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Abstract. An update is provided of Northern Hemisphere
(NH) spring (March, April) snow cover extent (SCE) over
the 1922–2010 period incorporating the new climate data
record (CDR) version of the NOAA weekly SCE dataset,
with annual 95% confidence intervals estimated from re-
gression analysis and intercomparison of multiple datasets.
The uncertainty analysis indicates a 95% confidence interval
in NH spring SCE of±5–10% over the pre-satellite period
and±3–5% over the satellite era. The multi-dataset anal-
ysis shows larger uncertainties monitoring spring SCE over
Eurasia (EUR) than North America (NA) due to the more
complex regional character of the snow cover variability and
larger between-dataset variability over northern Europe and
north-central Russia.

Trend analysis of the updated SCE series provides evi-
dence that NH spring snow cover extent has undergone sig-
nificant reductions over the past∼90 yr and that the rate of
decrease has accelerated over the past 40 yr. The rate of de-
crease in March and April NH SCE over the 1970–2010 pe-
riod is ∼0.8 million km2 per decade corresponding to a 7%
and 11% decrease in NH March and April SCE respectively
from pre-1970 values. In March, most of the change is be-
ing driven by Eurasia (NA trends are not significant) but both
continents exhibit significant SCE reductions in April.

The observed trends in SCE are being mainly driven by
warmer air temperatures, with NH mid-latitude air tempera-
tures explaining∼50% of the variance in NH spring snow
cover over the 89-yr period analyzed. However, there is
also evidence that changes in atmospheric circulation around
1980 involving the North Atlantic Oscillation and Scandina-
vian pattern have contributed to reductions in March SCE
over Eurasia.
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1 Introduction

Reliable information on spatial and temporal variability in
continental and hemispheric snow cover extent (SCE) is im-
portant for climate monitoring (e.g. Arndt et al., 2010), cli-
mate model evaluation (e.g. Foster et al., 1996; Frei et al.,
2005; Roesch, 2006; Brown and Frei, 2007) and cryosphere-
climate feedback studies (e.g. Hall and Qu, 2006; Fernan-
des et al., 2009; Flanner et al., 2011). Previously published
estimates of Northern Hemisphere (NH) monthly SCE used
for evaluating climate models and monitoring variability and
change in hemispheric SCE have typically been based on sin-
gle datasets such as the National Oceanic and Atmospheric
Administration (NOAA) weekly snow cover dataset (Robin-
son et al., 1993) or passive microwave-derived snow cover
data (Armstrong and Brodzik, 2001), with little or no in-
formation on the likely range of uncertainty in the observa-
tions. Brown et al. (2010) showed there can be large differ-
ences in the amount of snow cover seen by different satellite
sensors related to spatial resolution, cloud cover (for optical
sensors) and wavelength specific interactions with the atmo-
sphere, snowpack, terrain and land cover. Estimates of SCE
derived from surface-based observations also have spatially
and temporally varying uncertainties related to the uneven
distribution of in situ observations.

Brown (2000) presented estimates of historical variabil-
ity in NH March and April snow cover extent (SCE) over
the 1922–1997 period that were subsequently updated and
included in the 4th IPCC Assessment (Lemke et al., 2007;
Figs. SPM.3, TS.12 and 4.2). The hemispheric reconstruc-
tion was restricted to only these two months due to limi-
tations in the spatial coverage of historical snow depth ob-
servations. The 2007 update included an estimate of uncer-
tainty derived from the interannual variability of the SCE
series, as no published estimates were available of the un-
certainty in the in situ-based SCE reconstruction developed
by Brown (2000) or in the NOAA satellite dataset used to
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monitor NH SCE since 1966 (Robinson et al., 1993). The
fixed uncertainty interval applied in the IPCC report does not
reflect the different uncertainty levels associated with the pre-
satellite in situ-based SCE information, or improvements in
snow mapping over the satellite era from increases in satellite
resolution and frequency.

Brown et al. (2010) used a multi-dataset approach to esti-
mate the observational uncertainty in Arctic spring SCE over
the 1967–2008 period. This approach is applied here to pro-
vide estimates of the uncertainty in the NH spring SCE series
presented in the 4th IPCC Assessment and to update the se-
ries using the new climate data record (CDR) version of the
NOAA dataset (http://climate.rutgers.edu/snowcover). This
version includes corrections to account for a change in map-
ping procedures that took place in 1999 (Ramsay, 1998; Hel-
frich et al., 2007). The updated series (with estimated uncer-
tainty levels) is used to document trends in NH spring SCE
over the period from the early 1920s, and to examine associ-
ations with air temperature and atmospheric circulation.

2 Datasets

The various sources of snow cover data used in this study
are summarized in Table 1. Detailed descriptions of these
datasets are provided by Brown et al. (2010) and are not re-
peated here. The NH March and April SCE series presented
in the 4th IPCC assessment were based on the historical snow
cover index of Brown (2000) (henceforth defined as B2000)
up to the start of the satellite era in the late-1960s, with SCE
values after 1966 obtained from the NOAA weekly dataset
(Robinson et al., 1993). The B2000 index was derived from
reconstructed and observed daily snow depth over a fixed net-
work of climate stations and is available over North Amer-
ica (NA) from 1915–1992 for the months of November to
April, but is limited to October, March and April over Eurasia
(EUR) for the 1922–1991 period due to a sparser network of
observations. Consequently this dataset only provides hemi-
spheric information in the months of March and April from
1922–1991. McCabe and Wolock (2010) reconstructed NH
March SCE back to 1902 using gridded monthly tempera-
ture and precipitation data from the Climatic Research Unit
(CRU) in a simplified snow accumulation and melt model
calibrated with the NOAA SCE dataset to define tempera-
ture thresholds for rain-snow probability and melt rate. The
results agree reasonably closely with the B2000 series (not
surprisingly since SCE and air temperature are strongly cor-
related over the NH in March) but the method is not consid-
ered to be particularly robust because of the monthly time-
step, the use of non-physically based temperature thresholds,
and the fact the method requires calibration with the NOAA
SCE series.

The NOAA dataset is based on weekly charts of snow
cover extent derived from manual interpretation of visible
satellite imagery up to 1999. The charting method changed

in May 1999 with the introduction of the higher resolution
24 km daily Interactive Multi-Sensor (IMS) snow cover prod-
uct (Ramsay, 1998). A pseudo-weekly product is automati-
cally derived from the IMS 24 km daily product assuming the
analysis for Monday is representative of the previous week.
This change was found to map less snow in mountain regions
and has been corrected in the CDR version of the NOAA
dataset. SCE was derived with the monthly version of the
CDR dataset which gives the fraction of the month that snow
cover was present. While efforts have been made to correct
for changes in charting procedures in the CDR dataset, it is
not possible to correct for any technological bias related to
the increase in the volume and resolution of satellite informa-
tion over time as well as variations in analyst experience and
improvements in analysis tools. However, these errors are
expected to be small compared to seasonal and interannual
fluctuations in continental snow cover extent, and compari-
son of NOAA SCE over NA and EUR with a multi-dataset
average (Sect. 4.1) showed that the difference series did not
contain any trend which provides some evidence that these
errors are not affecting the homogeneity of continental SCE
in March and April.

The other datasets shown in Table 1 (B2003, CMC, ERA-
40, ERA40-rec, NCEP, and PMW) were used to establish
the confidence interval in March and April hemispheric SCE
series as outlined in Sect. 3. The CMC and B2003 SCE se-
ries were combined (henceforth referred to as B2003+CMC)
to provide additional NA monthly SCE series for estimating
confidence intervals. These two datasets used different pre-
cipitation and temperature products to derive the first-guess
snow depth field for optimal interpolation of surface snow
depth observations, but SCE should be largely insensitive
to the background field in the November–April period when
the snow line fluctuates across the mid-latitudinal zone of
NA where there is a dense network of surface observations
(Brown, 2000).

3 Methodology

The development of estimates of uncertainty in NH spring
SCE series over the 1922–2010 period required the use of
two different strategies based on the temporal distribution
of the available datasets. For the earlier period of record
where the only estimate was the B2000 snow cover index,
the 95% confidence intervals were estimated from regression
against the multi-dataset average anomaly over the 1967–
1992 period of overlapping data using the regression forecast
error method described in Sect. 3.1 below. The multi-dataset
method outlined in Sect. 3.2 was used to estimate the confi-
dence interval when there were at least 5 datasets available
which coincided with the period 1967–2002. Confidence in-
tervals in the period from 2003–2010 were estimated from
the regression of NOAA against the CMC operational analy-
sis over the 1998–2010 period of overlapping data; the CMC
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Table 1. Summary of data sources used in the analysis.

Acronym Dataset Description Period Resolution Data Source

B2000 Monthly snow cover index for NA and Eurasia
based on gridded observed and reconstructed
daily snow depth at surface climate stations

NA, 1915–1992
EUR, 1922–1991

190.5 km Brown (2000)

B2003 Daily snow depth analysis over NA from
optimal interpolation of historical in situ snow
depth observations

1979–1997 ∼ 35 km Brown et al. (2003)

CMC Canadian Meteorological Centre global daily
snow depth analysis from optimal interpolation
of real-time in situ observations

1998–2010 ∼ 35 km National Snow and Ice
Data Center (NSIDC),
Brasnett (1999)

ERA-40 ERA-40 reanalysis daily snow depths
from assimilated surface observations

1957–2002 ∼ 275 km European Centre for
Medium-Range Weather
Forecasts (ECMWF),
Uppala et al. (2005).

ERA-40rec ERA-40 reconstructed snow cover duration
with temperature-index snow model of Brown
et al. (2003)

1957–2002 ∼ 275 km
(with 5 km em-
pirical elevation
adjustment)

Brown et al. (2010)

NCEP Snow cover proxy derived from National
Centers for Environmental Prediction
Reanalysis daily temperatures (land area inside
the 0◦C isotherm)

1948–2008 ∼ 275 km Brown et al. (2010), Earth
System Research
Laboratory, NOAA,
Kalnay et al. (1996)

NOAA National Oceanic and Atmospheric
Administration weekly snow/no-snow charts

1966–2010 190.5 km Rutgers, U.,
Robinson et al. (1993)

PMW Snow water equivalent from Scanning
Multichannel Microwave Radiometer (SMMR,
1978–1987) and the Special Sensor
Microwave/Imager (SSM/I, 1987–2008)

1978–2008 24 km NSIDC, Savoie et al. (2009)

SCE estimates represent an independent source of SCE in-
formation that is highly correlated to the NOAA dataset in
March and April (see bottom row Table 2) when the snow
line is located where the observing network is relatively
dense. The B2000 and NOAA datasets were retained as the
base series for applying the confidence intervals to maintain
the continuity of the series presented in Brown (2000) and
the 4th IPCC Assessment, and because there is greater confi-
dence in the homogeneity of these series.

3.1 Regression-based estimate of confidence interval

Regression analysis was used to estimate the confidence in-
terval from the standard error of forecast (SEf) when there
were insufficient datasets to compute a multi-dataset estimate
of the confidence interval. SCE series were converted to stan-
dardized anomalies with respect to the period of the regres-
sion analysis which makes the error analysis insensitive to
the choice of dependent and independent variables, and re-
duces the computation of SEf in each year to Eq. (1) as the

anomaly series has a standard deviation of 1, and the mean
and sum of the anomaly series are both 0.

SEf = SEres

√
[(1+(1/n)(1+x2

i )) (1)

where SEres is the standard error of the residuals from the
best fit line,xi is the standardized anomaly of the indepen-
dent variable in yeari, andn is the number of pairs of anoma-
lies included in the regression analysis. A 95% confidence
interval is then obtained from±tcSEf where tc is the Stu-
dent’s t-statistic corresponding to 0.05 level of significance
for n-1 degrees of freedom. An estimate of the root mean
squared error in the dependent data was obtained from a stan-
dard leave-one-out cross-validation (LOOCV) analysis.

3.2 Multi-dataset estimate of confidence interval

Confidence intervals were estimated from the standard er-
ror of the multiple datasets over the 1967–2002 period when
there were at least five datasets available in any given year.
The five dataset minimum was imposed to reduce variability
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Table 2. Correlation and root mean square differences (rmsd) in
detrended SCE anomalies versus the multi-dataset average anomaly
(excluded the dataset being evaluated) in three periods of data over-
lap. The units of rmsd are dimensionless (standardized anomalies).
The correlations and rmsd (from LOOCV) are also shown for the re-
gression analyses used to estimate the confidence interval in B2000
prior to 1967 and for NOAA after 2002. All correlations are statis-
tically significant at the 0.05 level.

Dataset overlap period: North America Eurasia
1959–1991 March April March April

r rmsd r rmsd r rmsd r rmsd

B2000 0.87 0.45 0.90 0.41 0.85 0.53 0.78 0.61
ERA-40 0.73 0.67 0.83 0.53 0.86 0.49 0.72 0.68
ERA-40rec 0.81 0.56 0.92 0.37 0.95 0.30 0.91 0.42
NCEP 0.67 0.73 0.77 0.61 0.87 0.50 0.78 0.56

Dataset overlap period:
1979–2002

B2003+CMC 0.95 0.33 0.91 0.38 n/a n/a
ERA-40 0.66 0.75 0.84 0.53 0.87 0.40 0.81 0.54
ERA-40rec 0.87 0.48 0.91 0.41 0.89 0.37 0.84 0.45
NCEP 0.72 0.68 0.91 0.39 0.80 0.51 0.91 0.44
NOAA 0.84 0.54 0.90 0.43 0.65 0.65 0.62 0.74
PMW 0.88 0.42 0.86 0.47 0.77 0.60 0.70 0.71

Regression analysis
results for B2000
versus multi-dataset for
1967–1992 period

0.94 0.28 0.91 0.34 0.91 0.34 0.84 0.48

Regression analysis
results for NOAA
versus CMC for
1998–2010 period

0.97 0.22 0.99 0.16 0.98 0.18 0.91 0.43

due to sample size. The datasets available in this period were
B2000 (up to 1992), B2003+CMC (NA only from 1979),
ERA-40, ERA-40rec, NCEP, NOAA, and PMW. Datasets
were converted to standardized anomalies for a 1979–2002
reference period and an estimate of the confidence interval
in monthly SCE obtained from the standard error (SE) of the
average multi-dataset standardized anomaly series computed
from

SE= s/
√

(n−1) (2)

which depends on the standard deviation,s, of then datasets
included in the average anomaly. The 95% confidence inter-
val was then computed from±tc SE as previously defined.
The B2000 series was padded with values estimated from
regression against the NOAA dataset for the 1993 to 2002
period to convert the series to anomalies with respect to the
1979–2002 reference period. The error estimates were con-
verted back to SCE in units of 106 km2 using the reference
period mean and standard deviation from the NOAA dataset.

An evaluation of the degree of consistency between
datasets in March-April was carried out as part of the multi-
dataset uncertainty analysis over two periods of dataset over-
lap: 1959–1991, and 1979–2002. This included the corre-
lation and root mean square difference between detrended
SCE anomalies for each dataset and the multi-dataset aver-
age anomaly series (excluding the dataset being evaluated).

4 Results

4.1 Dataset evaluation

The dataset evaluation results for March and April separated
by continent (Table 2) show a clear contrast in dataset consis-
tency between the two continents in April with most datasets
exhibiting closer agreement over NA than EUR. The NOAA
dataset is a case in point; it had the lowest agreement with the
multi-dataset average over EUR in March–April in the 1979–
2002 overlap period but had comparable correlations to the
other datasets over NA in the same period. The reason for the
overall greater dataset consistency over NA is likely related
to the more regionally constrained character of the continen-
tal snow cover variability compared to EUR which is clearly
seen in the principal component analysis of NH SCE vari-
ability provided by Frei and Robinson (1999). Other note-
worthy points are the generally strong performance of the
in situ based estimates of SCE (B2000 and B2003+CMC)
and the fact that downscaling SCE from ERA-40 temperature
and precipitation provided superior results than SCE derived
from ERA-40 snow depth fields. There was no evidence of
any systematic trends or step changes in the difference series
between NOAA and the multi-dataset average in March and
April over the 1967 to 2002 period (not shown), confirming
the work by the Rutgers Global Snow Lab to maintain the
homogeneity of the NOAA snow cover series.

To gain further insight into the spatial pattern of between-
dataset variability, data were interpolated to a common
190.5 km polar stereographic grid and the standard deviation
contoured (Fig. 1, top panels). The analysis was carried out
with the monthly snow cover anomaly series to reduce the
impact of topographic influences on the interpolation pro-
cess and remove systematic differences in how each dataset
“sees” snow cover. The PMW dataset was excluded from the
analysis, as the spatial pattern of snow cover deviated sig-
nificantly from the other datasets in mountainous areas and
around the southern boundary of the snow line. Not surpris-
ingly, the main zone of dataset variability follows the snow
line position in each month, as shown by the 50% mean snow
cover contour for the multi-dataset average, with the largest
dataset variability located over northern Europe and north-
central Russia in March. The dataset variability is lower in
April with the Eurasian zone of maximum dataset variability
remaining over the western part of the continent while the
variability is more-or-less evenly spread along the mean po-
sition of the snow-line in NA. In general, the spatial pattern
and relative magnitude of the results follow the interannual
variability in snow cover (Fig. 1, bottom panels) with the ex-
ception of eastern Eurasia and the Tibetan plateau where the
between-dataset variability is lower. These results should not
be confused with those shown in Table 2 which are computed
with monthly values of continental SCE.
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March
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Fig. 1. Top: spatial pattern of between-dataset variability expressed
as the average annual standard deviation in monthly snow cover
anomalies over the 1979–2002 period for five datasets with data
in the 1979–2002 overlap period (excluding PMW). The red line
shows the mean position of the multi-dataset 50% snow cover con-
tour. Bottom: spatial pattern of interannual variability in snow cover
over the same period from the standard deviation in monthly snow
cover fraction computed with the NOAA dataset. Units are % snow
cover fraction.
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Fig. 2. Smoothed (13-term binomial filter) values of the 95% con-
fidence interval in standardized SCE anomalies computed from the
two methods outlined in Sect. 3.

4.2 Confidence interval

The results of the confidence interval analysis for March and
April SCE are shown in Fig. 2 for both continents. The val-
ues are smoothed with a 13-term binomial filter to facilitate
the comparison, as the estimated confidence intervals from
the multi-dataset method can vary greatly from one year to
the next. The uncertainty is highest in the period prior to
1967 when the estimate is based solely on the regression
analysis and decreases rapidly over the 1970s and 1980s in
response to an increase in the number of datasets and in-
creased frequency and resolution of snow cover information.
The larger confidence interval for Eurasia April SCE is evi-
dent reflecting the larger differences between datasets noted
previously. The confidence limits are shown in Fig. 3 for NH
SCE expressed as percentages of monthly SCE. These range
from ±5% to±9% for March and April SCE over the early
period of record to±3% to±5% over the more recent period
of satellite-based observations.

4.3 Analysis of updated SCE series including estimated
confidence interval

The estimated confidence intervals were applied to the
merged B2000 and NOAA SCE anomaly series to update the
SCE series published in Brown (2000) (Fig. 4). The final NH
series were converted to SCE in million km2 using the 1979–
2002 reference period mean and standard deviation from the
NOAA dataset (Fig. 5). A 13-term binomial filter was ap-
plied to remove fluctuations on less than decadal time scales
following the approach used in the 4th IPCC Assessment
(Trenberth et al., 2007, Appendix 3.A). The updated anomaly
series in Fig. 4 show that NA March SCE increased over the
first half of the 20th Century followed by a period of rapid
decrease in the late-1980s and early-1990s that rebounded
slightly during the late-1990s. Over Eurasia, March SCE has
remained more or less stable from the 1920s up to the end
of the 1980s when SCE underwent a similar rapid step de-
crease as NA to lower values that have remained more or less
constant since. The NA April SCE series shows some simi-
larity to March with the notable point that the 2010 anomaly
is the lowest in the 96 yr period (the second warmest April
over NA mid-latitudes after 1987 based on air temperature
anomalies averaged over 40–60◦ N for each continent from
the CRUTEM3 dataset (Brohan et al., 2006). Eurasian April
SCE differs from NA with more evidence of long-term de-
creases over the entire period of record. The rapid reductions
in SCE in the late-1980s and early 1990s seen in both conti-
nents in March and April coincide with a change in NH circu-
lation patterns to more positive values of the North Atlantic
and Arctic Oscillations (Watanabe and Nitta, 1999; Overland
et al., 1999).

Analysis of secular variability in the relationship be-
tween winter (January–March) values of the leading 10
modes of NH atmospheric variability computed by the
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Fig. 3. Smoothed (13-term binomial filter) 95% confidence inter-
vals for NH March and April SCE expressed as a % of the corre-
sponding mean SCE.

Climate Prediction Center (http://www.cpc.noaa.gov/data/
teledoc/telecontents.shtml) and NH SCE with 21-yr running
correlations over the period from 1951–2010 showed evi-
dence of an abrupt strengthening of the relationship between
the North Atlantic Oscillation (NAO) and NH March SCE
around 1980, and an increase in the importance of the Scan-
dinavian (SCA) pattern over the period after the mid-1980s
(Fig. 6). The SCA pattern (originally referred to as the
Eurasia-1 pattern by Barnston and Livezey, 1987) describes
the strength of the quasi-permanent ridge of winter high
pressure over Scandinavia and northern Europe with posi-
tive (negative) values of SCA contributing to cold (warm)
March temperature anomalies over central Eurasia and to an
opposite response over northwestern NA (Fig. 7, top panel).
NAO has been shown to be a significant factor in winter
precipitation and snow cover variability across western Eu-
rope and eastern North America (Gutzler and Rosen, 1992;
Clark et al., 1999; Bednorz, 2004; Henderson and Leathers,
2010) and positive (negative) values of NAO contribute to
warm (cold) March temperature anomalies over central Eura-
sia (Fig. 7, bottom panel) and an opposite albeit weaker re-
sponse over NA. Prior to the mid-1980s, NAO and SCA were
not significantly correlated but since then the two patterns
exhibit a significant negative correlation that reinforces the
influence on temperature anomalies. The two patterns have
also tended to be in modes that favor warm winter tempera-
ture anomalies over Eurasia since 1980 (Fig. 8). The same
analysis for April (not shown) revealed similar evidence of
an increase in the importance of NAO around 1980 but the
correlations were much weaker than March and ceased to
be statistically significant after about 1990. There were no
sustained significant correlations between April SCE and the
SCA index over the 1951–2010 period. While atmospheric
circulation may be playing a role in some of the recent SCE
decreases, long-term changes in air temperature dominate the
hemispheric response of spring SCE with NH mid-latitude
air temperatures explaining∼50% of the variance in NH
spring snow cover over the 89-yr period analyzed (Fig. 9).
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Fig. 4. Variability in NA and EUR March and April SCE anomalies
over the periods of available data with 13-term filtered values of the
mean and 95% confidence interval. The grey smoothed line in NA
March is filtered values of the Frei et al. (1999) reconstruction. The
width of the smoothed confidence interval is also influenced by the
interannual variability in SCE.
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Fig. 5. Same as Fig. 4 for NH SCE estimated from the
anomaly series using the NOAA 1979–2002 reference period
mean and standard deviation (excludes Greenland which averages
2.16× 106 km2).
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Fig. 6. Running 21-yr correlations between the NAO and SCA
modes of NH winter (JFM) circulation and NH March SCE. Cor-
relations exceeding 0.4 are nominally significant at a 0.05 level as-
suming data series are not autocorrelated.

Results of linear trend analysis including annual estimates
of error in SCE are shown in Table 3 for the entire data pe-
riod as well as for the more recent period of satellite data
from 1970, along with corresponding trends in land sur-
face air temperatures over 40–60◦ N from the CRU dataset.
The 2010 updates show greater evidence of systematic de-
creases in continental spring SCE than those published in
Brown (2000), particularly over NA where April SCE trends
are now showing statistically significant decreases over the
period from 1915, and an acceleration of SCE decreases over
recent decades. SCE decreases over NA in March are still
not statistically significant and it is plausible that the SCA
and NAO patterns discussed above are playing a role, as
these patterns have tended to be in modes since 1980 that
contribute to cooler spring temperatures over western NA
(Fig. 7).

-SCA

+NAO

Fig. 7. Average March surface air temperature anomalies from the
NCEP reanalysis for the 10 winters in the 1951–2010 period with
the most negative values of the SCA index (top) and the most posi-
tive values of the NAO index (bottom). The plots were generated us-
ing the online composite plotting tool athttp://www.esrl.noaa.gov/
psd/cgi-bin/data/composites/printpage.pl.

The change in NH March and April SCE is estimated
to be −3.24× 106 km2 (100 yr)−1 and −4.72× 106 km2

(100 yr)−1 respectively over the period from 1922–2010
and −7.26× 106 km2 (100 yr)−1 and −8.30× 106 km2

(100 yr)−1 respectively when computed over 1970–2010.
One factor contributing to the higher rates of decrease over
the period of satellite coverage is the fact that data start
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Table 3. Summary of linear least-squares regression trend analysis results for snow cover extent including annual error estimates. Trends
significant at a 0.05 level are indicated with asterisks. The corresponding least square estimates of temperature trends are included for land
areas between 40–60◦ N from the CRU dataset.

Region March April

SCE Temp SCE Temp
106 km2 (100 yr)−1 ◦C(100 yr)−1 106 km2 (100 yr)−1 ◦C(100 yr)−1

North America

1915–2010 −0.22 1.63* −0.83* 1.23*
1970–2010 −0.77 2.55 −3.77* 2.84*

Eurasia

1922–2010 −3.20* 3.06* −1.17* 2.24*
1970–2010 −4.83* 5.98* −5.33* 3.57*

Northern Hemisphere

1922–2010 −3.24* 2.50* −4.72* 1.87*
1970–2010 −7.26* 4.69* −8.30* 3.30*
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Fig. 8. Variation in standardized anomalies of winter (January-
March) values of the NAO and SCA indices over the period from
1951 to 2010 as computed by the NOAA Climate Prediction Cen-
ter.

during a period when hemispheric snow cover was relatively
high and include the recent period of rapid warming. The ob-
served trends in spring SCE are consistent with the observed
warming (see Table 3) and with evidence of earlier snowmelt
and a shift in hydrologic regimes over NH land areas (e.g.
Yang et al., 2002; Stewart et al., 2005; Aziz and Burn, 2006;
Tan et al., 2011).

The temperature sensitivity values for the updated NH
spring SCE series were computed using March and April
monthly temperature anomaly series from the CRUTEM3
dataset averaged over NH land areas between 40 and 60◦ N
following Brown (2000) (Table 4). A least-squares re-
gression method was used that included the annual es-
timates of observational errors in SCE. The results ob-
tained with the updated NH series with annual error esti-
mates included are−1.44× 106 km2 ◦C−1 (r2

= 0.50) and
−2.00× 106 km2 ◦C−1 (r2

= 0.49) for March and April

respectively which are similar to the values published in
Brown (2000) except that temperature explains a larger frac-
tion of the variance with the updated series. The tempera-
ture sensitivity results shown in Table 4 suggest that EUR
will dominate the NH SCE response to warming in March,
while the April response will have important contributions
from both continents. The larger temperature sensitivity in
April is consistent with the findings of Flanner et al. (2011)
that NH terrestrial snow cover feedbacks are strongest in the
April–May period.

A comparison of the air temperature sensitivities com-
puted over the pre- and post-satellite periods of data record
for each continent separately (Table 4) showed that SCE tem-
perature sensitivity in April has increased significantly over
NA in the period since 1970 while it has decreased signif-
icantly over Eurasia. A number of factors could be con-
tributing to these changes such as changing feedback po-
tential from shifts in snowlines (e.g. see Fig. 2a in Flan-
ner et al., 2011), changes in atmospheric circulation, and
changes in spring snow depths. For example, a number of
Russian studies have reported significant increases in win-
ter snow accumulation over large areas of Eurasia (Buly-
gina et al., 2009; Shmakin, 2010) that contrast with trends
toward generally shallower winter snow cover over Canada
(Brown and Braaten, 1998; Kitaev et al., 2005). Everything
being equal, shallower snowpacks will respond more quickly
to temperature anomalies so the difference in recent winter
snow accumulation trends between the two continents may
be playing a role. Further work is required to investigate the
apparent difference in snow accumulation trends between the
two continents.
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Fig. 9. Relationship between NH March and April SCE and corre-
sponding land area air temperature anomalies over 40–60◦ N from
the CRU dataset. The amount of variation explained by air temper-
ature was 49.6% and 48.7% for March and April respectively.

5 Summary and conclusions

An update to the NH spring SCE series used in the 4th
IPCC Assessment (Lemke et al., 2007) is provided based on
the B2000 index and the latest CDR version of the NOAA
weekly SCE dataset with annual error estimates obtained
from regression analysis and intercomparison of multiple
datasets. The analysis revealed that the 95% confidence in-
terval in NH spring SCE is in the±5–10% range over the
pre-satellite period and±3–5% over the satellite era. The
multi-dataset analysis indicated there are larger uncertain-
ties monitoring spring SCE over Eurasia than NA which is
considered to be related in part to the more complex re-
gional character of snow cover variability. The between-
dataset variability was largest over northern Europe and
north-central Russia in March.

Trend analysis of the updated SCE series showed that NH
spring snow cover extent has undergone significant reduc-
tions over the past∼90 yr and that the rate of decrease has

Table 4. Summary of regression analysis between continental
and hemispheric monthly SCE and air temperature anomalies over
land areas between 40–60◦ N from the CRU dataset. Units are
106 km2 ◦C−1. The fraction of the variance explained by the regres-
sion is shown in parentheses. Statistically significant (0.05 level)
values are indicated with a single asterisk while a plus symbol sig-
nifies that the 1970–2010 slope is significantly different (0.05 level)
from the period prior to 1970.

Region March April

North America

1922–1969 −0.46* (0.38) −0.62* (0.48)
1970–2010 −0.36* (0.32) −0.92*+ (0.73)
1922–2010 −0.37* (0.34) −0.81* (0.61)

Eurasia

1922–1969 −0.94* (0.47) −1.49* (0.43)
1970–2010 −0.93* (0.60) −0.94*+ (0.45)
1922–2010 −0.91* (0.55) −1.09* (0.49)

Northern Hemisphere

1922–1969 −1.69* (0.51) −2.36* (0.41)
1970–2010 −1.53* (0.46) −1.83* (0.40)
1922–2010 −1.44* (0.50) −2.00* (0.49)

accelerated over the past 40 yr. Warmer temperatures were
determined to be the dominant factor in the observed SCE
decreases, with air temperature anomalies over NH mid-
latitude land areas explaining∼50% of the observed variabil-
ity in SCE. However, there was also evidence that changes
in atmospheric circulation around 1980 involving the NAO
and the SCA pattern were enhancing reductions in March
SCE over Eurasia. The rate of decrease in March and April
NH SCE over the 1970–2010 period is∼0.8 million km2 per
decade which corresponds to a 7% and 11% decrease in NH
March and April SCE respectively from pre-1970 values. In
March, most of the change is being driven by Eurasia (NA
trends are not significant) but both continents exhibit signifi-
cant reductions in April SCE. Evidence of recent contrasting
changes in SCE temperature sensitivity over NA and EUR in
April (NA increasing, EUR decreasing) may be a response
to the northward shift in snowlines and/or continental dif-
ferences in winter snow accumulation trends; further work
is needed to more clearly understand the mechanisms in-
volved in these differing continental snow cover responses
to a changing climate.

Supplementary material (SCE time series) related to this
article is available online at:
http://www.the-cryosphere.net/5/219/2011/
tc-5-219-2011-supplement.zip.
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