wizard.

• Copy the license file to each cluster node, and enter the relative path to the license
file when prompted by the SAS Deployment Wizard.

If you choose the second option, you must copy the updated license file to each cluster
node whenever your SAS software licenses are renewed or modified. Therefore, placing
the license file in a shared directory is recommended.

Cluster Deployment for SAS Micro Analytic Service 49

Tuning SAS Micro Analytic Service

Adjust Thread Pool Size
Tasks in SAS Micro Analytic Service, such as revision compilations and method
executions, are performed by special worker threads, which are part of the SAS threaded
kernel architecture. These worker threads are maintained in a thread pool. The size of the
thread pool to use is provided to SAS Micro Analytic Service as a start-up parameter. By
default, the thread pool size is set equal to the number of cores in the hosting server.
Optimum performance is usually achieved using this number. However, the optimum
setting might vary depending on the characteristics of the modules that you publish to
SAS Micro Analytic Service.

To change the worker thread pool size:

1. In SAS Management Console, expand Application Management.

2. Expand SAS Application Infrastructure.

3. Right-click SAS Micro Analytic Service 2.2.

4. Select Properties.

5. Click the Advanced tab.

6. Unlock masintf.tk.threads in the Property Name column.

7. Change the value. To tell SAS Micro Analytic Service to automatically set the
worker thread pool size equal to the number of logical processors, enter 0 for the
value.

For example, specifying 0 on a system that has one Intel quad-core, hyper-threaded
processor results in a thread pool size of 8, given that there are two logical
processors per core when hyper-threading is on.

8. Click OK.

Adjust Serial or Parallel Content Creation
The POST operation on the modules collection and the PUT and DELETE operations on
a module are serialized by default, and are processed in the order of arrival. To allow
these operations to be processed in parallel:

1. In SAS Management Console, expand Application Management.

2. Expand SAS Application Infrastructure.

3. Right-click SAS Micro Analytic Service 2.2.

4. Select Properties.

5. Click the Advanced tab.

6. Unlock masintfc.tk.serializecontentcreation in the Property Name column.

7. Change the value. The choices are True and False. The default value is True.

8. Click OK.

50 Chapter 7 • Deployment and Tuning

Adjust DS2 Module Compilation Mode
The REST server inserts a DS2 option in front of each DS2 module to instruct it to use
SAS missing value behavior. Although it is not recommended, you can configure the
system to use ANSI missing value behavior for DS2 modules. For ANSI behavior, enter
False in step 7 below.

1. In SAS Management Console, expand Application Management.

2. Expand SAS Application Infrastructure.

3. Right-click SAS Micro Analytic Service 2.2.

4. Select Properties.

5. Click the Advanced tab.

6. Unlock masintfc.tk.sasmode in the Property Name column.

7. Change the value. The choices are True and False. The default value is True.

8. Click OK.

Adjust Session Time-out Value
To shorten the amount of time the web server holds on to memory that is used in
fulfilling a request, adjust the session time-out value. This allows for a more frequent
and shorter garbage collection interval instead of fewer and longer garbage collection
intervals that might reduce the responsiveness of the REST server.

Increase Module ExecutionThroughput of the REST Interface
Execution performance can be increased by disabling authentication within the SAS
Micro Analytic Service REST server. However, those making connections to the REST
server to execute micro analytics must always be authorized and authenticated by some
other means, such as a private network. If this is the case, you can edit the JVM option
that starts the REST server to include the argument

 -Dsas.mas.access.mode=private

As a result, REST server authentication is not required to execute micro analytics.
Authentication is still required for other operations.

As a result of specifying this option, the CPU cycles and sockets that are used for
authentication are available for other uses, such as executing micro analytics.

The place to edit the JVM option is host specific:

• Linux - SAS/config/LevN/Web/WebAppServer/SASServer13_X/bin/
setenv.sh

• Windows - SAS\Config\LevN\Web\WebAppServer\SASServer13_X\conf
\wrapper.conf

Prevent HTTP Error Messages
To prevent HTTP error messages, make sure that the web server is located on a separate
host machine from the web application server. When the web server and web application

Tuning SAS Micro Analytic Service 51

server are located on the same machine, they compete to use the ephemeral ports on the
system. Separating them reduces contention for this finite resource.

Creating and Updating Database Connection Strings
To create or update a connection string:

1. In SAS Management Console, expand Application Management ð Configuration
Management ð SAS Application Infrastructure.

2. Right-click SAS Micro Analytic Service 2.2 and select Properties.

3. On the Advanced tab, update the masintfc.db.connectionstring property's value.

4. Click OK.

The connection string can contain a federation of multiple connection strings, to enable
access to multiple databases. For more information about federated connection strings,
see “I/O” on page 9.

52 Chapter 7 • Deployment and Tuning

Chapter 8

Backup and Restore

Overview . 53

Backup Disk Stores . 54

Restore Script . 54

Additional Backup Considerations . 55
Backup Considerations for 64-Bit Windows . 55
Additional Backup Considerations for 64-Bit HP-UX Itanium 56
Additional Backup Steps in a Clustered Environment . 56

Common Errors and Remediation . 57

Overview
SAS Micro Analytic Service uses GemFire cache to persist information about modules
deployed in it. Like any other persistent storage of content, this store must be backed up
regularly, in accordance your organizational policies. In the case of a hardware failure,
the content of the cache can be restored from the last good backup to minimize
downtime. If backups are not available, all modules have to be redeployed.

GemFire provides an online backup facility where all nodes of the cluster must be
operational during the backup process. To restore from a backup, all nodes of the cluster
must be shut down.

This chapter describes the backup and restore procedure as it applies to SAS Micro
Analytic Service.

The GemFire persistence folder for a SAS Micro Analytic Service system is found in
SAS-Configuration-Directory/LevN/Web/WebAppServer/
SASServer13_n/logs, where LevN is the SAS configuration level directory, and
13_n denotes the application server processes. This is where GemFire holds files that
contain an image of the GemFire shared cache.

Before beginning the backup process, see “Additional Backup Considerations” on page
55.

53

Backup Disk Stores
To begin the backup process, navigate to the GemFire bin directory.

Note: The current directory must be in the path. All tc Server instances hosting the SAS
Micro Analytic Service must be running in order to run the backup command.

1. If you have disabled auto-compaction, run manual compaction:

Note: This step is necessary only for clustered environments.

gemfire compact-all-disk-stores

2. Run the backup command, providing your backup directory location. The following
example stores the backed-up files under the gemfireBackupFilesDirectory.

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire backup /gemfireBackupFilesDirectory

The tool reports on the success of the operation. If the operation is successful, a
message similar to the following is generated:

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire backup /gemfireBackupFilesDirectory
Connecting to distributed system: locators=<ServerName>[26340]
The following disk stores were backed up:
DiskStore at <ServerName> SAS-Configuration-Directory/LevN/Web/WebAppServer/SASServer13_1/logs
Backup successful.

If the operation does not succeed at backing up all known members, a message
similar to the following is generated:

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire backup /gemfireBackupFilesDirectory
Connecting to distributed system: mcast=/239.192.81.1:10334
ERROR: Operation "backup" failed because: There are no members in the distributed system.

3. To ensure that the backup can be recovered, validate the backed-up files. Run the
validate-disk-store command on the backed-up files, for each disk store. Use the full
directory path to where the GemFire backup was stored (for example, /
gemfireBackupFilesDirectory/<date>/
<ServerName>_v31_13729_16281/diskstores/masgemfire/dir0).

Run the validate-disk-store command as follows:

SAS-Configuration-Directory/LevN/Web/gemfire/bin>gemfire validate-disk-store masgemfire/
 gemfireBackupFilesDirectory/<date>/<SeverName>_v31_13729_16281/
 diskstores/masgemfire/dir0

Repeat these steps for all disk stores of all members.

Restore Script
The restore script copies files back to their original locations. The backup process
creates a folder that is named with the date and time of the backup, as indicated in the
above example. This folder can contain one or more subfolders, each corresponding to a
folder containing GemFire persistence files. Each such folder contains a restore script

54 Chapter 8 • Backup and Restore

called restore.sh or restore.bat (for example,gemfireBackupFilesDirectory/
<date>/<ServerName>_v31_13729_16281/restore.bat /).

Note: For a cluster, the GemFire persistence folders can be on different nodes. This has
the following implications:

• In order to restore, the restore script must have access to the backup folders as
well as the GemFire persistence folders. Therefore, it is recommended that you
create the backup in a shared folder that is accessible from every node of the
cluster. Then, run the script on the nodes that contain the GemFire persistence
folder.

• You might need to modify the restore script since the paths to the GemFire
persistence folder can be different on different nodes of the cluster. Because the
restore script copies files from the backup folder to the GemFire persistence
folder, it can be easily modified to correct the path. You can also copy the files
directly, without using the restore script.

Here are best practices for running the restore script:

• Restore your disk stores when your members are offline, and the system is down.

• Read the restore scripts to see where they place the files. Make sure that the
destination locations are ready. The restore scripts do not copy over files with the
same names. Therefore, delete all files prefixed with BACKUPmasgemfire in the
SASServer13_n/logs folder, after stopping any SASServer13 processes, but
before running the restore script (for example, /gemfireBackupFilesDirectory/
<date>/<ServerName>_v31_13729_16281/restore.sh).

• Run the restore scripts. Run each script on the host where the backup originated, as
shown in the step above.

The restore process copies disk store files for all stores containing persistent region data
back to their original location.

Additional Backup Considerations

Backup Considerations for 64-Bit Windows
The provided Windows distribution of GemFire does not contain the gemfire.properties
file. The GemFire script also does not allow the use of -J switches to supply JVM
arguments. To run the GemFire backup command, you must extract the locator and
license information from the wrapper.conf file for the locator and supply them to the
GemFire command line script as JVM arguments. To do this:

1. Locate the GemFire folder under SAS-Configuration-Directory\LevN\Web
\gemfire\.

2. Find the instance folder and locate the wrapper.conf file in it. The instance folder is
located at SAS-Configuration-Directory\LevN\Web\gemfire
\instances. It is commonly called ins_41415.

3. Locate the following lines containing the parameter values from the wrapper.conf
file:

• set.GEMFIRE_LOCATORS=<ServerName>[41415]

• set.USE_IPV4_STACK=false

• set.USE_IPV6_ADDRESS=false

Additional Backup Considerations 55

• wrapper.java.additional.2=-Dgemfire.mcast-port=0

• wrapper.java.additional.3=-Dgemfire.license-application-
cache=6M0C3-4VW9H-M8J40-0D52F-DTM0H

• wrapper.java.additional.4=-Dgemfire.locators=%GEMFIRE_LOCATORS%

• wrapper.java.additional.5=-Djava.net.preferIPv4Stack=%USE_IPV4_STACK%

• wrapper.java.additional.6=-Djava.net.preferIPv6Addresses=
%USE_IPV6_ADDRESS%

4. When you use the above construct, your command line should look like the
following:

set JAVA_ARGS=-Djava.net.preferIPv4Stack=false
 -Djava.net.preferIPv6Addresses=false -Dgemfire.mcast-port=0
 -Dgemfire.locators=<ServerName>[41415]
 -Dgemfire.license-application-cache=6M0C3-4VW9H-M8J40-0D52F-DTM0H

Substitute the appropriate values for the arguments based on the contents of
wrapper.conf. This line must be run before running the GemFire script, so that the
utility can find the locator.

Additional Backup Considerations for 64-Bit HP-UX Itanium
This distribution does not contain the gemfire.properties file. Instead, the scripts in the
locator instance can be used to define the appropriate values. They can also be used as
shell variables, and as JVM arguments.

1. Locate the GemFire folder under SAS-Configuration-Directory/
LevN/Web/gemfire.

2. Find the instance folder and locate the wrapper.conf file in it. The instance folder is
located at SAS-Configuration-Directory/LevN/Web/gemfire/
instances. It is commonly called ins_41415.

3. Run the gemfire-locator.sh script, so that it defines the appropriate values as
variables in the current shell, as follows:

. gemfire-locator.sh

Note: There is a space between . and gemfire.

4. Run the GemFire script in the SAS-Configuration-Directory/LevN/Web/
gemfire/bin folder, using the following arguments:

-J-Dgemfire.mcast-port=0 -J-Djava.net.preferIPv4Stack=$USE_IPV4_STACK
-J-Djava.net.preferIPv6Addresses=$USE_IPv6_ADDRESS
-J-Dgemfire.locators=$LOCATORS
-J-Dgemfire.license-application-cache=$GEMFIRE_LICENCE_KEY backup
/localdata/config/Lev1/gbkh6i_1

Additional Backup Steps in a Clustered Environment
Make sure that all cluster members are running. Before backing up a cluster, run the
GemFire utility using the compact-all-disk-stores command. The backup process creates
multiple folders containing content from the different cluster members in the destination
folder. Use the restore script in each such folder to restore the folder to the appropriate
cluster member.

56 Chapter 8 • Backup and Restore

Common Errors and Remediation
The backup process must be run while all the cluster nodes are running. If the backup
process is run while some of the nodes are down, you might see error messages, such as
ERROR: Operation "backup" failed because: There are no members
in the distributed system.

The backup process uses GemFire configuration information that has been set up by the
SAS installer. There is considerable variation across different platforms regarding how
and where this information is stored. Make sure that you are following the correct
instructions for invoking the GemFire backup process for your platform. Otherwise, you
might see messages, such as ERROR: Operation "backup" failed because:
There are no members in the distributed system.

The restore process must be run when all of the cluster nodes are shut down. In some
operating systems, you might receive errors about locked files.

Common Errors and Remediation 57

58 Chapter 8 • Backup and Restore

Chapter 9

Upgrading, Migrating, and
Promotion

Upgrading and Migration . 59

Promotion . 59

Upgrading and Migration
Upgrading refers to updating SAS software and the associated metadata and
configuration. For SAS Micro Analytic Service, it specifically means updating the
software from SAS Micro Analytic Service 1.2 or 1.3 to 2.2. It is possible to upgrade the
software and run on the same hardware deployment.

By contrast, migration is a process in which your SAS content and configuration from an
earlier SAS release is upgraded to run in a later SAS release. When performed
successfully, migration attempts to preserve as much of your current content and
configuration as possible, reduce the number of manual migration tasks, and minimize
system downtime.

The modules that are deployed in SAS Micro Analytic Service are held in the GemFire
cache persistence. Consequently, any upgrade or migration process must be preceded by
backing up the stores as explained in Chapter 8, “Backup and Restore,” on page 53.

When the software is upgraded, it is possible to continue to use the same GemFire
storage files. If these files have been deleted, they can be restored from a last known
good backup.

If the source and target environments are different, in terms of hardware, topology,
platform, and so on, all the modules that are deployed must be redeployed. For specific
REST API calls to retrieve and repost modules, see “Promotion” on page 59.

Promotion
Promotion is the movement of selected content from a source system to an already
configured target system. Sometimes called partial promotion, promotion of metadata
content is typically used to support movement across development, test, and production
environments. It is possible to have multiple such environments depending on the
workflow and policies of the organization.

For SAS Micro Analytic Service, content refers to the modules that have been deployed.

59

The source code for the modules can be retrieved from a source system using the REST
API call:

GET http:/host:port/SASMicroAnalyticService/rest/modules/{moduleId}/source

This returns a JSON object that contains the source code of the module.

The same source code can be posted to the target system using the REST API call:

POST http:/host:port/SASMicroAnalyticService/rest/modules

In SAS Micro Analytic Service 2.2, the module ID is based on the DS2 package name
and is not a generated GUID. This ensures that the modules created from the same
package have the same module ID.

60 Chapter 9 • Upgrading, Migrating, and Promotion

Chapter 10

SAS Micro Analytic Service REST
API

Overview . 62

Terminology . 63
Micro Analytic Service . 63
Micro Analytic Module . 63
Micro Analytic Step . 63
Package . 63
Method . 63
Signature . 63
Input Signature . 63
Output Signature . 63
Module . 63
Module ID . 64
Module Name . 64
Step . 64
Step ID . 64
Source Code . 64

Client Application Features . 64
Post Load or Create Modules . 64
Get Input or Output Step Signatures . 64
Post Validate Input Variables . 65
Post Execute Modules . 65
Put Update Modules . 65
Delete Modules . 65
Payload Logging . 65

Security and Authentication . 66

Life Cycle . 66

Media Types . 66
Externally Defined Media Types . 66

SAS Micro Analytic Service Media Types . 68
application/vnd.sas.microanalytic.module . 68
application/vnd.sas.microanalytic.module.definition . 72
application/vnd.sas.microanalytic.module.source . 73
application/vnd.sas.microanalytic.module.step . 75
application/vnd.sas.microanalytic.module.step.input . 79
application/vnd.sas.microanalytic.module.step.input.validity 80
application/vnd.sas.microanalytic.module.step.output . 81

Resources and Collections . 83

61

Resource / . 83
Collection /modules . 84
Resource /modules/{moduleId} . 96
Resource /modules/{moduleId}/source . 104
Collection /modules/{moduleId}/steps . 106
Resource /modules/{moduleId}/steps/{stepId} . 119

Overview
The SAS Micro Analytic Service REST API provides an interface for web client
applications to compile and execute micro analytic modules as steps that provide near
real-time analytic capabilities. The REST API supports DS2 modules, including SAS
Enterprise Miner models, SAS Business Rules Manager rule flows, and user-written
packages. User-written DS2 packages can also publish Python modules and execute
Python functions.

The API provides the following POST methods:

Create module
publishes module code in memory with a request body containing the DS2 source
code as input.

Validate steps
validates the request body of input values required by the DS2 source code and
returns validation results.

Execute step
validates and executes the micro analytic step with a request body of input values
required by the DS2 source code.

The API provides the following PUT method:

Update module
publishes updated analytic code in memory with a request body containing the DS2
source code as input.

The API provides the following DELETE method:

Delete module
removes analytic code from memory.

The API provides the following GET methods:

Query an individual module
returns detailed information about a module

Query steps by module
returns a list of steps available by module.

Query step signature
returns detailed information about the inputs required by the step and the outputs
produced by the step.

Retrieve module details
returns information such as the module's name, current revision, and a list of
compiled steps.

The implementation supports only JSON resource representations.

62 Chapter 10 • SAS Micro Analytic Service REST API

Terminology

Micro Analytic Service
A small footprint, near real-time or machine-embedded, execution service providing the
ability to embed SAS analytics and business logic into very small portable systems
requiring near real-time or transactional analytics.

Micro Analytic Module
A collection item that contains multiple steps of analytical logic. The SAS Micro
Analytic Service REST API representation of a collection of units of step code to
execute analytical logic.

Micro Analytic Step
A unit of analytical logic that is executed. It includes input and output values. Here is an
example: the name value pairs that contain the input values required to execute the step
and the output values that are generated as a result of its execution. In the DS2 language,
a step is defined as a method. When the step is executed, a specific method in the
module is executed.

Package
An assembly of methods defined by a DS2 source.

Method
A unit of DS2 source that has input and output variables.

Signature
Variables defined as inputs into a method and outputs from the execution of a method.

Input Signature
A description of the input values required to execute the step. The attributes of the input
signature include the input variable, its data type, and the dimensions where applicable.

Output Signature
A description of the output values. Here is an example: the name value pairs that
describe the name of the output variable, its data type, and the dimensions where
applicable.

Module
A container steps. In the DS2 language, a module is defined as a DS2 package.

Terminology 63

Module ID
A generated unique string that identifies a module in an installation. When the
installation is a cluster, no two modules created on two different cluster nodes have the
same ID.

Module Name
A name associated with a module. For a DS2 module, this corresponds to the DS2
package name. A DS2 package name can be quoted. Because of that, it is not convenient
to use it on the URL to specify the module for an HTTP operation. Even though the
module name is not used to identify a module, each module name must be unique in an
installation.

Step
A unit of analytical code to be executed. For a DS2 source, it is a method.

Step ID
The name of a step that is included in the micro analytic module. For a DS2 module, this
corresponds to the name of a method. The combination of module ID and step ID is used
to retrieve the individual step.

Source Code
The input analytic source code that is compiled into a micro analytic module containing
one or more steps.

Client Application Features

Post Load or Create Modules
To load or create a micro analytic module, the client application posts a module, with a
request body that contains the DS2 source code, to the module’s resource collection.

The DS2 source code is represented as a source code representation that compiles into
one DS2 package. The package is represented as a micro analytic module with multiple
methods that are represented as steps in the REST API. Therefore, a module might
contain multiple steps. These modules and steps are stored in memory. The response
body that is returned contains a module resource for the module.

Get Input or Output Step Signatures
The client application references a step directly by using an ID of the module generated
by the REST server. This ID is referred to as the module ID, and the name of the step
(compiled DS2 method) is referred to as the step ID.

Before executing the step, the client application performs a GET method on the step to
retrieve these signatures:

64 Chapter 10 • SAS Micro Analytic Service REST API

• The signature describing the input variables or types that must be put in the request
body to execute the step.

• The signature describing the output variables or types that the step returns in its
response body.

Post Validate Input Variables
The client application posts to the step's validations resource, along with a request body
that contains the input values that are required to execute the step (compiled DS2
method).

When the POST is received, the input values are validated against the input signature of
the step. A validation error is reported to the client as a response body that contains the
validation results. This allows the client to validate its input before execution.

Post Execute Modules
The service supports a synchronous way to execute a step (compiled DS2 method). In
this case, the client application posts to the step resource, along with a request body that
contains the input values that are required to execute the step (compiled DS2 method).

Put Update Modules
The client application creates a new revision of a module through its module ID.

Delete Modules
The client application deletes a module through its module ID.

Payload Logging
Payload logging enables you to capture the JSON payload, for both input and output,
and log it to a file, so that it can be harvested and analyzed.

The data is captured in text files. The files are managed using log4j and can be
configured to roll over daily or when the file reaches a particular size. The files are
created in the same location as the system log file. The name of the file is
SASMicroAnalyticServiceMessages<version_number>.log. Every node in the cluster
produces its own file. It is possible to change the location by modifying the log4j
configuration ID. It is recommended that the file be local to the cluster node, to
minimize impact on system performance.

For every invocation of the REST service, a single line that contains the timestamp is
logged. The timestamp is followed by a payload JSON object that contains both the
request and the response representations. The timestamp is a fixed size. The payload
object is not.

Payload logging can be turned on by defining the system property sas.mas.message.audit
and setting its value to TRACE. This change can be made in the wrapper.conf file
(Windows) or setenv.sh (UNIX) as shown below:

• In setenv.sh (UNIX): -Dsas.mas.message.audit=TRACE

• In wrapper.conf (Windows): wrapper.java.additional.50=-
Dsas.mas.message.audit=TRACE

Client Application Features 65

Security and Authentication
To reduce Cross Site Request Forgery (CSRF) attack, a filter is used to check whether
the HTTP referrer header value of an incoming request is registered in the white list that
is set up during product configuration. A referrer identifies the page that caused the
incoming request to be sent. If the referrer header is used but the referring address does
not match any of the patterns allowed in the white list, the request is rejected with an
HTTP 403 error. For more information, see SAS 9.4 Intelligence Platform Middle-Tier
Administration Guide.

Note: If you encounter white list issues, from SAS Management Console navigate to
Application Management ð SAS Application Infrastructure, and then right-click
and select Properties. On the Advanced tab, add trusted hosts to the white list. For
example, the value *.example.com added to the white list allows requests originating
from the example.com domain to get through.

The creation and execution of the analytical logic are tasks controlled through security.
In an enterprise application, the API uses authentication supported by the SAS platform
to create tickets and use them with the API. The API internally processes user roles and
authorization and returns a status of 401 if the operation is not allowed for a particular
user. However, it will not specify implementation or representation.

All modules are discoverable and usable by an authenticated user.

Life Cycle
A compiled micro analytic module remains compiled during the lifetime of the server
session in which it was compiled, even when dependent modules are updated afterward.

The REST server manages the persistence of the modules by keeping metadata about the
modules. Therefore, when the REST server restarts, there is enough information to re-
create the existing modules. The module IDs remain the same. However, when the
modules are loaded into memory again they can be put in addresses that are different
from the last time. Furthermore, each reload of the modules requires them to be
recompiled.

The compilation of the modules is delayed until necessary (for example, when a module
is to be executed).

Media Types

Externally Defined Media Types

application/vnd.sas.collection
The application/vnd.sas.collection media type represents a collection of resources. The
collection is usually a page of limit items from a larger collection.

Here are the link relations for the application/vnd.sas.collection media type.

66 Chapter 10 • SAS Micro Analytic Service REST API

Relationship HTTP Method Description

self GET The current page of the (filtered) collection.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

next GET The next page of resources. It should be omitted if the
current view is on the last page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

first GET The first page of resources. It should be omitted if the
current view is on the first page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex

Media type: application/vnd.sas.collection

last GET The last page of resources. It should be omitted if the
current view is on the last page.

URI: {SASApi}/rest/collectionUri?
start=startIndex&limit=limitIndex[modifiers]

Media type: application/vnd.sas.collection

up GET The resource that this collection resides in.

URI: {SASApi}/rest/containerUri

Media type: application/vnd.sas.collection

Here is an example of application/vnd.sas.collection+json and application/
vnd.sas.collection+json;version=2:

{
 "version" : 2,
 "accept": "space-separated media type names allowed in this collection",
 "count" : integer,
 "start" : integer,
 "limit" : integer,
 "name" : "items",
 "items": [
 { resource1 fields }, ...,
 { resourceN fields }
],
 "links" : [
 { link representation }, ...
 { link representation },
]
}

Note: The order of the fields can vary.

Media Types 67

application/vnd.sas.error
Here are attributes for application/vnd.sas.error:

errorCode
The system error code for reference (64-bit integer). It is often used for correlation
with back-end service error message identifiers.

httpStatusCode
The HTTP status code error number (integer), 1xx, 2xx, 3xx, 4xx, or 5xx values.

message
The back-end system error message string. The message should be localized as per
the Accept-Language of the request.

details
Detailed information specific to this error, in a list of strings. If appropriate, these
strings should be localized as per the Accept-Language of the request.

remediation
Recommended actions to resolve the error, in a list of strings. The remediation string
should be localized as per the Accept-Language of the request.

version
Version information for this error format (integer, value 1).

links
An array of application/vnd.sas.link objects.

application/vnd.sas.link
application/vnd.sas.link is a media type used to denote a link to a resource.

text/vnd.sas.source.ds2
text/vnd.sas.source.ds2 is a media type used to denote SAS source code consisting of
DS2 code.

SAS Micro Analytic Service Media Types

application/vnd.sas.microanalytic.module
The application/vnd.sas.microanalytic.module media type describes the module that is
returned by the SAS Micro Analytic Service when source code is posted or put to the
module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module media type.

Relationship HTTP Method Description

self GET A link to the individual module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}

Media type: application/vnd.sas.microanalytic.module

68 Chapter 10 • SAS Micro Analytic Service REST API

Relationship HTTP Method Description

steps GET A link to the collection of steps. This is created when a
module is compiled.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps

Media type: application/vnd.sas.collection

source GET A link to the source code that was used to compile a
module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
source

Media type: application/
vnd.sas.microanalytic.module.source

update PUT A link to update a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}

Media type: application/vnd.sas.microanalytic.module

delete DELETE A link to remove a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}

The application/vnd.sas.microanalytic.module media type contains the following
members.

Name Type Description

version integer The media type's schema version number. This
representation is version 1.

id string A generated unique string identifying a module in an
installation.

description string Text describing the rules and logic performed by the
module. The description is specified in the POST or PUT
request body and carried over.

name string The name associated with the module.

creationTimeStamp string The formatted time stamp that tells when the module was
initially created.

modifiedTimeStamp string The formatted time stamp that tells when the module was
last revised.

revision integer The revision number of the module. It is a whole number
starting from one and increases by one each time the
module is revised.

SAS Micro Analytic Service Media Types 69

Name Type Description

scope string (ENUM) The scope restricts how a module can be used. There are
two possible values:

public
The module is available to be called outside another
module.

private
The module can be called only from within another
module.

steps array of string An array of step IDs in the module.

properties array The properties that were specified for the module. Here are
the representation members:

name
string - The name of the property.

value
string - The value of this property.

warnings object Optional object, as described in “application/vnd.sas.error”
on page 68. This is included if the compiling of this
resource produces any warning.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module+json:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825/source",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },

70 Chapter 10 • SAS Micro Analytic Service REST API

 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825/steps",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "uri":"/modules/359fb21e-c65d-4b8d-81e0-216d95cb0825"
 }
],
 "scope":"public",
 "description":"575",
 "id":"359fb21e-c65d-4b8d-81e0-216d95cb0825",
 "steps":[
 "execute",
 "executeFinalRuleSets",
 "executeFirstDotRuleSets",
 "executeInitRuleSets",
 "executeLastDotRuleSets",
 "initRuleFiredRecording",
 "initializeLookupHash",
 "recordRuleFired",
 "resetRuleFiredHash",
 "term"
],
 "properties":[
 {
 "name":"connectionString",
 "value":"DRIVER=base;"
 }
],
 "revision":1,
 "creationTimeStamp":"2015-04-16T16:05:38.000-0400",
 "modifiedTimeStamp":"2015-04-16T16:05:38.000-0400",
 "name":"Rule575",
 "version":1
}

SAS Micro Analytic Service Media Types 71

application/vnd.sas.microanalytic.module.definition
The application/vnd.sas.microanalytic.module.definition media type describes the
resource that is used to define a revision of the SAS Micro Analytic Service module in
the module’s collection. It is used in the request body of POST and PUT in the module’s
collection.

The application/vnd.sas.microanalytic.module.definition media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

description string The text describing the logic of the module.

code string The source code. (For example, DS2 source code)

type string The source code type. In this version, the only valid value
is text/vnd.sas.source.ds2.

properties array This can be used to hold additional metadata about the
module. If a property definition is not needed, this can be
omitted or specified as an empty array. Here are the
representation members:

name
string - The name of the property. It cannot contain
spaces and must be unique.

value
string - The value of this property.

scope string (ENUM) The scope restricts how a module can be used. There are
two possible values:

public
The module is available to be called outside another
module.

private
The module can be called only from within another
module.

Here is an example of application/vnd.sas.microanalytic.module.definition+json:

{
"version": "1",
"description": "Sample module",
"scope" : "public",
"type" : "text/vnd.sas.source.ds2",
"properties" : [],
"code" : "ds2_options sas;\n package sampleModule / overwrite=yes;
 \n \n method copy_charN_array(char(12) in_array[4], in_out char(12)
 out_array[4]);\n out_array := in_array;\n end;\n \n
 method copy_varchar_array(varchar(512) in_array[3],

72 Chapter 10 • SAS Micro Analytic Service REST API

 in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
 method copy_int_array(int in_array[5], in_out int out_array[5]);\n
 out_array := in_array;\n end;\n \n method copy_float_array(double in_array[2],
 in_out double out_array[2]);\n out_array := in_array;\n end;\n \n
 method copy_bigint_array(bigint in_array[1], in_out bigint out_array[1]);\n
 out_array := in_array;\n end;\n \n method copy_arrays(char(12)
 in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5],
 \n double in_double_array[2], \n bigint in_bigint_array[1], \n
 in_out char(12) out_charN_array[4],\n in_out varchar(512)
 out_varchar_array[1],\n in_out int out_int_array[5],\n
 in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
 copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array,
 out_int_array);\n copy_float_array(in_double_array, out_double_array);\n
 copy_bigint_array(in_bigint_array, out_bigint_array);\n \n end;\n \n
 endpackage;\n \n \n"
}

Note: There are many \n strings throughout the source code. They help signal line
breaks to the DS2 compiler. Line breaks are useful because, in JSON representation,
the entire source code must be presented as one long string and the \n returns the line
breaks to you. If there are errors, the compiler messages will not all refer to line 1. If
your platform is UNIX or Linux, you can use the sed command to convert \n into a
real line break character. Here is the pattern for the sed command: -e "s#\\n#
\n#g".

application/vnd.sas.microanalytic.module.source
The application/vnd.sas.microanalytic.module.source media type describes the source
code resource that is created by the SAS Micro Analytic Service when a POST or PUT
is performed on the module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module.source
media type.

Relationship HTTP Method Description

self GET A link to the source code that was used to compile the
module.

URI: SASMicroAnalyticService/rest//modules/
{moduleId}/source

Media type: application/
vnd.sas.microanalytic.module.source

up GET A link back to the module.

URI: SASMicroAnalyticService/rest//modules/
{ModuleID}

Media type: application/vnd.sas.microanalytic.module

The application/vnd.sas.microanalytic.module.source media type contains the following
members.

SAS Micro Analytic Service Media Types 73

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

moduleId string A generated unique string identifying a module in an
installation.

source string The source code used to create the module.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

type string The source code type. The only valid value is text/
vnd.sas.source.ds2.

Here is an example of application/vnd.sas.microanalytic.module.source +json:

{
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "source":"ds2_options sas;\n package sampleModule / overwrite=yes; \n \n
 method copy_charN_array(char(12) in_array[4], in_out char(12) out_array[4]);\n
 out_array := in_array;\n end;\n \n method copy_varchar_array(varchar(512) in_array[3],
 in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
 method copy_int_array(int in_array[5], in_out int out_array[5]);\n out_array := in_array;\n
 end;\n \n method copy_float_array(double in_array[2], in_out double out_array[2]);\n
 out_array := in_array;\n end;\n \n method copy_bigint_array(bigint in_array[1],
 in_out bigint out_array[1]);\n out_array := in_array;\n end;\n \n method copy_arrays(char(12)
 in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5],
 \n double in_double_array[2], \n bigint in_bigint_array[1], \n in_out char(12)
 out_charN_array[4],\n in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[5],\n
 in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
 copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array, out_int_array);\n
 copy_float_array(in_double_array, out_double_array);\n copy_bigint_array(in_bigint_array,
 out_bigint_array);\n \n end;\n \n endpackage;\n \n \n",
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 }
],
 "version":1
}

74 Chapter 10 • SAS Micro Analytic Service REST API

application/vnd.sas.microanalytic.module.step
The application/vnd.sas.microanalytic.module.step media type describes the step that is
returned by SAS Micro Analytic Service when a GET is performed on the step’s
collection. Step instances are created by posting a module to the module’s collection.

Here are the link relations for the application/vnd.sas.microanalytic.module.step media
type.

Relationship HTTP Method Description

self GET A link to the individual step of a specific module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps/{stepId}

Media type: application/vnd.sas.microanalytic.module.step

up GET A link back to the module's collection of steps.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps

Media type: application/vnd.sas.collection

validate POST A link used to validate that the input values are correct for
a specific step of a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps/{stepId}/validations

Media type: application/
vnd.sas.microanalytic.module.step.input.validity

execute POST A link used to execute a specific step of a module.

URI: SASMicroAnalyticService/rest/modules/{moduleId}/
steps/{stepId}

Media type: application/
vnd.sas.microanalytic.module.step.output

The application/vnd.sas.microanalytic.module.step media type contains the following
members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

id string The name of a step that is included in the compiled
module.

moduleId string A generated unique string identifying a module in an
installation.

description string Text describing the rules and logic performed by the step.

SAS Micro Analytic Service Media Types 75

Name Type Description

inputs array Provides information about the specific input values that
should be specified in the request body when executing a
step. Here are the representation members:

name
string - The name of a variable that is expected to be
passed into the step.

type
string (ENUM) - This is the data type of the variable. If
the variable's type is (array of) integer, long, or decimal,
the value must be a JSON (array of) number. If the
variable's type is (array of) string or char, the value
must be a JSON (array of) string. Only arrays with one
dimension are supported. Null is used to represent
missing values. The following data types are supported:

• decimal - For DS2, this corresponds to the double
data type.

• bigint

• integer

• string

• decimalArray

• bigintArray

• integerArray

• stringArray

size
integer - For a string type, this field indicates the length
of the string, which is at least one. For a non-string
type, this field has the value of zero.

dim
integer - For an array type, this field indicates the length
of the array, which is one or greater. For a non-array
type, this field has a value of zero.

76 Chapter 10 • SAS Micro Analytic Service REST API

Name Type Description

outputs array Provides information about the specific output values that
should be expected in the response body of a step
execution. Here are the representation members:

name
string - The name of a variable that is expected to
receive output from the step.

type
string (ENUM) - This is the data type of the variable. If
the variable's type is (array of) integer, long, or decimal,
the value must be a JSON (array of) number. If the
variable's type is (array of) string or char, the value
must be a JSON (array of) string. Only arrays with one
dimension are supported. The following data types are
supported:

• decimal - For DS2, this corresponds to the double
data type.

• bigint

• integer

• string

• decimalArray

• bigintArray

• integerArray

• stringArray

size
integer - For a string type, this field indicates the length
of the string. For a non-string type, this field has the
value of zero.

For DS2, the variable length is not required since an
output variable is passed by reference. A zero is
reported if a length is not specified. Otherwise, the
length specified is reported.

dim
integer - For an array type, this field indicates the length
of the array, which is one or greater. For a non-array
type, this field has a value of zero.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.step+json:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step"

SAS Micro Analytic Service Media Types 77

 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_arrays",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"in_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"in_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"in_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"in_bigint_array",
 "type":"bigintArray",

78 Chapter 10 • SAS Micro Analytic Service REST API

 "dim":1,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"out_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"out_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"out_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"out_bigint_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
]
}

application/vnd.sas.microanalytic.module.step.input
The application/vnd.sas.microanalytic.module.step.input media type describes the input
values that are required by SAS Micro Analytic Service step when a POST is used to
validate or execute a step.

The application/vnd.sas.microanalytic.module.step.input media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

SAS Micro Analytic Service Media Types 79

Name Type Description

inputs array Holds the values that are to be passed to the step for input
validation or execution. The order of the variables should
match the order presented in the input signature. Here are
the representation members:

name
string - The name of an input variable for the step.

value
varies - This represents the actual value to set on the
variable. If the variable's type is (array of) integer, long,
or decimal, the value must be a JSON (array of)
number. If the variable's type is (array of) string, the
value must be a JSON (array of) string.

Here is an example of application/vnd.sas.microanalytic.module.step.input+json:

{
 "version" : 1,
 "inputs":[
 {
 "name":"supported_browsers",
 "value":[
 "Apple Safari",
 "Google Chrome",
 "Microsoft Internet Explorer",
 "Mozilla Firefox"
]
 },
 {
 "name":"random_integers",
 "value":[
 10,
 15,
 3
]
 },
 {
 "name": "AMBALANCE",
 "value" : 1055.93
 }
]
}

application/vnd.sas.microanalytic.module.step.input.validity
The application/vnd.sas.microanalytic.module.step.input.validity media type describes
the output values that are returned by SAS Micro Analytic Service for a POST to
validate the inputs required to execute a step.

Here is the link relation for the application/vnd.sas.microanalytic.module.step.output
media type.

80 Chapter 10 • SAS Micro Analytic Service REST API

Relationship HTTP Method Description

up GET A link back to the module's
collection of steps.

URI:
SASMicroAnalyticService/
rest/modules/{moduleId}/
steps

Media type: application/
vnd.sas.collection

The application/vnd.sas.microanalytic.module.step.input.validity media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

moduleId string A generated unique string identifying a module in an
installation.

stepId string The name of a step.

valid Boolean The value is true if all the input parameters are valid. If any
parameter is invalid, the value is false.

results objects The object contains a member for each input parameter that
is invalid. The name of the member is that of an input
parameter. The value is the reason why the input is invalid.
The object is empty if there is no invalid input parameter.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.step.input.validity+json:

{
 "version" : 1,
 "moduleId": "83e7d274-fe17-429e-92ca-93ec2153c731",
 "stepId":"predict",
 "valid":false,
 "results":
 {
 "s2": "String value expected but found string array value [String].",
 "s4": "Bigint value expected but found double value 77.0."
 }
}

application/vnd.sas.microanalytic.module.step.output
The application/vnd.sas.microanalytic.module.step.output media type describes the
output values that are returned by SAS Micro Analytic Service when a step is executed.

SAS Micro Analytic Service Media Types 81

Here is the link relation for the application/vnd.sas.microanalytic.module.step.output
media type.

Relationship HTTP Method Description

up GET A link back to the module's
collection of steps.

URI:
SASMicroAnalyticService/
rest/modules/{moduleId}/
steps

Media type: application/
vnd.sas.collection

The application/vnd.sas.microanalytic.module.step.output media type contains the
following members.

Name Type Description

version integer This media type's schema version number. This
representation is version 1.

moduleId string A generated unique string identifying a module in an
installation.

stepId string The name of the step.

outputs array Holds the output values returned from executing a step.
The order of the variables matches the order presented in
the output signature. Here are the representation members:

name
string - The name of the variable that is expected to
receive output from the step.

value
This represents the actual value returned from the step
execution.

links array of link objects Zero or more link objects. See the table above for a
description of the link types.

Here is an example of application/vnd.sas.microanalytic.module.step.output+json:

{
 "moduleId": "70a58acd-5618-4dc3-9d7a-9e675e8e13bb",
 "stepId": "test_all_types",
 "outputs": [
 {
 "name": "out_string",
 "value": "This is a test..."
 },
 {
 "name": "out_bigint",
 "value": 987654321

82 Chapter 10 • SAS Micro Analytic Service REST API

 },
 {
 "name": "out_int",
 "value": 7654321
 },
 {
 "name": "out_double",
 "value": 0.9997
 },
 {
 "name": "string_arr",
 "value": [
 "John Jacob Hale",
 "Male",
 "Master Swimmer"
]
 },
 {
 "name": "bigint_arr",
 "value": [
 1078653221,
 2256390877,
 9719886300
]
 },
 {
 "name": "int_arr",
 "value": [
 77,
 436702,
 67552
]
 },
 {
 "name": "double_arr",
 "value": [
 0.9997,
 1.0,
 0.0023
]
 }
],
 "version": 1
}

Resources and Collections

Resource /
The root / returns links to the top-level resources surfaced through this API. The
module’s collection is the only top-level resource. The GET link is for querying the
module’s collection. The POST link is for creating a module.

Resources and Collections 83

The / resource uses the GET / method, which requires authentication, and has a request
URL of GET http://www.example.com/SASMicroAnalyticService/rest/.

The response to the GET request is a collection of links to the resources. In this version,
the module’s collection is the only top-level resource.

Here is a JSON representation of the top-level resource containing links:

{
 "version":1,
 "links":[
 {
 "method":"GET",
 "rel":"modules",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules"
 },
 {
 "method":"POST",
 "rel":"createModule",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules"
 }
]
}

Here are the HTTP response codes:

200
OK

401
Unauthorized

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

GET / returns the application/json media type representation by setting the Accept:
header of the request.

Collection /modules
The /modules resource collection is a collection of modules that are loaded in memory
by SAS Micro Analytic Service.

The /modules resource allows the GET method, which requires authentication, and has a
request URL of GET http://www.example.com/SASMicroAnalyticService/rest/modules.

Each module object in the collection contains fields and links that enable you to get
detailed information about a specific module.

Here are the HTTP response codes:

200
OK

401
Unauthorized

84 Chapter 10 • SAS Micro Analytic Service REST API

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

Here are the query parameters for /modules:

Name Type Description

?start integer The starting index of the first item in a page. The index is
0-based. The default is 0.

?limit integer The maximum number of modules to return in this page of
results. The actual number of returned modules might be
less, if the collection has been exhausted. The default is 10.

?label string Filter by the name of the modules. Each module is checked
if its name contains the label.

Here is an example of the JSON representation:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"next",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules?start=0&limit=5",
 "uri":"/modules?start=0&limit=5",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"last",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules?start=0&limit=5",
 "uri":"/modules?start=0&limit=5",
 "type":"application/vnd.sas.collection"
 }
],
 "name":"items",
 "accept":"application/vnd.sas.microanalytic.module",
 "start":0,
 "count":5,
 "items":[
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",

Resources and Collections 85

 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da/source",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da/steps",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 3eadfae7-583f-44ee-8c37-e201184c94da",
 "uri":"/modules/3eadfae7-583f-44ee-8c37-e201184c94da"
 }
],
 "description":"Module A",
 "version":1,
 "scope":"public",
 "id":"3eadfae7-583f-44ee-8c37-e201184c94da",
 "steps":[
 "falls_on"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:44.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:44.000-0400",

86 Chapter 10 • SAS Micro Analytic Service REST API

 "name":"pkga"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08/source",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08/steps",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 de279ebf-f2a6-42ec-9342-29c363866a08",
 "uri":"/modules/de279ebf-f2a6-42ec-9342-29c363866a08"
 }
],
 "description":"Module B",
 "version":1,
 "scope":"public",
 "id":"de279ebf-f2a6-42ec-9342-29c363866a08",
 "steps":[

Resources and Collections 87

 "this_year"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:45.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:45.000-0400",
 "name":"pkgb"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/source",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/steps",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "uri":"/modules/f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016"

88 Chapter 10 • SAS Micro Analytic Service REST API

 }
],
 "description":"Module C",
 "version":1,
 "scope":"public",
 "id":"f1dcd1af-6ab2-4ac0-a5c6-5c64d5c09016",
 "steps":[
 "get_date"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:46.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:46.000-0400",
 "name":"pkgc"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/
 modules/617aad65-36fa-4079-b1cb-03fe948874d4",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4/source",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4/steps",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4",
 "type":"application/vnd.sas.microanalytic.module"

Resources and Collections 89

 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 617aad65-36fa-4079-b1cb-03fe948874d4",
 "uri":"/modules/617aad65-36fa-4079-b1cb-03fe948874d4"
 }
],
 "description":"Module D",
 "version":1,
 "scope":"public",
 "id":"617aad65-36fa-4079-b1cb-03fe948874d4",
 "steps":[
 "holiday_reminder"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:37:46.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:37:46.000-0400",
 "name":"pkgd"
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },

90 Chapter 10 • SAS Micro Analytic Service REST API

 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Sample module",
 "version":1,
 "scope":"public",
 "warnings":{
 "errorCode":0,
 "message":"Module compiled with warnings.",
 "details":[
 "In declaration of method copy_arrays: parameter out_charN_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method copy_arrays: parameter out_varchar_array is 'in_out';
 therefore, the type size (512) will be ignored.",
 "In declaration of method copy_charN_array: parameter out_array is 'in_out';
 therefore, the type size (12) will be ignored."
],
 "remediation":"",
 "links":[

],
 "version":1,
 "httpStatusCode":0
 },
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint_array",
 "copy_charN_array",
 "copy_float_array",
 "copy_int_array",
 "copy_varchar_array"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:41:02.000-0400",
 "name":"samplemodule"
 }
],
 "limit":5,
 "version":1

Resources and Collections 91

}

GET returns the following media type representations by setting the Accept: header of
the request:

• application/vnd.sas.collection

• application/json

This operation can return the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

The POST method returns a module resource for the module that is loaded in memory by
SAS Micro Analytic Service. The module resource that is returned contains links to the
compiled and loaded steps.

The POST method requires authentication and has a request URL of POST http://
www.example.com/SASMicroAnalyticService/rest/modules.

Here is an example of the JSON representation:

{
"version": "1",
"description": "Sample module",
"scope" : "public",
"type" : "text/vnd.sas.source.ds2",
"properties" : [],
"code" : "ds2_options sas;\n package sampleModule / overwrite=yes; \n \n
method copy_charN_array(char(12) in_array[4], in_out char(12) out_array[4]);\n
out_array := in_array;\n end;\n \n method copy_varchar_array(varchar(512) in_array[3],
in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
method copy_int_array(int in_array[5], in_out int out_array[5]);\n out_array := in_array;\n
end;\n \n method copy_float_array(double in_array[2], in_out double out_array[2]);\n
out_array := in_array;\n end;\n \n method copy_bigint_array(bigint in_array[1],
in_out bigint out_array[1]);\n out_array := in_array;\n end;\n \n method copy_arrays(char(12)
in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5], \n
double in_double_array[2], \n bigint in_bigint_array[1], \n in_out char(12) out_charN_array[4],\n
in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[5],\n
in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array,
out_int_array);\n copy_float_array(in_double_array, out_double_array);\n
copy_bigint_array(in_bigint_array, out_bigint_array);\n \n end;\n \n endpackage;\n \n \n"
 }

The POST method accepts the following content types, as named by the Content-Type:
header:

• application/json

• application/vnd.sas.microanalytic.module.definition+json

Here are the HTTP response codes:

201
Created

400
Bad Request

401
Unauthorized

92 Chapter 10 • SAS Micro Analytic Service REST API

403
Forbidden

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when there is an error creating the module. An example is when the
source code contains a syntax error. Another example is when the module name is
already taken.

Here is an example of a successfully compiled module with no warnings:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {

Resources and Collections 93

 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Sample module",
 "version":1,
 "scope":"public",
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint_array",
 "copy_charN_array",
 "copy_float_array",
 "copy_int_array",
 "copy_varchar_array"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:14:17.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:14:17.000-0400",
 "name":"samplemodule"
}

Here is an example of a successfully compiled module with warnings:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",

94 Chapter 10 • SAS Micro Analytic Service REST API

 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Sample module",
 "version":1,
 "scope":"public",
 "warnings":{
 "errorCode":0,
 "message":"Module compiled with warnings.",
 "details":[
 "In declaration of method copy_arrays: parameter out_charN_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method copy_arrays: parameter out_varchar_array is 'in_out';
 therefore, the type size (512) will be ignored.",
 "In declaration of method copy_charN_array: parameter out_array is 'in_out';
 therefore, the type size (12) will be ignored."
],
 "remediation":"",
 "links":[
],
 "version":1,
 "httpStatusCode":0
 },
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint_array",
 "copy_charN_array",
 "copy_float_array",
 "copy_int_array",

Resources and Collections 95

 "copy_varchar_array"
],
 "properties":[
],
 "revision":1,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-06T22:41:02.000-0400",
 "name":"samplemodule"
}

Here is an example of an error response:

{
 "errorCode":-30,
 "message":"Invalid source code. ",
 "details":[
 "Line 1: Parse failed: int out_int); out_int=3; end;
 >>> endpackages <<< ; package ship_backen",
 "Parse encountered identifier when expecting end of input."
],
 "remediation":"",
 "links":[

],
 "version":1,
 "httpStatusCode":400
}

Resource /modules/{moduleId}
The /modules/{moduleId} resource is a single compiled module that is loaded in
memory by SAS Micro Analytic Service.

The /modules/{moduleId} resource has the following methods:

• GET

• PUT

• DELETE

The GET method requires authentication and has a request URL of GET http://
www.example.com/SASMicroAnalyticService/modules/{moduleId}.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

96 Chapter 10 • SAS Micro Analytic Service REST API

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the resource cannot be located either because the module ID is
incorrect or the module has been deleted.

Here is an example of a JSON response:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f/source",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f/steps",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 45e7118a-c61b-4e59-b5b1-9a415355551f",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

Resources and Collections 97

 45e7118a-c61b-4e59-b5b1-9a415355551f",
 "uri":"/modules/45e7118a-c61b-4e59-b5b1-9a415355551f"
 }
],
 "version":1,
 "description":"Decision Tree Model",
 "scope":"private",
 "id":"45e7118a-c61b-4e59-b5b1-9a415355551f",
 "steps":[
 "score"
],
 "properties":[
],
 "creationTimeStamp":"2015-04-13T01:11:44.000-0400",
 "modifiedTimeStamp":"2015-04-13T01:11:44.000-0400",
 "revision":1,
 "name":"tree"
}

Here is an example of a JSON error response:

{
 "errorCode": 4001,
 "message": "No module with the module id 48B9A582-ADA4-C64D-9759-BBEB8E1DAA8B exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

The PUT method updates a module resource for the module that is loaded in memory by
SAS Micro Analytic Service. It is an error to change the name of the module in a PUT
operation. The module resource that is returned contain links to the compiled and loaded
steps. The latest revision supersedes previous revisions. Previous revisions are not
retrievable.

The PUT method requires authentication and has a request URL of PUT http://
www.example.com/SASMicroAnalyticService/rest/modules/{moduleId}.

The PUT method accepts the following media type representations by setting the
Content-Type: header of the request:

• application/json

• application/vnd.sas.microanalytic.module.definition+json

Here are the HTTP response codes:

200
OK

400
Bad request

401
Unauthorized

403
Forbidden

98 Chapter 10 • SAS Micro Analytic Service REST API

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the PUT is initiated from an
untrusted site.

Here is an example of the JSON representation:

{
"version": "1",
"description": "Expanded sample module",
"scope" : "public",
"type" : "text/vnd.sas.source.ds2",
"properties" : [{"name" : "connectionString", "value" : "DRIVER=base;"}],
"code" : "ds2_options sas;\n package sampleModule / overwrite=yes; \n \n
method produce_warnings(char(12) in_string, in_out char(12) out_string);\n
out_string = in_string;\n end;\n \n method copy_char12(char(12) in_string,
in_out char out_string);\n out_string=in_string;\n end;\n \n
method copy_varchar(varchar(32767) in_string, in_out varchar out_string);\n
out_string=in_string;\n end;\n \n method copy_bigint(bigint in_int,
in_out bigint out_int);\n out_int=in_int;\n end;\n \n method copy_float(double in_float,
in_out double out_float);\n out_float=in_float;\n end;\n \n
method copy_int(int in_int, in_out int out_int);\n out_int=in_int;\n end;\n \n
method copy_scalars(char(12) in_char12, varchar(32767) in_varchar, int in_int,\n
bigint in_bigint, double in_float, \n in_out char out_char, in_out char out_char12,\n
in_out varchar out_varchar, in_out int out_int,\n in_out bigint out_bigint,
in_out double out_float);\n \n copy_char12(in_char12, out_char12);\n
copy_varchar(in_varchar, out_varchar);\n copy_bigint(in_bigint, out_bigint);\n
copy_float(in_float, out_float);\n copy_int(in_int, out_int);\n end;\n \n
method copy_charN_array(char(12) in_array[4], in_out char(12) out_array[4]);\n
out_array := in_array;\n end;\n \n method copy_varchar_array(varchar(512) in_array[3],
in_out varchar out_array[3]);\n out_array := in_array;\n end;\n \n
method copy_int_array(int in_array[5], in_out int out_array[5]);\n out_array := in_array;\n
end;\n \n method copy_float_array(double in_array[2], in_out double out_array[2]);\n
out_array := in_array;\n end;\n \n method copy_bigint_array(bigint in_array[1],
bigint out_array[1]);\n out_array := in_array;\n end;\n \n method copy_arrays(char(12)
in_charN_array[4],\n varchar(512) in_varchar_array[1],\n int in_int_array[5], \n
double in_double_array[2], \n bigint in_bigint_array[1], \n in_out char(12)
out_charN_array[4],\n in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[5],\n
in_out double out_double_array[2],\n in_out bigint out_bigint_array[1]);\n \n
copy_charN_array(in_charN_array, out_charN_array);\n copy_int_array(in_int_array,
out_int_array);\n copy_float_array(in_double_array, out_double_array);\n
copy_bigint_array(in_bigint_array, out_bigint_array);\n \n end;\n \n endpackage;\n \n \n"
 }

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module+json

This operation returns the application/vnd.sas.error media type when there is an error.
For example, this media type is returned when you attempt to change the name of the

Resources and Collections 99

module, or the source code contains a syntax error. Another example is when the server
fails to acquire a resource.

Here is an example of a successfully compiled module response body:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Expanded sample module",
 "version":1,
 "scope":"public",

100 Chapter 10 • SAS Micro Analytic Service REST API

 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint",
 "copy_bigint_array",
 "copy_char12",
 "copy_charN_array",
 "copy_float",
 "copy_float_array",
 "copy_int",
 "copy_int_array",
 "copy_scalars",
 "copy_varchar",
 "copy_varchar_array",
 "produce_warnings"
],
 "properties":[
 {
 "name" : "connectionString",
 "value" : "DRIVER=base;"
 }
],
 "revision":2,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-07T00:15:47.000-0400",
 "name":"samplemodule"
}

Here is an example of a successfully compiled module with a warnings response body:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules",
 "uri":"/modules",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"source",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",

Resources and Collections 101

 "rel":"steps",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"PUT",
 "rel":"update",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 },
 {
 "method":"DELETE",
 "rel":"delete",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232"
 }
],
 "description":"Expanded sample module",
 "version":1,
 "scope":"public",
 "warnings":{
 "errorCode":0,
 "message":"Module compiled with warnings.",
 "details":[
 "In declaration of method copy_arrays: parameter out_charN_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method copy_arrays: parameter out_varchar_array is 'in_out';
 therefore, the type size (512) will be ignored.",
 "In declaration of method copy_charN_array: parameter out_array is 'in_out';
 therefore, the type size (12) will be ignored.",
 "In declaration of method produce_warnings: parameter out_string is 'in_out';
 therefore, the type size (12) will be ignored."
],
 "remediation":"",
 "links":[
],
 "version":1,
 "httpStatusCode":0
 },
 "id":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "steps":[
 "copy_arrays",
 "copy_bigint",
 "copy_bigint_array",
 "copy_char12",
 "copy_charN_array",
 "copy_float",
 "copy_float_array",
 "copy_int",
 "copy_int_array",
 "copy_scalars",

102 Chapter 10 • SAS Micro Analytic Service REST API

 "copy_varchar",
 "copy_varchar_array",
 "produce_warnings"
],
 "properties":[
 {
 "name" : "connectionString",
 "value" : "DRIVER=base;"
 }
],
 "revision":3,
 "creationTimeStamp":"2015-05-06T22:41:02.000-0400",
 "modifiedTimeStamp":"2015-05-07T00:22:19.000-0400",
 "name":"samplemodule"
}

Here is an example of an error response body:

{
 "errorCode":-33,
 "message":"Module name cannot be changed from a PUT operation.",
 "details":[
],
 "remediation":"",
 "links":[
],
 "version":1,
 "httpStatusCode":400
}

The DELETE method deletes all revisions of a module resource through the module ID.

The DELETE method requires authentication and has a request URL of DELETE http://
www.example.com/SASMicroAnalyticService/modules/{moduleId}.

Here are the HTTP response codes:

204
No content

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the PUT is initiated from an
untrusted site.

Note: A module name is reserved during the four minutes while the REST server is
creating the module. This prevents name collision in a clustered deployment.
Normally, if the module fails to be created, possibly because of incorrect syntax, the

Resources and Collections 103

name reservation is released immediately. If the name reservation is not released
immediately, you must wait for the reservation to expire before using that name.

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server cannot locate the module either because the module ID
is incorrect, the module does not exist anymore, or the module cannot be deleted (for
example, when another operation is taking place on this module).

Resource /modules/{moduleId}/source
The /modules/{moduleId}/source resource is the source code of the module.

The GET method returns the source code of a module. It requires authentication and has
a request URL of GET http://www.example.com/SASMicroAnalyticService/modules/
{moduleId}/source.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.source+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

Here is an example of the JSON response:

{
 "moduleId":"fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64",
 "source":"ds2_options sas;package methods ;\n method echo_char(char in_string,
in_out char out_string);\n out_string=in_string;\n end;\n method echo_char12_implicit(char(12)
in_string, in_out char out_string);\n out_string=in_string;\n end;\n
method echo_char12_explicit(char(12) in_string, in_out char(12) out_string);\n
out_string=in_string;\n end;\n method echo_varchar_implicit(varchar(32767) in_string,
in_out varchar out_string);\n out_string=in_string;\n end;\n
method echo_varchar_explicit(varchar(32767) in_string, in_out varchar(32767) out_string);\n
out_string=in_string;\n end;\n method echo_bigint(bigint in_int, in_out bigint out_int);\n
out_int=in_int;\n end;\n method echo_float(double in_float, in_out double out_float);\n
out_float=in_float;\n end;\n method echo_int(int in_int, in_out int out_int);\n
out_int=in_int;\n end;\n method echo_scalars(char in_char, char(12) in_char12, varchar(32767)
in_varchar, int in_int,\n bigint in_bigint, double in_float, \n in_out char out_char,
in_out char(12) out_char12,\n in_out varchar out_varchar, in_out int out_int,\n
in_out bigint out_bigint, in_out double out_float);\n out_char = in_char;\n

104 Chapter 10 • SAS Micro Analytic Service REST API

out_char12 = in_char12;\n out_string=in_string;\n out_int=in_int;\n out_bigint=in_bigint;\n
out_float=in_float;\n end;\n method echo_char1_array(char in_array[4],
in_out char out_array[4]);\n dcl int count;\n do count = 1 to 4;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_charN_array(char(12)
in_array[4], in_out char(12) out_array[4]);\n dcl int count;\n do count = 1 to 4;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_int_array(int in_array[17],
in_out int out_array[37]);\n dcl int count;\n do count = 1 to 17;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_float_array(double in_array[2048],
in_out double out_array[2048]);\n dcl int count;\n do count = 1 to 2048;\n
out_array[count] = in_array[count];\n end;\n end;\n method echo_bigint_array(bigint in_array[1],
bigint out_array[1]);\n dcl int count;\n do count = 1 to 1;\n out_array[count] = in_array[count];\n
end;\n end;\n method echo_arrays(char in_char1_array[4], \n char(12) in_charN_array[4],\n
varchar(512) in_varchar_array[1],\n int in_int_array[17], \n double in_double_array[2048], \n
bigint in_bigint_array[1], \n in_out char out_char1_array[4],\n in_out char(12)
 out_charN_array[4],\n in_out varchar(512) out_varchar_array[1],\n in_out int out_int_array[37],\n
in_out double out_double_array[2048],\n bigint out_bigint_array[1]);\n \n dcl int count;\n \n
do count = 1 to 4;\n out_char1_array[count] = in_char1_array[count];\n end;\n \n do count = 1 to 4;\n
out_charN_array[count] = in_charN_array[count];\n end;\n \n do count = 1 to 1;\n
out_varchar_array[count] = in_varchar_array[count];\n end;\n \n do count = 1 to 17;\n
out_int_array[count] = in_int_array[count];\n end;\n \n do count = 1 to 2048;\n
out_double_array[count] = in_double_array[count];\n end;\n \n do count = 1 to 1;\n
out_bigint_array[count] = in_bigint_array[count];\n end;\n \n end;\n \n endpackage;\n \n ",
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64/source",
 "uri":"/modules/fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64/source",
 "type":"application/vnd.sas.microanalytic.module.source"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64",
 "uri":"/modules/fafbf5d4-01c0-48ea-a3e5-ef36fc3dfb64",
 "type":"application/vnd.sas.microanalytic.module"
 }
],
 "version":1
}

Here is an example of an error response body:

{
 "errorCode": 4001,
 "message": "No module with the module ID a1511cb8-58b3-475a-a4d6-8a5817d936 exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

Resources and Collections 105

Collection /modules/{moduleId}/steps
The /modules/{moduleId}/steps collection is a collection of steps within a specific
module that is loaded in memory by SAS Micro Analytic Service.

The /modules/{moduleId}/steps collection uses the GET method, which returns a
resource collection of steps corresponding to a specific module. It requires
authentication, and has a request URL of GET http://www.example.com/
SASMicroAnalyticService/modules/{moduleId}/steps.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

Here are the query parameters for /modules/{moduleId}/steps:

Name Type Description

?start integer The starting index of the first item in a page. The index is
0-based. Default is 0.

?limit integer The maximum number of steps to return in this page of
results. The actual number of returned steps might be less
if the collection has been exhausted. The default is 10.

?label string Filter by the name of the steps. Each step is checked if its
name contains the label.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.collection

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the server encounters an error. An example of an error is when a
node in a clustered deployment has become out of sync.

Here is an example of the JSON response:

{
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

106 Chapter 10 • SAS Micro Analytic Service REST API

 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"first",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=0&limit=10",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=0&limit=10",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"next",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=10&limit=10",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=10&limit=10",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"last",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=3&limit=10",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps?start=3&limit=10",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "type":"application/vnd.sas.microanalytic.module"
 }
],
 "name":"items",
 "accept":"application/vnd.sas.microanalytic.module.step",
 "start":0,
 "count":13,
 "items":[
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/

Resources and Collections 107

 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_arrays",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_arrays",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"in_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"in_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"in_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"in_bigint_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
],
 "outputs":[

108 Chapter 10 • SAS Micro Analytic Service REST API

 {
 "name":"out_charN_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 },
 {
 "name":"out_varchar_array",
 "type":"stringArray",
 "dim":1,
 "size":512
 },
 {
 "name":"out_int_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 },
 {
 "name":"out_double_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 },
 {
 "name":"out_bigint_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
] },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"

Resources and Collections 109

 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_bigint",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_int",
 "type":"bigint",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_int",
 "type":"bigint",
 "dim":0,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {

110 Chapter 10 • SAS Micro Analytic Service REST API

 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_bigint_array",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_bigint_array",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 },
 {
 "name":"out_array",
 "type":"bigintArray",
 "dim":1,
 "size":0
 }
],
 "outputs":null,
 "version":1
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",

Resources and Collections 111

 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_char12",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_char12",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_string",
 "type":"string",
 "dim":0,
 "size":12
 }
],
 "outputs":[
 {
 "name":"out_string",
 "type":"string",
 "dim":0,
 "size":0
 }
] },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_charN_array",

112 Chapter 10 • SAS Micro Analytic Service REST API

 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_charN_array",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 }
],
 "outputs":[
 {
 "name":"out_array",
 "type":"stringArray",
 "dim":4,
 "size":12
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }

Resources and Collections 113

],
 "id":"copy_float",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_float_array",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_float_array",

114 Chapter 10 • SAS Micro Analytic Service REST API

 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_array",
 "type":"decimalArray",
 "dim":2,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_int",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[

Resources and Collections 115

 {
 "name":"in_int",
 "type":"integer",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_int",
 "type":"integer",
 "dim":0,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_int_array",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_int_array",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_array",

116 Chapter 10 • SAS Micro Analytic Service REST API

 "type":"integerArray",
 "dim":5,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_array",
 "type":"integerArray",
 "dim":5,
 "size":0
 }
]
 },
 {
 "links":[
 {
 "method":"GET",
 "rel":"self",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "type":"application/vnd.sas.microanalytic.module.step"
 },
 {
 "method":"GET",
 "rel":"up",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps",
 "type":"application/vnd.sas.collection"
 },
 {
 "method":"POST",
 "rel":"validate",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars/validations",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars/validations",
 "type":"application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method":"POST",
 "rel":"execute",
 "href":"http://www.example.com/SASMicroAnalyticService/rest/modules/
 36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "uri":"/modules/36af8e3c-6a37-4494-a8e0-9cc96ad62232/steps/copy_scalars",
 "type":"application/vnd.sas.microanalytic.module.step.output"
 }
],
 "id":"copy_scalars",
 "moduleId":"36af8e3c-6a37-4494-a8e0-9cc96ad62232",
 "inputs":[
 {
 "name":"in_char12",
 "type":"string",
 "dim":0,

Resources and Collections 117

 "size":12
 },
 {
 "name":"in_varchar",
 "type":"string",
 "dim":0,
 "size":32767
 },
 {
 "name":"in_int",
 "type":"integer",
 "dim":0,
 "size":0
 },
 {
 "name":"in_bigint",
 "type":"bigint",
 "dim":0,
 "size":0
 },
 {
 "name":"in_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
],
 "outputs":[
 {
 "name":"out_char",
 "type":"string",
 "dim":0,
 "size":0
 },
 {
 "name":"out_char12",
 "type":"string",
 "dim":0,
 "size":0
 },
 {
 "name":"out_varchar",
 "type":"string",
 "dim":0,
 "size":0
 },
 {
 "name":"out_int",
 "type":"integer",
 "dim":0,
 "size":0
 },
 {
 "name":"out_bigint",
 "type":"bigint",
 "dim":0,

118 Chapter 10 • SAS Micro Analytic Service REST API

 "size":0
 },
 {
 "name":"out_float",
 "type":"decimal",
 "dim":0,
 "size":0
 }
]
 }
],
 "limit":10,
 "version":1
}

Here is an example error response:

{
 "errorCode": 4001,
 "message": "No module with the module ID a1511cb8-58b3-475a-a4d6-8a5817d936 exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

Resource /modules/{moduleId}/steps/{stepId}
The /modules/{moduleId}/steps/{stepId} resource is a single step of a compiled module.

The /modules/{moduleId}/steps/{stepId} collection uses the GET method. It returns
detailed information about input and output signatures used to execute a specific step of
the module. It requires authentication, and has a request URL of GET http://
www.example.com/SASMicroAnalyticService/rest/modules/{moduleId}/steps/{stepId}.

Here are the HTTP response codes:

200
OK

401
Unauthorized

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step+json

Resources and Collections 119

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned when the module cannot be located, either because the module ID is
incorrect or the module does not exist anymore. This media type is also returned when
the module ID corresponds to an existing module. However, the step ID is incorrect.

Here is an example of the JSON response:

{
 "id": "test_all_types",
 "moduleId": "8eee3045-83fa-4725-88ef-471ddb5ac4f9",
 "inputs": [
 {
 "name": "in_string",
 "type": "string",
 "dim": 0,
 "size": 32767
 },
 {
 "name": "in_bigint",
 "type": "bigint",
 "dim": 0,
 "size": 0
 },
 {
 "name": "in_int",
 "type": "integer",
 "dim": 0,
 "size": 0
 },
 {
 "name": "in_double ",
 "type": "decimal",
 "dim": 0,
 "size": 0
 }
],
 "outputs": [
 {
 "name": "out_string",
 "type": "string",
 "dim": 0,
 "size": 8
 },
 {
 "name": "out_bigint",
 "type": "bigint",
 "dim": 0,
 "size": 0
 },
 {
 "name": "out_int",
 "type": "integer",
 "dim": 0,
 "size": 0
 },
 {
 "name": "out_double",

120 Chapter 10 • SAS Micro Analytic Service REST API

 "type": "decimal",
 "dim": 0,
 "size": 0
 },
 {
 "name": "string_arr",
 "type": "stringArray",
 "dim": 3,
 "size": 32767
 },
 {
 "name": "bigint_arr",
 "type": "bigIntArray",
 "dim": 3,
 "size": 0
 },
 {
 "name": "int_arr",
 "type": "intArray",
 "dim": 3,
 "size": 0
 },
 {
 "name": "double_arr",
 "type": "decimalArray",
 "dim": 3,
 "size": 0
 }
],
 "links": [
 {
 "method": "GET",
 "rel": "self",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test_all_types",
 "type": "application/vnd.sas.microanalytic.module.step"
 },
 {
 "method": "GET",
 "rel": "up",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps",
 "type": "application/vnd.sas.collection"
 },
 {
 "method": "POST",
 "rel": "validate",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types/validations",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test_all_types/validations",
 "type": "application/vnd.sas.microanalytic.module.step.input.validity"
 },
 {
 "method": "POST",

Resources and Collections 121

 "rel": "execute",
 "href": "http://www.example.com/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/
 steps/test_all_types",
 "uri": "/modules/8eee3045-83fa-4725-88ef-471ddb5ac4f9/steps/test_all_type",
 "type": "application/vnd.sas.microanalytic.module.step.output"
 }
],
 "version": 1
}

Here is an example of an error response:

{
 "errorCode": 4001,
 "message": "No module with the module ID a1511cb8-58b3-475a-a4d6-8a5817d936 exists.",
 "details": [],
 "remediation": "",
 "links": [],
 "version": 1,
 "httpStatusCode": 404
}

There are two POST methods. The first POST method validates step inputs. The request
body for each POST contains the input values that are used to execute the steps. The
input values are validated against the expected input signature of the step. The POST
method requires authentication, and has a request URL of POST http://
www.example.com/SASMicroAnalyticService/rest/modules/{moduleId}/steps/{stepId}/
validations.

Here are the HTTP response codes:

200
OK

400
Bad Request

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

Here is an example of the JSON request:

{
 "inputs": [
 {
 "name": "in_string",
 "value": "This is a test..."
 },

122 Chapter 10 • SAS Micro Analytic Service REST API

 {
 "name": "in_bigint",
 "value": 987654321
 },
 {
 "name": "in_int",
 "value": 7654321
 },
 {
 "name": "in_double",
 "value": 0.9997
 }
]
}

This operation accepts the following media type representations by setting the Content-
Type: header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.input+json

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.input.validity+json

This operation returns the application/vnd.sas.error media type for failure. This media
type is returned whenever there is an error in performing the validation, not when the
input parameter is invalid.

Here is an example of the JSON response:

{
 "moduleId": "052209DE-DF4D-6D44-B469-9094AC95F18E",
 "stepId": "test_all_types",
 "version": 1,
 "results": {},
 "valid": true
}

Here is an example response body for an instance when an input value is invalid:

{
 "moduleId": "052209DE-DF4D-6D44-B469-9094AC95F18E",
 "stepId": "test_all_types",
 "version": 1,
 "results": {
 "in_integer ": "Integer value expected but found 0.9997."
 },
 "valid": false
}

The second POST method executes a step. This method creates the output from
executing a step on the provided input values. The request body contains the input
values. The response body contains the results as output values. This POST method has
a request URL of POST http://www.example.com/SASMicroAnalyticService/rest/
modules/{moduleId}/steps/{stepId} .

Here are the HTTP response codes:

Resources and Collections 123

200
OK

400
Bad Request

401
Unauthorized

403
Forbidden

404
Not found

500
Server error

Note: These are the most common HTTP response codes. You should be prepared to
handle all valid HTTP response codes, including 3xx redirection response codes.

One situation that causes a 403 code to be returned is when the POST is initiated from an
untrusted site.

Here is an example of the JSON request:

{
 "inputs": [
 {
 "name": "in_string",
 "value": "This is a test..."
 },
 {
 "name": "in_bigint",
 "value": 987654321
 },
 {
 "name": "in_int",
 "value": 7654321
 },
 {
 "name": "in_double ",
 "value": 0.9997
 }
]
}

This operation accepts the following media type representations by setting the Content-
Type: header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.input+json

This operation returns the following media type representations by setting the Accept:
header of the request:

• application/json

• application/vnd.sas.microanalytic.module.step.output+json

This operation might return the following media types for failure:

124 Chapter 10 • SAS Micro Analytic Service REST API

application/vnd.sas.microanalytic.module.step.input.validity+json
This media type is returned when the input is invalid.

application/vnd.sas.error
This media type is returned when there is problem executing the step.

Here is an example of the JSON response:

{
 "moduleId": "0BCA724F-53D7-3540-8A62-4E2731D69813",
 "stepId": "test_all_types",
 "output": [
 {
 "name": "out_string",
 "value": "This is a test..."
 },
 {
 "name": "out_bigint",
 "value": 987654321
 },
 {
 "name": "out_int",
 "value": 7654321
 },
 {
 "name": "out_double",
 "value": 0.9997
 },
 {
 "name": "string_arr",
 "value": [
 "This is a test...",
 "This is a test...",
 "This is a test..."
]
 },
 {
 "name": "bigint_arr",
 "value": [
 987654321,
 987654321,
 987654321
]
 },
 {
 "name": "int_arr",
 "value": [
 7654321,
 7654321,
 7654321
]
 },
 {
 "name": "double_arr",
 "value": [
 0.9997,
 0.9997,

Resources and Collections 125

 0.9997
]
 }
],
 "version": 1
}

Here is an example response body for the instances when the input is invalid:

{
 "moduleId": "0BCA724F-53D7-3540-8A62-4E2731D69813",
 "stepId": "test_all_types",
 "version": 1,
 "results": {
 "in_double ": "Integer value expected but found 0.9997."
 },
 "valid": false
}

Here is an example error response:

{
 "errorCode":-1958744015,
 "message":"Step ID echo_arrays failed to execute.",
 "details":[
 "Method not found."
],
 "remediation":"",
 "links":[],
 "version":1,
 "httpStatusCode":400
}

126 Chapter 10 • SAS Micro Analytic Service REST API

Appendix 1

SAS Micro Analytic Service
Return Codes

The SAS Micro Analytic Service core component, tkmas, supports the following return
codes. Depending on logging settings, an associated message might be logged. When a
message is logged, any substitution parameters (indicated by %s for string and %d for
number) are filled in. The other SAS Micro Analytic Service interface layers, such as the
Java interface and the REST interface, might log additional messages that are not listed
below.

Return Code #define Symbol Message or Description

-1958744063 MASBadArgs Invalid arguments.

-1958744062 MASInternalError Internal error.

-1958744061 MASFailure SAS Micro Analytic Service encountered a
failure.

-1958744060 MASFail %s encountered a failure.

-1958744059 MASUnexFail %s encountered an unexpected failure.

-1958744058 MASUnexInternal %s encountered an unexpected internal failure.

-1958744057 MASUnexFailIn %s encountered an unexpected failure in %s.

-1958744056 MASFailIn %s encountered a failure in %s.

-1958744055 MASFailWithText %s encountered a failure in %s: %s.

-1958744054 MASSFGCBLock Failed to obtain the SFGCB lock.

-1958744053 MASExeLock Failed to obtain the .exe lock.

-1958744052 MASLockCreate Failed to create the %s lock.

-1958744051 MASEventCreate Failed to create the %s event for thread %d.

-1958744050 MASThreadCreate Failed to create SAS Micro Analytic Service
worker thread %d of %d.

-1958744049 MASCPUCount Failed to determine the number of CPUs.
Setting the number of worker threads to %d.

127

Return Code #define Symbol Message or Description

-1958744048 MASThreadCount The number of threads requested, %d, exceeds
the limit. The maximum allowable threads =
%d times the number of CPUs = %d.

-1958744047 MASThreadPoolSize Worker thread pool size set to: %d.

-1958744046 MASInitAlready SAS Micro Analytic Service was already
initialized.

-1958744045 MASInitFailed SAS Micro Analytic Service failed to
initialize.

-1958744044 MASNotLicensed SAS Micro Analytic Service is not licensed.

-1958744043 MASLicSvcInitFailed License service failed to initialize.

-1958744042 MASNotInitialized SAS Micro Analytic Service is not initialized.

-1958744041 MASTermFailed SAS Micro Analytic Service failed to
terminate successfully.

-1958744040 MASArgTrunc The maximum size of parameter %d in the %s
call is not large enough, and the value has been
truncated at %d characters.

-1958744039 MASCompStatus Compiler encountered status 0x%X.

-1958744038 MASUnsupportedType Unsupported type.

-1958744037 MASUnknownType Unknown type.

-1958744036 MASNoSuchPackage Package not found.

-1958744035 MASNoSuchMethod Method not found.

-1958744034 MASNoSuchRevision Revision not found.

-1958744033 MASRevisionGet Failed to get revision.

-1958744032 MASNoSuchModule Module not found.

-1958744031 MASNoSuchUserContext User context not found.

-1958744030 MASModuleCtxtCreate Failed to create module context.

-1958744029 MASUserCtxtCreate Failed to create user context.

-1958744028 MASArgTypeMismatch Argument type mismatch.

-1958744027 MASArgCoutMismatch Argument count mismatch.

128 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958744026 MASClientCodegenError Code generation error.

-1958744025 MASDS2CompileError DS2 compilation error.

-1958744024 MASDS2RuntimeError DS2 run-time error.

-1958744023 MASTKGNoEntryPoint Code generation did not find an entry point.

-1958744022 MASTKGGenericError Code generation generic error.

-1958744021 MASInvalidRequest Invalid request.

-1958744020 MASMissingEntryPoints Missing entry points.

-1958744019 MASUnassignedInput Unassigned input.

-1958744018 MASInternalOnly Internal only.

-1958744017 MASOnlyValidForDS2 Valid only for DS2 code.

-1958744016 MASOnlyValidForC Valid only for C code.

-1958744015 MASExecutionException Exception occurred during execution.

-1958744014 MASCompilationException Exception occurred during compilation.

-1958744013 MASDS2ThreadUnsupported DS2 thread unsupported.

-1958744012 MASTKEDSError DS2 error.

-1958744011 MASUnrecognizedLanguage Unrecognized language.

-1958744010 MASUnspecifiedDataType Unspecified data type.

-1958744009 MASTKThreadingError Threading error.

-1958744008 MASFatalProgRepoLost Program repository lost.

-1958744007 MASSaveToRepo Failed to save to repository.

-1958744006 MASLog4SASCfgFailed Logging configuration failed.

-1958744005 MASDS2CompileStart User context '%s' compiling module '%s' on
thread %d.

-1958744004 MASDS2CompileFinish User context '%s' module '%s' thread %d
compilation succeeded.

-1958744003 MASDS2CompileFailed User context '%s' module '%s' thread %d new
revision failed, RC = %d.

SAS Micro Analytic Service Return Codes 129

Return Code #define Symbol Message or Description

-1958744002 MASStartup *** SAS Micro Analytic Service Started ***

-1958744001 MASShutdown *** Micro Analytic Service Shutting Down

-1958744000 MASAsyncException SAS Micro Analytic Service received async
exception code %d.

-1958743999 MASAsyncInitFailed SAS Micro Analytic Service failed to install
async exception handler.

-1958743998 MASShutdownJNI SAS Micro Analytic Service calling JVM
System.exit(0).

-1958743997 MASExecDeletePending Attempt to execute method %s while deletion
pending for module context %s revision %d.

-1958743996 MASMTXDeletePending Attempt to add module context &s while
deletion pending for user context %s.

-1958743995 MASRevDeletePending Attempt to create revision while deletion
pending for module context %s.

-1958743994 MASRevDelDeletePending Attempt to delete revision while deletion
pending for module context %s.

-1958743993 MASRevDelRefCount Pending delete called for module context %s
with ref count %d.

-1958743992 MASRevDelRefCountError Delete called for module context %s with ref
count %d.

-1958743991 MASMTXDelete Garbage collection is deleting module context
%s.

-1958743990 MASCTXDeletePending Attempt to delete user context %s while being
deleted by another thread.

-1958743989 MASCTXGetCDTDelPending Attempt to retrieve creation time from user
context %s while deletion pending.

-1958743988 MASCTXGetMDTDelPending Attempt to retrieve modified time from user
context %s while deletion pending.

-1958743987 MASMTXGetCDTDelPending Attempt to retrieve creation time from module
context %s while deletion pending.

-1958743986 MASMTXGetMDTDelPending Attempt to retrieve modified time from
module context %s while deletion pending.

-1958743985 MASMTXGetRevDelPending Attempt to retrieve highest revision from
module context %s while deletion pending.

130 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958743984 MASMTXGetIUODelPending Attempt to retrieve internal use flag from
module context %s while deletion pending.

-1958743983 MASRevGetCDTDelPending Attempt to retrieve revision %d creation time
from module context %s while deletion
pending.

-1958743982 MASMTXGetMsgDelPending Attempt to retrieve compilation messages from
module context %s while deletion pending.

-1958743981 MASMTXRegDeletePending Attempt to register name while deletion
pending for module context %s.

-1958743980 MASMTXLangDelPending Attempt to retrieve language of module
context %s while deletion pending.

-1958743979 MASMTXGetDispDelPending Attempt to retrieve display name from module
context %s while deletion pending.

-1958743978 MASMTXGetCSrcDelPending Attempt to retrieve C source code from
module context %s revision %d while deletion
pending.

-1958743977 MASCTXGetPkgsDelPending Attempt to retrieve packages from user context
%s while deletion pending.

-1958743976 MASMTXGetMthsDelPending Attempt to retrieve methods from module
context %s while deletion pending.

-1958743975 MASNoSuchEntryPoint Entry point not found.

-1958743974 MASMTXGetSigDelPending Attempt to retrieve method %s signature from
module context %s while deletion pending.

-1958743973 MASCTXLdOOTBDelPending Private load out-of-the-box packages for user
context %s while deletion pending.

-1958743972 MASCTXRegIntDelPending Attempt to publish internal package %s to user
context %s while deletion pending.

-1958743971 MASCTXRemIntDelPending Attempt to remove internal package %s from
user context %s while deletion pending.

-1958743970 MASCreateGCAFailed Attempt to create garbage collection control
structures failed.

-1958743969 MASGarbageCollection Garbage collection interval.

-1958743968 MASGarbageCollectionDel Garbage collection found assets ready to
delete.

SAS Micro Analytic Service Return Codes 131

Return Code #define Symbol Message or Description

-1958743967 MASGCException Exception occurred during garbage collection
run.

-1958743966 MASProgRepoUpdateError Error obtaining exclusive lock to update DS2
program repository.

-1958743965 MASCTXDelete Garbage collection is deleting user context %s.

-1958743964 MASRevDelete Garbage collection is deleting module context
%s revision %d.

-1958743963 MASDS2Fatal Module context %s revision %d generated
fatal run-time exception. Deleting revision.

-1958743962 MASGarbageCollectionTerm Garbage collection is freeing control assets
during shut-down.

-1958743961 MASShutdownHang Worker thread did not interrupt after %d
seconds during shutdown.

-1958743960 MASGCInvalidIntervalHigh Specifies that the garbage collection interval is
above the maximum. Setting to default value.

-1958743959 MASGCInvalidIntervalLow Specifies that the garbage collection interval is
below the minimum. Setting to default value.

-1958743958 MASGCInvalidGraceHigh Specifies that the grace period is above the
maximum. Setting to default value.

-1958743957 MASGCInvalidGraceLow Specifies that the grace period is below the
minimum. Setting to default value.

-1958743956 MASGCMissingInterval Garbage collection interval is not specified.
Setting to default value.

-1958743955 MASGCMissingGracePeriod Grace period is not specified. Setting to default
value.

-1958743954 MASModuleStats Check the log for module statistics.

-1958743953 MASInvalidDS2Connection Attempt to create TKTS driver connection
failed.

-1958743952 MASDS2FatalRecompiled DS2 package fatal error. Auto-recompile
succeeded.

-1958743951 MASDS2FatalRecompFailed DS2 package fatal error. Transaction failed.
Recompile failed. Ejecting revision.

-1958743950 MASDS2RevisionEjected DS2 package fatal error. Max retry exceeded.
Ejecting revision. Correct and republish.

132 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958743949 MASDBConnLost Connection to the database lost. Check the log
for details.

-1958743948 MASDBConnReestablished Lost connection reestablished for user context.

-1958743947 MASDBConnRetryLimit Maximum connection retry attempts exceeded
for user context.

-1958743946 MASDBConnDoesNotExist Attempt to execute SQLStmt, when no
connection exists.

-1958743945 MASDBConnRetryThreadErr Error while creating database connection retry
thread.

-1958743944 MASDBConnRetryAttempt Connection retry attempt unsuccessful.

-1958743943 MASNameRegisterFailed Unable to register tkmas in the TK named
registry. DS2 programs that call Python scripts
will not function.

-1958743942 MASDS2PythonNameRequired AS DS2 Python constructor missing Python
module name.

-1958743941 MASDS2PythonCreateError Unable to create SAS Micro Analytic Service
DS2 Python package.

-1958743940 MASDS2PythonInitError Unable to initialize support for SAS Micro
Analytic Service DS2 Python package.

-1958743939 MASUnsupportedFunction Unsupported function.

-1958743938 MASDS2NotInitialized Attempt to perform action on uninitialized
SAS Micro Analytic Service DS2 Python
package.

-1958743937 MASDS2PythonParmError SAS Micro Analytic Service DS2 Python
package parameter mismatch.

-1958743936 MASDS2PythonArgNameReqd SAS Micro Analytic Service DS2 Python
missing argument name.

-1958743935 MASDS2PythonArgValueReqd AS DS2 Python missing argument value.

-1958743934 MASDS2PythonArgInvalid SAS Micro Analytic Service DS2 Python
invalid argument value.

-1958743933 MASDS2PythonThreadError Illegal operation: DS2 callback into SAS
Micro Analytic Service received an
unrecognized thread.

-1958743932 MASPythonCompileEx Exception thrown while initializing Python or
compiling Python script.

SAS Micro Analytic Service Return Codes 133

Return Code #define Symbol Message or Description

-1958743931 MASDS2InvalidMaxRecomp Invalid maximum DS2 recompile count given.
Setting to default value.

-1958743930 MASDBInvalidIntervalHigh Specified DBMS connection retry interval is
above the maximum. Setting to default value.

-1958743929 MASDBInvalidIntervalLow Specified DBMS connection retry interval is
below the minimum. Setting to default value.

-1958743928 MASDBInvalidMaxRetry Invalid setting for maximum DBMS
reconnection attempts. Setting to default value.

-1958743927 MASDBCreateConnErr SAS Micro Analytic Service failed to create a
connection.

-1958743926 MASDBCreateConn SAS Micro Analytic Service created a
connection.

-1958743925 MASGCCanBeDeleted Garbage collection is checking module context
for deletion pending.

-1958743924 MASRepoLockRemovePriv Locking program repository to remove internal
package.

-1958743923 MASRepoUnlockRemovePriv Released program repository lock after
removing internal package.

-1958743922 MASRepoLockRemoveRev Locking program repository to remove module
context.

-1958743921 MASRepoUnlockRemoveRev Released program repository lock, after
removing module context.

-1958743920 MASRepoLockCreate Creating a lock for user context.

-1958743919 MASRepoLockDestroy Destroying a lock for user context.

-1958743918 MASRepoLockPackageComp Locking program repository during
compilation of package.

-1958743917 MASRepoUnlockPackageComp Released program repository lock after
compilation of package.

-1958743916 MASRepoUnlockCompCrash Released program repository lock due to DS2
compiler crash while compiling package.

-1958743915 MASRepoLockPackageSave Locking program repository to save package
after successful compilation.

-1958743914 MASRepoUnlockPackageSave Released program repository after saving
package.

134 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

-1958743913 MASRepoLockPackagePriv Locking program repository to save internal
package.

-1958743912 MASRepoUnlockPackagePriv Released program repository after saving
internal package.

-1958743911 MASPythonNotLoaded Python extension not loaded. Python must be
installed in order to execute Python within
SAS Micro Analytic Service.

-1958743910 MASTKTSConnHndlFail Failed to create a table services connection
handle.

-1958743909 MASDBDisconnected SAS Micro Analytic Service disconnected
database from user context.

-1958743908 MASDBDisconnect SAS Micro Analytic Service encountered a
failure when attempting to disconnect the
database from the user context.

-1958743907 MASPercentS Internal error. Check the SAS Micro Analytic
Service Core log.

-1958743906 MASPythonCompileErr Error compiling the Python script for the
module.

-1958743905 MASDS2MissingArray A missing array argument is not supported
with DS2.

-1958743904 MASDS2EmptyArray An empty array argument is not supported
with DS2.

-1958743903 MASDS2ArrayReplaced Missing or insufficiently sized DS2 array
argument has been replaced with new array of
size %d.

-1958743902 MASDS2OutputTransError Error %d when converting char string of
length %d to TKChar string.

-1958743901 MASDS2InputTransError Error %d when converting TKChar string of
length %d to char string.

-1958743900 MASDS2PythonOutputTrans Error %d when converting Python char string
of length %d to TKChar string.

-1958743899 MASDS2PythonInputTrans Error %d when converting TKChar string of
length %d to char string for Python.

-1958743898 MASDBCr8ConnNoSub SAS Micro Analytic Service created a default
data source connection.

-1958743897 MASDBCr8ConnErrNoSub SAS Micro Analytic Service failed to create a
default data source connection.

SAS Micro Analytic Service Return Codes 135

Return Code #define Symbol Message or Description

1958743896 MASDBDisconnNoSub SAS Micro Analytic Service disconnected
from the default data source.

1958743895 MASDBDisconnErrNoSub SAS Micro Analytic Service encountered a
failure when attempting to disconnect from the
default data source.

1958743894 MASDS2ScanError Out of memory or malformed DS2
encountered while scanning the package %s
source code prior to dictionary generation.

1958743893 MASDS2ParseError Out of memory or malformed DS2
encountered while parsing the package %s
method %s during dictionary generation.

1958743892 MASMTXGetDictDelPending Attempt to retrieve the dictionary from module
context %s revision %d while deletion
pending.

1958743892 MASCFuncProtoNotSupp Part of the C function prototype is not
supported.

1958743890 MASDupModuleName Module name %s already exists. Module name
must be unique within the user context.

1958743889 MASDupDS2Package The DS2 package name %s is already bound to
module %s. Separate modules cannot represent
the same DS2 package.

1958743888 MASIndexOutOfRangeSet The index is out of range while setting an
argument. Argument %d specified when
number of arguments is %d.

1958743887 MASIndexOutOfRangeGet The index is out of range while retrieving an
argument. Argument %d specified when
number of arguments is %d.

1958743886 MASIntTypeExpected The argument %d in method %Us should be
an integral type used to specify the length of
the previous argument, which is an array.

1958743885 MASOutArgExpected The argument %d in method %Us should be
an output argument. All input arguments must
precede output arguments.

1958743884 MASDS2pymas DS2 pymas package encountered a failure.

1958743883 MASDS2pymasFailIn DS2 pymas package encountered a failure in
%Us.

1958743882 MASDS2pymasPubUTF8 DS2 pymas package failed to publish module
%Us.

136 Appendix 1 • SAS Micro Analytic Service Return Codes

Return Code #define Symbol Message or Description

1958743881 MASDS2pymasPubTK DS2 pymas package failed to publish module
%s.

1958743880 MASDS2pymasUsed The DS2 pymas package's use method has
already been called on this package instance.
Create a separate pymas instances for each
method that is used.

1958743879 MASThrdPoolSizeDiff SAS Micro Analytic Service has already been
initialized with a worker thread pool size of
%d.

1958743878 MASSymbolTableCreateFailed SAS Micro Analytic Service failed to create a
symbol table.

1958743877 MASMethodExecutionFailed SAS Micro Analytic Service failed to execute
a method.

SAS Micro Analytic Service Return Codes 137

138 Appendix 1 • SAS Micro Analytic Service Return Codes

Appendix 2

REST Server Error Messages
and Resolutions

The following table contains SAS Micro Analytic Service REST server error messages,
as well as possible causes and remedies.

Error Messages Cause and Remedy

Another operation on this module is
going on.

Wait a while, find out what has changed on the
module, and then decide whether it is appropriate to
retry your operation. If the problem persists even
though you are sure there is not another simultaneous
operation on the module, restart the server to refresh
its state.

API version 2 is not supported. The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

Bad Request encountered. Check the
format and syntax of the source.

Check the SAS Micro Analytic Service log file for
additional details as there can be multiple causes for
this error. If the cause is not that an incorrect source
was used when updating a module, a restart of the
server might be necessary to refresh its state. It might
also be necessary to reduce the level of concurrent
module update.

Code is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors that are identified.

Data type does not match the signature. Correct the input parameters according to the step's
input signature.

Error creating object for HTTP
response body.

If you submitted a POST, PUT, or DELETE
operation to change the module collection, use the
appropriate GET operation to check whether the
operation produced the effect that is desired. If the
desired effect is not produced, check the SAS Micro
Analytic Service log for error messages. (Errors are
logged as well as returned through the response
body.) If you submitted a POST operation to validate
the inputs of a step, execute a step or another GET
operation. It is safe to repeat the operation.

139

Error Messages Cause and Remedy

Information about the steps in this
public module is not available.

The cause of this error is too many simultaneous
module creations or updates. Reduce the amount of
concurrency.

Information about the steps in this
public module is not available because
module was compiled successfully
before but failed recompilation this
time.

The likely cause is that a dependent module is no
longer available to recompile a module after the
server restarts. Create the dependent module again.

Invalid source code. The cause is either one or more compilation errors.

Label cannot be used together with
start and limit.

Use either the label parameter or start and limit
parameters in the GET operation on the modules or
steps collections.

Metadata update failure. Restart the server to go through the metadata
correction procedure. Follow this with a GET
operation on the module affected to see whether the
module was created, updated, or deleted properly.

Module compilation failed with errors. The cause is one or more compilation errors during
re-compilation of a previously compiled module.
This might be due to too many simultaneous module
creations or updates. Reduce the amount of
concurrency. A restart of the server might be
necessary to go through the metadata correction
procedure.

Module context was not created. There can be multiple causes. A restart of the server
might be necessary to refresh its state.

Module name cannot be changed from
a PUT operation.

Use the same module name as the previous revision.

Module name cannot be determined. If the source is DS2 code, the package does not have
a name. Add a name to the package.

Module name XYZ is already taken. Delete the existing module using that name, or
choose a different module name when creating a
module. If the error persists, this might be a symptom
of incorrect metadata. A restart of the server might be
necessary to go through the metadata correction
procedure.

Module named XYZ already exists. Delete the existing module using that name, or
choose a different module name when creating a
module. If the problem persists, restart the server to
clear its state.

Module type XYZ is not valid. Valid
value is text/vnd.sas.source.ds2.

The cause is one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

140 Appendix 2 • REST Server Error Messages and Resolutions

Error Messages Cause and Remedy

No module with the module ID XYZ
exists.

Verify that the module ID is correct. If the module ID
is correct, the module might have been deleted. In
that case, create the module again and use the new ID
that is assigned to it.

In the case of a clustered deployment, the module
was never replicated to all peers and the load
balancer sends your request to one of those peer
nodes. Check the SAS Micro Analytic Service log to
confirm that. A restart is necessary to go through the
metadata correction procedure.

Private module named XYZ was not
removed successfully.

This error can be left uncorrected, if XYZ does not
pose a problem in the other operations of the server.
Otherwise, restart the server to clear its state.

Scope is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors identified.

Scope XYZ is not valid. Valid scopes
are public and private.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

Server encountered an internal error. There can be multiple causes. Check the SAS Micro
Analytic Service log for error messages. If the cause
is compilation related, and the errors are on a
dependent module, make sure that the dependent
module exists. It can also be caused by too many
simultaneous module creations or updates. In that
case, reduce the amount of simultaneous module
creations or updates. For other causes, a restart of the
server might be necessary to refresh its state.

Server is not initialized properly. There can be multiple causes. Check the SAS Micro
Analytic Service log for more information. Correct
the component that prevents the service from
initializing properly.

Step ID XYZ failed to execute. See “SAS Micro Analytic Service Return Codes” on
page 127 for the meaning of the result code. Also,
verify that the module ID is correct and verify the
existence of the module by doing a GET operation on
the module.

Step ID XYZ is not visible. The step is a member of a private module and its
information is hidden from you. Furthermore, you
cannot execute this step. If you need to see the
signature of this step, you can get the source of the
module as an alternative.

The XYZ member is repeated. The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

REST Server Error Messages and Resolutions 141

Error Messages Cause and Remedy

The XYZ property expects a string
value but TYPE value is provided.

The value of a property should be a string. Change
the value to a string by quoting the value in double
quotation marks.

The XYZ property is not supported. The only property that is allowed in the API is
connectionString. Remove the property definition
from the array.

There is more than one DS2 package in
the code.

Provide only one DS2 package in a module
definition.

This node is out of sync with the rest of
the cluster.

The likely cause is network delay in replicating data
from one node to its cluster peers. Another operation
on the module on the node that has the up-to-date
metadata might cause a correction of the module on
the peer nodes. If that does not work, restart the
cluster node to go through the metadata correction
procedure.

Total number of input parameters
(number) does not match the number
of parameters required by input
signature (number).

Correct the input parameters according to the step's
input signature.

Type is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object is incorrect or repeated. Correct the
errors identified.

User context was not created. There can be multiple causes. A restart of the server
might be necessary to refresh its state.

Version is missing or assigned the null
value.

The cause is that one or more fields in the module
definition object are incorrect or repeated. Correct the
errors identified.

142 Appendix 2 • REST Server Error Messages and Resolutions

Appendix 3

Table Service Driver Reference

DB2 Driver Reference . 144
Understanding the Table Services Driver for DB2 . 144
Data Service Connection Options for DB2 . 145
DB2 Wire Protocol Driver Usage Notes . 148

FedSQL Driver Reference . 149
Overview . 149
Connection Options . 149

Greenplum Driver Reference . 152
Understanding the Table Services Driver for Greenplum 152
Data Service Connection Options for Greenplum . 152
Greenplum Wire Protocol Driver Usage Notes . 156

Netezza Driver Reference . 156
Understanding the Table Services Driver for Netezza . 156
Data Service Connection Options for Netezza . 157

ODBC Driver Reference . 161
About ODBC . 161
Understanding the Table Services Driver for ODBC . 161
Data Service Connection Options for ODBC . 161
Wire Protocol Driver Usage Notes . 167

Oracle Reference . 168
Understanding the Table Services Driver for Oracle . 168
Data Service Connection Options for Oracle . 168
Oracle Wire Protocol Driver Usage Notes . 173

PostgreSQL Driver Reference . 173
Understanding the SAS Federation Server Driver for PostgreSQL 173
Data Service Connection Options for PostgreSQL . 174

SAS Data Set Reference . 178
Overview . 178
Understanding the Driver for Base SAS . 178
Data Service Connection Options for SAS Data Sets . 178

Teradata Reference . 182
Understanding the Table Services Driver for Teradata . 182
Data Service Connection Options for Teradata . 182

143

DB2 Driver Reference

Understanding the Table Services Driver for DB2
The table services driver for DB2 (driver for DB2) enables table services to read and
update legacy DB2 tables. In addition, the driver creates DB2 tables that can be accessed
by both table services and the DB2 database management system (DBMS).

The driver for DB2 supports most of the FedSQL functionality. The driver also enables
an application to submit native DB2 SQL statements.

The table services driver for DB2 is a remote driver, which means that it connects to a
server process in order to access data. The process might be running on the same
machine as the table services driver, or it might be running on another machine in the
network.

The table services driver for DB2 uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables and, if necessary, specify the DB2 version that you have installed.
Before setting the environment variables, as shown in the examples below, you must also
set the following environment variables:

• The INSTHOME environment variable must be set to your DB2 home directory.

• The DB2DIR environment variable should also be set to the value of INSTHOME.

• The DB2INSTANCE environment variable should be set to the DB2 instance that
was configured by the administrator.

AIX
Bourne Shell
$ LIBPATH=$INSTHOME/lib:$LIBPATH
$ export LIBPATH
C Shell
$ setenv LIBPATH $INSTHOME/lib:$LIBPATH
HP-UX and HP-UX for the Itanium Processor
 Family Architecture
Bourne Shell
$ SHLIB_PATH=$INSTHOME/lib:$SHLIB_PATH
$ export SHLIB_PATH
C Shell
$ setenv SHLIB_PATH $INSTHOME/lib:$SHLIB_PATH
Linux for Intel Architecture, Linux for x64, Solaris,
 and Solaris for x64
Bourne Shell
$LD_LIBRARY_PATH=$INSTHOME/lib:$LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH
C Shell
$ setenv LD_LIBRARY_PATH $INSTHOME/lib:$LD_LIBRARY_PATH

144 Appendix 3 • Table Service Driver Reference

Data Service Connection Options for DB2

Overview
The data service connection arguments for DB2 include connection options and
advanced options.

Note: When performing connections through DSNs or connection strings, the FedSQL
language processor automatically quotes SQL identifiers that do not meet the regular
naming convention as defined in SAS FedSQL Reference Guide.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options. Here is an example:

driver=sql;conopts=(driver=db2;uid=myuid;
pwd=Blue31;conopts=(DSN=MYDSN);CATALOG=TSSQL)

The table services driver for DB2 supports the following connection options for DB2
data sources.

Option Description

CATALOG CATALOG=catalog-identifer;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=DB2). You must specify a catalog. For the DB2
database, this is a logical catalog name to use as an SQL catalog identifier.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

DATABASE|DB DATABASE=database-specification;

Specifies the name of the DB2 database (for example, database=sample, DB=sample).

Note: You must specify a database name.

DRIVER DRIVER=DB2;

Identifies the DB2 data source to which you want to connect.

Note: You must specify the driver.

DB2 Driver Reference 145

Advanced Connection Options
The table services driver for DB2 supports the following advanced connection options
for DB2 data sources.

Option Description

CLIENT_ENCODIN
G

CLIENT_ENCODING=encoding-value

Used to specify the encoding of the DB2CODEPAGE to the DB2 driver. When using this
option, you must also set the DB2CODEPAGE environment variable on the client.

When the encoding of the DB2 client layer (stored in DBCODEPAGE) is different from the
encoding value of the DB2 operating system value, the DB2 client layer attempts to convert
incoming data to the DB2 encoding value that is stored in DB2CODEPAGE. To prevent the
client layer from converting data incorrectly, you must first determine the correct value for
DB2CODEPAGE and then set the CLIENT_ENCODING= option to match the corresponding
encoding value in DB2CODEPAGE.

For example, suppose you are storing Japanese characters in a DB2 database, and the client
machine where the DB2 driver is executing is a Windows machine that is running CP1252
encoding. When the application tries to extract the data into the table services driver, the DB2
client layer attempts to convert these Japanese characters into Latin1 representation, which does
not contain Japanese characters. As a result, a garbage character appears in order to indicate a
failure in transcoding.

To resolve this situation, you must first set the DB2CODEPAGE environment variable value to
1208 (the IBM code page value that matches UTF-8 encoding). That enables you to specify that
the DB2 client layer send the data to the application in UTF-8 instead of converting it into
Latin1. In addition, you must specify the corresponding encoding value of DB2CODEPAGE
because the table services driver for DB2 cannot derive this information from a DB2 session.
For this particular Windows case, set the CLIENT_ENCODING= option to the UTF-8 encoding
in order to match the DB2CODEPAGE value (1208) and also to specify the DB2CODEPAGE
value to the DB2 driver.

However, changing the value of DB2CODEPAGE affects all applications that run on that
machine. You should reset the value to the usual DB2CODEPAGE value, which was derived
when the database was created.

Note: Setting the DB2CODEPAGE value or the CLIENT_ENCODING= value incorrectly can
cause unpredictable results. You should set these values only when a situation such as the
example above occurs.

Note: You can specify any valid encoding value for CLIENT_ENCODING=option.

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure that all characters can be stored in
the new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

146 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

• ALL Activates all trace levels.

• DRIVER Specifies that driver-specific information be sent to the trace log.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DB2 Driver Reference 147

Option Description

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

Default: The trace log is overwritten with no thread identification or time stamp.

PASSWORD PWD=password

Specifies the password for DB2.

UID UID=user-id;

Specifies the DB2 login user ID.

DB2 Wire Protocol Driver Usage Notes
There are a number of third-party wire protocol ODBC drivers that communicate
directly with a database server, without having to communicate through a client library.
When you configure the ODBC drivers on Windows or UNIX, you can set certain
options. SAS runs best when these options are selected. Some, but not all, are selected
by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

When configuring an ODBC DSN using the DB2 Wire Protocol driver, set the following
advanced option:

148 Appendix 3 • Table Service Driver Reference

• Application Using Threads

FedSQL Driver Reference

Overview
The FedSQL language driver supports the FedSQL dialect, as documented in SAS
FedSQL Language Reference Guide. When loaded, the FedSQL driver parses SQL
requests, and then sends the parsed query to the appropriate data source driver to
determine whether the functionality can be handled by the data service. The FedSQL
driver includes an SQL processor that supports the FedSQL dialect. The main emphasis
of the FedSQL driver is to support federation of data sources. For example, if an SQL
submission is requesting data from DB2 to be joined with data from Oracle, the SQL
processor requests the data from the data sources and then performs the join. The
FedSQL driver supports the FedSQL dialect regardless of the data source it comes from.
For example, if the SQL request is from a single data source that does not support a
particular SQL function, the FedSQL processor guarantees implementation of the
request.

Connection Options
• CONOPTS=((connection string 1);(connection string 2); ... (connection string <n>))

- Specifies one or more data source connection strings. For example, the following
illustrates a federated connection string including Oracle, Teradata, Netezza, and
Base SAS data sources:

driver=sql;conopts=((driver=oracle;catalog=acat;uid=myuid;
pwd=myPass9;path=oraclev11.abc.123.com:1521/ORA11G);
(driver=teradata;catalog=bcat;uid=model;
pwd='{sas002}C5DDFFF91B5D31DFFFCE9FFF';
server=terasoar;database=model);(driver=netezza;uid=myuid;
pwd=myPass2;server=mysrvr;database=testdb;catalog=(ccat={TEST}));
(driver=base;catalog=dcat;schema=(name=dblib;primarypath=/u/mypath/mydir)))

• DEFAULT_CATALOG=catalog-name - Used to specify the name of the catalog to
set as the current catalog upon connecting. This option is useful for SQL Server
connections and federated connections.

• DEFAULT_ATTR=(attr=value;...) - Used to specify connection handle or statement
handle attributes supported for initial connect-time configuration., where
attr=value corresponds to any of the following options:

FedSQL Driver Reference 149

SQL_CURSORS=n

FedSQL connection handle option. This option controls the driver’s use of client-side, result
set cursors. The possible values are 0, 1, or 2.

• A value of 0 causes the driver to use client-side static cursor emulation if a scrollable
cursor is requested but the database server cannot provide one.

• A value of 1 causes the driver to always use client-side static cursor emulation if a
scrollable cursor is requested. The database server’s native cursor is never used.

• A value of 2 (default) causes the driver to never use client-side static cursor emulation if a
scrollable cursor is requested. The database server’s native cursor is used if available,
otherwise the cursor is forward only.

DEFAULT_ATTR=(SQL_CURSORS=2)

SQL_AC_BEHAVIOR=n

FedSQL connection handle option. Specifies whether FedSQL should use transactions when
processing complex operations (for example, “CREATE TABLE xxx AS SELECT
yyy FROM zzz” or a multi-row delete statement that requires multiple operations to delete
the underlying rows). Possible values are 0 (default), 1, and 2.

• A value of 0 (default) means that no transactions are attempted under-the-covers and
operations such as emulated UPDATE, DELETE, or INSERT are not guaranteed to be
atomic.

• A value of 1 means that FedSQL tries to use transactions to better support the correct
behavior when AUTOCOMMIT is set to ON (where individual operations like UPDATE,
DELETE, and INSERT should be atomic).

• A value of 2 means that transactions are required. This option fails if the underlying
drivers do not support transactions.

DEFAULT_ATTR=(SQL_AC_BEHAVIOR=0)

SQL_MAX_COL_SIZE=n

FedSQL statement handle option. Enables a user to specify the size of the varchar or
varbinary that is used for potentially truncated long data when direct bind is not possible.

• The default value is 32767.

• The limit for this size is 1 MG. If the value exceeds 1 MG, FedSQL resets the value and
returns an Option value changed warning.

DEFAULT_ATTR=(SQL_MAX_COL_SIZE=1048576)

SQL_PUSHDOWN=n

FedSQL statement handle option. This option tells FedSQL if and when it should try to push
down SQL to the underlying driver. The values are 8, 2, or 0 (default).

• A value of 8: (PLAN_FORCE_PUSHDOWN_SQL) - Complete statement pushdown is
required. If that is not possible, the INSERT, UPDATE, DELETE, or CREATE TABLE AS
statement fails.

• A value of 2: (PLAN_DISABLE_PUSHDOWN_SQL) - Specifies that the INSERT,
UPDATE, DELETE, or CREATE TABLE AS statement not be pushed down to the
underlying driver.

• A value of 0 (default): Specifies that the FedSQL processor determine whether the
INSERT, UPDATE, DELETE, or CREATE TABLE AS statement should be pushed down
to the underlying driver.

DEFAULT_ATTR=(SQL_PUSHDOWN=0)

150 Appendix 3 • Table Service Driver Reference

SQL_STMT_MEM_LIMIT=n

FedSQL statement handle option. Used to control the amount of memory that is available to
FedSQL to answer SQL requests.

• (n) is treated as an integer and is specified in bytes.

• The following example allows 200 MB of memory:

DEFAULT_ATTR=(SQL_STMT_MEM_LIMIT=209715200)

SQL_TXN_EXCEPTIONS=n

FedSQL connection handle option. Supports dynamic connections regardless of the specified
transaction isolation. Possible values are 0 or 2 (default).

• Specify a value of 0 to disable support for dynamic connections.

• Specify a value of 2 to enable support for dynamic connections.

DEFAULT_ATTR=(SQL_TXN_EXCEPTIONS=2)

SQL_USE_EVP=n

FedSQL statement handle option. This option optimizes the driver for large result sets. The
possible values are 0 or 1 (default) and are used as follows:

• Specify 0 to turn optimization OFF.

• Specify 1 to enable optimization (ON).

DEFAULT_ATTR=(SQL_USE_EVP=0)

SQL_VDC_DISABLE=n

FedSQL statement handle option. This option is used to allow or disallow use of cached data
for a statement. The possible values are 0 (default) or 1 and are used as follows:

• Specify a value of 0 to enable cached data.

• Specify a value of 1 to disable cached data.

DEFAULT_ATTR=(SQL_VDC_DISABLE=1)

SQL_XCODE_WARN=n

FedSQL statement handle option. Used to warn when there is an error while transcoding data
during row input or output operations. Possible values are 0 (default), 1, or 2 and are used as
follows:

• Specify 0 to return an error if data cannot be transcoded.

• Specify 1 to return a warning if data cannot be transcoded.

• Specify 2 to ignore transcoding errors.

DEFAULT_ATTR=(SQL_XCODE_WARN=1)

FedSQL Driver Reference 151

Greenplum Driver Reference

Understanding the Table Services Driver for Greenplum
The table services driver (driver for Greenplum) enables table services to read and
update Greenplum tables. In addition, the driver creates Greenplum tables that can be
accessed by both table services and Greenplum.

The driver for Greenplum supports most of the FedSQL functionality. The driver also
enables an application to submit native Greenplum SQL statements.

The table services driver for Greenplum is a remote driver, which means that it connects
to a server process in order to access data. The process might be running on the same
machine as the table services, or it might be running on another machine in the network.

The table services driver for Greenplum uses shared libraries that are referenced as
shared objects in UNIX. You must add the location of the shared libraries to one of the
system environment variables, and set any other environment variables required by the
Greenplum client libraries. The following Korn shell commands provide an example:

export ODBCHOME=/dbi/odbc/gpl94m3
export ODBCINI=/dbi/odbc/gpl94m3/odbc.ini
export ODBCINST=/dbi/odbc/gpl94m3/odbcinst.ini
export GPHOME_LOADERS=/dbi/greenplum/4.2.6/gpfdist
export GPLOAD_HOST=mynode.abc.123.com
export GPLOAD_HOME=/tmp
LD_LIBRARY_PATH=/dbi/odbc/gpl94m3/lib:${LD_LIBRARY_PATH}
LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export LD_LIBRARY_PATH

Data Service Connection Options for Greenplum

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=greenplum;uid=myuid;
pwd=MyPasswd;server=greenlight;port=5432;
database=sample;catalog=acat)

The driver for Greenplum supports the following connection options.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=gps_test). You must specify a catalog. For the
Greenplum database, this is a logical catalog name to use as an SQL catalog identifier.

Note: SAS Federation Server automatically quotes SQL identifiers that do not meet the regular
naming convention as defined in SAS FedSQL Reference Guide.

152 Appendix 3 • Table Service Driver Reference

Option Description

DATABASE DATABASE=database—name;

Identifies the database to which you want to connect, which resides on the server that was previously
specified by the SERVER option.

DRIVER DRIVER=GREENPLUM;

Specifies the data service for the Greenplum database to which you want to connect. You must
specify a driver.

DSN DSN=data_source_identifer;

Identifies the data source name to which you want to connect.

SERVER SERVER=server_name;

Identifies the name of the server where the Greenplum database resides.

Advanced Connection Options
The driver for Greenplum supports the following advanced connection options.

Option Description

ALLOW_UNQUOTE
D_NAMES

ALLOW_UNQUOTED_NAMES=NO|YES;

Specifies whether to enclose table and column names in quotation marks. Tables and columns
are quoted when this option is set to NO (default). If the option is set to YES, the driver will
not automatically add quotation marks to table and column names if they are not specified.
This allows Greenplum tables and columns to be created in the default lowercase.

CLIENT_ENCODING CLIENT_ENCODING=cei;

Specifies an encoding, different from the default, to use on the client.

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or
scale. When character encodings are changed, the new column size is recalculated to ensure
all characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is
chosen, even if it could potentially result in a loss of precision or scale. When character
encodings are changed, the new column size is recalculated to ensure that all characters can
be stored in the new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for
the new encoding is the same as the original encoding. This option can be used to avoid
column size creep. However, the resulting column might be too large or too small for the
target data.

Greenplum Driver Reference 153

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side
static cursor emulation if a scrollable cursor is
requested. The database server’s native cursor is used if
available. Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be
used for debugging purposes. The SAS Federation Server driver writes a record of each
command that is sent to the trace log based on the specified tracing level, which determines the
type of tracing information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates
tracing information for API calls and SQL statements.

154 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOPT
IONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the
file are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

MAX_BINARY_LEN MAX_BINARY_LEN=value;

Specifies a value to limit the length of long binary fields (LONG VARBINARY). As opposed
to other databases, Greenplum does not have a size limit for long binary fields.

MAX_CHAR_LEN MAX_CHAR_LEN=value;

Specifies a value to limit the length of character fields (CHAR and VARCHAR). As opposed
to other databases, Greenplum does not have a size limit for character fields.

MAX_TEXT_LEN MAX_TEXT_LEN=value;

Specifies a value to limit the length of long character fields (LONG VARCHAR). As opposed
to other databases, Greenplum does not have a size limit for long character fields.

NUM BYTES PER
CHAR

NUMBYTESPERCHAR=value;

Specifies the default number of bytes per character.

PASSWORD PASSWORD=password;

Specifies a password for the ID passed through the USER= option. The alias is PWD=.

Note: You must specify the PASSWORD= option.

SCHEMA SCHEMA=value;

Specifies the default schema for the connection. If the option is not specified, the schema (or
list of schemas) is determined based on the value of the schema search path defined on the
database server.

STRIP_BLANKS STRIP_BLANKS=value;

Specifies whether to strip blanks from character fields.

Greenplum Driver Reference 155

Option Description

USER USER=user-id;

Specifies a Greenplum user ID. If the ID contains blanks or national characters, enclose it in
quotation marks. The alias is UID=.

Note: You must specify the USER= option.

Greenplum Wire Protocol Driver Usage Notes
There are a number of wire protocol ODBC drivers that communicate directly with a
database server, without having to communicate through a client library. When you
configure the ODBC drivers on Windows or UNIX, you can set certain options. SAS
runs best when these options are selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

When configuring an ODBC DSN using the Greenplum Wire Protocol driver, select the
following advanced options:

• Application Using Threads

• Enable SQLDescribeParam

• Fetch TSFS as Time

• Fetch TSWTZ as Timestamp

Netezza Driver Reference

Understanding the Table Services Driver for Netezza
The table services driver for Netezza (driver for Netezza) enables table services to read
and update legacy Netezza tables. In addition, the driver creates Netezza tables that can
be accessed by both table services and Netezza.

The driver for Netezza supports most of the FedSQL functionality. The driver also
enables an application to submit native Netezza SQL statements.

The driver for Netezza is a remote driver, which means that it connects to a server
process in order to access data. The process might run on the same machine as table
services, or it might run on another machine in the network.

156 Appendix 3 • Table Service Driver Reference

The table services driver for Netezza uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables required by the Netezza
client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/dbi/netezza/7.0.4/lib64:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export ODBCINI=/env/netezza/odbc.ini
export NZ_ODBC_INI_PATH=/env/netezza

Data Service Connection Options for Netezza

Overview
To access data that is hosted on table services, a client must submit a connection string,
which defines how to connect to the data. The data service connection arguments for
Netezza include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=netezza;uid=myid2;
pwd=mypwd2;server=mysrvr;database=mydb;
catalog=(bcat={TEST}))

The driver for Netezza supports the following connection options.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid.

Note: Table services automatically quotes SQL identifiers that do not meet the regular naming
convention as defined in SAS FedSQL Reference Guide.

DATABASE DATABASE=database—name;

Identifies the database to which you want to connect, which resides on the server previously
specified through the SERVER option.

DRIVER DRIVER=NETEZZA;

Specifies the data service for the Netezza database to which you want to connect.

Note: You must specify the driver.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These options,
combined with the ODBC_DSN option, must specify a complete connection string to the data
source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option, do not
use the ODBC_DSN= connection option. However, you can specify the ODBC database-specific
connection options by using CONOPTS=. Then you can specify an ODBC DSN that contains other
connection information by using the ODBC_DSN= connection option.

Netezza Driver Reference 157

Option Description

DSN DSN=data_source_identifer;

Identifies the data source name to which you want to connect.

SERVER SERVER=server_name;

Identifies the name of the server where the Netezza database resides.

PORT PORT=port_number

Identifies the listen port of the server where the Netezza database resides.

Advanced Connection Options
The driver for Netezza supports the following advanced connection options.

Option Description

CLIENT_ENCODIN
G

CLIENT_ENCODING=cei

Used to specify encoding for the client.

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure that all characters can be stored in
the new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

158 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

Netezza Driver Reference 159

Option Description

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

USER USER=“user-id”;

Specifies a Netezza user ID. If the ID contains blanks or national characters, enclose it in
quotation marks. Alias: UID.

Note: You must specify the USER option.

PASSWORD PASSWORD=password;

Specifies a password for the ID passed through the USER= option. Alias: PWD.

Note: You must specify the PASSWORD option with USER.

STRIP_BLANKS STRIP_BLANKS=YES|NO;

Specifies whether to strip blanks from character fields.

READONLY READONLY=YES|NO;

Specifies whether to connect to the Netezza database in Read-Only mode. The default is NO.
Alias: READ_ONLY

SHOWSYSTEMTAB
LES

SHOWSYSTEMTABLES=YES|NO;

Specifies whether tables are included in the available table list. If set to YES or TRUE, system
tables are included in the available table list. The default setting is NO. Alias: SST

NUMBERBYTESPE
RCHARACTER

NUMBYTESPERCHAR=value;

Specifies the default number of bytes per character.

160 Appendix 3 • Table Service Driver Reference

ODBC Driver Reference

About ODBC
This section provides functionality details and guidelines for the open database
connectivity (ODBC) databases that are supported by the table services driver for ODBC
(driver for ODBC).

ODBC standards provide a common interface to a variety of databases, including
dBASE, Microsoft Access, Oracle, Paradox, and Microsoft SQL Server databases.
Specifically, ODBC standards define APIs that enable an application to access a
database if both the application and the database conform to the specification. ODBC
also provides a mechanism to enable dynamic selection of a database that an application
is accessing. As a result, users can select databases other than those that are specified by
the application developer.

Understanding the Table Services Driver for ODBC
The driver for ODBC enables table services to read and update legacy ODBC database
tables. In addition, the driver creates tables that can be accessed by both table services
and an ODBC database.

The driver for ODBC supports most of the FedSQL functionality. The driver also
enables an application to submit native database-specific SQL statements.

The driver for ODBC is a remote driver, which means that it connects to a server process
in order to access data. The process might be running on the same machine as table
services, or it might be running on another machine in the network.

Data Service Connection Options for ODBC

Overview
To access data that is hosted on table services, a client must submit a connection string,
which defines how to connect to the data. The data service connection arguments for an
ODBC-compliant database include connection options and advanced connection options.

To configure ODBC data sources, you might have to edit the .odbc.ini file in your home
directory. Some ODBC driver vendors allow system administrators to maintain a
centralized copy, by setting the environment variable ODBCINI. For specific
configuration information, see your vendor documentation. The table services driver for
ODBC uses shared libraries that are referenced as shared objects in UNIX. You must add
the location of the shared libraries to one of the system environment variables, so that
drivers for ODBC are loaded dynamically at run time. You must also set the
ODBCHOME environment variable to your ODBC home directory before setting the
environment variables, as shown in the following example.

export ODBCHOME=/dbi/odbc/dd7.1.4
 export ODBCINI=/ODBC/odbc_714_MASTER.ini
 LD_LIBRARY_PATH=/dbi/odbc/dd7.1.4/lib:${LD_LIBRARY_PATH}
 export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}

ODBC Driver Reference 161

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=odbc;
catalog=acat;conopts=(dsn=ODBCPgresDD;pwd=Tester2))

The driver for ODBC supports the following connection options.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. For
databases that do not support native catalogs, any identifier is valid (for example,
catalog=myodbc). For databases like Microsoft SQL Server that do support native catalogs,
CATALOG= is not required. The connection defaults to CATALOG=* unless you specify a
logical name for the catalog and map it to the native catalog name in the database. For example,
to map the logical catalog mycat to the native catalog named newusers, use the following
command: catalog=(mycat=newusers);. Catalog name maps can be used only with
FedSQL. They are not valid with native SQL.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These
options, combined with the ODBC_DSN option, must specify a complete connection string to the
data source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option,
do not use the ODBC_DSN= connection option. However, you can specify the ODBC database-
specific connection options by using CONOPTS=. Then you can specify an ODBC DSN that
contains other connection information by using the ODBC_DSN= connection option.

Here is an example string using the CONOPTS option:

driver=sql;conopts=((driver=odbc;catalog=acat;
conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid;pwd='123pass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

DRIVER DRIVER=ODBC;

Calls the table services driver for ODBC. This specifies that the data service to which you want
to connect must be an ODBC-compliant database.

Note: DRIVER is a required option. You must specify the driver.

ODBC_DSN ODBC_DSN=odbc dsn name

Specifies a valid ODBC-compliant database DSN that contains connection information for
connecting to the ODBC-compliant database. You can use the CONOPTS= option in addition to
ODBC_DSN= option to specify database-specific connection options not provided by table
services. Do not specify the ODBC DSN in both CONOPTS= and ODBC_DSN=.

162 Appendix 3 • Table Service Driver Reference

Advanced Connection Options
The driver for ODBC supports the following advanced connection options for an
ODBC-compliant database.

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

ENABLE_MARS ENABLE_MARS= NO|YES

Enables or disables the use of multiple active result sets (MARS) on Microsoft SQL Server.
FedSQL cannot permit transactions on top of Microsoft SQL Server because Microsoft SQL
Server allows only one cursor per transaction. Set this option to YES so that FedSQL can allow
transactions under a given Microsoft SQL Server connection.

ODBC Driver Reference 163

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

164 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_CURSO
R_TYPE

DEFAULT_CURSOR_TYPE=FORWARD_ONLY | KEYSET_DRIVEN | DYNAMIC |
STATIC;

Specifies a valid default cursor type for new statements. These options are valid:

FORWARD_ONLY
Specifies a non-scrollable cursor that moves only forward through the result set. Forward-only
cursors are dynamic in that all changes are detected as the current row is processed. If an
application does not require scrolling, the forward-only cursor retrieves data quickly, with the
least amount of overhead processing.

KEYSET_DRIVEN
Specifies a scrollable cursor that detects changes that are made to the values of rows in the
result set but that does not always detect changes to deletion of rows and changes to the order
of rows in the result set. A keyset-driven cursor is based on row keys, which are used to
determine the order and set of rows that are included in the result set. As the cursor scrolls the
result set, it uses the keys to retrieve the most recent values in the table.

It is sometimes helpful to have a cursor that can detect changes in the rows of a result set. A
keyset-driven cursor uses a row identifier rather than caching the entire row into memory. It
therefore uses much less disk space than other row caching mechanisms. Deleted rows can be
detected when a SELECT statement that references the bookmark, row ID, or key column
values fails to return a row.

DYNAMIC
Specifies a scrollable cursor that detects changes that are made to the rows in the result set.
All INSERT, UPDATE, and DELETE statements that are made by all users are visible
through the cursor. The dynamic cursor is good for an application that must detect all
concurrent updates that are made by other users.

STATIC
Specifies a scrollable cursor that displays the result set as it existed when the cursor was first
opened. The static cursor provides forward and backward scrolling. If the application does not
need to detect changes but requires scrolling, the static cursor is a good choice.

Note: The application can still override this value, but if the application does not explicitly set a
cursor type, this value will be in effect

ODBC Driver Reference 165

Option Description

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE='filename';

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed relative
to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

USER USER=user-ID;

Specifies the user ID for logging on to the ODBC-compliant database, such as Microsoft SQL
Server, with a user ID that differs from the default ID.

Note: The alias is UID=.

166 Appendix 3 • Table Service Driver Reference

Option Description

PASSWORD PASSWORD=password;

Specifies the password that corresponds to the user ID in the database.

Note: The alias is PWD=.

Here are example connection strings that use the table services driver for ODBC:

driver=sql;conopts=((driver=odbc;catalog=acat;
conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid;pwd='123pass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

This connection string specifies catalog name maps to access multiple catalogs on
Microsoft SQL Server:

driver=odbc; uid=jfox; pw=mypw; odbc_dsn=mySQLdsn;
 catalog=(cat1=mycat; cat2=testcat; cat3=users;

Wire Protocol Driver Usage Notes

Overview
There are a number of wire protocol ODBC drivers that communicate directly with a
database server, without having to communicate through a client library. When you
configure the ODBC drivers on Windows or UNIX, you can set certain options. SAS
runs best when these options are selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator window.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

SQL Server and SQL Server Legacy
Configure the following Advanced options for the SQL Server Wire Protocol driver and
the SQL Server Legacy Wire Protocol driver:

• Application Using Threads

• Enable Quoted Identifiers

• Fetch TWFS as Time

• Fetch TSWTZ as Timestamp

Note:

1. Significant performance improvements have been realized when using the SQL
Server Legacy Wire Protocol driver, as compared to the SQL Server Wire
Protocol driver.

ODBC Driver Reference 167

2. The SQL Server Legacy Wire Protocol driver does not support transactions when
it is used with FedSQL enabled because the driver allows only a single statement
per connection while FedSQL requires multiple statements per connection when
using transactions.

Oracle Reference

Understanding the Table Services Driver for Oracle
The table services driver for Oracle enables table services to read and update legacy
Oracle tables. In addition, the driver creates Oracle tables that can be accessed by both
table services and Oracle.

The driver for Oracle supports most of the FedSQL functionality. The driver also enables
an application to submit native Oracle SQL statements.

The driver for Oracle is a remote driver, which means that it connects to a server process
in order to access data. The process might be running on the same machine as the table
services, or it might be running on another machine in the network.

The table services driver for Oracle uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables required by the Oracle
client libraries. The following Bourne shell commands provide an example:

ORAENV_ASK=NO; export ORAENV_ASK
ORACLE_HOME=/dbi/oracle/11g; export ORACLE_HOME
SASORA=V9; export SASORA
PATH=$ORACLE_HOME/bin:/bin:/usr/bin:/usr/ccs/
 bin:/opt/bin:$PATH; export PATH
TMPDIR=/var/tmp; export TMPDIR
LD_LIBRARY_PATH=/usr/openwin/lib:$ORACLE_HOME/
 lib:$LD_LIBRARY_PATH; export LD_LIBRARY_PATH
TWO_TASK=oraclev11; export TWO_TASK

Data Service Connection Options for Oracle

Overview
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for an Oracle server include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options. Here is an example:

driver=sql;conopts=(driver=oracle;
catalog=acat;uid=myuid;pwd=myPass9;
path=oraclev11.abc.123.com:1521/ORA11G)

168 Appendix 3 • Table Service Driver Reference

The driver for Oracle supports the following connection options.

Option Description

CATALOG CATALOG=catalog—identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid such as catalog=oracle_test. You must specify a catalog. For the
Oracle database, this is a logical catalog name to use as an SQL catalog identifier.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

DRIVER DRIVER=ORACLE;

Identifies the data service to which you want to connect, which is an Oracle database.

Note: You must specify the driver.

PATH PATH=database-specification;

Specifies the Oracle connect identifier. A connect identifier can be a net service name, a database
service name, or a net service alias.

UID UID=user-id;

Specifies an optional Oracle user ID. If the user ID contains blanks or national characters,
enclose it in quotation marks. If you omit an Oracle user ID and password, the default Oracle
user ID OPS$sysid is used, if it is enabled.

PWD PWD=password;

Specifies an optional Oracle database password that is associated with the Oracle user ID. PWD=
is always used with UID= and the associated password is case-sensitive. If you omit PWD=, the
password for the default Oracle user ID OPS$sysid is used, if it is active.

Advanced Connection Options
The driver for Oracle supports the following advanced connection options.

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure all characters can be stored in the new
encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

Oracle Reference 169

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL'

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

170 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed relative
to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

ORA_ENCODING ORA_ENCODING=UNICODE;

Specifies that the Oracle data be returned in Unicode to table services. UNICODE is the default
setting and is independent of the NLS_LANG environment variable setting.

ORNUMERIC ORANUMERIC=NO | YES

Specifies how numbers that are read from or inserted into the Oracle NUMBER column are
treated. This option defaults to YES so that a NUMBER column with precision or scale is
described as TKTS_NUMERIC. This option can be specified as both a connection option and a
table option. When specified as both a connection and table option, the table option value
overrides the connection option.

• NO Indicates that the numbers are treated as TKTS_DOUBLE values. They might not have
precision beyond 14 digits.

• YES Indicates that non-integer values with explicit precision are treated as TKTS_NUMERIC
values. This is the default setting.

USE_CACHED_CA
TALOG

USE_CACHED_CATALOG=YES | NO;

Specifies whether to use the cached catalog rather than compiling a new catalog on every run.
Setting this option to YES can improve the performance of the TKTSForeignKeys API. The
default setting is YES.

Note: Before you can use this option, you must complete the following steps:

1. Create a materialized view. See the example code in “Creating
a Materialized View (USE_CACHED_CATALOG)” on page
172.

2. Use the ALTER DSN statement to add the
USE_CACHED_CATALOG connection option.

Oracle Reference 171

Creating a Materialized View (USE_CACHED_CATALOG)
The following example shows you how to create a materialized view. Use this script if
USE_CACHED_CATALOG is set to YES above.

/*-----------------------SAS_CACHED_CATALOG.SQL--------------------------------*/
/* This script is used to create the materialized and the synonym needed to
 get the ForeignKey metadata. Work with your DBA to set this up.
 Materialized views can be complex and so thorough understanding will help us
 use them effectively. Especially deciding how to do the refreshes.
 Here we provide the simplest possible steps to create the required materialized
 view and the command to refresh it manually. The materialized view below can
 be created in any schema with any name. Feel free to add whatever REFRESH
 options suits your purpose. Note that you might need additional steps based
 on the REFRESH option setting. Here we provide the simplest possible way to
 do this. The PUBLIC synonym pointing to this Materialized view must be
 named "SAS_CACHED_FK_CATALOG_PSYN". This synonym must be visible to
 PUBLIC (or the set of users who will be needing Foreignkey metadata) so that
 it is accessible from any schema.
*/

Create materialized view SAS_CACHED_FK_CATALOG_MATVIEW REFRESH ON DEMAND as SELECT
PKAC.OWNER as PKTABLE_SCHEM,
PKAC.TABLE_NAME as PKTABLE_NAME,
PKACC.COLUMN_NAME as PKCOLUMN_NAME,
FKAC.OWNER as FKTABLE_SCHEM,
FKAC.TABLE_NAME as FKTABLE_NAME,
FKACC.COLUMN_NAME as FKCOLUMN_NAME,
FKACC.POSITION as KEY_SEQ,
FKAC.CONSTRAINT_NAME as FK_NAME,
PKAC.CONSTRAINT_NAME as PK_NAME
from
sys.all_constraints PKAC, sys.all_constraints FKAC,
sys.all_cons_columns PKACC, sys.all_cons_columns FKACC

where

FKAC.r_constraint_name=PKAC.constraint_name and
FKAC.constraint_name=FKACC.constraint_name and
PKAC.constraint_name=PKACC.constraint_name and PKAC.constraint_type='P' and
FKAC.constraint_type='R' and FKAC.owner=FKACC.owner and PKAC.owner=PKACC.owner
and PKAC.table_name=PKACC.table_name and FKAC.table_name=FKACC.table_name and
FKACC.position = PKACC.position ;

/* The synonym name *must* be SAS_CACHED_FK_CATALOG_PUBLIC_SYNONYM */
create public synonym SAS_CACHED_FK_CATALOG_PSYN for SAS_CACHED_FK_CATALOG_MATVIEW;
grant all on SAS_CACHED_FK_CATALOG_PSYN to PUBLIC;

/*---------Manual REFRESH of the Materialized View----------------------------*/
/* Note there are several ways to do this, consult with your DBA.
 Here are a couple of ways:
*/
execute DBMS_MVIEW.REFRESH('SAS_CACHED_FK_CATALOG_MATVIEW');
execute DBMS_SNAPSHOT.REFRESH('SAS_CACHED_FK_CATALOG_MATVIEW', '?');

172 Appendix 3 • Table Service Driver Reference

Oracle Wire Protocol Driver Usage Notes
Wire protocol ODBC drivers communicate directly with a database server without
having to communicate through a client library. When you configure the ODBC drivers
on Windows or UNIX, you can set certain options. SAS runs best when these options are
selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when you are configuring data sources using the
ODBC Administrator tool. Values can also be set by editing the odbc.ini file
in which their data sources are defined.

Note: When you use a wire protocol driver to create an ODBC connection, the
following special considerations apply:

1. A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

2. Verify that the Enable Bulk Load option is active in the ODBC DSN for
databases that support this option. The Enable Bulk Load option is not enabled
by default in the newer wire protocol drivers. As a result, insert performance
suffers.

When configuring an ODBC DSN using the Oracle Wire Protocol driver, set the
following advanced options:

• Application Using Threads

• Enable SQLDescribeParam

• Describe at Prepare

• Enable N-CHAR Support

• Enable Scrollable Cursors

PostgreSQL Driver Reference

Understanding the SAS Federation Server Driver for PostgreSQL
The table services driver for PostgreSQL enables table services to read and update
legacy PostgreSQL tables. In addition, the driver creates PostgreSQL tables that can be
accessed by both the table services and the PostgreSQL data management system.

The driver for PostgreSQL supports most of the FedSQL functionality. The driver also
enables an application to submit native SQL statements.

The driver for PostgreSQL is a remote driver, which means that it connects to a server
process in order to access data. The process might be running on the same machine as
the table services, or it might be running on another machine in the network.

PostgreSQL Driver Reference 173

The table services driver for PostgreSQL uses shared libraries that are referenced as
shared objects in UNIX. You must add the location of the shared libraries to one of the
system environment variables, and set any other environment variables required by the
PostgreSQL client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/dbi/odbc/unixodbc2310/lib:/dbi/
 postgres/9.03.04/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export ODBCSYSINI=/dbi/postgres/9.03.04
export PATH=/dbi/postgres/9.03.04/bin:$PATH
unset LANG
export PGCLIENTENCODING=UTF8

Data Service Connection Options for PostgreSQL

Overview
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for PostgreSQL include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=postgres;catalog=acat;
uid=myuid;pwd='123pass';server=sv.abc.123.com;
port=5432;DB=mydb;schema=public)

The following connection options are supported for PostgreSQL data sources.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups schemas that are logically related
(for example, catalog=ptgtest).

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These options,
combined with the ODBC_DSN option, must specify a complete connection string to the data
source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option, do not
use the ODBC_DSN= connection option. However, you can specify the ODBC database-specific
connection options by using CONOPTS=. Then you can specify an ODBC DSN that contains other
connection information by using the ODBC_DSN= connection option.

Here is an example string using the CONOPTS option:

driver=sql;conopts=
((driver=odbc;catalog=acat;conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid2;pwd='123mypass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))"

174 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER DRIVER=postgres;

Specifies the data service for the PostgreSQL database to which you want to connect.

Note: DRIVER is a required option. You must specify a driver.

DATABASE DATABASE=database-name;

Specifies the name of the PostgreSQL database. Enclose the database name in single quotation
marks if it contains spaces or non-alphanumeric characters. You can also specify DATABASE= with
the DB= alias.database=sample, DB=sample.

DSN DSN=data-source-identifier;

Specifies the data source name to which you want to connect.

PWD PWD=password;

Specifies the password associated with the user ID. Enclose password in single quotation marks if it
contains spaces or non-alphanumeric characters. You can also specify PASSWORD= with the
PWD=, PASS=, and PW= aliases.

PORT PORT=port_number

Specifies the port number that is used to connect to the specified PostgreSQL Server. If you do not
specify a port, the default is 5432.

SERVER SERVER=‘server-name’

Specifies the server name or IP address of the PostgreSQL server to which you want to connect.
Enclose the server name in single quotation marks if the name contains spaces or non-alphanumeric
characters: SERVER=’server name’.

USER USER=user-name

Specifies the PostgreSQL user name (also called the user ID) that you use to connect to your
database. If the user name contains spaces or non-alphanumeric characters, you must enclose it in
quotation marks.

Advanced Options
The following advanced options are supported for PostgreSQL data sources.

Option Description

ALLOW_UNQUOTE
D_NAMES

ALLOW_UNQUOTED_NAMES=NO|YES

Specifies whether to enclose table and column names in quotation marks. Tables and columns
are quoted when this option is set at NO. If set to YES, the driver does not automatically add
quotation marks to table and column names if they are not specified. This allows PostgreSQL
tables and columns to be created in the default lowercase. The default option is NO.

CLIENT_ENCODIN
G

CLIENT_ENCODING=cei

Used to specify encoding for the client.

PostgreSQL Driver Reference 175

Option Description

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

176 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

MAX_BINARY_LEN MAX_BINARY_LEN=value;

Specifies a value, in bytes, that limits the length of long binary fields (LONG VARBINARY).
Unlike other databases, PostgreSQL does not have a size limit for long binary fields. The
default is 1048576.

PostgreSQL Driver Reference 177

Option Description

MAX_CHAR_LEN MAX_CHAR_LEN=value;

Specifies a value that limits the length of character fields (CHAR and VARCHAR). The default
is 2000.

MAX_TEXT_LEN MAX_TEXT_LEN=value;

Specifies a value that limits the length of long character fields (LONG VARCHAR). The default
is 409500.

SCHEMA SCHEMA=value;

Specifies the default schema for the connection. If not specified, the schema, or list of schemas,
is determined based on the value of the schema search path that is defined on the database
server.

STRIP_BLANKS STRIP_BLANKS=YES|NO;

Specifies whether to strip blanks from character fields.

SAS Data Set Reference

Overview
The SAS data set is a SASProprietary file format, which contains data values that are
organized as a table of rows (SAS observations) and columns (SAS variables). A
supported SAS data set uses the extension .sas7bdat.

Understanding the Driver for Base SAS
The table services driver for Base SAS is a SASProprietary driver that provides Read
and Update access to legacy SAS data sets. With the table services driver for Base, you
can create SAS data sets that can be accessed by both the legacy and the table services
data access services.

The driver supports much of the Base SAS functionality, such as SAS indexing and
general integrity constraints, as well as much of the Federated Query Language
(FedSQL) functionality.

The table services driver for Base SAS is an in-process driver, which means that it
accesses data in the same process that executes the data access services. All server
connections that are made with the table services driver for Base SAS use
LOCKTABLE=SHARED and PATH_BIND=ACCESS connection options.

Data Service Connection Options for SAS Data Sets

Connection Options
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for a SAS data set include connection options and advanced options. Here is an example:

178 Appendix 3 • Table Service Driver Reference

driver=sql;conopts=(driver=base;catalog=acat;
schema=(name=dblib;primarypath=/u/path/mydir))

The following connection options are supported for SAS data sets:

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. A
catalog name can be up to 32 characters long. You must specify a catalog.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS FedSQL Reference Guide.

DRIVER DRIVER=BASE;

Identifies the data service to which you want to connect, which is a SAS data set.

Note: You must specify DRIVER=BASE to access a SAS data set.

(SCHEMA) NAME NAME=schema-identifier;

Specifies an arbitrary identifier for an SQL schema. Any identifier is valid (for example,
name=myfiles). The schema identifier is an alias for the physical location of the SAS library,
which is much like the Base SAS libref. A schema name must be a valid SAS name and can be
up to 32 characters long. You must specify a schema identifier.

PRIMARY PATH PRIMARYPATH=physical-location;

Specifies the physical location for the SAS library, which is a collection of one or more SAS
files. For example, in directory-based operating environments, a SAS library is a group of SAS
files that are stored in the same directory.

Note: You must specify a primary path.

SCHEMA
(ATTRIBUTES)

SCHEMA=(attributes);

Specifies schema attributes that are specific to a SAS data set. A schema is a data container
object that groups tables. The schema contains a name, which is unique within the catalog that
qualifies table names. For a SAS data set, a schema is similar to a SAS library, which is a
collection of tables with assigned attributes.

Advanced Options
Advanced driver options are additional options that are not required in order to connect
to the data source. They are used to establish connections to catalogs, data source names
(DSNs), and schemas. Although advanced options can also be used when connecting to a
data service, doing so causes the specified options to apply to all data service
connections.

SAS Data Set Reference 179

The following advanced options are supported for SAS data sets:

Option Description

ACCESS ACCESS=READONLY | TEMP;

• READONLY Assigns a read-only attribute to the schema. You cannot open a SAS data set to
update or write new information.

• TEMP specifies that the SAS data sets be treated as scratch files. That is, the system will not
consume CPU cycles to ensure that the files do not become corrupted.

T I P Use ACCESS=TEMP to save resources only when the data
is recoverable. If TEMP is specified, data in memory might not
be written to disk on a regular basis. This saves I/O, but could
cause a loss of data if there is a crash.

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

COMPRESS COMPRESS=NO | YES | CHAR | BINARY;

Controls the compression of rows in created SAS data sets.

• NO Specifies that the rows in a newly created SAS data set are uncompressed (fixed-length
records). This setting is the default.

• YES | CHAR Specifies that the rows in a newly created SAS data set are compressed
(variable-length records) by using RLE (Run Length Encoding). RLE compresses rows by
reducing repeated consecutive characters (including blanks) to two- or three-byte
representations.

T I P Use this compression algorithm for character data.

• BINARY Specifies that the rows in a newly created SAS data set are compressed (variable-
length records) by using RDC (Ross Data Compression). RDC combines run-length encoding
and sliding-window compression to compress the file.

T I P This method is highly effective for compressing medium to
large (several hundred bytes or larger) blocks of binary data
(numeric columns). Because the compression function operates
on a single record at a time, the record length must be several
hundred bytes or larger for effective compression.

180 Appendix 3 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

ENCODING ENCODING=encoding-value;

Overrides and transcodes the encoding for input or output processing of SAS data sets.

Note: The default value is the current operating system setting.

LOCKTABLE LOCKTABLE=SHARED|EXCLUSIVE

Places exclusive or shared locks on SAS data sets. You can lock tables only if you are the owner
or have been granted the necessary privilege. The default value for the table services is
SHARED.

• SHARED Locks tables in shared mode, allowing other users or processes to read data from
the tables, but preventing other users from updating.

• EXCLUSIVE Locks tables exclusively, preventing other users from accessing any table that
you open.

PATH_BIND PATH_BIND=CONNECT|ACCESS

Specifies when and how schemas are validated during connection. CONNECT validates the
entire connection string at the time of connection and returns an error if one or more schemas is
invalid. ACCESS validates schemas when they are accessed so that processing continues
regardless of errors in the schema portion of the connection string. ACCESS is the default for the
table services.

SAS Data Set Reference 181

Teradata Reference

Understanding the Table Services Driver for Teradata
The table services driver for Teradata provides Read and Update access to Teradata
database tables and creates tables that can be accessed by both table services and
Teradata.

The table services driver for Teradata supports most of the FedSQL functionality. The
driver also enables an application to submit native Teradata SQL statements.

The table services driver for Teradata is a remote driver, which means that it connects to
a server process to access data. The process might be running on the same machine as
the table services, or it might be running on another machine in the network.

The table services driver for uses shared libraries that are referenced as shared objects in
UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables that are required by the
Teradata client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/opt/teradata/client/14.10/
 lib64:/opt/teradata/client/14.10/tbuild/lib64:/
 opt/teradata/client/14.10/tdicu/lib64:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export COPERR=/opt/teradata/client/14.10/lib
export COPLIB=/opt/teradata/client/14.10/lib
export NLSPATH=/opt/teradata/client/14.10/tbuild/msg64/%N

Data Service Connection Options for Teradata

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=teradata;catalog=acat;
uid=myuid;pwd='{sas002}C5DDFFF91B5D31DFFFCE9FFF';
server=terasoar;database=model)

The following connection options are supported for a Teradata database.

Option Description

CATALOG CATALOG=catalog-identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=tera).

Note: You must specify a catalog.

DATABASE DATABASE=database-name;

Specifies the Teradata database. If you do not specify DATABASE=, you connect to the default
Teradata database, which is often named the same as your user ID. If the database value that you
specify contains spaces or non-alphanumeric characters, you must enclose it in quotation marks.

182 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER DRIVER=TERA;

Identifies the data service to which you want to connect, which is a Teradata database.

Note: You must specify the driver.

SERVER SERVER=server-name;

Specifies the Teradata server identifier.

Advanced Connection Options
The following advanced options are supported for Teradata database.

Option Description

ACCOUNT ACCOUNT=account-ID;

Specifies an optional account number that you want to charge for the Teradata session.

CLIENT_ENCODIN
G

CLIENT_ENCODING=encoding-value

Used to specify the character set for the session. UTF8 is the default if encoding is not specified.
These character sets are supported:

ASCII
EBCDIC
EBCDIC037_0E
KATAKANAEBCDIC
KANJIEUC_0U
LATIN9_0A
THAI874_4A0
LATIN1250_1A0
CYRILLIC1251_2A0
LATIN1254_7A0
HEBREW1255_5A0
ARABIC1256_6A0
LATIN1258_8A0
TCHBIG5_1R0
SCHINESE936_6R0
KANJI932_1S0
HANGUL949_7R0
TCHINESE950_8R0
LATIN1252_3A0
SCHEBCDIC935_2IJ
TCHEBCDIC937_3IB
HANGULEBCDIC933_1II
EBCDIC273_0E
EBCDIC277_0E
KANJIEBCDIC5035_0I
KANJIEBCDIC5026_0I
UTF8
UTF16

Teradata Reference 183

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

184 Appendix 3 • Table Service Driver Reference

Option Description

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the trace log
based on the specified tracing level, which determines the type of tracing information. Here are
the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE=‘filename';

Used to specify the name of the text file for the trace log. Include the filename and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative filename, and it is placed relative
to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

PASSWORD PASSWORD=password;

Specifies a Teradata password. The password must match your USER= value. The alias is
PWD=.

Note: You must specify the PASSWORD= option.

Teradata Reference 185

Option Description

ROLE ROLE=security-role;

Specifies a security role for the session.

USER USER=user-id;

Specifies a Teradata user ID. If the ID contains blanks or national characters, enclose it in
quotation marks. The alias is UID=.

Note: You must specify the USER= option.

186 Appendix 3 • Table Service Driver Reference

Recommended Reading

• Encryption in SAS 9.4

• SAS Decision Manager Administrator’s Guide

• SAS 9.4 DS2 Language Reference

• SAS 9.4 FedSQL Language Reference

• SAS 9.4 Intelligence Platform Middle-Tier Administration Guide

• SAS 9.4 Logging: Configuration and Programming Reference

• SAS 9.4 Web Applications Tuning for Performance and Scalability

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

187

http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

188 Recommended Reading

Index

Numbers
32-bit wire protocol driver 173

A
administration logging 39
argument types 13

B
backup disk stores 54
business context 4

C
character-to-numeric conversions 25
configuring Python 32

D
deploying 46
DS2 best practices 21, 22, 25, 26
DS2 programming 7, 8, 10, 11, 13

G
global packages 21
Greenplum

64-bit wire protocol driver 156

H
hash package 25

I
interfaces 5
invariant computations 26

L
local packages 21

M
module 4

O
ODBC 161

SQL server legacy wire protocol driver
167

Oracle
32-bit wire protocol driver 173
64-bit wire protocol driver 173

P
passing character values to methods 25
pre-installation 45
private methods 11
private packages 11
programming blocks 10
public methods 11
public packages 11
publishing DS2 source code 7
Python 27, 32
Python support 27

R
REST API 62
revision 4

S
SAS

table driver 178
SAS Micro Analytic Service

concepts 3, 4, 5
SCAN 22
single computation 26
SQL server legacy wire protocol driver

167

T
TRANWRD 22

189

tuning
adjusting thread pool size 50

U
user context 4

W
wire protocol driver 173

190 Index

	Contents
	About This Book
	Audience

	What’s New in SAS Micro Analytic Service 2.2
	Overview
	Reference Modules by Name
	Run Python modules in SAS Micro Analytic Service from PROC
DS2
	Payload Logging
	Simplified Pymas DS2 Package Interface

	Accessibility
	Introduction to SAS Micro Analytic Service
	What Is SAS Micro Analytic Service?

	Concepts
	Overview
	User or Business Context
	Module Context
	Revision
	Architecture
	Basic Steps for Using SAS Micro Analytic Service

	DS2 Programming for SAS Micro Analytic Service
	Overview
	DS2 Source Code Prerequisites
	SAS Micro Analytic Service and SAS Foundation
	I/O
	Programming Blocks
	Public and Private Methods and Packages
	Overview
	Public Method Rules
	Public Method Example
	Private Method Example
	Method Overloading

	Argument Types Supported in Public Methods
	Overview
	Supported DS2 Data Types
	Unsupported DS2 Data Types

	DS2 Interface to Python

	Best Practices for DS2 Programming
	Overview
	Global Packages Versus Local Packages
	Overview
	Example of Optimized Code
	Example of Poorly Optimized Code

	Replacing SCAN (and TRANWRD) with DS2 Code
	Hash Package
	Character-to-Numeric Conversions
	Passing Character Values to Methods
	Performing the Computation Once
	Moving Invariant Computations Out of Loops

	Python Support in SAS Micro Analytic Service
	Introduction
	Public and Private Methods
	Example
	Configuring Python
	Python 2.7 and 3.4 on 64-Bit Windows
	Python 2.7 and 3.4 on 64-Bit Linux
	Further Considerations for Configuring Python

	Configuring a SAS Application Server to Support the DS2 Pymas
Package

	Administration
	SAS Micro Analytic Service Logging
	Secure DS2 HTTP Package Usage
	Monitoring
	Monitoring SAS Micro Analytic Service
	Monitoring SAS Micro Analytic Service Using SAS Environment
Manager

	Start-up Considerations for Clustered Deployments

	Deployment and Tuning
	Pre-installation Steps
	Deployment
	Deploying SAS Micro Analytic Service
	Adding Whitelist Websites to SAS Micro Analytic Service

	Post-installation Steps
	Cluster Deployment for SAS Micro Analytic Service
	Deploying Clusters
	License Files for Clusters

	Tuning SAS Micro Analytic Service
	Adjust Thread Pool Size
	Adjust Serial or Parallel Content Creation
	Adjust DS2 Module Compilation Mode
	Adjust Session Time-out Value
	Increase Module ExecutionThroughput of the REST Interface
	Prevent HTTP Error Messages
	Creating and Updating Database Connection Strings

	Backup and Restore
	Overview
	Backup Disk Stores
	Restore Script
	Additional Backup Considerations
	Backup Considerations for 64-Bit Windows
	Additional Backup Considerations for 64-Bit HP-UX Itanium
	Additional Backup Steps in a Clustered Environment

	Common Errors and Remediation

	Upgrading, Migrating, and Promotion
	Upgrading and Migration
	Promotion

	SAS Micro Analytic Service REST API
	Overview
	Terminology
	Micro Analytic Service
	Micro Analytic Module
	Micro Analytic Step
	Package
	Method
	Signature
	Input Signature
	Output Signature
	Module
	Module ID
	Module Name
	Step
	Step ID
	Source Code

	Client Application Features
	Post Load or Create Modules
	Get Input or Output Step Signatures
	Post Validate Input Variables
	Post Execute Modules
	Put Update Modules
	Delete Modules
	Payload Logging

	Security and Authentication
	Life Cycle
	Media Types
	Externally Defined Media Types

	SAS Micro Analytic Service Media Types
	application/vnd.sas.microanalytic.module
	application/vnd.sas.microanalytic.module.definition
	application/vnd.sas.microanalytic.module.source
	application/vnd.sas.microanalytic.module.step
	application/vnd.sas.microanalytic.module.step.input
	application/vnd.sas.microanalytic.module.step.input.validity
	application/vnd.sas.microanalytic.module.step.output

	Resources and Collections
	Resource /
	Collection /modules
	Resource /modules/{moduleId}
	Resource /modules/{moduleId}/source
	Collection /modules/{moduleId}/steps
	Resource /modules/{moduleId}/steps/{stepId}

	SAS Micro Analytic Service Return Codes
	REST Server Error Messages and Resolutions
	Table Service Driver Reference
	DB2 Driver Reference
	Understanding the Table Services Driver for DB2
	Data Service Connection Options for DB2
	DB2 Wire Protocol Driver Usage Notes

	FedSQL Driver Reference
	Overview
	Connection Options

	Greenplum Driver Reference
	Understanding the Table Services Driver for Greenplum
	Data Service Connection Options for Greenplum
	Greenplum Wire Protocol Driver Usage Notes

	Netezza Driver Reference
	Understanding the Table Services Driver for Netezza
	Data Service Connection Options for Netezza

	ODBC Driver Reference
	About ODBC
	Understanding the Table Services Driver for ODBC
	Data Service Connection Options for ODBC
	Wire Protocol Driver Usage Notes

	Oracle Reference
	Understanding the Table Services Driver for Oracle
	Data Service Connection Options for Oracle
	Oracle Wire Protocol Driver Usage Notes

	PostgreSQL Driver Reference
	Understanding the SAS Federation Server Driver for PostgreSQL
	Data Service Connection Options for PostgreSQL

	SAS Data Set Reference
	Overview
	Understanding the Driver for Base SAS
	Data Service Connection Options for SAS Data Sets

	Teradata Reference
	Understanding the Table Services Driver for Teradata
	Data Service Connection Options for Teradata

	Recommended Reading
	Index

