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Abstract. Realistic predictions of the behaviour of marine
ice sheets require that models are able to robustly simu-
late grounding line migration. Fixed-grid ice sheet models
have been shown to exhibit inconsistent and hence unreliable
grounding line migration, except at very high resolution not
yet achievable in whole ice sheet simulations. In this study
we present several different approaches to parameterising the
grounding line. These are distinguished by choices regarding
the ice thickness profile from the last grounded to the first
floating grid point, and how this profile impacts the grav-
itational driving stress and basal drag. We demonstrate that
the most obvious choice of thickness parameterisation, linear
interpolation from the last grounded to the first floating grid
point, is not the most effective. We show that use of a ground-
ing line parameterisation greatly improves performance, and
that choice of a better grounding line parameterisation over
a simpler one can bring further improvements, in terms of
both accuracy and self consistent behaviour, comparable to
increasing the grid resolution by factor two (i.e. doubling the
number of grid points). The approach presented here to pa-
rameterising the grounding line does not completely solve
the grounding line problem, however it reduces the resolution
required. The parameterisations are presented in the context
of a one dimensional “shelfy-stream” flow-line model, but
could be extended to cope with more than one dimension and
other model formulations.

1 Introduction

The potential for marine ice sheets such as the West Antarc-
tic Ice Sheet (WAIS) to undergo rapid collapse (sometimes
referred to as “marine ice sheet instability”), and the possible
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resulting sea level rise, has been discussed since the 1970s
(e.g.Mercer, 1978). An introduction to marine ice sheet in-
stability and recent developments in the area is given by, for
example,Schoof(2007a) or Katz and Worster(2010).

In order to make model based predictions of the behaviour
of marine ice sheets, ice sheet models must include a re-
alistic representation of the motion of the grounding line.
Vieli and Payne(2005) demonstrated that the grounding line
in models where computations are carried out at fixed hor-
izontal locations exhibits strongly resolution-dependent be-
haviour. More recently,Gladstone et al.(2010) showed that
this problem can be overcome at very high resolution when
using a simple parameterisation for the grounding line. How-
ever, the resolution required – a grid cell size of O(100 m) or
finer – makes full ice sheet simulations prohibitive in terms
of computational resource. High resolution can be achieved
through adaptive mesh refinement near the grounding line
(Gladstone et al., 2010; Goldberg et al., 2009; Durand et al.,
2009). However, the computational cost is still significant,
as is the programming time required to implement adaptiv-
ity in an existing non-adaptive model, especially for a full,
three-dimensional ice sheet model.

In the current study we investigate whether adaptivity
can be avoided, or at least its computational cost reduced,
through implementation of a parameterisation to determine
the grounding line position at sub-grid scale precision. The
Grounding Line Parameteriastions (GLPs) presented here
build on those ofPattyn et al.(2006) and Gladstone et al.
(2010), adding not only further variations to the approach
taken in those studies but also further corrections to both the
gravitational driving stress and basal drag. The GLPs are in-
tended to be usable in existing full ice sheet models, whether
adaptivity is present or not.

The GLP design rationale is given below. A brief sum-
mary of the model is given in Sect.2, followed by a detailed
description of the different GLPs (Sect.3). Results from a
series of grounding line migration experiments (described in
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Sect.4) using these GLPs are presented in Sect.5 and dis-
cussed in Sect.6.

1.1 GLP design rationale

The motivation behind each of the steps involved in imple-
menting the GLPs is discussed here, followed by a detailed
description in Sect.3. The GLPs all use the flotation condi-
tion to define the grounding line position,

ρH = ρwb (1)

whereH is the ice thickness,b is the bedrock depth (posi-
tively downwards from sea level),ρ is the ice density, and
ρw is the density of sea water. Ice with thickness greater
than flotation (ρH >ρwb) is considered to be grounded, and
ice with thickness below flotation (ρH < ρwb) is considered
to be floating. For simplicity variations in the ice density
(e.g. low density firn layer) are ignored, but such variations
could easily be incorporated.

In fixed grid models without a GLP, the grounding line
is typically assumed to lie at the last grounded grid point
(e.g.Vieli and Payne, 2005). In the current study the ground-
ing line is allowed to lie exactly at the point of transition from
grounded to floating ice, irrespective of whether this point
lies at a model grid point. This sub-grid scale grounding line
position is used to apply a correction to the force balance in
the grid cell containing the grounding line. This is achieved
using (a subset of) the following steps:

1. Thickness and bedrock profiles (i.e. values defined as a
function of position) are constructed across the grid cell
containing the grounding line (Sect.3.1).

2. These profiles are used along with the flotation condi-
tion to calculate the grounding line position with sub-
grid scale precision (Sect.3).

3. A velocity profile across the grid cell containing the
grounding line is constructed by using the thickness pro-
file from step 1 and the assumption of a linear flux pro-
file (Sect.3.2).

4. The above profiles and grounding line position are used
to apply a correction to the basal drag and the grav-
itational driving stress in the grid cell containing the
grounding line position (Sect.3.2).

Assessment of this approach is based on convergence with
grid resolution of grounding line behaviour, and on compar-
ison of steady state grounding line position against analytic
solutions (Schoof, 2007a). This provides an overall perfor-
mance assessment. The individual steps outlined above are
not assessed directly, however we would expect errors to be
largely attributable to choice of thickness profile across the
grid cell containing the grounding line (explained below).
The study can be viewed as a test of the validity of the thick-
ness profiles, and indeed a test of whether the approach of

choosing a single function to calculate thickness profiles at
all timesteps can be justified in practice.

The determination of the grounding line position and the
modification to the forcing terms are fully consistent with the
equations governing the model (Sect.2). Hence any inaccu-
racy in these calculations must be attributed mainly to inac-
curacy in the thickness, bedrock and velocity profiles defined
as part of the parameterisation in the grid cell containing the
grounding line. We argue that choice of thickness profile
(step 1) is most important. The default assumption that the
grounding line lies at the last grounded grid point is clearly
wrong, however we cannot give a robust mathematical jus-
tification for the particular thickness profiles presented here.
Instead several different profiles are tested, without advance
confidence that they are accurate.

The assumptions of linearity for bedrock and flux profiles
are expected to cause less error than the choice of thickness
profile. The linear bedrock assumption is correct in the cur-
rent idealised study given that a linear bedrock profile is pre-
scribed for the whole domain (Sect.3) and so does not con-
tribute to error in the current study. The linear flux assump-
tion is certainly true at steady state for the current idealised
study due to the surface mass balance (SMB) being constant
in time and space, hence any error due to the flux assump-
tion is only applicable during spin up. The velocity profile is
a function of thickness and flux profiles and incorporates no
other source of error.

2 Model description

All the simulations presented here are carried out using the
fixed grid ice stream ice shelf (FGSTSF) model ofGlad-
stone et al.(2010). This is identical to the FGSTSF model of
Vieli and Payne(2005) except that the higher order piecewise
parabolic method (PPM) is used for thickness evolution (see
Gladstone et al.(2010) for a description of the PPM method).
It is a vertically integrated (vertical shear is not represented)
flow-line model. The governing equations are presented be-
low.

Conservation of mass for ice sheets, streams and shelves
in the case of a single dimension,x, is given by

∂H

∂t
+

∂(uH)

∂x
= a, (2)

whereu is the horizontal velocity,a is the SMB andH is the
ice thickness.

Conservation of momentum for ice stream and shelf flow
in the current study is given by

2
∂

∂x

(
Hv

∂u

∂x

)
−β2

|u|
m−1u = ρgH

∂s

∂x
, (3)

heres is the height of the upper ice surface above sea level,
g is acceleration due to gravity,β2 is a basal drag coefficient,
m is a constant determining the power law for basal drag, and
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v is the vertically averaged effective viscosity. Except where
stated otherwise a linear drag law is used (m = 1). v is given
by

v = A−1/n

∣∣∣∣∂u

∂x

∣∣∣∣(1−n)/n

. (4)

The force balance terms modified by the GLPs (Sect.3.2)
are basal drag (second term on the left side of Eq. (3) and
gravitational driving stress (right side of Eq.3).

For the ice shelf, basal drag is removed by settingβ2
= 0.

The left hand boundary of the domain represents the ice
divide and has zero velocity and zero surface slope boundary
conditions. The right hand boundary represents the calving
front of the floating ice shelf, and a force balance boundary
condition is used. Eq. (2) is solved explicitly using finite
differences. SeeGladstone et al.(2010) for a full description
of the boundary condition implementation and how the above
equations are solved.

3 Parameterising the grounding line

The GLPs (outlined in Sect.1.1) are applied at every timestep
to each grid cell containing a grounding line (i.e. each grid
cell that is grounded on one side and floating on the other).

Note that these GLPs are used to modify terms in the force
balance equation. They only indirectly impact on thickness
evolution, hence they do not affect mass conservation. The
distinct GLPs are described below, but first some notation is
introduced.

The subscripti is used to denote the grid point at the land-
ward (i.e. grounded) side of a grid cell containing a ground-
ing line, andi+1 for the grid point at it’s seaward side. In the
experiments presented here there will always be exactly one
grid cell containing the grounding line but the GLPs all gen-
eralise without modification to the case of multiple ground-
ing lines.

The GLPs are named (Table1) according to the choice
of one of six different thickness interpolation functions
(Sect.3.1) and one of effectively four forcing corrections
(Sect.3.2), giving 24 different GLPs.

To prevent the GLP equations from becoming unwieldy,
a scaled dimensionless variable,λ (∈ R[0,1]), is used to ex-
press distance from theith grid point (i.e. the last grounded
grid point) in the x-increasing (i.e. seaward) direction.λ is
given by

λ = (x −xi)/1x, (5)

wherex is distance in km from the inland edge of the domain
(i.e. ice divide),xi is the distance in km of theith grid point
from the inland edge of the domain, and1x is the grid cell
size in km. Henceλ = 0 at the last grounded grid point and
λ = 1 at the first floating grid point. Using this notation, the
dimensionless grounding line position is given by

λg = (xg −xi)/1x, (6)

wherexg is the grounding line position in km from the land-
ward edge of the model domain.

The bedrock profileb(λ) is assumed to be linear across the
grid cell containing the grounding line,

b(λ) = bi(1−λ)+bi+1λ (7)

though higher resolution bedrock data could be used if avail-
able.

3.1 Parameterising the thickness profile

Six methods for constructing a thickness profile across the
the grid cell containing the grounding line are presented be-
low. These methods are summarised in Table1 (which also
summarises forcing parameterisations), and an example il-
lustration of them is shown in Fig.1. Figure1 demonstrates
how closely these six thickness profiles match a very high
resolution thickness profile given the following assumptions:
the coarse resolution grid points have thicknesses at the same
accuracy as the higher resolution simulation; the grounding
line lies at the midpoint of a grid cell. Given that neither of
these assumptions are true in general the performance of the
different profiles cannot be predicted from Fig.1. Instead
Fig. 1 serves to illustrate the approach, and to emphasize the
inaccuracy of the default assumption that the grounding line
lies at the last grounded grid point.

The bedrock profile Eq. (7), the thickness profile Eq. (see
below), and the flotation condition (Eq.1) are solved simulta-
neously at the grounding line to find grounding line ice thick-
ness,Hg, grounding line bedrock depth,bg, and grounding
line position,λg.

3.1.1 Linear interpolation

The simplest reasonable assumption that can be made about
the thickness profile across the grid cell containing the
grounding line is that of linearity between the known values
at grid pointsi andi +1,

H(λ) = Hi(1−λ)+Hi+1λ. (8)

Substituting Eqs.7 and8 into 1 atλ = λg gives the ground-
ing line position

λg =
ρwbi +ρHi

ρw(bi −bi+1)+ρ(Hi −Hi+1)
. (9)

This parameterisation is abbreviated as LI, see Table1.

3.1.2 Pattyn’s parameterisation

Instead of making explicit assumptions about both thick-
ness and bedrock profiles across the grid cell containing the
grounding line,Pattyn et al.(2006) constructed a function of
both thickness and bedrock depth,

f =
ρwb

ρH
, (10)
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Table 1. Summary of grounding line parameterisations (GLPs) used in this study.

GLP name Thickness profile Gravitational driving stress Basal drag scaling

LI B1 Linear interpolation No modification Linear scaling, Eq. (28)
LI GB1 Linear interpolation Profile scaling, Eq. (27) Linear scaling, Eq. (28)
LI B2 Linear interpolation No modification Profile scaling, Eq. (29)
LI GB2 Linear interpolation Profile scaling, Eq. (27) Profile scaling, Eq. (29)
PA B1 Pattyn et al.(2006) No modification Linear scaling, Eq. (28 )
PA GB1 Pattyn et al.(2006) Profile scaling, Eq. (27) Linear scaling, Eq. (28)
PA B2 Pattyn et al.(2006) No modification Profile scaling, Eq. (29)
PA GB2 Pattyn et al.(2006) Profile scaling, Eq. (27) Profile scaling, Eq. (29)
LE B1 Linear extrapolation No modification Linear scaling, Eq. (28)
LE GB1 Linear extrapolation Profile scaling, Eq. (27) Linear scaling, Eq. (28)
LE B2 Linear extrapolation No modification Profile scaling, Eq. (29)
LE GB2 Linear extrapolation Profile scaling, Eq. (27) Profile scaling, Eq. (29)
HM B1 Harmonic mean based No modification Linear scaling, Eq. (28)

interpolation
HM GB1 Harmonic mean based Profile scaling, Eq. (27) Linear scaling, Eq. (28)

interpolation
HM B2 Harmonic mean based No modification Profile scaling, Eq. (29)

interpolation
HM GB2 Harmonic mean based Profile scaling, Eq. (27) Profile scaling, Eq. (29)

interpolation
H2 B1 2nd order harmonic mean No modification Linear scaling, Eq. (28)

based interpolation
H2 GB1 2nd order harmonic mean Profile scaling, Eq. (27) Linear scaling, Eq. (28)

based interpolation
H2 B2 2nd order harmonic mean No modification Profile scaling, Eq. (29)

based interpolation
H2 GB2 2nd order harmonic mean Profile scaling, Eq. (27) Profile scaling, Eq. (29)

based interpolation
CI B1 Cubic interpolation No modification Linear scaling, Eq. (28)
CI GB1 Cubic interpolation Profile scaling, Eq. (27) Linear scaling, Eq. (28)
CI B2 Cubic interpolation No modification Profile scaling, Eq. (29)
CI GB2 Cubic interpolation Profile scaling, Eq. (27) Profile scaling, Eq. (29)

and used interpolation of this function to calculate a ground-
ing line position. With the assumption of linear bedrock, this
implies a thickness profile of

H(λ) =
bi(1−λ)+bi+1λ

bi

Hi
(1−λ)+

bi+1
Hi+1

λ
. (11)

The grounding line equation, equivalent to Eq. (8) inPat-
tyn et al.(2006), is then

λg =
Hi+1(Hiρ −biρw)

ρw(Hibi+1)−biHi+1.
(12)

This parameterisation is abbreviated as PA, see Table1.

3.1.3 Linear extrapolation

From visual inspection of the thickness profile across the
grounding line in very high resolution simulations (e.g. see
Fig.1) the thickness gradient changes abruptly in the vicinity
of the grounding line. This and the next (cubic interpolation,

Sect.3.1.4) choice of thickness profile make use of the gradi-
ents landward and seaward of the grounding line in addition
to the thicknesses.

Here, linearly extrapolated thickness is used from both the
grid points to the landward (i.e. upstream in simulations pre-
sented here) of the grounding line,H[up], and to the seaward
(downstream),H[do]:

H[up](λ) = Hi(1+λ)−Hi−1λ (13)

H[do](λ) = Hi+1(2−λ)−Hi+2(1−λ) (14)

Substituting Eqs.7 and13 into 1, and Eqs.7 and14 into 1,
atλ = λg gives two expressions for grounding line position

λg[up] =
ρHi +ρwbi

ρ(Hi−1−Hi)+ρw(bi −bi+1)
(15)

λg[do] =
ρ(Hi+2−2Hi+1)−ρwbi

ρ(Hi+2−Hi+1)+ρw(bi+1−bi)
(16)

where λg[up] and λg[do] are potential grounding line po-
sitions predicted by landward and seaward extrapolation
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Fig. 1. Example illustration of the different thickness interpolation functions used in the grounding line parameterisations. The solid grey
lines show the ice sheet profile (bedrock, lower ice surface and upper ice surface from bottom upwards) from a snapshot during the evolution
of a very high resolution simulation (1x = 0.15 km). The black lines show each of the different thickness profiles (Sect.3) at lower resolution
(1x = 2.4 km) for the case where the high resolution simulated grounding line position lies near the centre of the lower resolution grid box.
Low resolution grid point positions are shown with vertical grey dashed lines. The LE profile is not shown as it defaults to LI in this case.
The default profile corresponds to no parameterisation - the grounding line is assumed to rest at the last grounded grid point.

respectively. Assuming thatH[up] andH[do] intersect in the
grid cell containing the grounding line, the landward and sea-
ward thickness equations are combined to give the thickness
profile

H(λ) =

{
H[up](λ) if λ <λ×

H[do](λ) if λ ≥ λ×

(17)

whereλ× is the point of intersection of the two extrapolation
functions

λ× =
Hi+2−2Hi+1+Hi

Hi+2−Hi+1−Hi +Hi−1
(18)

The grounding line position is then given by

λg =

{
λg[up] if λg[up],λg[do] ≤ λ×

λg[do] if λg[up],λg[do] ≥ λ×

(19)

In the case thatH[up] andH[do] do not intersect in the grid
cell containing the grounding line, no sensible thickness pro-
file can be constructed fromH[up] andH[do], and so linear in-
terpolation is used instead (LI, Sect.3.1.1). LI is also used in
the case that two potentially viable grounding line positions
are given (i.e.λg[up] ≤ λ× ≤ λg[do]). This linear extrapolation
parameterisation is abbreviated as LE, see Table1.
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3.1.4 Cubic interpolation

This thickness profile implements higher order interpolation
using thicknesses from two grid points landward and two grid
points seaward of the grounding line position instead of just
one (i.e. grid pointsi −1 andi +2 are used in addition toi
andi +1).

A cubic equation for thickness is fitted across the grid cell
containing the grounding line,

H(λ) = aλ3
+bλ2

+cλ+d, (20)

where four constraints are required to determine the four co-
efficients of the cubic,a, b, c andd. Two of these are pro-
vided by setting the thickness toHi andHi+1 at grid points
i and i + 1 respectively, as in the other parameterisations.
The other two are provided by setting the thickness gradi-
ents ati and i + 1 to those of the neighbouring grid cells,
(Hi −Hi−1)/1x and(Hi+2−Hi+1)/1x. This gives

a = Hi+2−3Hi+1+3Hi −Hi−1,

b = −Hi+2+4Hi+1−5Hi +2Hi−1,

c = Hi −Hi−1,

d = Hi

Substituting Eqs.7 and20(with the above expressions for
the coefficients) into1 at λ = λg gives an expression for the
grounding line position

0= Aλ3
g +Bλ2

g +Cλg +D, (21)

where

A = Hi+2+3Hi+1−7Hi +3Hi−1,

B = −Hi+2−2Hi+1+5Hi −2Hi−1,

C = Hi −Hi−1+bi

ρw

ρ
,

D = Hi −
ρw

ρ
(bi+1+bi).

Note that upper case letters are used for the coefficients sim-
ply to emphasize that these are not the same coefficients as
in equation20 above. The cubic equation is solved as in
Tuma and Walsh(1998), p7. If no real roots are found, or if
more than one root is found within the grid cell containing
the grounding line, linear interpolation (LI) is used instead.
This parameterisation is abbreviated as CI, see Table1.

3.1.5 Harmonic mean based parameterisation

The harmonic mean of two numbersa and b is given by
2ab/(a+b). In numerical heat transfer problems a function
based on the harmonic mean is used to represent the effect
of step changes in conductivity on heat flux at sub-grid scale
precision (Patankar, 1980). Here we adopt the approach of
Patankar(1980) to construct a thickness profile

H(λ) =

(
(1−λ)

Hi

+
λ

Hi+1

)−1

. (22)

Substituting Eqs.7 and22 into 1 at λ = λg gives an ex-
pression for the grounding line position

0= aλ2
g +bλg +c, (23)

where

a =
bi+1−bi

Hi+1
+

bi −bi+1

Hi

,

b =
bi

Hi+1
−

bi+1−2bi

Hi

,

c =
bi

Hi

−
ρ

ρw

,

which is solved using the quadratic reduction formula. If no
real roots are found, or if more than one root is found within
the grid cell containing the grounding line, linear interpola-
tion (LI) is used instead. This parameterisation is abbreviated
as HM, see Table1.

3.1.6 Second order harmonic mean based
parameterisation

ReplacingH with H 2 in Eqs.22also gives a tractable thick-
ness profile

H(λ) =

√√√√( (1−λ)

H 2
i

+
λ

H 2
i+1

)−1

(24)

Substituting Eqs.7 and24 into 1 at λ = λg gives an ex-
pression for the grounding line position

0= aλ3
g +bλ2

g +cλg +d, (25)

where

a = (H−2
i+1−Hi−2)(b2

i+1+b2
i −2bi+1bi),

b = 2bi(bi+1−bi)(H
−2
i+1−H−2

i )+H−2
i (b2

i+1+b2
i −2bi+1bi),

c = b2
i (H

−2
i+1−H−2

i )+2biH
−2
i (bi+1−bi),

d = b2
i H

−2
i −ρ2ρ−2

w .

This cubic equation is solved as inTuma and Walsh(1998),
p7. If no real roots are found, or if more than one root is
found within the grid cell containing the grounding line, lin-
ear interpolation (LI) is used instead. This parameterisation
is abbreviated as H2, see Table1.

3.2 Parameterising the forcing terms

In order to allow the thickness parameterisation to affect evo-
lution, it must be allowed to influence the way in which the
forcing terms are implemented in the grid cell containing the
grounding line. In previous studies this impact has been im-
plemented via the basal drag.Pattyn et al.(2006) imposed
a transition zone in their model by setting the drag coeffi-
cient to be a function of distance from the grounding line.
Gladstone et al.(2010) scaled the drag coefficient linearly
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in the grid box containing the grounding line according to
the proportion of the grid box that was grounded. Here we
introduce new approaches to modifying both basal drag and
gravitational driving stress.

The FGSTSF model used in the current study employs a
staggered grid for calculation of velocity. The forcing terms
are defined on the staggered grid. This means that the forc-
ing terms for the grid cell containing the grounding line are
defined mid way between theith and(i +1)th grid points,
which we will denote by(i + 1

2).

3.2.1 Gravitational driving stress

The gravitational driving stress,G, is given by the right hand
side of Eq.3. For the typical case that bothH ands are linear
across the grid box,G at grid pointi + 1

2 is given by

G
i+ 1

2
= ρg

Hi +Hi+1

2

si+1−si

1x
. (26)

For the more general case thatH ands are not linear across
the grid box (and note that this is the case even for the linear
thickness profile LI due to the discontinuity ins across the
grounding line),G at grid pointi+ 1

2 can be calculated more
accurately by

G
i+ 1

2
= ρg

∫ 1

0
H

∂s

∂x
dλ. (27)

This calculation is carried out numerically by dividing the
grid cell containing the grounding line into 1000 equally
sized segments and using the approximation of Eq. (26) for
each segment. This number was chosen through experimen-
tation. Below 100 segments errors due to numerical integra-
tion start to become measurable and above 104 the computa-
tion starts to impact on model run time.

It should be noted that while cumbersome (unwieldy 6th
order polynomials are required in places), all the thickness
profiles presented in Sect.3.1 are tractable to analytical so-
lutions of the above integral. In practice, a computational
implementation of the analytical solution was in some cases
found to be highly inaccurate, due to catastrophic cancella-
tion.

Note that this modification to the gravitational driving
stress forcing term need be carried out only in the grid cell
containing the grounding line (so it doesn’t have a measur-
able impact on run time).

This profile scaling parameterisation for gravitational driv-
ing stress is abbreviated as “G” in Table1. For example
“LI GB1” uses linear interpolation to calculate a thickness
profile across the grid cell containing the grounding line, uses
the method described above to modify gravitational driving
stress in this grid cell, and the linear basal drag correction
described below.

Table 2. Model inputs and parameter values.

Parameter Units value

Rate factor,A Pa−3 yr−1 2.3×10−17

Drag coefficient,β2 Pa m−1 s 7.2082×1010

SMB m yr−1 0.3

3.2.2 Basal drag

All the GLPs in the current study involve modification of the
basal drag term in the grid cell containing the grounding line,
and assume that the basal drag is zero for the floating part of
the grid cell.

The simplest parameterisation for basal drag is to scale
the basal drag coefficientβ2 linearly with the fraction of
grounded ice in the grid cell containing the grounding line,

β2
i+ 1

2
= β2(1−λg) (28)

This linear scaling is referred to as B1, see Table1.
B1 gives a basal drag force in the grid cell containing the

grounding line of−β2u
i+ 1

2
(1−λg). Given that the true ve-

locity profile in the vicinity of the grounding line is not ex-
pected to be linear this scaling is not in general correct. If
the velocity profileu(λ) across the grid cell containing the
grounding line were known then a more appropriate scaling
could be used,

β2
i+ 1

2
= β2

(
1−

∫ λg

0
u(λ)dλ÷

∫ 1

0
u(λ)dλ

)
. (29)

Although u(λ) is not known, given that the GLPs pre-
sented here all involve prescribing a thickness profile, and
that the assumption of linear flux across the grid cell is a safer
assumption than that of linear velocity a profile foru(λ) can
be calculated,

u(λ) =
q(λ)

H(λ)
, (30)

whereq is the flux given by

q(λ) = qi(1−λ)+qi+1λ. (31)

This profile scaling parameterisation for basal drag
(Eqs.29, 30, and31) is abbreviated to “B2”, see Table1.
This approach can be taken with both linear (m = 1) and non
linear (m = 1/3) drag laws used in the current study.

4 Experiments

The impact of the different grounding line parameterisations
(GLPs) is investigated in idealised simulations. The exper-
imental setup is similar (though not identical) to the Ma-
rine Ice Sheet Model Intercomparison Project (MISMIP) of
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Schoof et al.(2009) experiments 1b and 2b and toGladstone
et al. (2010). The domain size is 2112 km from ice divide
(left boundary of domain) to ice front (right boundary of do-
main). The grid point spacing,1x, and the timestep,1t ,
vary as described below (Sect.4.1). SMB is prescribed and
is spatially and temporally uniform over the domain (except
for the first part of the retreat experiments, see below). The
rate factorA, drag coefficientβ2, and SMB are given in Ta-
ble 2. The bedrock,b, is linear and downsloping with the
same gradient as in the MISMIP experiments.

b(x) = 511−1.038×10−3x (32)

wherex is the distance from the ice divide, all distances are
in metres, andb is measured positively upwards from sea
level.

Determination of approach to steady state is by visual in-
spection of grounding line evolution plots. The simulation
lengths are 35 kyr and 80 kyr for advance and retreat exper-
iments (described below) respectively, and this is sufficient
for the final grounding line position to be close to steady state
in all cases.

As discussed byGladstone et al.(2010), fixed grid ground-
ing line models can exhibit a region containing multiple lo-
cally stable grounding line positions, and the limits of this
region can be determined by ‘advance’ simulations (in which
the grounding line must advance by more than1x as steady
state is approached) and “retreat” simulations. This region
is a numerical artifact and converges towards zero as res-
olution increases (Schoof, 2007a; Gladstone et al., 2010).
Both advance and retreat simulations are used in the current
study, and their implementation is described in detail in Ap-
pendixA.

4.1 Assessing performance

Gladstone et al.(2010) demonstrated that when using the lin-
ear thickness GLP (FGSTSFGI in Gladstone et al.(2010),
identical to LI B1 in the current study) the steady state
grounding line position approaches the analytical solution
(Schoof, 2007a) as resolution increases, at least to within a
few kilometres, for both advance and retreat simulations.

In the current study convergence of the final (close to
steady state) grounding line position with resolution is quan-
tified and plotted for performance assessment. Also, two
metrics are defined that give a measure of error. The values
of these error metrics with increasing resolution are assessed
for all GLPs.

The convergence of final grounding line position,xgs , is
assessed by plotting the change in final grounding line posi-
tion with increasing resolution,1xgs . For a given resolution,
1x, this is given by

1x1x
gs = |x1x

gs −x21x
gs | (33)

where the superscript denotes resolution.1xgs is plotted
against resolution. This can be done independently for both
advance and retreat simulations.

The first of the two error metrics is a quantification of the
size of the region of locally stable grounding line positions
(Gladstone et al., 2010). This is referred to as “Retreat minus
advance” (RMA) and is defined as

RMA = xgr −xga (34)

wherexgr is the final grounding line position from a retreat
experiment andxga is the final grounding line position from
the corresponding advance experiment. It is worth noting
thatxgr ≥ xga for all simulations in the current study.

The second metric, ACC, is an attempt to measure model
accuracy. Accuracy is the discrepancy between simulated
and theoretical steady state grounding line positions, but
the fact that there are multiple viable modelled steady state
grounding line positions (the advance and retreat simulations
give different predictions) makes this problematic to quan-
tify. Here we have made the choice that our “best” predic-
tion for a given model setup is the mid point between the
predictions from advance and retreat simulations. Thus ACC
is defined by

ACC= |
xgr +xga

2
−xgs | (35)

wherexgs is the analytic steady state grounding line position
given bySchoof(2007a). This assumption is not “correct” as
a measure of accuracy, but it does give a quantifiable metric
that converges to a correct measure of accuracy as the RMA
metric approaches zero.

These metrics should not be confused with the “conver-
gence” and “accuracy” errors defined byGladstone et al.
(2010).

Since only one steady state solution can exist for the
grounding line position in a shelfy-stream model with a lin-
ear downsloping bed (Schoof, 2007a), an ideal model solu-
tion would have RMA = 0 and ACC = 0.

For each GLP, an advance and retreat simulation is carried
out at each resolution, where resolution varies from1x = 4.8
km and1t = 0.4 years, to1x = 0.3 km and1t = 0.025
years. 1x and1t decrease by a factor of 2 each time giv-
ing a total of 5 different resolutions. The GLPs are assessed
by comparison of final grounding line position with the ana-
lytic solution (Schoof, 2007a), convergence of final ground-
ing line position with resolution, and behaviour of the metrics
RMA and ACC with increasing resolution.

5 Results

The time evolution of simulated grounding line position is
analysed in Sect.5.1. A comparison is presented of the sim-
plest GLP (LIB1, see Table1) against the default assump-
tion that the grounding line lies at the last grounded grid
point (i.e. no parameterisation is used, henceforth referred to
as “no-GLP”). Aspects of the time evolution of the ground-
ing line are then compared across GLPs. In Sect.5.2 final
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Fig. 2. Time evolution of grounding line position for the LIB1
GLP (solid lines, see Table1) and for the no-GLP case (dashed
lines). Results at the five different resolution levels (from1x =

4.8 km to 1x = 0.3 km) are shown for both advance (black) and
retreat (grey) simulations. The horizontal orange lines indicate the
analytical (Schoof, 2007a) steady state grounding line position for
the first phase of the retreat simulations (shorter line) and for all
other cases (longer line).

grounding line positions and convergence with resolution are
compared across GLPs using metrics RMA and ACC.

Several of the thickness parameterisations, specifically
LE, CI, HM and H2, are designed to resort to LI in the case
that no valid solution can be found. It is worth noting that
in practice this happens extremely rarely, and we do not con-
sider it significant, except in the case of LE. LE frequently
fails to find a valid solution within the grid cell containing the
grounding line, and hence frequently reverts to LI. In practice
that LE gives results virtually identical to LI.

5.1 Time evolution

The time evolution of the grounding line both for the no-GLP
case and for the simplest GLP (LIB1, see Table1) is shown
in Fig.2. The orange lines indicate the analytical steady state
grounding line positions (Schoof, 2007a). The grounding
line position in a good advance simulation would be expected
to approach the lower orange line at steady state, whereas the
grounding line in a good retreat simulation should approach
the upper orange line towards the end of the first phase, and
the lower line towards the end of the second phase.

In all the advance simulations initially rapid advance grad-
ually slows towards steady state (except for the no-GLP
1x = 4.8 km simulation, which becomes unstable and fails
to complete). In both no-GLP and LIB1 cases the higher
resolution final grounding line positions are closer to the ana-

lytic solution than the lower resolution simulations. As found
by Gladstone et al.(2010), the no-GLP simulations show er-
rors O(100 km) whereas the LIB1 simulations show errors
O(10 km) or less (errors are defined here as the difference
between final grounding line position and analytic solution).
The first phase of the retreat simulations shows behaviour
similar to the advance simulations. In the second phase of the
retreat simulations, initially rapid retreat gradually slows to-
wards steady state, but the onset of retreat is delayed at lower
resolutions. This delay can be better understood after consid-
ering the finer details of simulated grounding line evolution
(see below). Most of the no-GLP simulations become unsta-
ble in retreat, with only the1x = 0.3 km simulation complet-
ing successfully. This numerical instability relates to the in-
teraction between basal drag, gravitational driving stress and
the grounding line position (Gladstone et al., 2010). The er-
rors seen in the LIB1 simulations reduce from O(100 km) to
O(10 km) as resolution increases from1x = 4.8 km to1x =

0.3 km.
Of the ten no-GLP simulations (both advance and retreat

for five different resolutions), the1x = 0.3 km retreat sim-
ulation is the only one to run to completion with a smaller
error (only by O(10 km)) than the equivalent LIB1 simula-
tion. Given that most no-GLP simulations either become un-
stable and fail to complete or show much greater errors than
the equivalent LIB1 simulations, the no-GLP choice is not a
viable option and will not be considered further in this study.

A close up of grounding line evolution in an advance sim-
ulation using the LIB1 GLP is shown in Fig.3. Although
the mean rate of advance is very similar across different res-
olutions, the advance appears to occur in steps of size1x

(Fig. 3 upper panel). This behaviour would be expected of
simulations without a GLP where the grounding line must
always lie at a grid point. A closer inspection (Fig.3 lower
panel) shows that this behaviour is due to sudden accelera-
tions of the grounding line as the grounding line passes a grid
point, followed by gradual deceleration as the next grid point
is approached. This suggests that the LIB1 GLP, whilst al-
lowing for grounding line positions anywhere within the grid
cell, does not allow for a continuous, smooth response of the
grounding line position to the changing state of the system.
The ‘state’ of the system is essentially the thickness profile
of the whole simulated ice sheet, which determines the grav-
itational driving stress and basal drag. In other words, the
grounding line resists advance (i.e. advances very slowly) un-
til a threshold (corresponding to the grounding line passing
a grid point) is passed in the evolving thickness profile, af-
ter which very rapid advance occurs. The lower frequency,
higher amplitude accelerations seen in the lower resolution
simulations indicate that a larger change is needed in the
thickness profile to trigger grounding line accelerations.

These accelerations are also seen in both the first (not
shown) and second (Fig.4) phases of retreat experiments.
The retreat behaviour is slightly different in that the retreat
accelerates towards a grid point instead of slowing down as
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Fig. 3. Close up of the LIB1 advance simulations shown in Fig.2
showing the step like nature of grounding line advance in detail.
Resolutions are 0.3 km, 0.6 km, 1.2 km, 2.4 km and 4.8 km. The
horizontal dashed lines in the lower plot indicate grid point loca-
tions at1x =4.8 km resolution between 1010 km and 1030 km.

the grid point is approached, but in both retreat and advance
simulations the steepest part of the curve occurs immediately
after a grid point has been passed.

We suggest that the delayed onset of retreat seen in the
second phase of the lower resolution retreat simulations is
due to the greater change in thickness profile needed to reach
the threshold for the first grounding line retreat acceleration.
This is a numerical artifact closely related to the existence of
a region of locally stable grounding line positions (Gladstone
et al., 2010).

The grounding line evolution over the range of GLPs with
resolution fixed at1x = 2.4 km is shown in Fig.5.

Use of the different GLPs does induce a spread in the
results, but this spread is smaller than that induced by res-
olution for the LI B1 GLP. The time evolution and final
positions from the advance simulations vary little (within
O(10 km) of the analytic solution in all cases), but the retreat
varies considerably, by O(102 km). The simplest GLP con-
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Fig. 4. Close up of the LIB1 retreat simulations shown in Fig-
ure 2. The horizontal dashed lines indicate grid point locations
at 1x =4.8 km resolution between 1645 km and 1660 km (upper
plot) and at1x =1.2 km resolution between 1398 km and 1404 km
(lower plot).

ceptually, LI B1, is one of the worst in terms of final ground-
ing line position from the retreat simulation. The best GLP
by this measure is H2GB2.

A close up of the retreat behaviour for these two GLPs
is shown in Fig.6. The sudden accelerations in grounding
line motion can be seen in both LIB1 and H2GB2 (and
indeed in all the GLPs, not shown). The better performing
GLP, H2 GB2, shows slightly smoother grounding line mo-
tion than the poorer LIB1. Although the time averaged re-
treat speed of the H2GB2 grounding line is greater than that
of the LI simulation over the time interval shown in Fig.6,
the maximum magnitude of the retreat velocity is greater in
the LI B1 simulation (Fig.6, lower panel). So the H2GB2
simulation has smaller peak speeds but a higher mean. How-
ever, none of the GLPs completely flatten out these velocity
spikes, just as none of the GLPs give accurate, matching fi-
nal grounding line positions from both advance and retreat
experiments.
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Fig. 7. Error metrics ACC and RMA (Sect.4.1) against resolution.
Results are shown for all GLPs (see Table1). Example first order
and second order convergence (grey bars) are shown for comparison
(note that the starting point of the grey bars is arbitrary, it is the
gradient that defines the order of convergence).

5.2 Steady state grounding line position

The error metrics are plotted against grid resolution for all
GLPs in Fig.7. Both metrics (ACC and RMA, described in
Sect.4.1) decay as resolution increases, typically linearly or
slightly slower (by comparison to grey bars in Fig.7). Con-
vergence of the final grounding line position approaches first
order as resolution increases (Fig.8).

ACC appears to be converging faster at higher resolutions
(Fig. 7). However, this may be due to the definition of the
metric rather than being indicative of faster convergence with
resolution. There are a number of possible explanations for
this. The ACC metric is based on comparison to an analytic
solution, which may itself contain minor errors due to as-
sumptions made obtaining the solution (Schoof, 2007a). It is
also possible that the model is converging to a location close
to the analytic solution but not an exact match. It is possi-
ble that the final modelled grounding line positions are not at
exact steady state (though they are close to steady state).
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RMA is a more reliable measure of convergence than ACC
as it is purely a measure of internal consistency.

Figure9 shows how the different forcing term corrections
(B1, B2 and G, Sect.3.2) impact on performance for a spe-
cific thickness interpolation (in this case H2, Sect.3.1.6). Al-
though the more sophisticated handling (i.e. H2GB2) does
show smaller errors according to both metrics, the impact is
small, and RMA and ACC appear to converge at similar rates
for the different forcing term corrections. This result is sim-
ilar for other thickness interpolations (not shown), with the
GB2 corrections generally giving the smallest errors and the
B1 correction giving the largest errors. The differences are
not large and convergence of RMA and ACC does not vary
greatly.

Figure10 shows convergence of RMA and ACC for the
different thickness interpolations (Sect.3.1) when the sim-
plest basal drag correction (B1, Sect.3.2.2) is used. The lin-
ear interpolation, LI, shows the greatest error (except at the
lower resolutions where CI is worse) and the second order
harmonic mean based interpolation, H2, shows the lowest
error. The cubic interpolation GLP, CI, appears to converge
slightly faster than the others.

The “best” GLP is H2GB2. This gives the lowest errors
at all resolutions and for both error metrics. The previously
published LIB1 (Gladstone et al., 2010) gives poor perfor-
mance. PAB1, based on the parameterisation ofPattyn et al.
(2006), gives mid range performance.
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Fig. 9. Error metrics ACC and RMA (Sect.4.1) plotted against
resolution for the GLPs using the 2nd order harmonic mean based
thickness profile (H2, Sect.3.1.6). Results are shown for all forcing
term corrections (see Table1).

5.3 Non-linear drag law

The results presented so far use a linear drag law (m = 1 in
Eq.3). We now consider the impact of choice of drag law on
GLP performance. Figure11 shows RMA and ACC against
resolution for all the GLPs presented in the current study, but
with a non-linear basal drag law given bym =

1
3 in Eq. 3.

The drag coefficient is given byβ2
= 7.624×106Pa m−

1
3 s

1
3 .

The results are broadly similar to using the linear drag law,
though the errors are smaller by approximately a factor of
two. As with the linear drag law, the metrics appear to ap-
proach zero approximately linearly with resolution (by com-
parison against grey bars in Fig.11), indeed convergence
may be slightly faster with the non-linear drag law. The rank-
ing of GLPs (not shown) is generally similar to the linear
drag law, with the more sophisticated forcing parameterisa-
tions giving smaller errors. This indicates that the basal drag
formulation can impact on performance but not greatly on
the choice of suitable GLP.
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resolution for the GLPs using the simplest forcing term correc-
tion, B1 (Sect.3.2.2). Results are shown for all thickness profiles
(Sect.3.1).

6 Discussion

The aim of the current study is to provide an easily imple-
mentable and computationally efficient approach to param-
eterising the grounding line that can reduce grounding line
errors in full ice sheet models, and to justify this approach
through experimentation. The GLPs presented in the current
study could all be extended to two horizontal dimensions,
though this might not be trivial in the case of the more so-
phisticated parameterisations.

It is clear that the difference between not using a GLP and
using the simplest GLP (namely LIB1) is large (Sect.5.1,
see alsoGladstone et al.(2010)). Given the large errors and
the unstable nature of grounding line retreat in a fixed grid
shelfy-stream model without a GLP, use of a GLP is neces-
sary, though which of the present GLPs to use is less clear.

In Sect.5.2 the more sophisticated GLPs were shown to
give better performance than the simpler ones, but this per-
formance difference is not as large as the difference between
no GLP and the simplest GLP. The best GLP in the current
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Fig. 11. Error metrics ACC and RMA (Sect.4.1) against resolution
when using the non-linear drag law (Sect.5.3). Results are shown
for all GLPs (see Table1). Example first order and second order
convergence (grey bars) are shown for comparison.

study, H2GB2 (Sect.3.1.6), gives errors comparable to the
worst GLP, LI B1, run at twice as fine a resolution (i.e. dou-
ble the number of grid points). This result holds for both the
linear and non-linear drag laws. When implemented in an ice
sheet model with two horizontal dimensions, use of H2GB2
instead of LIB1 would represent a significant (at least factor
8) saving in computational resource. However, LIB1 would
be easier to implement than H2GB2 in two horizontal di-
mensions. Although errors at a given resolution are reduced
in more sophisticated GLPs, the rate of convergence does not
vary significantly across GLPs. None of the GLPs presented
here can fully overcome the grounding line problem inher-
ent to fixed grid models (Vieli and Payne, 2005): very high
resolution is still needed.

The inability of the current approach to fully solve the
problem suggests that either the correct interpolation func-
tion has not been found, or that the approach itself is limited.
We suspect the latter. Given the excellent fit of the cubic in-
terpolation, CI, to the high resolution profile in Fig.1, the
CI GLPs might be expected to perform better than the other
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GLPs. However, this is not the case, due to the quality of
fit of the CI interpolation varying during model evolution.
This suggests that the approach of choosing one interpola-
tion function for thickness over the the grid cell containing
the grounding line is fundamentally limited, and that such a
function would itself need to evolve as the model evolves.

Another way of viewing this problem is in terms of the
step like behaviour in grounding line evolution (Sect.5.1).
The GLPs are intended to solve the grounding line problem
by allowing the grounding line to move smoothly across the
grid cells. But grounding line movement still exhibits rapid
accelerations as grid points are passed, demonstrating that
the grounding line problem is only partially solved using the
approaches in the current study.

This behaviour is not surprising - there is no a priori rea-
son why the thickness profile over the grid cell containing
the grounding line should match one particular interpolation
function. However, the default assumption that the ground-
ing line always lies at the last grounded grid point is clearly
incorrect. The capacity of the GLPs presented here to allow
the grounding line to lie at any point within a grid cell is
not only a conceptual improvement, but gives demonstrably
better results then the default assumption.

A more accurate method of parameterising the grounding
line would therefore need to use a function that evolves as
the model state evolves, possibly parameterised based on de-
tailed studies of high resolution simulations. However, given
that mesh adaptivity gives a true representation of the under-
lying equations and has been shown to address the ground-
ing line problem well (Gladstone et al., 2010; Durand et al.,
2009) adaptivity may provide a better solution than very
complicated parameterisations.

An alternative approach to parameterising the grounding
line was implemented byPollard and DeConto(2009). Two
separate models for grounded and floating ice were con-
nected across the grounding line using an ice flux bound-
ary condition. Cross grounding line ice flux was calculated
as a function of ice thickness, rate factor, basal drag, and
a scaling factor to represent buttressing (Eq. 29 inSchoof
(2007a), see alsoSchoof, 2007b). This specification of flux
is valid in the special case of a flow-line model for plug flow
where “ice is not too cold, sliding is slow, or the ice sheet
is wide” (Schoof, 2007a). Errors associated with this flux
prescription method in the case of actual ice streams and ice
shelves have not yet been quantified, though the assumptions
are more likely to be invalid away from steady state (Schoof,
2007b). A comparison against the GLPs described in the cur-
rent study, and against very high resolution simulations (pos-
sibly using adaptivity) in a real world context would form a
useful further study.

The flux prescription approach described above does not
address the restriction imposed by fixed grid grounding line
models that the grounding line must advance or retreat in
steps of one grid cell at a time (which in turn causes step
changes in the basal drag). The solution ofPollard and De-

Conto(2009) to this limitation was to apply the prescribed
flux either at the grounding line or downstream of it, depend-
ing on a flux criterion (details in supporting materal,Pollard
and DeConto(2009)). The criterion overcomes the inconsis-
tency between advance and retreat simulations but is without
rigourous physical justification.

7 Conclusions

A general approach to parameterising the grounding line in
fixed grid ice sheet models has been presented, expanding on
previous work (Pattyn et al., 2006; Gladstone et al., 2010).
The approach, centred on interpolating ice thickness over the
grid cell containing the grounding line, shows greater relia-
bility and an order of magnitude improvement in simulated
grounding line position compared to the default assumption
that the grounding line lies at the last grounded grid point.

Twenty four grounding line parameterisations (GLPs)
have been presented, and tested in a fixed grid shelfy-stream
model. The performance difference between the best and
worst is comparable to a doubling of resolution. The GLPs
are amenable to adaptation to two horizontal dimensions,
where a doubling of resolution has a large (at least factor
8) impact on computational resource.

Two of the GLPs have been previously published. The
simplest GLP, LIB1 (Gladstone et al., 2010), gives poor per-
formance compared to the other GLPs. PAB1, based on the
work of Pattyn et al.(2006), gives mid range performance.
The new parameterisation H2GB2, which includes a correc-
tion to the gravitational driving stress, gives the best perfor-
mance.

None of these GLPs fully solve the grounding line prob-
lem, very high resolution is still needed. This is consis-
tent with the conclusion ofSchoof(2007a) that adaptivity
(or high resolution) near the grounding line is essential. A
combination of adaptive mesh refinement and a GLP would
provide the most computationally efficient approach to min-
imising grounding line errors.

Appendix A

Advance and retreat simulations

Simulations are carried out in pairs: an advance simulation in
which the steady state grounding line position is approached
from landward, and a retreat simulation in which the steady
state grounding line position is approached from seaward.

It has been shown (Gladstone et al., 2010; Durand et al.,
2009) that steady state grounding line position of retreat ex-
periments is in general seaward of the steady state ground-
ing line position for the corresponding advance experiment,
except at very high resolution when the two steady states
converge. The pair of simulations is needed to compute the
metrics that are used to assess the performance of the GLPs
(Sect.4.1).
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Both retreat and advance simulations are initialised from
a uniform slab of ice 200 m thick. Advance simulations are
simply spun up for 35 kyr using a constant forcing. The final
grounding line position is close to steady state.

The retreat simulations have two phases. In the first phase
advance occurs and in the second phase retreat occurs. The
first phase of a retreat simulation has enhanced forcing under
which the grounding line will advance much further than in
the corresponding advance simulation. The second phase has
forcing identical to that of the corresponding advance simu-
lation as steady state is approached in retreat. As with the ad-
vance simulations, the final grounding line position is close
to steady state.

The details of the forcing modification for retreat exper-
iments are now described. During the first phase of 30 kyr
the SMB and rate factor are both modified, and these are re-
turned linearly to their standard values over the first 10 kyr
years of the second phase. A further 40 kyr with forcing con-
stant and identical to the corresponding advance simulation
are then run in order to reach the final steady state, giving a
total run length of 80 kyr for the retreat simulations.

It is not strictly necessary to approach steady state in the
first phase of the retreat simulations, so long as significant
retreat occurs in the second phase, to fulfil the requirement
that the final grounding line position in a retreat simulation
is approached from seaward.

The rate factor is given by

AR(t∗) =


A
10 t∗ < 0
A
10(1− t∗/104)+At∗/104 0≤ t∗ ≤ 104

A t∗ ≥ 104
(A1)

whereAR is the (time varying) rate factor for the retreat sim-
ulation, andt∗ is the time in years (measured positively for-
ward in time) from the start of the second phase of the sim-
ulation (i.e.t∗ = t− 35 kyr wheret is the time in years from
the start of the simulation). The SMB is given by

aR(t∗) =


a+0.4 t∗ < 0
a+0.4(1− t∗/104) 0≤ t∗ ≤ 104

a t∗ ≥ 104,

(A2)

whereaR is the (time varying) SMB for the retreat simula-
tion anda is the SMB used in the corresponding advance
simulation, both measured in m yr−1

Note that the forcing in both advance and retreat experi-
ments is identical (i.e.AR = A andaR = a) and constant as
the final grounding line position is approached.
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