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Abstract. Realistic predictions of the behaviour of marine resulting sea level rise, has been discussed since the 1970s
ice sheets require that models are able to robustly simufe.g.Mercer, 1978. An introduction to marine ice sheet in-
late grounding line migration. Fixed-grid ice sheet modelsstability and recent developments in the area is given by, for
have been shown to exhibit inconsistent and hence unreliablexample Schoof(20073 or Katz and Worste(2010.

grounding line migration, except at very high resolution not In order to make model based predictions of the behaviour
yet achievable in whole ice sheet simulations. In this studyof marine ice sheets, ice sheet models must include a re-
we present several different approaches to parameterising thalistic representation of the motion of the grounding line.
grounding line. These are distinguished by choices regarding/ieli and Payng2005 demonstrated that the grounding line
the ice thickness profile from the last grounded to the firstin models where computations are carried out at fixed hor-
floating grid point, and how this profile impacts the grav- izontal locations exhibits strongly resolution-dependent be-
itational driving stress and basal drag. We demonstrate thataviour. More recentlyGladstone et a2010 showed that

the most obvious choice of thickness parameterisation, lineathis problem can be overcome at very high resolution when
interpolation from the last grounded to the first floating grid using a simple parameterisation for the grounding line. How-
point, is not the most effective. We show that use of a ground-ever, the resolution required — a grid cell size of O(100 m) or
ing line parameterisation greatly improves performance, andiner — makes full ice sheet simulations prohibitive in terms
that choice of a better grounding line parameterisation ovelf computational resource. High resolution can be achieved
a simpler one can bring further improvements, in terms ofthrough adaptive mesh refinement near the grounding line
both accuracy and self consistent behaviour, comparable t¢(Gladstone et al201Q Goldberg et al.2009 Durand et al.
increasing the grid resolution by factor two (i.e. doubling the 2009. However, the computational cost is still significant,
number of grid points). The approach presented here to paas is the programming time required to implement adaptiv-
rameterising the grounding line does not completely solveity in an existing non-adaptive model, especially for a full,
the grounding line problem, however it reduces the resolutionthree-dimensional ice sheet model.

required. The parameterisations are presented in the context |n the current study we investigate whether adaptivity
of a one dimensional “shelfy-stream” flow-line model, but can be avoided, or at least its computational cost reduced,
could be extended to cope with more than one dimension anghrough implementation of a parameterisation to determine
other model formulations. the grounding line position at sub-grid scale precision. The
Grounding Line Parameteriastions (GLPS) presented here
build on those ofPattyn et al.(2006 and Gladstone et al.
(2010, adding not only further variations to the approach
taken in those studies but also further corrections to both the

The potential for marine ice sheets such as the West Antarc@ravitational driving stress and basal drag. The GLPs are in-
tic Ice Sheet (WAIS) to undergo rapid collapse (sometimestended to be usable in existing full ice sheet models, whether

referred to as “marine ice sheet instability”), and the possible2daptivity is present or not.
The GLP design rationale is given below. A brief sum-

mary of the model is given in Se@, followed by a detailed

Correspondence taR. M. Gladstone description of the different GLPs (Se®. Results from a
BY (r.gladstone@bristol.ac.uk) series of grounding line migration experiments (described in

1 Introduction
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Sect.4) using these GLPs are presented in SBand dis-  choosing a single function to calculate thickness profiles at

cussed in Secé. all timesteps can be justified in practice.
_ _ The determination of the grounding line position and the
1.1 GLP design rationale modification to the forcing terms are fully consistent with the

I . , o equations governing the model (Sezt. Hence any inaccu-
The motivation behind each of the steps involved in imple- 50y i these calculations must be attributed mainly to inac-

menting the GLPs is discussed here, followed by a detailed, 5y in the thickness, bedrock and velocity profiles defined
d_escrlptlo_n in Sect. Thg GL_PS all use the flotation condi- ¢ part of the parameterisation in the grid cell containing the
tion to define the grounding line position, grounding line. We argue that choice of thickness profile
(1) (step 1) is most important. The default assumption that the
grounding line lies at the last grounded grid point is clearly
where H is the ice thickness) is the bedrock depth (posi- wrong, however we cannot give a robust mathematical jus-
tively downwards from sea levelp is the ice density, and tification for the particular thickness profiles presented here.
pw is the density of sea water. Ice with thickness greaterinstead several different profiles are tested, without advance
than flotation p H > p,,b) is considered to be grounded, and confidence that they are accurate.
ice with thickness below flotatior# < p,,)b) is considered  The assumptions of linearity for bedrock and flux profiles
to be floating. For simplicity variations in the ice density are expected to cause less error than the choice of thickness
(e.g. low density firn layer) are ignored, but such variationsprofile. The linear bedrock assumption is correct in the cur-
could easily be incorporated. rent idealised study given that a linear bedrock profile is pre-
In fixed grid models without a GLP, the grounding line scribed for the whole domain (Se®). and so does not con-
is typically assumed to lie at the last grounded grid pointtribute to error in the current study. The linear flux assump-
(e.g.Vieli and Payne2003. In the current study the ground- tion is certainly true at steady state for the current idealised
ing line is allowed to lie exactly at the point of transition from study due to the surface mass balance (SMB) being constant
grounded to floating ice, irrespective of whether this pointin time and space, hence any error due to the flux assump-
lies at a model grid point. This sub-grid scale grounding linetion is only applicable during spin up. The velocity profile is
position is used to apply a correction to the force balance ing function of thickness and flux profiles and incorporates no
the grid cell containing the grounding line. This is achieved other source of error.
using (a subset of) the following steps:

pH = pyb

1. Thickness and bedrock profiles (i.e. values defined as @  \odel description

function of position) are constructed across the grid cell

containing the grounding line (Se&L1). All the simulations presented here are carried out using the
fixed grid ice stream ice shelf (FGSTSF) model Gfad-
stone et al(2010. This is identical to the FGSTSF model of
Vieli and Payn€2005 except that the higher order piecewise
parabolic method (PPM) is used for thickness evolution (see
3. A velocity profile across the grid cell containing the Gladstone eta(2010 for a description of the PPM method).

grounding line is constructed by using the thickness pro-It is a vertically integrated (vertical shear is not represented)

file from step 1 and the assumption of a linear flux pro- flow-line model. The governing equations are presented be-

file (Sect.3.2). low.
Conservation of mass for ice sheets, streams and shelves

4. The above profiles and grounding line position are usedn the case of a single dimension,is given by
to apply a correction to the basal drag and the grav-

itational driving stress in the grid cell containing the 3_H+ duH) —u @)
grounding line position (Sec8.2). ot dx ’

Assessment of this approach is based on convergence witffneré« is the horizontal velocity; is the SMB andH is the
grid resolution of grounding line behaviour, and on compar-€€ thickness. ,
ison of steady state grounding line position against analytic Conservation of momentum for ice stream and shelf flow
solutions Gchoof 20073. This provides an overall perfor- N the current study is given by
mance assessment. The individual steps outlined above are (

2. These profiles are used along with the flotation condi-
tion to calculate the grounding line position with sub-
grid scale precision (Se@).

d d
Hv—”) — B2lu|" = pgH ®)

not assessed directly, however we would expect errors to b@-— 9% 9%

largely attributable to choice of thickness profile across the 0x
grid cell containing the grounding line (explained below). heres is the height of the upper ice surface above sea level,
The study can be viewed as a test of the validity of the thick-g is acceleration due to gravitg? is a basal drag coefficient,

ness profiles, and indeed a test of whether the approach of: is a constant determining the power law for basal drag, and
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v is the vertically averaged effective viscosity. Except wherewherex, is the grounding line position in km from the land-
stated otherwise a linear drag law is used= 1). v is given  ward edge of the model domain.

by The bedrock profilé (1) is assumed to be linear across the
9y |A=m)/n grid cell containing the grounding line,
_ A1/ 7"
V=AY @ by =bia—1)+bisa @

The force balance terms modified by the GLPs (S&@.  though higher resolution bedrock data could be used if avail-
are basal drag (second term on the left side of Bjagd  gple.

gravitational driving stress (right side of Eg).

For the ice shelf, basal drag is removed by setfifig= 0. 3.1 Parameterising the thickness profile

The left hand boundary of the domain represents the ice
divide and has zero velocity and zero surface slope boundarpix methods for constructing a thickness profile across the
conditions. The right hand boundary represents the calvinghe grid cell containing the grounding line are presented be-
front of the floating ice shelf, and a force balance boundarylow. These methods are summarised in Tab(evhich also
condition is used. Eq.2) is solved explicitly using finite ~summarises forcing parameterisations), and an example il-
differences. Se6€ladstone et a(2010 for a full description  lustration of them is shown in Fid.. Figurel demonstrates

of the boundary condition implementation and how the abovehow closely these six thickness profiles match a very high
equations are solved. resolution thickness profile given the following assumptions:

the coarse resolution grid points have thicknesses at the same
accuracy as the higher resolution simulation; the grounding
3 Parameterising the grounding line line lies at the midpoint of a grid cell. Given that neither of
. . . . these assumptions are true in general the performance of the
The GLPs (outlined in Sect.1) are applied at every imestep gigterant profiles cannot be predicted from Fi. Instead
to each grid cell containing a grounding line (i.e. each grid Fig. 1 serves to illustrate the approach, and to emphasize the

cell that is grounded on one side and flogtmg on the other). inaccuracy of the default assumption that the grounding line
Note that these GLPs are used to modify terms in the force]ies at the last grounded grid point

balance equation. They only indirectly impact on thickness The bedrock profile Eq7), the thickness profile Eq. (see

gyo!utiog,l_r;ence tgey d% ngtbaTect tr)na?s Conservation: Th%elow), and the flotation condition (Etj) are solved simulta-
Istinct s are described below, but first some notation ISneously at the grounding line to find grounding line ice thick-

introduced. . . .
ness,H,, grounding line bedrock depttr,, and groundin
The subscript is used to denote the grid point at the land- line posgiti(g)n ]y g Pt g g
g

ward (i.e. grounded) side of a grid cell containing a ground-
ing line, and: +1 for the grid point at it's seaward side. Inthe 311 Linear interpolation

experiments presented here there will always be exactly one

grid cell containing the grounding line but the GLPs all gen- The simplest reasonable assumption that can be made about
eralise without modification to the case of multiple ground- the thickness profile across the grid cell containing the
ing lines. grounding line is that of linearity between the known values

The GLPs are named (Tably according to the choice at grid points andi +1,
of one of six different thickness interpolation functions
(Sect.3.1) and one of effectively four forcing corrections
(Sect.3.2), giving 24 different GLPs.

To prevent the GLP equations from becoming unwieldy,
a scaled dimensionless variable(e R[0, 1]), is used to ex-
press distance from thi¢h grid point (i.e. the last grounded = Ppwbi + pH; ©)
grid point) in the x-increasing (i.e. seaward) directicnis 7 puwbi —bit1)+p(Hi —Hiy1)
given by

A= (x—x;)/Ax, (5)

H)=H;(1-X)+ Hj11r. (8

Substituting Eqs7 and8 into 1 atA = A, gives the ground-
ing line position

This parameterisation is abbreviated as LI, see Table

o ] ] ~3.1.2 Pattyn’s parameterisation
wherex is distance in km from the inland edge of the domain

(i.e. ice divide),x; is the distance in km of thah grid point  Instead of making explicit assumptions about both thick-
from the inland edge of the domain, and: is the grid cell  ness and bedrock profiles across the grid cell containing the
size in km. Hence. =0 at the last grounded grid point and grounding linePattyn et al(2006 constructed a function of

A =1 at the first floating grid point. Using this notation, the both thickness and bedrock depth,

dimensionless grounding line position is given by b
w

p
do=(xg—x;)/Ax, (6) f=p—H, (10)
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Table 1. Summary of grounding line parameterisations (GLPs) used in this study.

GLP name

Thickness profile

Gravitational driving stress

Basal drag scaling

LI_B1 Linear interpolation No modification Linear scaling, E28Y

LI_GB1 Linear interpolation Profile scaling, EQ7) Linear scaling, Eq.48)

LI_B2 Linear interpolation No modification Profile scaling, E29)

LI_GB2 Linear interpolation Profile scaling, EQ7) Profile scaling, Eq.49)

PA_B1 Pattyn et al(2009 No modification Linear scaling, Eq28)

PA_GB1 Pattyn et al(2006 Profile scaling, Eq.47) Linear scaling, Eq.28)

PA_ B2 Pattyn et al(2006 No modification Profile scaling, Eq29)

PA_GB2 Pattyn et al(2009 Profile scaling, Eq.47) Profile scaling, Eq.49)

LE_B1 Linear extrapolation No modification Linear scaling, E2Z8)(

LE_GB1 Linear extrapolation Profile scaling, EQ7} Linear scaling, Eq.48)

LE_B2 Linear extrapolation No modification Profile scaling, E2P)(

LE_GB2 Linear extrapolation Profile scaling, EQ7{ Profile scaling, Eq.29)

HM_B1 Harmonic mean based No modification Linear scaling, E§). (
interpolation

HM_GB1 Harmonic mean based Profile scaling, E7) ( Linear scaling, Eq.28)
interpolation

HM_B2 Harmonic mean based No modification Profile scaling, E9). (
interpolation

HM_GB2 Harmonic mean based Profile scaling, E7) ( Profile scaling, Eq.49)
interpolation

H2_B1 2nd order harmonic mean  No modification Linear scaling, E§). (
based interpolation

H2_GB1 2nd order harmonic mean  Profile scaling, B) ( Linear scaling, Eq.28)
based interpolation

H2.B2 2nd order harmonic mean  No modification Profile scaling, 29). (
based interpolation

H2_GB2 2nd order harmonic mean  Profile scaling, B) ( Profile scaling, Eq.29)
based interpolation

Cl.B1 Cubic interpolation No modification Linear scaling, E28Y

Cl.GB1 Cubic interpolation Profile scaling, EQ7 Linear scaling, Eq.28)

Cl_B2 Cubic interpolation No modification Profile scaling, EB9)Y

Cl_GB2 Cubic interpolation Profile scaling, E@7 Profile scaling, Eq.49)

and used interpolation of this function to calculate a ground-Sect.3.1.4 choice of thickness profile make use of the gradi-
ing line position. With the assumption of linear bedrock, this ents landward and seaward of the grounding line in addition
implies a thickness profile of to the thicknesses.
Here, linearly extrapolated thickness is used from both the
bi(1—A)+bit1r y P

HG) = . (12) grid points to the landward (i.e. upstream in simulations pre-
1=+ ﬁk sented here) of the grounding lindj,g, and to the seaward
N . . ) (downstream)Hqoj:
The grounding line equation, equivalent to Eq. (8 iat-
tyn et al.(2008), is then Hup () = Hi(14+1) — H; 12 (13)
Hido|(X) = Hi+1(2—A) — Hi12(1—2) (14)

W H;i1(H;p —b;py) (12)
87 pu(Hibit1) —bi Hit1.

This parameterisation is abbreviated as PA, see Thble

Substituting Eqs7 and13into 1, and Egs7 and14into 1,
ati =, gives two expressions for grounding line position

5 _ pH; + pub;
gLup) p(Hi—1—H;)+ py(bi —bit1)

. . . . ' Hiip—2H;11)— i
From visual inspection of the thickness profile across thej g = p(Hito +1) — Pubi (16)

grounding line in very high resolution simulations (e.g. see p(Hitz— Hit1) + pu (biv1—bi)
Fig. 1) the thickness gradient changes abruptly in the vicinitywhere Agyp and igido) are potential grounding line po-
of the grounding line. This and the next (cubic interpolation, sitions predicted by landward and seaward extrapolation

3.1.3 Linear extrapolation (15)

The Cryosphere, 4, 60619, 2010 www.the-cryosphere.net/4/605/2010/
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Fig. 1. Example illustration of the different thickness interpolation functions used in the grounding line parameterisations. The solid grey
lines show the ice sheet profile (bedrock, lower ice surface and upper ice surface from bottom upwards) from a snapshot during the evolution
of a very high resolution simulatiom\(x = 0.15 km). The black lines show each of the different thickness profiles (Jeattlower resolution

(Ax =2.4km) for the case where the high resolution simulated grounding line position lies near the centre of the lower resolution grid box.
Low resolution grid point positions are shown with vertical grey dashed lines. The LE profile is not shown as it defaults to LI in this case.
The default profile corresponds to no parameterisation - the grounding line is assumed to rest at the last grounded grid point.

respectively. Assuming that|,p and Hiqq) intersect in the  The grounding line position is then given by

grid cell containing the grounding line, the landward and sea- .
{ Agup) If Agrupys Agrdo] < Ax (19)

ward thickness equations are combined to give the thickness, = N it 5 ; =,
glda] glupl> Ag[do] = Ax

profile
In the case thaH|,p and Hiqg do not intersect in the grid
a7 cell containing the grounding line, no sensible thickness pro-
file can be constructed froiijyp and Hidq), and so linear in-
where . is the point of intersection of the two extrapolation terpolation is used instead (LI, Se8t1.1). Ll is also used in
functions the case that two potentially viable grounding line positions
Hi »—2H; 1+ H; are given (i.edgjup) < Ax < Agdo)). This linear extrapolation

Ay = 18 ication i i
T Hiso—Hiy1— Hi+ Hi_1 (18) parameterisation is abbreviated as LE, see Table

HG)= { Higo (A) if A >y

www.the-cryosphere.net/4/605/2010/ The Cryosphere, 4,&0%52010
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3.1.4 Cubic interpolation

This thickness profile implements higher order interpolation )
using thicknesses from two grid points landward and two grid0= arg+big+c,

R. M. Gladstone et al.: Parameterising the grounding line

Substituting Eqs7 and22 into 1 at A = A, gives an ex-
pression for the grounding line position

(23)

points seaward of the grounding line position instead of justWhere

one (i.e. grid points — 1 andi +2 are used in addition tb
andi +1).

a =
A cubic equation for thickness is fitted across the grid cell

containing the grounding line,

HO\) =ar3+br2+cr+d, (20)

_ biya—=bi  bi—biy1
Hit1 H
b bi  bit1—2b;
Hi1 H
bi p

where four constraints are required to determine the four co€ = 7~ = =

efficients of the cubicg, b, ¢ andd. Two of these are pro-
vided by setting the thickness #; and H;,1 at grid points
i andi+ 1 respectively, as in the other parameterisations

i Pw '
which is solved using the quadratic reduction formula. If no

real roots are found, or if more than one root is found within

The other two are provided by setting the thickness gradi-the grid cell containing the grounding line, linear interpola-

ents ati andi 4+ 1 to those of the neighbouring grid cells,
(H; — H;_1)/Ax and(H; 12— H;11)/Ax. This gives

a = H;y2—3H;11+3H; — H; 1,

b=—H; o+4H;{1—5H; +2H; 3,
¢c=H;—H;_1,
d = H;

Substituting Egqs7 and20 (with the above expressions for
the coefficients) intd atA =1, gives an expression for the
grounding line position
0=Ar3+BA5+Chg+D, (21)
where
A= H;j 2+3H;1—TH; +3H;_1,

B =—H; 2—2H;{1+5H; —2H; 1,

C=H, —Hi—1+bip—w,
ol
Puw
D=H;— 7(bi+1+bi)~
Note that upper case letters are used for the coefficients si

in equation20 above. The cubic equation is solved as in
Tuma and Walsl{1998, p7. If no real roots are found, or if
more than one root is found within the grid cell containing
the grounding line, linear interpolation (LI) is used instead.
This parameterisation is abbreviated as Cl, see Thble

3.1.5 Harmonic mean based parameterisation

The harmonic mean of two numbe#ssand b is given by
2ab/(a+Db). In numerical heat transfer problems a function

based on the harmonic mean is used to represent the effe
of step changes in conductivity on heat flux at sub-grid scale

precision Patankar1980. Here we adopt the approach of
PatankaK1980 to construct a thickness profile

)_1.

The Cryosphere, 4, 60619 2010

A=, »

f Hia

H() = ( (22)

m-
ply to emphasize that these are not the same coefficients ab= b,-ZH,-_2

tion (LI) is used instead. This parameterisation is abbreviated
as HM, see Tablé.

3.1.6 Second order harmonic mean based
parameterisation

ReplacingH with H2 in Egs.22also gives a tractable thick-
ness profile

-1
(amn,
o= ( 2 H,?H) 24

Substituting Egqs7 and24 into 1 at A = 1, gives an ex-
pression for the grounding line position

3 2
0=ak]+bA:+chg+d, (25)
where
a = (H 53— Hi ?) (b} +b —2bi11b),
b = 2bi(bir1—bi)(H 3 — H 2)+ H 2(b] 1 +bf — 2bisab),

c= biz(HfZ —

LA HH+2bi H 2 (biya—by),

- pzp; 2,

This cubic equation is solved as Tuma and Walsl{1998),

p7. If no real roots are found, or if more than one root is
found within the grid cell containing the grounding line, lin-
ear interpolation (L) is used instead. This parameterisation
is abbreviated as H2, see Tallle

3.2 Parameterising the forcing terms

In order to allow the thickness parameterisation to affect evo-
}I:Lftion, it must be allowed to influence the way in which the

orcing terms are implemented in the grid cell containing the
grounding line. In previous studies this impact has been im-
plemented via the basal dra@attyn et al(2006 imposed

a transition zone in their model by setting the drag coeffi-
cient to be a function of distance from the grounding line.
Gladstone et al(2010 scaled the drag coefficient linearly

www.the-cryosphere.net/4/605/2010/
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in the grid box containing the grounding line according to
the proportion of the grid box that was grounded. Here we

introduce new approaches to modifying both basal drag and

gravitational driving stress.

The FGSTSF model used in the current study employs a

staggered grid for calculation of velocity. The forcing terms

are defined on the staggered grid. This means that the forc-

ing terms for the grid cell containing the grounding line are
defined mid way between th¢h and (i + 1)th grid points,
which we will denote by + 2).

3.2.1 Gravitational driving stress
The gravitational driving stress;, is given by the right hand

side of Eq.3. For the typical case that bofih ands are linear
across the grid boxG at grid pointi +% is given by

Hi+Hi1541—5;

2 Ax (26)

i+3

=p8

For the more general case thfatands are not linear across
the grid box (and note that this is the case even for the lineal
thickness profile LI due to the discontinuity inacross the
grounding line) G at grid pointi +% can be calculated more
accurately by

G.rmpg | HE 27)
i+3 P8 |
This calculation is carried out numerically by dividing the

grid cell containing the grounding line into 1000 equally
sized segments and using the approximation of E6). for

each segment. This number was chosen through experimen-

tation. Below 100 segments errors due to numerical integra:
tion start to become measurable and abovethé computa-
tion starts to impact on model run time.

It should be noted that while cumbersome (unwieldy 6th

order polynomials are required in places), all the thickness

profiles presented in Se@.1 are tractable to analytical so-
lutions of the above integral. In practice, a computational

implementation of the analytical solution was in some cases
found to be highly inaccurate, due to catastrophic cancellay (1) = g; (1— 1)+ g +1A.

tion.

Note that this modification to the gravitational driving
stress forcing term need be carried out only in the grid cell
containing the grounding line (so it doesn't have a measur
able impact on run time).

This profile scaling parameterisation for gravitational driv-
ing stress is abbreviated as “G” in Tahle For example
“LI _GB1” uses linear interpolation to calculate a thickness

611

Table 2. Model inputs and parameter values.

Parameter Units value

Rate factorA Pa3yr1 23x1017
Drag coefficientd? Pamls  7.2082x 1010
SMB myr1 0.3

3.2.2 Basaldrag

All the GLPs in the current study involve modification of the
basal drag term in the grid cell containing the grounding line,
and assume that the basal drag is zero for the floating part of
the grid cell.

The simplest parameterisation for basal drag is to scale
the basal drag coefficier#? linearly with the fraction of
grounded ice in the grid cell containing the grounding line,

B? =P (28)

2
l+§ (1_)\‘8‘)

This linear scaling is referred to as B1, see Tdble

I B1 gives a basal drag force in the grid cell containing the
grounding line of—ﬁzui+%(1—kg). Given that the true ve-
locity profile in the vicinity of the grounding line is not ex-
pected to be linear this scaling is not in general correct. If
the velocity profileu (1) across the grid cell containing the
grounding line were known then a more appropriate scaling
could be used,

Ag 1
(1— / u(M)dr+ / u(k)dk).
0 0

Although u(A) is not known, given that the GLPs pre-
sented here all involve prescribing a thickness profile, and
that the assumption of linear flux across the grid cell is a safer
assumption than that of linear velocity a profile fan.) can

be calculated,

B2, =p*

2, (29)

_q@)
whereg is the flux given by
(31)

This profile scaling parameterisation for basal drag
(Egs. 29, 30, and31) is abbreviated to “B2”, see Tablk
This approach can be taken with both linear= 1) and non
linear (n = 1/3) drag laws used in the current study.

4 Experiments

profile across the grid cell containing the grounding line, usesThe impact of the different grounding line parameterisations
the method described above to modify gravitational driving (GLPSs) is investigated in idealised simulations. The exper-
stress in this grid cell, and the linear basal drag correctionmental setup is similar (though not identical) to the Ma-
described below. rine Ice Sheet Model Intercomparison Project (MISMIP) of
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Schoof et al(2009 experiments 1b and 2b and®adstone The first of the two error metrics is a quantification of the
et al. (2010. The domain size is 2112 km from ice divide size of the region of locally stable grounding line positions
(left boundary of domain) to ice front (right boundary of do- (Gladstone et al2010. This is referred to as “Retreat minus
main). The grid point spacingax, and the timestepAt, advance” (RMA) and is defined as

vary as described below (Sedt1). SMB is prescribed and

is spatially and temporally uniform over the domain (except RMA = x¢r —xga (34)

for the first part of the retreat experiments, see below). Th
rate factorA, drag coefficienpg2, and SMB are given in Ta-
ble 2. The bedrockp, is linear and downsloping with the
same gradient as in the MISMIP experiments.

%vherexg, is the final grounding line position from a retreat
experiment and,, is the final grounding line position from
the corresponding advance experiment. It is worth noting
thatx,, > x,, for all simulations in the current study.

b(x)=511—1.038x 10 3x (32) The second metric, ACC, is an attempt to measure model

wherex is the distance from the ice divide, all distances are@ccuracy. Accuracy is the discrepancy between simulated
in metres, and is measured positively upwards from sea and theoretical steady state grounding line positions, but
level. the fact that there are multiple viable modelled steady state
Determination of approach to steady state is by visual in_g_rounQing line posi_tiqns (the advancg and retreat.simulations
spection of grounding line evolution plots. The simulation 9ive different predictions) makes this problematic to quan-
lengths are 35 kyr and 80 kyr for advance and retreat experlify: Here we have made the choice that our “best” predic-
iments (described below) respectively, and this is sufficientlion for a given model setup is the mid point between the
for the final grounding line position to be close to steady statePredictions from advance and retreat simulations. Thus ACC

in all cases. is defined by
As discussed bgladstone et a(2010, fixed grid ground- Xgr +Xga
ing line models can exhibit a region containing multiple lo- ACC= |———— —xg| (35)

cally stable grounding line positions, and the limits of this i ) o .
region can be determined by ‘advance’ simulations (in whichWherexgs is the analytic steady state grounding line position
the grounding line must advance by more thenas steady ~ 9Iven bySchoof(20073. Thls_assump'qon is not “correct” as
state is approached) and “retreat” simulations. This regiorf® Measure of accuracy, but it does give a quantifiable metric
is a numerical artifact and converges towards zero as reshat Converges to a correct measure of accuracy as the RMA
olution increasesSchoof 20073 Gladstone et al.201Q.  Metric approaches zero. _

Both advance and retreat simulations are used in the current 1h€Se metrics should not be confused with the “conver-
study, and their implementation is described in detail in Ap-9&nce” and “accuracy” errors defined ladstone et al.

pendixA. 201_0- ) )
Since only one steady state solution can exist for the
4.1 Assessing performance grounding line position in a shelfy-stream model with a lin-

ear downsloping bedSchoof 20073, an ideal model solu-

Gladstone et a{2010 demonstrated that when using the lin- tion would have RMA = 0 and ACC = 0.
ear thickness GLP (FGSTSEI in Gladstone et al(2010), For each GLP, an advance and retreat simulation is carried
identical to LLB1 in the current study) the steady state out at each resolution, where resolution varies fibm= 4.8
grounding line position approaches the analytical solutionkm and Ar = 0.4 years, toAx = 0.3 km andAr = 0.025
(Schoof 20073 as resolution increases, at least to within ayears. Ax and At decrease by a factor of 2 each time giv-
few kilometres, for both advance and retreat simulations.  ing a total of 5 different resolutions. The GLPs are assessed

In the current study convergence of the final (close toby comparison of final grounding line position with the ana-
steady state) grounding line position with resolution is quan-lytic solution (Schoof 20074, convergence of final ground-
tified and plotted for performance assessment. Also, twoing line position with resolution, and behaviour of the metrics
metrics are defined that give a measure of error. The valueRMA and ACC with increasing resolution.
of these error metrics with increasing resolution are assessed
for all GLPs.

The convergence of final grounding line positiag;, is 5 Results

assessed by plotting the change in final grounding line posi- ) ) ) o o
tion with increasing resolution.x,,. For a given resolution, The time evolution of simulated grounding line position is
Ax, this is given by analysed in Secb.l A comparison is presented of the sim-

Ax Ar 2% plest GLP (LLB1, see Tabld) against the default assump-
Axgy =lxgs —Xgs | (33)  tion that the grounding line lies at the last grounded grid
where the superscript denotes resolutionx,, is plotted  point (i.e. no parameterisation is used, henceforth referred to
against resolution. This can be done independently for bothas “no-GLP”). Aspects of the time evolution of the ground-
advance and retreat simulations. ing line are then compared across GLPs. In Se&final
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Iytic solution than the lower resolution simulations. As found
by Gladstone et a[2010, the no-GLP simulations show er-
rors O(100 km) whereas the 1B1 simulations show errors
O(10km) or less (errors are defined here as the difference
between final grounding line position and analytic solution).
The first phase of the retreat simulations shows behaviour
similar to the advance simulations. In the second phase of the
retreat simulations, initially rapid retreat gradually slows to-
wards steady state, but the onset of retreat is delayed at lower
resolutions. This delay can be better understood after consid-
ering the finer details of simulated grounding line evolution
(see below). Most of the no-GLP simulations become unsta-
ble in retreat, with only the\x = 0.3 km simulation complet-

ing successfully. This numerical instability relates to the in-
teraction between basal drag, gravitational driving stress and
the grounding line position3ladstone et a12010. The er-

40 50 60 70 80
Time, kyrs

rors seen in the LB1 simulations reduce from O(100 km) to
O(10 km) as resolution increases fram = 4.8 km toAx =
0.3km.
Fig. 2. Time evolution of grounding line position for the 181 Of the ten no-GLP simulations (both advance and retreat
GLP (solid lines, see T_ablﬂi)_ and for the no-GLP case (dashed for five different resolutions), th&x = 0.3 km retreat sim-
lines). Results at the five different resolution levels (fram = ulation is the only one to run to completion with a smaller
4.8km to Ax = 0.3km) are shown for both advance (black) and grrqr (only by O(10km)) than the equivalent Bl simula-
retreat (grey) simulations. The horizontal orange lines indicate thetion Given that most no-GLP simulations either become un-
analytical Gchoof 20073 steady state grounding line position for stable and fail to complete or show much greater errors than
the first phase of the retreat simulations (shorter line) and for all . . . .

. the equivalent LIB1 simulations, the no-GLP choice is not a
other cases (longer line). . . . . : )

viable option and will not be considered further in this study.

A close up of grounding line evolution in an advance sim-

grounding line positions and convergence with resolution aredlation using the LIB1 GLP is shown in Fig3. Although
compared across GLPs using metrics RMA and ACC. the mean rate of advance is very similar across different res-
Several of the thickness parameterisations, specifically?!utions, the advance appears to occur in steps of size

LE, Cl, HM and H2, are designed to resort to LI in the case (Fig9- 3 upper panel). This behaviour would be expected of
that no valid solution can be found. It is worth noting that Simulations without a GLP where the grounding line must
in practice this happens extremely rarely, and we do not con@lways lie at a grid point. A closer inspection (Fgjlower
sider it significant, except in the case of LE. LE frequently Panel) shows that this behaviour is due to sudden accelera-
fails to find a valid solution within the grid cell containing the tions of the grounding line as the grounding line passes a grid

grounding line, and hence frequently reverts to L. In practicePOint, followed by gradual deceleration as the next grid point
that LE gives results virtually identical to LI. is approached. This suggests that theBll GLP, whilst al-

lowing for grounding line positions anywhere within the grid
cell, does not allow for a continuous, smooth response of the
grounding line position to the changing state of the system.
The time evolution of the grounding line both for the no-GLP The ‘state’ of the system is essentially the thickness profile
case and for the simplest GLP (Bl1, see Tabld) is shown  of the whole simulated ice sheet, which determines the grav-
in Fig. 2. The orange lines indicate the analytical steady statatational driving stress and basal drag. In other words, the
grounding line positionsSchoof 20078. The grounding  grounding line resists advance (i.e. advances very slowly) un-
line position in a good advance simulation would be expectedil a threshold (corresponding to the grounding line passing
to approach the lower orange line at steady state, whereas thegrid point) is passed in the evolving thickness profile, af-
grounding line in a good retreat simulation should approachter which very rapid advance occurs. The lower frequency,
the upper orange line towards the end of the first phase, antligher amplitude accelerations seen in the lower resolution
the lower line towards the end of the second phase. simulations indicate that a larger change is needed in the
In all the advance simulations initially rapid advance grad- thickness profile to trigger grounding line accelerations.

ually slows towards steady state (except for the no-GLP These accelerations are also seen in both the first (not
Ax = 4.8km simulation, which becomes unstable and failsshown) and second (Fig) phases of retreat experiments.
to complete). In both no-GLP and IB1 cases the higher The retreat behaviour is slightly different in that the retreat
resolution final grounding line positions are closer to the ana-accelerates towards a grid point instead of slowing down as

5.1 Time evolution
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Time, kyrs Fig. 4. Close up of the LIB1 retreat simulations shown in Fig-

ure 2. The horizontal dashed lines indicate grid point locations
at Ax =4.8km resolution between 1645km and 1660 km (upper

Fig. 3. Close up of the LIB1 advance simulations shown in F&y. plot) and atAx =1.2 km resolution between 1398 km and 1404 km

showing the step like nature of grounding line advance in detail.(IOWer plot).
Resolutions are 0.3km, 0.6km, 1.2km, 2.4km and 4.8km. The

horizontal dashed lines in the lower plot indicate grid point loca- . . .
tions atAx —4.8 km resolution between 1010 km and 1030km., ~ Ceptually, LLB1, is one of the worst in terms of final ground-
ing line position from the retreat simulation. The best GLP

by this measure is H&SB2.

the grid point is approached, but in both retreat and advance A Close up of the retreat behaviour for these two GLPs

simulations the steepest part of the curve occurs immediatel§§ Shown in Fig.6. The sudden accelerations in grounding
after a grid point has been passed. ine motion can be seen in both IB1 and H2GB2 (and

. indeed in all the GLPs, not shown). The better performin
We suggest that the delayed onset of retreat seen in tthP H2GB2, shows slightly smoo)ther grounding line mo-g

second phase of the lower resolution retreat simulations is, :
due to the greater change in thickness profile needed to reaj:hon than the poorer LB1. Although the ime averaged re-

the threshold for the first grounding line retreat acceleration.tr]?:: S?_Teq Ofltht? HBB2 gﬂzoutr)dlng Ilne |s|grr(]eater f[haFr? that
This is a numerical artifact closely related to the existence of2! (e LI simulation over the ime interval snown in 8.

. g - the maximum magnitude of the retreat velocity is greater in
aregion of locally stable grounding line positiol@@&dstone . . !
ot alg|2010 y grounding line positioni4 the LI_.B1 simulation (Fig.6, lower panel). So the H&B2

h dina i luti h ¢ ith simulation has smaller peak speeds but a higher mean. How-
T Ie _grOl;.n '(;]g Ine e;o uktlorj ovrc]art erange o GLPs wit ever, none of the GLPs completely flatten out these velocity
resolution fixed alx = 2.4 km Is shown in Figs. spikes, just as none of the GLPs give accurate, matching fi-

Use of the different GLPs does induce a spread in thena| grounding line positions from both advance and retreat
results, but this spread is smaller than that induced by resgxperiments.

olution for the LLB1 GLP. The time evolution and final
positions from the advance simulations vary little (within
O(10 km) of the analytic solution in all cases), but the retreat
varies considerably, by O(3@&m). The simplest GLP con-
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Fig. 7. Error metrics ACC and RMA (Seci. 1) against resolution.
Results are shown for all GLPs (see Tahje Example first order

and second order convergence (grey bars) are shown for comparison
(note that the starting point of the grey bars is arbitrary, it is the
gradient that defines the order of convergence).

5.2 Steady state grounding line position

The error metrics are plotted against grid resolution for all
GLPs in Fig.7. Both metrics (ACC and RMA, described in
Sect.4.1) decay as resolution increases, typically linearly or
slightly slower (by comparison to grey bars in F§. Con-
vergence of the final grounding line position approaches first
order as resolution increases (F&).

ACC appears to be converging faster at higher resolutions
(Fig. 7). However, this may be due to the definition of the
metric rather than being indicative of faster convergence with
resolution. There are a number of possible explanations for
this. The ACC metric is based on comparison to an analytic
solution, which may itself contain minor errors due to as-
sumptions made obtaining the solutidchoof 20073. It is

shows grounding line position with time (the y-axes are offset butalso possible that the model is converging to a location close
with identical scaling to facilitate comparison) and the lower panel to the analytic solution but not an exact match. It is possi-

shows grounding line velocity with time (i.e. velocity of the ground-
ing line itself, not the velocity of the ice at the grounding line).

www.the-cryosphere.net/4/605/2010/

ble that the final modelled grounding line positions are not at
exact steady state (though they are close to steady state).
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RMA is a more reliable measure of convergence than ACC
as it is purely a measure of internal consistency.

Figure9 shows how the different forcing term corrections
(B1, B2 and G, Sect.2) impact on performance for a spe-
cific thickness interpolation (in this case H2, S&c1.6. Al-
though the more sophisticated handling (i.e_8B2) does
show smaller errors according to both metrics, the impact is
small, and RMA and ACC appear to converge at similar ratess 3 Non-linear drag law
for the different forcing term corrections. This result is sim-
ilar for other thickness interpolations (not shown), with the The results presented so far use a linear drag law (L in
GB2 corrections generally giving the smallest errors and theEq. 3). We now consider the impact of choice of drag law on
B1 correction giving the largest errors. The differences areGLP performance. Figurél shows RMA and ACC against
not large and convergence of RMA and ACC does not varyresolution for all the GLPs presented in the current study, but
greatly. with a non-linear basal drag law given by—= % in Eq. 3.

Figure 10 shows convergence of RMA and ACC for the The drag coefficient is given §? = 7.624x 10°Pa 3 s3.
different thickness interpolations (Se8tl) when the sim-  The results are broadly similar to using the linear drag law,
plest basal drag correction (B1, Se&R2.2 is used. The lin-  though the errors are smaller by approximately a factor of
ear interpolation, LI, shows the greatest error (except at thewo. As with the linear drag law, the metrics appear to ap-
lower resolutions where ClI is worse) and the second ordeproach zero approximately linearly with resolution (by com-
harmonic mean based interpolation, H2, shows the lowesparison against grey bars in Figl), indeed convergence
error. The cubic interpolation GLP, Cl, appears to convergemay be slightly faster with the non-linear drag law. The rank-
slightly faster than the others. ing of GLPs (not shown) is generally similar to the linear

The “best” GLP is H2GB2. This gives the lowest errors drag law, with the more sophisticated forcing parameterisa-
at all resolutions and for both error metrics. The previouslytions giving smaller errors. This indicates that the basal drag
published LLB1 (Gladstone et al2010 gives poor perfor-  formulation can impact on performance but not greatly on
mance. PAB1, based on the parameterisatiorPattyn etal.  the choice of suitable GLP.

(2006, gives mid range performance.

Fig. 9. Error metrics ACC and RMA (Sec#.1) plotted against
resolution for the GLPs using the 2nd order harmonic mean based
thickness profile (H2, Sec3.1.§. Results are shown for all forcing
term corrections (see Tablg.
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Fig. 10. Error metrics ACC and RMA (Sect.1) plotted against  Fig. 11. Error metrics ACC and RMA (Seot. 1) against resolution
resolution for the GLPs using the simplest forcing term correc- when using the non-linear drag law (Seé&f3). Results are shown
tion, B1 (Sect3.2.9. Results are shown for all thickness profiles for all GLPs (see Tabld). Example first order and second order
(Sect.3.1). convergence (grey bars) are shown for comparison.

6 Discussion study, H2GB2 (Sect.3.1.6, gives errors comparable to the
worst GLP, LLB1, run at twice as fine a resolution (i.e. dou-
The aim of the current study is to provide an easily imple- ble the number of grid points). This result holds for both the
mentable and computationally efficient approach to param{inear and non-linear drag laws. When implemented in an ice
eterising the grounding line that can reduce grounding linesheet model with two horizontal dimensions, use of GIR2
errors in full ice sheet models, and to justify this approachinstead of LLB1 would represent a significant (at least factor
through experimentation. The GLPs presented in the curreng) saving in computational resource. HoweverA1 would
study could all be extended to two horizontal dimensions,pe easier to implement than H2B2 in two horizontal di-
though this might not be trivial in the case of the more so-mensions. Although errors at a given resolution are reduced
phisticated parameterisations. in more sophisticated GLPs, the rate of convergence does not
Itis clear that the difference between not using a GLP andvary significantly across GLPs. None of the GLPs presented
using the simplest GLP (namely 1B1) is large (Sect5.1, here can fully overcome the grounding line problem inher-
see alsdGladstone et al2010). Given the large errors and ent to fixed grid models\ieli and Payne2005: very high
the unstable nature of grounding line retreat in a fixed gridresolution is still needed.
shelfy-stream model without a GLP, use of a GLP is neces- The inability of the current approach to fully solve the
sary, though which of the present GLPs to use is less clear. problem suggests that either the correct interpolation func-
In Sect.5.2 the more sophisticated GLPs were shown to tion has not been found, or that the approach itself is limited.
give better performance than the simpler ones, but this perWe suspect the latter. Given the excellent fit of the cubic in-
formance difference is not as large as the difference betweeterpolation, ClI, to the high resolution profile in Fig, the
no GLP and the simplest GLP. The best GLP in the currentCl GLPs might be expected to perform better than the other

www.the-cryosphere.net/4/605/2010/ The Cryosphere, 4,&0%52010



618 R. M. Gladstone et al.: Parameterising the grounding line

GLPs. However, this is not the case, due to the quality ofConto (2009 to this limitation was to apply the prescribed
fit of the CI interpolation varying during model evolution. flux either at the grounding line or downstream of it, depend-
This suggests that the approach of choosing one interpolaing on a flux criterion (details in supporting matergllard
tion function for thickness over the the grid cell containing and DeCont@2009). The criterion overcomes the inconsis-
the grounding line is fundamentally limited, and that such atency between advance and retreat simulations but is without
function would itself need to evolve as the model evolves. rigourous physical justification.
Another way of viewing this problem is in terms of the
step like behaviour in grounding line evolution (Se&tl). 7 Conclusions
The GLPs are intended to solve the grounding line problem
by allowing the grounding line to move smoothly across the A general approach to parameterising the grounding line in
grid cells. But grounding line movement still exhibits rapid fixed grid ice sheet models has been presented, expanding on
accelerations as grid points are passed, demonstrating thatevious work Pattyn et al.2006 Gladstone et al.2010.
the grounding line problem is only partially solved using the The approach, centred on interpolating ice thickness over the
approaches in the current study. grid cell containing the grounding line, shows greater relia-
This behaviour is not surprising - there is no a priori rea- bility and an order of magnitude improvement in simulated
son why the thickness profile over the grid cell containing grounding line position compared to the default assumption
the grounding line should match one particular interpolationthat the grounding line lies at the last grounded grid point.
function. However, the default assumption that the ground- Twenty four grounding line parameterisations (GLPs)
ing line always lies at the last grounded grid point is clearly have been presented, and tested in a fixed grid shelfy-stream
incorrect. The capacity of the GLPs presented here to allownmodel. The performance difference between the best and
the grounding line to lie at any point within a grid cell is worst is comparable to a doubling of resolution. The GLPs
not only a conceptual improvement, but gives demonstrablyare amenable to adaptation to two horizontal dimensions,
better results then the default assumption. where a doubling of resolution has a large (at least factor
A more accurate method of parameterising the grounding3) impact on computational resource.
line would therefore need to use a function that evolves as Two of the GLPs have been previously published. The
the model state evolves, possibly parameterised based on dsimplest GLP, LIB1 (Gladstone et 812010, gives poor per-
tailed studies of high resolution simulations. However, givenformance compared to the other GLPs._BA, based on the
that mesh adaptivity gives a true representation of the undermwork of Pattyn et al(2006, gives mid range performance.
lying equations and has been shown to address the ground-he new parameterisation H2B2, which includes a correc-
ing line problem well Gladstone et al201Q Durand et al.  tion to the gravitational driving stress, gives the best perfor-
2009 adaptivity may provide a better solution than very mance.
complicated parameterisations. None of these GLPs fully solve the grounding line prob-
An alternative approach to parameterising the groundingem, very high resolution is still needed. This is consis-
line was implemented bipollard and DeCont®009. Two tent with the conclusion oSchoof(20073 that adaptivity
separate models for grounded and floating ice were con{or high resolution) near the grounding line is essential. A
nected across the grounding line using an ice flux boundcombination of adaptive mesh refinement and a GLP would
ary condition. Cross grounding line ice flux was calculated provide the most computationally efficient approach to min-
as a function of ice thickness, rate factor, basal drag, andmising grounding line errors.
a scaling factor to represent buttressing (Eq. 2% anoof
(20073, see alséchoof 20078. This specification of flux
is valid in the special case of a flow-line model for plug flow
yvhe_re “ice is not too cold, sliding is slpw, or t_he ic_e sheet pgvance and retreat simulations
is wide” (Schoof 20073. Errors associated with this flux
prescription method in the case of actual ice streams and ic&imulations are carried out in pairs: an advance simulation in
shelves have not yet been quantified, though the assumptionghich the steady state grounding line position is approached
are more likely to be invalid away from steady steBelfoof from landward, and a retreat simulation in which the steady
20071. A comparison against the GLPs described in the cur-state grounding line position is approached from seaward.
rent study, and against very high resolution simulations (pos- It has been shownGladstone et 8/201Q Durand et al.
sibly using adaptivity) in a real world context would form a 2009 that steady state grounding line position of retreat ex-
useful further study. periments is in general seaward of the steady state ground-
The flux prescription approach described above does noing line position for the corresponding advance experiment,
address the restriction imposed by fixed grid grounding lineexcept at very high resolution when the two steady states
models that the grounding line must advance or retreat inconverge. The pair of simulations is needed to compute the
steps of one grid cell at a time (which in turn causes stepmetrics that are used to assess the performance of the GLPs
changes in the basal drag). The solutiorPoflard and De-  (Sect.4.1).

Appendix A
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