
The Cryosphere, 9, 2383–2398, 2015

www.the-cryosphere.net/9/2383/2015/

doi:10.5194/tc-9-2383-2015

© Author(s) 2015. CC Attribution 3.0 License.

Summertime evolution of snow specific surface area close to the

surface on the Antarctic Plateau

Q. Libois1,2,a, G. Picard1,2, L. Arnaud1,2, M. Dumont3, M. Lafaysse3, S. Morin3, and E. Lefebvre1,2

1Univ. Grenoble Alpes, LGGE (UMR5183), 38041 Grenoble, France
2CNRS, LGGE (UMR5183), 38041 Grenoble, France
3Météo-France – CNRS, CNRM – GAME (UMR 3589), Centre d’Études de la Neige, Grenoble, France
anow at: ESCER Centre, Department of Earth and Atmospheric Sciences, Université du Québec à Montréal,

201 Av. du Président-Kennedy, Montréal, H3C3P8, Canada

Correspondence to: Q. Libois (libois.quentin@uqam.ca)

Received: 15 July 2015 – Published in The Cryosphere Discuss.: 26 August 2015

Revised: 27 November 2015 – Accepted: 2 December 2015 – Published: 15 December 2015

Abstract. On the Antarctic Plateau, snow specific surface

area (SSA) close to the surface shows complex variations

at daily to seasonal scales which affect the surface albedo

and in turn the surface energy budget of the ice sheet. While

snow metamorphism, precipitation and strong wind events

are known to drive SSA variations, usually in opposite ways,

their relative contributions remain unclear. Here, a compre-

hensive set of SSA observations at Dome C is analysed with

respect to meteorological conditions to assess the respective

roles of these factors. The results show an average 2-to-3-fold

SSA decrease from October to February in the topmost 10 cm

in response to the increase of air temperature and absorption

of solar radiation in the snowpack during spring and sum-

mer. Surface SSA is also characterized by significant daily

to weekly variations due to the deposition of small crystals

with SSA up to 100 m2 kg−1 onto the surface during snow-

fall and blowing snow events. To complement these field ob-

servations, the detailed snowpack model Crocus is used to

simulate SSA, with the intent to further investigate the pre-

viously found correlation between interannual variability of

summer SSA decrease and summer precipitation amount. To

this end, some Crocus parameterizations have been adapted

to Dome C conditions, and the model was forced by ERA-

Interim reanalysis. It successfully matches the observations

at daily to seasonal timescales, except for the few cases when

snowfalls are not captured by the reanalysis. On the contrary,

the interannual variability of summer SSA decrease is poorly

simulated when compared to 14 years of microwave satellite

data sensitive to the near-surface SSA. A simulation with dis-

abled summer precipitation confirms the weak influence in

the model of the precipitation on metamorphism, with only

6 % enhancement. However, we found that disabling strong

wind events in the model is sufficient to reconciliate the sim-

ulations with the observations. This suggests that Crocus re-

produces well the contributions of metamorphism and pre-

cipitation on surface SSA, but snow compaction by the wind

might be overestimated in the model.

1 Introduction

The surface energy budget of the Antarctic Plateau depends

on snow physical properties (Van As et al., 2005; Brun et al.,

2011). Snow specific surface area (the surface area of the ice–

air interface per unit mass of snow, hereafter referred as SSA)

strongly affects snow albedo and light e-folding depth, espe-

cially in the near-infrared (NIR; e.g. Domine et al., 2006),

and thus controls the amount of solar radiation absorbed by

the surface (e.g. Warren, 1982; Gardner and Sharp, 2010;

Carmagnola et al., 2013). Snow density controls the light

e-folding depth (Libois et al., 2013) and the effective ther-

mal conductivity of the snowpack (Sturm et al., 1997; Löwe

et al., 2013), among other factors. Although the surface of

the Antarctic Plateau has often been considered homoge-

neous in space and stable in time, especially for the cali-

bration of satellite radiometers (e.g. Loeb, 1997; Six et al.,

2004), recent studies pointed out that it is subject to large and

rapid variations (e.g. Bindschadler et al., 2005; Lacroix et al.,
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2009; Champollion et al., 2013). Snow properties evolve over

time in response to internal thermodynamical processes such

as snow metamorphism (Colbeck, 1983) and densification

(Gallée et al., 2001). The surface is also affected by meteoro-

logical events such as snowfall and wind events (Kuhn et al.,

1977; Champollion et al., 2013). The resulting dependence

between snow physical properties and the energy budget of

the snowpack gives rise to feedbacks (e.g. Albert et al., 2004)

and is therefore of great interest to climate studies. This high-

lights the need to identify the main processes which drive

surface snow evolution on the Antarctic Plateau.

The Plateau is characterized by very low temperatures (an-

nual average around −50 ◦C; Augustin et al., 2004), low

precipitable water vapour content (less than 1 mm; Trem-

blin et al., 2011) and low annual accumulation (less than

30 kgm−2; Frezzotti et al., 2004), so that the physical pro-

cesses controlling snow characteristics are substantially dif-

ferent from other environments (e.g. Alps, tundra). Dur-

ing the polar night, temperatures usually remain well be-

low −50 ◦C and snow metamorphism barely operates (Town

et al., 2008). On the contrary, at the end of spring, the

increase of snow temperature causes significant metamor-

phism, which leads to an overall decrease of snow SSA

(e.g. Picard et al., 2012), densification (Fujita et al., 2009)

and other morphological changes of the surface snow (Gow,

1965). As a result, albedo decreases by several percents (Jin

et al., 2008; Wang and Zender, 2011), which significantly

alters the surface energy budget of the snowpack (van den

Broeke, 2004). Picard et al. (2012) have shown that this

interdependence between snow optical properties and SSA

accelerates snow metamorphism through a positive feed-

back: when solar energy is absorbed deeper, it warms up

the snowpack and increases temperature gradients, which in

turn enhances metamorphism close to the surface. As a con-

sequence, SSA generally decreases and e-folding depth in-

creases. This positive feedback involving the e-folding depth

adds up to the snow albedo feedback (e.g. Flanner and Zen-

der, 2006; Box et al., 2012), making summer metamorphism

very sensitive to snow optical properties at the surface.

Hitherto, this summertime SSA decrease has been gen-

erally deduced from albedo measurements (Jin et al., 2008;

Kuipers Munneke et al., 2008), which also depend on illumi-

nation conditions, cloudiness and surface roughness (Wang

and Zender, 2011), but such a decrease has seldom been mea-

sured directly in the field. In addition, the interannual vari-

ability of summer metamorphism is poorly understood. Pi-

card et al. (2012) showed a strong correlation with summer

amount of precipitation and hypothesized a strong inhibition

of the above mentioned positive feedbacks. They used a sim-

ple snow evolution model to support their hypothesis, but

these features of the seasonal cycle of SSA have never been

simulated with a more detailed snowpack model such as Cro-

cus (Brun et al., 1989, 1992). In fact, such models are usually

not fully adequate to polar environments (Dang et al., 1997;

Groot Zwaaftink et al., 2013). Their semi-empirical param-

eterizations for e.g. snow metamorphism, compaction and

fresh snow characteristics are indeed often based on obser-

vations made in alpine environments (e.g. Marbouty, 1980;

Guyomarc’h et al., 1998) and do not necessarily perform

well in colder an drier areas. In addition, the few studies

dedicated to the simulation of snow physical properties on

the Antarctic Plateau focus on the evolution of the snow-

pack internal and surface temperatures (e.g. Brun et al., 2011;

Fréville et al., 2014) or on punctual profiles (Dang et al.,

1997; Groot Zwaaftink et al., 2013), rather than on temporal

evolution of snow properties. Nevertheless, correctly simu-

lating SSA evolution remains crucial to better understand the

sensitivity of this region to future changes in precipitation

and air temperature (Krinner et al., 2006).

The aim of this paper is to investigate the summertime evo-

lution of snow SSA at Dome C, as well as to further under-

stand its variability, from the daily to the interannual scale.

To quantify this evolution, we use three data sets. Firstly,

a large number of in situ SSA measurements were collected

at Dome C during summer campaigns (Sect. 2.1). These in-

cluded vertical profiles between the surface and 10 cm, and

snow samples from the surface, both measured manually dur-

ing the summer campaigns 2012–2013 and 2013–2014 using

the SSA profiler ASSSAP (a light version of POSSSUM; Ar-

naud et al., 2011). In addition, automatic measurements of

snow spectral albedo were used to estimate the evolution of

SSA close to the surface during daylight periods. Secondly,

the evolution of SSA in the topmost centimetres was esti-

mated from remote sensing observations of the snowpack in

the microwave range over the period 2000–2014 based on Pi-

card et al. (2012) (Sect. 2.2). Thirdly, the detailed snowpack

model SURFEX/ISBA-Crocus (hereinafter referred as Cro-

cus; Vionnet et al., 2012) was used to simulate snow SSA at

Dome C (Sect. 2.3). For this, it was adapted to Dome C con-

ditions by changing some parameterizations (Libois et al.,

2014a) and forced by ERA-Interim near-surface reanalysis

(Dee et al., 2011). The observations and simulations are

compared in Sect. 3. The interannual variability of summer

metamorphism is eventually investigated in more details with

Crocus. In particular, the sensitivity of simulated SSA to

changes in precipitation, wind and temperature are estimated,

which also helps identifying the current potential and limits

of Crocus (Sect. 4).

2 Materials and methods

The temporal variations of snow SSA at Dome C were es-

timated from in situ measurements and satellite data. Snow

spectral albedo in the visible and NIR range has been mea-

sured using a specifically designed automatic instrument,

from which surface SSA variations were deduced over the

summers 2012–2013 and 2013–2014. To complement these

automatic measurements and to explore the variations deeper

in the snowpack, supplementary SSA measurements were
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taken manually with the instrument ASSSAP. These com-

prised surface SSA measurements, as well as vertical pro-

files down to 10 cm depth. Eventually, to study the interan-

nual variations of surface SSA, satellite measurements of mi-

crowave brightness temperature were used.

2.1 Field observations

2.1.1 SSA estimation from spectral albedo

measurements

Using the dependence between snow albedo and SSA close

to the surface (Warren, 1982; Domine et al., 2006), variations

of the latter were estimated from spectral albedo measure-

ments in the range 300–1100 nm (3 nm resolution). Albedo

was recorded every 12 min at approximately 600 m west of

Concordia station (75.1◦ S, 123.3◦ E; 3230 ma.s.l.), in the

“clean area” (75.09960◦ S, 123.30244◦ E). The albedome-

ter, designed and assembled at Laboratoire de Glaciologie et

Géophysique de l’Environnement, was deployed on 10 De-

cember 2012 and has been running almost continuously since

then. It has two similar measurement heads looking to the

surface and to the sky (Fig. 1). The horizontality of the heads

was checked at installation with an electronic inclinometer

and was better than 0.5◦. One head is optimized for mea-

surements in the UV and visible, the other for visible and

NIR. Only the data from the visible–NIR head were used

in the present study. Each measurement head consists of

one upward- and one downward-looking fiber optic mounted

with specially designed cosine collectors with a 180◦ field

of view. The fibers are sequentially connected to an Ocean

Optics® Maya Pro spectrophotometer through a Leoni® op-

tical multiplexer. The spectral albedo is obtained by com-

puting the ratio of upwelling to downwelling irradiance after

calibration of the raw measurements. We developed an al-

gorithm to estimate the time series of snow SSA from these

measurements. Its steps are computed as follows.

1. Albedo correction. Downwelling hemispherical irradi-

ance measurements are strongly affected by the quality

of the cosine response of the light collector, especially at

high solar zenith angles (SZA) typical of the Antarctic

Plateau (e.g. van den Broeke, 2004). Despite our effort

to build highly diffusing collectors, small remaining de-

viations from the ideal cosine response need to be cor-

rected. To this end, the angular response of our collec-

tors was determined in the laboratory and used to esti-

mate the true incident and reflected fluxes from the mea-

sured ones (Grenfell et al., 1994). The deviation from

the perfect cosine response is less than 4 % for angles

below 70◦ but increases beyond 80◦ due to the dome

geometry of our collectors that capture a significant

amount of light at grazing angles (e.g. Bernhard et al.,

1997). In addition, the correction requires knowledge of

the direct vs. diffuse parts of the incident flux (Grenfell

et al., 1994). Since this information is not available from

measurements, the direct/diffuse ratio was supposed to

depend only on SZA and was thus treated in the same

way for clear-sky and cloudy conditions. It was calcu-

lated at all wavelengths with the atmospheric radiative

transfer model SBDART (Ricchiazzi et al., 1998) for

typical summer clear-sky conditions at Dome C. Con-

trary to incident radiation, reflected radiation is assumed

isotropic. Although the upward- and downward-looking

fibers are assumed to have the same angular response,

the transmittances of both optical lines are different. To

account for this effect, both lines were intercalibrated.

For this, the two collectors were consecutively set in

the downward-looking position by simply flipping ver-

tically the fibers of 180◦. The procedure lasted less than

30 s and was performed on a clear-sky day, so that the

upward flux could be assumed constant. The ratio of

both spectra was used to rescale all the albedos anal-

ysed in this study. Despite all these precautions, albedo

values sometimes exceed 1.0 in the visible range at high

SZA and occasionally reach up to 1.05, indicating insuf-

ficient correction.

2. Daily computation of albedo. To minimize the effect

described above, we consider only albedo at noon.

For this, the five measurements taken between 11:30

and 12:30 LT are averaged every day. This means that

albedo measurements are taken at constant solar az-

imuth angle throughout the summer but not necessarily

at constant SZA. This choice is also made because pref-

erential orientation of surface relief is known to trans-

late into an azimuthal dependence of albedo (Wang and

Zender, 2011), an artefact that should be avoided here.

We nevertheless tried to use constant SZA (i.e. variable

local hour and azimuth) which minimizes errors due to

imperfect cosine response of the collectors, and the re-

sults were very similar (less than 15 % difference).

3. Daily SSA estimation. The SSA of surface snow is then

estimated from the daily albedo spectral dependence. To

this end, the snowpack is assumed semi-infinite and uni-

form. In this case, the diffuse and direct spectral albedos

αdiff
λ and αdir

λ are related to SSA using the analytical for-

mulation of Negi et al. (2011):

αdiff
λ = exp

(
−4

√
2Bγλ

3ρiceSSA(1− g)

)
(1)

αdir
λ (µ)= exp

(
−

12

7
(1+ 2µ)

√
2Bγλ

3ρiceSSA(1− g)

)
, (2)

where µ= cos(θ), θ is the SZA, B and g describe

snow single scattering properties and are assumed con-

stant (B = 1.6 and g = 0.86 after Libois et al., 2014b),

ρice = 917 kgm−3 is the bulk density of ice at 0 ◦C, and

γλ is the wavelength-dependent absorption coefficient
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Figure 1. Spectral albedo measurement at Dome C (picture taken

on 12 January 2014, 11:00 LT). The vertical mast is approximately

2 m high.

of ice, taken from Warren and Brandt (2008). SSA is re-

trieved by minimizing the root mean square deviation

between the spectra of daily albedo and the theoreti-

cal albedo, accounting for the direct and diffuse com-

ponents of solar irradiance calculated with SBDART.

The comparison is computed in the range 700–1050 nm

where the impact of light-absorbing impurities is mi-

nor (Warren and Wiscombe, 1980) and the sensitivity

of snow albedo to snow SSA is high. To account for

remaining uncertainties in the albedo spectra, a scaling

coefficient A is optimized along with SSA, so that the

function to optimize α is actually given by

αλ = A
[
rdiff
λ αdiff

λ (SSA)+
(

1− rdiff
λ

)
αdir
λ (SSA)

]
, (3)

where rdiff
λ gives the proportion of diffuse light. A is

meant to compensate for all the factors affecting albedo

measurements in a wavelength-independent way which

were not explicitly corrected by the previous processing

steps. This inversion method is somehow similar to esti-

mating SSA from albedo ratios at different wavelengths

(Zege et al., 2008).

4. SSA evolution through the summer. This procedure is

applied every day independently of sky conditions. It

is repeated every year from 18 October to 27 February,

when SZA at noon remains lower than 67◦. Out of this

period, we consider that albedo measurements are not

accurate enough to retrieve SSA (e.g. Wang and Zender,

2011).

The SSA retrieved with this algorithm roughly corre-

sponds to the SSA of the top 1–2 cm of the snowpack since

the light e-folding depth ranges from approximately 5 mm at

1050 nm to 4 cm at 700 nm depending on snow characteris-

tics (Libois et al., 2013). A rigorous forward estimation of

the accuracy of the algorithm would require a thorough anal-

ysis of several factors including the uncertainty on the collec-

tor calibration procedure, the effect of snow anisotropy (Car-

magnola et al., 2013), the shadowing of the surface by the

instrument, the potential tilt of the sensor, the validity of the

semi-infinite snowpack assumption, etc. Taking into account

all these factors and their intercorrelation is beyond the scope

of this article and will be addressed in future work. Here the

accuracy is estimated using a global approach based on the

analysis of the coefficient A obtained during the retrieval.

Over the period of observations, it varied in the range 0.98–

1.03, while ideal measurements would have yielded A= 1.

The deviation of A from 1, that is −2 to +3 %, gives an

estimation of the albedo measurement accuracy. Hence we

assume that the albedo accuracy is 3 %. The corresponding

accuracy on SSA estimation is then derived from Eq. (1).

For the spectral range of interest and the SSA values encoun-

tered at Dome C, the estimated accuracy of the SSA retrieval

is better than 25 %.

2.1.2 Surface SSA

The SSA of surface snow was also manually measured dur-

ing the summer campaigns 2012–2013 and 2013–2014. In

2012–2013, surface SSA was measured using ASSSAP in

horizontal position. For this, ASSSAP slides along a 1 m

long horizontal rail fixed approximately 5 cm above the sur-

face and measures the snow reflectance at 1310 nm (Fig. 2),

from which the surface SSA is estimated with an accuracy

of 10–15 % using the algorithm described in Arnaud et al.

(2011). Every 2 days from 22 November 2012 to 16 Jan-

uary 2013 (except from 3 to 6 January), 1 m long horizon-

tal transects of SSA were thus measured without disturb-

ing the snow surface, at two fixed locations distant of about

5 m situated 500 m south-east of the station (75.10374◦ S,

123.34093◦ E). During this summer campaign, the SSA of

precipitation particles was also measured at several occasions

using ASSSAP sampler. For this, freshly deposited particles

were collected on a metallic plate and gathered to fill the

sampler. From 27 November 2013 to 29 January 2014, the

SSA of snow samples taken from the surface were measured

almost every day using ASSSAP sampler. These measure-

ments were taken 100 m further east compared to the previ-

ous year (75.10379◦ S, 123.34484◦ E) and amounted to a to-

tal of 630 snow samples taken randomly in an area of approx-

imately 1000 m2 over 64 days. As light e-folding depth at

1310 nm (∼ 2 mm) is smaller than in the range 700–1050 nm,

the SSA measured with ASSSAP are not directly comparable

to the albedo-derived estimates given that the snow is rarely

homogeneous near the surface.

The Cryosphere, 9, 2383–2398, 2015 www.the-cryosphere.net/9/2383/2015/
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Figure 2. Experimental setup for transect measurements of SSA

using ASSSAP in horizontal position. The distance between both

vertical stakes is 1 m. ASSSAP slides along the horizontal rail and

records the SSA of the surface beneath every 10 ms. For the mea-

surements, the setup was covered by a dark tarpaulin to avoid the

supersaturation of ASSSAP photodiodes.

2.1.3 Profiles of SSA

From 23 November 2012 to 16 January 2013, 98 vertical pro-

files of SSA were measured with ASSSAP from the surface

to 10 cm depth at 1 cm resolution (e.g. Carmagnola et al.,

2014). The measurements were performed at two different

sites. The first one was 600 m west of the main building of

Concordia station (75.09971◦ S, 123.30224◦ E) and the sec-

ond one was 500 m south-east of the station, just beside the

location of the surface SSA measurements. Every day during

this period (except from 3 to 6 January), two profiles were

measured, one day at the first site, the other day at the sec-

ond one. All these profiles were taken at different places in

undisturbed snow areas with a minimum distance of 5 m be-

tween each other. From 25 November 2013 to 25 January

2014, one vertical profile of SSA was measured with ASS-

SAP every 2 days, amounting to 32 profiles taken in the same

area where surface snow samples were taken.

2.2 Satellite observations

The SSA time series from 1999 to present was estimated

from high-frequency microwave radiometers using the ap-

proach proposed in Picard et al. (2012). The advantage of

observing in the microwave domain is the independence to

weather conditions and illumination, which allows to retrieve

SSA year-round even during the polar night. To obtain infor-

mation on the surface snow, we used observations from the

Advanced Microwave Sounding Unit (AMSU) constellation

that is able to operate up to 150 GHz. Using observations at

150 and 89 GHz makes it possible to estimate the average

SSA over the top 7 cm approximately. Lower frequencies are

more sensitive to snow properties deeper down in the snow-

pack (Surdyk, 2002; Picard et al., 2009) and present a lower

interest for this study.

Following the method of Picard et al. (2012), the DMRT-

ML forward microwave emission model (Picard et al., 2013)

is used to compute the microwave brightness temperature

of an idealized two-layer snowpack. The top layer is 7 cm

thick and the bottom one is semi-infinite. The temperature

of both layers is set to the 10-day average air temperature

taken from ERA-Interim and the density is assumed constant

at 320 kgm−3 according to the mean surface density reported

by Libois et al. (2014a). The SSA in both layers are the un-

knowns to be estimated. For this, for each 10-day period from

1999 to present, the SSA in both layers is optimized so that

the model predictions at 150 and 89 GHz match the satel-

lite observations. To relate the SSA to the grain size metric

r required by the DMRT theory, an empirical scaling coef-

ficient is used according to Brucker et al. (2010), such that

SSA= 3/(ρice
r

2.8
).

This method is simple because using two observations it

considers only two unknowns, while the density and layer

thickness are probably variable and are known to affect mi-

crowave signal as well (even if this effect is of second order

compared to the SSA). As a result, this SSA time series is

not expected to be as accurate as the spectrometry-based ap-

proach described in Sect. 2.1.1. The most critical assumption

is probably that of constant density. Assuming a density of

300 kgm−3 (respectively 350 kgm−3) instead of 320 kgm−3

yields SSA differences up to +20 % (respectively −40 %),

which gives a broad estimate of 40 % for the accuracy of the

method. Nevertheless, with 14 years of data there is a good

indication of the interannual variability of the seasonal vari-

ations of SSA.

2.3 Crocus simulations

2.3.1 Reference simulation (A)

The temporal evolution of snow physical properties at

Dome C was computed with the detailed snowpack model

Crocus (Vionnet et al., 2012), which simulates the evolution

of a one-dimensional multi-layer snowpack in response to

meteorological conditions. The number and thickness of nu-

merical snow layers evolve with time. The snow prognos-

tic properties relevant for this study are snow SSA, snow

density, snow temperature and snow sphericity (Carmagnola

et al., 2014). Crocus was adapted to the specific meteorolog-

ical conditions prevailing at Dome C, essentially to handle

the very low amount of precipitation, the characteristics of

fresh snow, the compaction of snow by the wind during drift

events and the rate of metamorphism. In particular, the opti-

mal thicknesses of the five topmost layers were set at 2, 3, 5,

5 and 10 mm, to ensure that surface processes are accurately

www.the-cryosphere.net/9/2383/2015/ The Cryosphere, 9, 2383–2398, 2015
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represented. The fresh snow density is fixed at 170 kgm−3

and fresh snow SSA is fixed at 100 m2 kg−1. All these adap-

tations are detailed in Libois et al. (2014a). For the present

study, a few more modifications were made.

– In Crocus the impact of drift (Vionnet et al., 2012) was

originally given in terms of changes in snow dendricity

and sphericity (Brun et al., 1992). It was reformulated in

terms of SSA using Eq. (5) of Carmagnola et al. (2014),

which is valid for SSA less than 65 m2 kg−1. In case

of higher SSA as encountered at Dome C, this formu-

lation leads to SSA decrease during wind drift events.

Since such decrease is contradictory to observations in

Antarctica (Kuhn et al., 1977; Grenfell et al., 1994),

when the parameterization predicts a decrease of SSA,

the latter is actually forced to remain unchanged.

– SSA decrease is computed from the formulation F06 of

snow metamorphism (Carmagnola et al., 2014) which

is based on a fit of the semi-empirical microphysical

model of SSA decrease rate proposed by Flanner and

Zender (2006). Because of working in the mid-latitude

context, the fit in Carmagnola et al. (2014) was com-

puted over a period of 14 days, as in Oleson et al.

(2010). Here we use the same approach but extend the

period to 100 days to account for the slower metamor-

phism resulting from the low temperatures prevailing at

Dome C. Moreover, below −50 ◦C, where the parame-

terization is no more valid, we implemented a scaling

of the temperature dependence of snow metamorphism

based on Clausius–Clapeyron law for vapour saturation

pressure. This latter choice has little impact because at

such low temperatures snow metamorphism is anyway

negligible.

– The vertical profiles of absorbed solar energy were com-

puted with the physically based radiative transfer model

TARTES (Libois et al., 2013) at 10 nm spectral resolu-

tion rather than with the original semi-empirical param-

eterization implemented in Crocus (Brun et al., 1992).

Indeed, TARTES has been fully implemented in Crocus

and is used to compute the vertical profile of energy ab-

sorption of a multi-layered snowpack based on density

and SSA profiles. TARTES also accounts explicitly for

snow grain shape, through the asymmetry factor g and

the absorption enhancement parameter B. According to

Libois et al. (2014b), we chose B = 1.6 and g = 0.86.

TARTES simulates the impact of light-absorbing im-

purities in snow. Here a constant load of black carbon

equal to 3 ng g−1 was assumed, in agreement with ob-

servations (Warren et al., 2006).

– Although in Crocus the roughness length for momen-

tum is usually 10 times larger than that for heat transfer

at the air–snow interface, here both were fixed to 1 mm,

as Brun et al. (2011) did in a previous study because

this choice produced the best fit between simulated and

observed surface temperatures at Dome C.

Crocus was forced by ERA-Interim atmospheric reanal-

ysis for 2 m air temperature and specific humidity, surface

pressure, precipitation amount, 10 m wind speed and down-

ward radiative fluxes. ERA-Interim data were already used

by Fréville et al. (2014) to simulate snow surface temper-

ature on the Antarctic Plateau. As detailed in Libois et al.

(2014a), precipitation rate was multiplied by 1.5 to ensure

that simulated annual snow accumulation matches observa-

tions at Dome C. On the contrary, ERA-Interim wind was

found in good agreement with measurements performed on

the 40 m high instrumented tower at Dome C (Genthon et al.,

2013). Libois et al. (2014a) also pointed out that drift events

observed at Dome C could satisfactorily be predicted from

ERA-Interim wind time series, further supporting the con-

sistency of wind data. As for 2 m air temperature, it does

not show any significant bias during the summer from 2000

to 2013 compared to automatic weather station Dome C II

(http://amrc.ssec.wisc.edu/aws). It does show a positive bias

of about 2 K during the winter, but this is not critical for our

study because snow metamorphism barely operates in winter.

The snowpack was first initialized with a depth of 12 m

using observations of density and SSA at Dome C (Picard

et al., 2014). It comprised 25 layers. Crocus was then run

three times consecutively for the period 2000–2010, which

ensured that snow characteristics in the top 2 m of the snow-

pack were consistently initialized. Then, Crocus was run

from 2000 to 2014 and the full state of the snowpack was

recorded every 12 h, yielding the reference simulation A that

is analysed in the following. The discontinuity in the spinup

is not critical here since the analysis focuses with priority to

the end of the period.

2.3.2 Supplementary simulations (B, C, D, E)

To estimate the sensitivity of Crocus simulations to summer

precipitation and air temperature and to test the hypotheses

proposed by Picard et al. (2012) to explain the intensity and

interannual variability of summer metamorphism at Dome C,

four additional Crocus simulations were performed and are

summarized in Table 1. In simulation B, precipitation is dis-

abled throughout the summer (November–February). In sim-

ulation C, 2 m air temperature is increased by 3 K through-

out the year to mimic the average warming predicted by the

CMIP5 ensemble on the Antarctic Plateau by 2100 for the

RCP4.5 scenario (van Oldenborgh et al., 2013). To estimate

the strength of the positive feedback between snow albedo

and snow metamorphism, in simulation D the snow opti-

cal properties are calculated assuming the SSA remains con-

stant, equal to 100 m2 kg−1. To isolate the impact of precipi-

tation on summer metamorphism interannual variability from

that of snow drift which increases snow density and thus de-

creases snow metamorphism (Flanner and Zender, 2006), in

simulation E the 10 m wind speed forcing was taken constant

The Cryosphere, 9, 2383–2398, 2015 www.the-cryosphere.net/9/2383/2015/
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Table 1. Crocus simulations performed for this study.

Simulation Characteristics

A Reference

B Same as A; precipitation set to 0 from November to February

C Same as A; 2 m air temperature increased by 3 K

D Same as A; SSA kept constant at 100 m2 kg−1 for calculations of optical properties

E Same as A; wind speed in the forcing is constant,

equal to the average ERA-Interim wind speed over the simulation period (5 ms−1),

fresh snow density is set to 270 kgm−3

– equal to its mean annual value – throughout the simula-

tion. In this simulation, the density for fresh snow was also

increased from the nominal value of 170 to 270 kgm−3 to

compensate the fact that averaged wind speed is not sufficient

to increase snow density through snow drift. This choice

ensured that simulated vertical profiles of density remained

consistent with the observations.

3 Results

Simulations and measurements show that SSA close to the

surface evolves at different timescales. The SSA of the top

millimetres is essentially driven by meteorological condi-

tions such as snowfall and drift events (e.g. Grenfell et al.,

1994), leading to rapid variations at the daily scale. Deeper,

a seasonal decreasing trend is superimposed to these rapid

variations. This decrease extends from late October to early

February and is highly variable from one year to another. The

following sections address these two timescales.

3.1 Seasonal variations of SSA in the uppermost 2 mm

For each 1 m long horizontal transect taken with ASSSAP

in 2012–2013, the average surface SSA in the range 0.25–

0.75 m was computed. For that, the measured transect was

first divided in 1 cm intervals over which the median SSA

value was taken. These medians were then used to com-

pute the average value and standard deviation for the tran-

sect, from which the temporal evolution of SSA at the two

locations was deduced (Fig. 3a). The main features are the

same for both sites, with SSA ranging from about 25 to

90 m2 kg−1. The periods when precipitation or diamond dust

were visually observed at Dome C are also indicated. It high-

lights that most rapid SSA increases followed precipitation

and diamond dust events, as expected because such events

bring at the surface snow particles characterized by high SSA

as pointed out by Walden et al. (2003) and confirmed by

our SSA measurements of precipitation particles that ranged

from 90 to 120 m2 kg−1. SSA generally decreased after fresh

snow deposition due to metamorphism (e.g. Taillandier et al.,

2007), and it took about 10 days for SSA to drop from ap-

proximately 90 to 30 m2 kg−1. More rapid decreases were

observed, like on 14 December 2012, after a strong wind

event blew away a thin layer of soft and high SSA snow and

left hard windpacked old snow with low SSA. Erosion rather

than snow metamorphism thus explains such rapid changes.

The slight continuous increase in SSA observed from 10 to

16 January 2013 is concomitant with the formation of hoar

crystals at the surface as reported by Gow (1965) and Cham-

pollion et al. (2013). The formation of such crystals may

thus contribute to increase snow SSA at the surface (Domine

et al., 2009; Gallet et al., 2013).

Figure 3b shows the time series of surface SSA obtained

from the snow samples measured during summer 2013–

2014. The SSA of individual samples was in the range 28–

185 m2 kg−1 and the daily median SSA was in the range 35–

85 m2 kg−1. Again, the largest SSA increases occurred after

precipitation events. These were followed by periods with

SSA decrease. Significant variations also occurred during pe-

riods without observed precipitation (e.g. 15–28 December

2013). Snow drift was regularly observed during these peri-

ods. The large standard deviation of measurements taken the

same day highlights the spatial variability of surface SSA,

mainly resulting from snow drift (Libois et al., 2014a). From

12 to 16 January, hoar crystals covered most of the surface

and maintained the SSA around 60 m2 kg−1 despite the ab-

sence of precipitation.

These observed SSA variations, corresponding roughly to

the top 2 mm of the snowpack, were compared to the ref-

erence Crocus simulation A. For this, the average SSA of

the top 2 mm was computed from the simulated SSA pro-

files. The simulated SSA vary in the same range as the mea-

sured ones (Fig. 3). In addition, Crocus reproduces relatively

well the rapid SSA increases, except when precipitation is

not predicted by ERA-Interim (e.g. 1 January 2013 and 25–

27 January 2014). The rate of decrease of SSA due to meta-

morphism in between precipitation events is also correctly

simulated for summer 2012–2013 but slightly less so for

2013–2014, probably because metamorphism is better cap-

tured when an individual snow location is followed through-

out the summer, which was the case in 2012–2013 but not in

2013–2014. The effect of soft snow removal by the wind as

well as the formation of surface hoar are currently not sim-
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Figure 3. (a) Evolution of surface SSA during summer 2012–2013 deduced from the 1 m long horizontal transects taken with ASSSAP at

2 distinct locations (ASSSAP site 1 and site 2) and SSA of the top 2 mm simulated with Crocus. The points show the mean value of each

transect and the standard deviation is indicated by the shaded area. (b) Evolution of surface SSA during summer 2013–2014 deduced from

the snow samples measured with ASSSAP and SSA of the top 2 mm simulated with Crocus. The grey circles indicate single measurements

and the white circles highlight the median value for each day. In (a and b), the shaded bands indicate the periods of observed snowfall or

diamond dust at Dome C. The amount of precipitation predicted by ERA-Interim is also shown (right y axis, dark grey columns).

ulated by Crocus, which explains the discrepancies between

model and observations when these processes were observed.

3.2 Seasonal variations of SSA in the uppermost 2 and

10 cm

Beyond these rapid variations of surface SSA, mainly due to

snow deposition and transport, the spectral albedo measure-

ments and the vertical profiles show that SSA decreases all

along the summer. Figure 4 shows the time series of SSA

deduced from spectral albedo measurements, which corre-

sponds approximately to the SSA of the top 2 cm of the snow-

pack. During summer 2013–2014, the SSA clearly decreased

from 80 to 30 m2 kg−1 from late October to late January, with

most of the decrease occurring before December. This sea-

sonal trend is not fully observed in 2012–2013 because the

time series begins on 10 December (date of deployment of

the instrument), so that only the rapid variations due to snow-

fall are visible. Both years are characterized by a large and

sudden increase of surface SSA at the end of summer, result-

ing from a large snowfall (25 February 2013 and 11 February

2014).

The average SSA of the top 2 cm was computed from

the SSA profiles simulated by Crocus. With a mean nega-

tive bias of 1.2 m2 kg−1 and a root mean square difference of

8.1 m2 kg−1 over the two summers, the simulated values are

in very good agreement with the observations (Fig. 4). More-

over, Crocus successfully simulates the seasonal decrease of

SSA observed in 2013–2014, as well as the large increase

resulting from the large amounts of fresh snow deposited in

February 2013 and 2014. The model also captures the rapid

variations of SSA due to precipitation, as already mentioned

in Sect. 3.1. Since solar irradiance decreases exponentially

with depth, the uppermost millimetres of the snowpack con-

tribute more to the albedo than the snow below. As a result,

the SSA retrieved from albedo measurements is the result of

a convolution of the actual SSA profile by an exponential to a

first approximation. To account for this effect, the simulated

SSA was also computed using a 2 cm exponential decay (e.g.
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Figure 4. Variations of SSA close to the surface deduced from the spectral albedo measurements, and average SSA of the top 2 cm of the

snowpack simulated with Crocus for the summers 2012–2013 and 2013–2014. The shaded bands indicate the periods of observed snowfall

at Dome C. The amount of precipitation predicted by ERA-Interim is also shown (right y axis, dark grey columns). The horizontal arrows

highlight the periods of measurements shown in Fig. 3.

Mary et al., 2013) rather than a linear average. This resulted

in slightly higher SSA (less than 5 %). Likewise, since the

choice of 2 cm is to some extent arbitrary, the average was

also computed over the topmost 1 and 4 cm. It resulted in less

than 5 % changes, except for the simulated SSA spikes fol-

lowing precipitation that were more marked for 1 cm. Hence

the simulated seasonal trend remains consistent with the ob-

servations however near-surface SSA is defined.

The summertime decrease of SSA is confirmed by the

series of vertical profiles of SSA taken independently with

ASSSAP during the same two summers (Fig. 5). The aver-

age SSA in the top 10 cm decreased from 45 to 28 m2 kg−1

in 2012–2013 and from 37 to 29 m2 kg−1 in 2013–2014. The

summer decrease was thus more significant in 2012–2013

than in 2013–2014, which is reproduced by Crocus (Fig. 5).

More precisely, the main difference between both summers

is the initial value of SSA. This can be explained by the fact

that ERA-Interim precipitation accumulated from March 1st

to November 1st was 45 % larger in 2012 than in 2013. The

SSA decrease observed in 2013–2014 is successfully simu-

lated, even at low temperatures although Crocus was devel-

oped for alpine conditions. In the 2012–2013 simulation Cro-

cus underestimates the rapid SSA decrease measured from

mid-December. These two independent sets of measurements

nevertheless demonstrate that Crocus forced by ERA-Interim

is able to simulate the summer variations of SSA close to the

surface.

3.3 Interannual variability of SSA in the uppermost

10 cm

In situ measurements of SSA down to 10 cm depth are only

available for the summers 2012–2013 and 2013–2014. To

further understand summer metamorphism at Dome C, the

time series of simulated SSA was compared to the SSA esti-

mated from AMSU observations from 2000 to 2014 (Fig. 6).

For this, the average SSA of the top 7 cm was computed daily

for the simulated snowpack. It was compared to the SSA esti-

mated from the measured snowpack brightness temperatures

(Sect. 2.2).

The SSA simulated with Crocus and that deduced from

AMSU observations (Fig. 6) are well correlated (r = 0.70),

which highlights the ability of Crocus to simulate the annual

cycle of surface SSA over more than a decade. The SSA val-

ues are also in the same range. In particular, the rapid de-

crease at the end of spring, as well as the slower rate of in-

crease in winter, are similar in the simulation and observa-

tions. The rapid increases occurring around 15 February and

already observed in Fig. 4 are generally well reproduced and

correspond to strong precipitation events (e.g. 2002, 2004,

2011). In contrast, the amplitude of SSA variations is occa-

sionally very different. For instance, the SSA decrease dur-

ing the summers 2001–2002 and 2007–2008 is much larger

in the model than suggested by satellite observations. More-

over, the simulated SSA increased almost as usual in win-

ters 2007 and 2010 while AMSU data suggest that this in-

crease was much less than usual. AMSU observations nev-

ertheless confirm that summer metamorphism was more in-

tense in 2012–2013 than in 2013–2014, as noted from in situ

measurements (Fig. 5).

4 Discussion

A version of Crocus adapted to the meteorological conditions

of the Antarctic Plateau was used to simulate the temporal

variability of snow SSA close to the surface at Dome C, in

order to identify the physical processes responsible for sum-

mertime SSA variations. In general, a satisfactory agreement

was obtained with regards to in situ measurements and re-

mote sensing observations of snow SSA, even though some

discrepancies remained between model and observations.
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Figure 6. Comparison of SSA evolution deduced from AMSU brightness temperatures at 89 and 150 GHz and that simulated with Crocus

(top 7 cm).

4.1 Metamorphism, snowfall and wind-driven SSA

variations

During the winter period at Dome C, defined here as the

period extending from late February to mid-October when

metamorphism is insignificant, snowfalls deposit onto the

surface fresh snow whose detailed characteristics generally

depend on weather conditions, but whose SSA is invariably

high. Snow metamorphism is very limited during this pe-

riod due to the prevailing extremely low temperatures. As

a consequence, at the end of winter, snow properties in the

layer accumulated during this period (∼ 6 cm according to

Libois et al., 2014a) mainly reflect the properties of win-

ter precipitation. In late October, as solar radiation becomes

stronger and air temperature increases, snow metamorphism

starts, resulting in an approximate 3-fold decrease of SSA

by mid-February. The time of initiation of summer meta-

morphism in the Crocus simulation is very consistent with

the observations, as well as the date when minimum SSA

is reached. Conversely, the amplitude of the SSA decrease

is more contrasted between observations and model. Supple-

mentary simulations were thus performed to investigate what

drives the amplitude of summertime metamorphism in Cro-

cus.

The results of simulation B, where summer precipitation

was inhibited, imply that snow metamorphism only weakly

depends on the total amount of precipitation during summer

(Fig. 7), probably less than proposed by Picard et al. (2012).

Indeed, the minimum average SSA for the topmost 7 cm at

the end of summer simulated by Crocus, which is used to

quantify the intensity of metamorphism, is on average only

6 % lower in simulation B than in simulation A. This meta-

morphism indicator is chosen instead of using the decrease in

SSA, because the latter is highly dependent on the SSA value

at the end of the previous winter, a quantity that is likely to

be erroneous in Crocus simulations. High SSA snow actually

deposited during snowfall not only increases the overall SSA

but also reduces snow metamorphism by inhibiting the posi-

tive feedback as proposed in Picard et al. (2012). To quantify

the importance of this feedback, we run Crocus with a con-
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Figure 7. Minimum SSA (top 7 cm) at the end of summer for AMSU estimations and Crocus simulations A, B, C and D from 2001 to 2014.

stant SSA (100 m2 kg−1) as input of the radiative transfer cal-

culations performed with TARTES to deactivate the link be-

tween snow SSA variations and albedo, all other things being

equal (simulation D). This resulted in less intense summer

metamorphism (Fig. 7), with the SSA at the end of sum-

mer 15 % higher than in simulation A, which is consistent

with simulations using a simpler model than Crocus but with

similar optical scheme, as noticed by Picard et al. (2012).

This suggests that using a fine representation of snow opti-

cal properties which accounts for snow properties evolution

is essential to correctly simulate SSA evolution at Dome C.

The results of simulation C, where 2 m air temperature was

increased by 3 K year-long, show a 12% lower SSA at the

end of summer with respect to the reference simulation. This

shows that the direct effect of atmospheric warming on dry

snow metamorphism is likely to remain moderate over the

twenty-first century. This also highlights the primordial role

of feedback loops. Overall, the sensitivity of simulated sum-

mer SSA decrease to air temperature and precipitation is rel-

atively weak. This probably explains why the SSA decrease

is less variable from one year to another in Crocus than in the

observations (Fig. 7).

Although the impact of precipitation seems moderate in

Crocus simulations at the seasonal scale, snowfall occur-

rence and amount drive Crocus-simulated SSA variations in

the top 2 mm, consistently with field observations. While

the deeper layers show a seasonal SSA evolution, the sur-

face layer mostly reflects day-to-day variations of weather

conditions. To simulate the evolution of the snowpack at

Dome C, it is thus critical to know precipitation very pre-

cisely, a quantity that is difficult to obtain from reanalyses

in Antarctica (Bromwich et al., 2011). In practice, ERA-

Interim reanalysis sometimes misses precipitation events at

Dome C (Fig. 3), which explains most differences between

observations and simulations. More generally, shortcomings

in parameterizing the surface boundary layer on the Antarctic

Plateau sometimes conduct to poorly simulated air tempera-

ture and wind profiles (Genthon et al., 2010), which proba-

bly explains part of these difference as well. Indeed, besides

precipitation, surface snow at Dome C is also largely shaped

by snow drift, which redistributes snow and controls density

and SSA in the topmost centimetres (Gallée et al., 2001; Al-

bert et al., 2004). Snow drift also generates spatial variability

of snow properties close to the surface because it can ac-

cumulate fresh snow at some locations and make apparent

older snow at other locations through erosion (Libois et al.,

2014a), which is illustrated by the large standard deviation

of surface SSA measurements in Fig. 3b. This spatial het-

erogeneity is difficult to simulate and makes complicated the

comparison between punctual observations and simulations

(Groot Zwaaftink et al., 2013). In particular, the horizontal

transects of SSA used in this study are representative of ap-

proximately 1cm×1m, which is not sufficient to capture this

spatial heterogeneity, especially in the topmost millimetres

of the snowpack. This might explain the discrepancies with

Crocus simulation for the rapid variations of surface SSA.

Conversely, the spectral albedo measurements cover an area

with radius of approximately 6m (Schwerdtfeger, 1976) and

probe deeper into the snowpack. Hence they are more likely

to be representative of the average snow SSA in the topmost

2cm at Dome C, even though larger-scale spatial variabil-

ity exists (e.g. Picard et al., 2014). This probably explains

the success of Crocus to simulate the SSA variations derived

from spectral albedo measurements (Fig. 4).

Despite a few deviations from the observations, Crocus

captured well the variations of SSA in response to meteo-

rological conditions and metamorphism at Dome C. Since

metamorphism strongly depends on the temperature profile

close to the surface, this suggests that Crocus successfully

resolves the energy budget of the snowpack close to the sur-

face, as already pointed out by Brun et al. (2011) and Fréville

et al. (2014). It also proves that the metamorphism param-

eterization of Flanner and Zender (2006) is appropriate to

study snow on the Antarctic Plateau, although this parame-

terization cannot be strictly assessed in complex conditions

as encountered at Dome C. This is promising for larger-scale

studies over the Antarctic Plateau and puts Crocus as an ap-

propriate tool to investigate the spatial pattern of SSA over
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Figure 8. Minimum SSA of the topmost 7 cm of the snowpack simulated by Crocus for each summer (1 December–15 January) vs. accumu-

lated precipitation during this period for simulations A and E.

the Antarctic continent (Scambos et al., 2007), which proba-

bly results from the combined effects of precipitation, snow

drift and metamorphism.

4.2 Interannual variability of summer metamorphism

The fact that Crocus poorly simulates the interannual vari-

ability of SSA summer decrease, while it proved efficient to

simulate the seasonal variations, is more puzzling. Actually,

the apparent intensity of the metamorphism depends both on

the SSA value at the end of winter and on the rate of SSA

decrease during summer, which are driven by different pro-

cesses.

The differences between simulated and observed SSA at

the end of winter (Fig. 6) can be attributed either to inac-

curacies in ERA-Interim precipitation or to the simple treat-

ment of fresh snow characteristics in Crocus. For instance,

the large and sudden increase of SSA simulated in Jan-

uary 2007 (Fig. 6) results from a strong deposition event

forecasted by ERA-Interim reanalysis, probably stronger

than the actual event. This overestimation might result from

the large horizontal scale of the reanalysis (∼ 50 km). As

for fresh snow SSA in Crocus, it was assumed constant

(100 m2 kg−1), based on our observations of summer precip-

itation at Dome C. In winter, due to colder conditions, the

SSA of fresh snow might be higher, though, as suggested by

the observations of Walden et al. (2003) who measured SSA

of diamond dust up to 300 m2 kg−1. This highlights the need

to extend the existing parameterizations of fresh snow prop-

erties developed in the Alps to polar regions.

As to the summer decrease in SSA, Picard et al. (2012)

found a strong correlation between AMSU estimated meta-

morphism amplitude and the total amount of summer pre-

cipitation predicted by ERA-Interim (in their study, summer

refers to the period of 1 December–15 January). Figure 8

shows the minimum SSA (topmost 7 cm) over this summer

period in terms of accumulated precipitation for the reference

simulation A and for simulation E, where wind remains weak

throughout the year and drift events are thus inhibited. For

the reference simulation, there is no significant correlation,

which is contradictory to Picard et al. (2012) and to the ob-

served influence of snowfall on the rapid variations of SSA in

the present paper. On the contrary, for simulation E the cor-

relation is significant (r = 0.81), in agreement with AMSU

observations. This suggests that the impact of wind on snow

SSA may be too strong in simulation A. In Crocus, snow drift

increases not only surface SSA but also density through com-

paction, which decreases metamorphism rate (Flanner and

Zender, 2006). The apparent deficiency of the reference sim-

ulation can be attributed either to an inappropriate parameter-

ization of snow compaction and SSA increase by the wind or

to an oversensitivity of snow metamorphism in Crocus which

may be incorrect. This makes wind a major driver of snow

metamorphism in the reference simulation and highlights the

need to further understand the impact of drift events on sur-

face snow density.

5 Conclusions

Crocus simulations suited to the meteorological conditions of

the Antarctic Plateau were compared to in situ and satellite-

derived measurements of snow SSA at Dome C in order

to identify the processes controlling SSA evolution on the

Antarctic Plateau. The observations show rapid variations of

SSA close to the surface, mainly due to precipitation and

snow drift. They also confirm the existence of a seasonal

cycle of SSA in the topmost 10 cm of the snowpack, char-

acterized by a 2-to-3-fold decrease of SSA in summer and

a slower, continuous increase in winter due to accumulation

of precipitation crystals with high SSA. These variations of

SSA are successfully simulated by Crocus, provided the me-

teorological forcing is adequate. In particular, the intensity

of the summer metamorphism and the date of its initiation

agree well with the observations. However, the interannual
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variability of the summer decrease in SSA is not well cap-

tured, probably because the parameterization of the effect of

snow drift on snow SSA is too strong in the model. This

study demonstrates that Crocus can capture the main fea-

tures of snow metamorphism in the conditions of Dome C

for which it was not originally developed, which is promis-

ing for extended studies of surface snow SSA and evolution

at the scale of the Antarctic Plateau or the whole continent.

Nevertheless, SSA is very dependent on the occurrence and

intensity of precipitation events, which are known to be diffi-

cult to predict by reanalysis, highlighting the need to further

improve the characterization of precipitation in this high and

extremely dry region. Other physical processes not yet simu-

lated by Crocus should also be regarded as potential progress

for simulating snow properties on the Antarctic Plateau, such

as the formation of hoar crystals, and the mixing of the top-

most layers of the snowpack due to snow drift.
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