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Abstract

Random projection (RP) have recently emerged as popular techniques in the
machine learning community for their ability in reducing the dimension of very
high-dimensional tensors. Following the work in [29], we consider a tensorized
random projection relying on Tensor Train (TT) decomposition where each element
of the core tensors is drawn from a Rademacher distribution. Our theoretical
results reveal that the Gaussian low-rank tensor represented in compressed form
in TT format in [29] can be replaced by a TT tensor with core elements drawn
from a Rademacher distribution with the same embedding size. Experiments on
synthetic data demonstrate that tensorized Rademacher RP can outperform the
tensorized Gaussian RP studied in [29]. In addition, we show both theoretically
and experimentally, that the tensorized RP in the Matrix Product Operator (MPO)
format proposed in [S] for performing SVD on large matrices is not a Johnson-
Lindenstrauss transform (JLT) and therefore not a well-suited random projection
map.

1 Introduction

Tensor decompositions are popular techniques used to effectively deal with high-dimensional tensor
computations. They recently become popular in the machine learning community for their ability
to perform operations on very high-order tensors and successfully have been applied in neural net-
works [23| 24], supervised learning [33} 25]], unsupervised learning [32} 22} [11]], neuro-imaging [37]],
computer vision [20] and signal processing [7, 31] to name a few. There are different ways of
decomposing high-dimensional tensors efficiently. Two most powerful decompositions, CP [[13]]
and Tucker [35] decompositions, can represent very high-dimensional tensors in a compressed form.
However, the number of parameters in the Tucker decomposition grows exponentially with the order
of a tensor. While in the CP decomposition, the number of parameters scales better, even computing
the rank is an NP-hard problem [12}[17]. Tensor Train (TT) decomposition [28]] fixed these challenges
as the number of parameters grows linearly with the order of a tensor and enjoys efficient and stable
numerical algorithms.

In parallel, recent advances in Random Projections (RPs) and Johnson-Lindestrauss (JL) embeddings
have succeeded in scaling up classical algorithms to high-dimensional data [36} [6]. While many
efficient random projection techniques have been proposed to deal with high-dimensional vector
data [12 13} 4], it is not the case for high-order tensors. To address this challenge, it is crucial to find
efficient RPs to deal with the curse of dimensionality caused by very high-dimensional data. Recent
advances in employing JL transforms for dealing with high-dimensional tensor inputs offer efficient
embeddings for reducing computational costs and memory requirements [29, [15| 34} 21} |18 |8].
In particular, Batselier et al. [3] used the Matrix Product Operator (MPO) format to propose an
algorithm (TNrSVD) for randomized SVD of very high-dimensional matrices. At the same time, [29]
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used TT decomposition to speed up classical Gaussian RP for very high-dimensional input tensors
efficiently without flattening the structure of the input into a vector.

Our contribution is two-fold. First, we show that tensorizing an RP using the MPO format does
not lead to a JL transform by showing that even in the case of matrix inputs, the variance of such a
map does not decrease to zero as the size of embedding increases. Second, our results demonstrate
that the tensorized Gaussian RP in [29] can be replaced by a simpler and faster projection using a
Rademacher distribution instead of a standard Gaussian distribution. We propose a tensorized RP
akin to tensorized Gaussian RP by enforcing each row of a matrix A € RF¥4" where k < dV to
have a low rank tensor structure (TT decomposition) with core elements drawn independently from a
Rademacher distribution. Our results show that the Rademacher projection map still benefits from JL
transform properties while preserving the same bounds as the tensorized Gaussian RP without any
sacrifice in quality of the embedding size. Experiments show that in practice, the performance of
the tensorized RP with Rademacher random variables outperforms tensorized Gaussian RP since it
reduces the number of operations as it does not require any multiplication.

2 Preliminaries

Lower case bold letters denote vectors, e.g. a, upper case bold letters denote matrices, e.g. A, and
bold calligraphic letters denote higher order tensors, e.g. ,A. The 2-norm of a vector v is denoted by
|| v||2 or simply ||v||. The symbol "o" denotes the outer product (or tensor product) between vectors.
We use vec(M) € R%-92 to denote the column vector obtained by concatenating the columns of
the matrix ML € R%*92_ The d x d identity matrix is denoted by 1. For any integer i we use [i] to
denote the set of integers from 1 to 4.

2.1 Tensors

A tensor T € R4 > *dn ig a multidimensional array and its Frobenius norm is defined by
| TIN5 = (T, 7). if A € REXXIN and B € R %IV we use A ® B € R/ xInIy
to denote the Kronecker product of tensors. Let & € R% X X4~ be an N-way tensor. For

n € [N], let G* € RFn-1XdnxEn be 3rd order core tensors with By = Ry = 1 and
Ry = --- = Ry_1 = R. Arank R tensor train decomposition of § is given by S;, ... i, =
(GM)iy (G (G 1)in 1 (GN). iy, for all indices iy € [dy],--- ,in € [dy]; we will use
the notation S = (G v QQ, cee gV -1 GV )) to denote the TT decomposition.

Suppose T~ € RIvxJixxInxJIn Forn € [N], let A" € REtn-1XInxJnxXBn with By = Ry = 1
and Ry = --- = Ry—1 = R. A rank R MPO decomposition of T is given by T, j,, . .in.jn
(Al)i17j1,:(A2):712-,1271 s (AN 1)17'LN—17]N—171(AN):JN»]N for all indices i1 € [Iﬂ, ©,iIN € [IN]

and j; € [J1],...,j~n € [Jn]; we will use the notation 7 = MPO((A")"_,) to denote the MPO
format.

2.2 Random Projection

Random projections (RP) are efficient tools for projecting linearly high-dimensional data down into a
lower dimensional space while preserving the pairwise distances between points. This is the classical
result of the Johnson-Lindenstrauss lemma [16]] which states that any n-point set P C R? can be
projected linearly into a k-dimensional space with k = Q(¢~21og (n)). One of the simplest way
to generate such a projection is using a d x k random Gaussian matrix A, i.e., the entries of A are
drawn independently from a standard Gaussian distribution with mean zero and variance one. More
precisely, for any two points u,v € P C R? the following inequality holds with high probability

(L=e)llu=v]* < [[f(w) = fFW)I* < (1 +e)llu—v]?,

where f : R? — R¥ (k < d) is a linear map f(x) = ﬁAx and A € R¥*? is a random matrix. We

also call f a Johnson-Lindenstrauss transform (JLT). To have a JLT, the random projection map f
must satisfy the following two properties: (i) Expected isometry, i.e., E [|| f(x)||?| = ||x[|? and (ii)
Vanishing variance, that is Var (|| f(x)||?) decreases to zero as the embedding size k increases.



3 Random Projections based on Tensor Decomposition

3.1 Matrix Product Operator Random Projection

Classical random projection maps f : x — ﬁAx deal with high-dimensional data using a dense

random matrix A. Due to storage and computational constraints, sparse and very sparse RPs have
been proposed in [} [19], but even sparse RPs still suffer from the curse of dimensionality and cannot
handle high-dimensional tensor inputs. To alleviate this difficulty, tensor techniques can be used to
compress RP maps. One natural way for this purpose is to compress the dense matrix A with the
Matrix Product Operator (MPO) format [27]. Relying on the MPO format, we can define a random
projection map which embeds any tensor X € R4 X4~ into R* where k < dydy - - - dyy is the
embedding dimension and is defied element-wise by

.....

1
f(X), = T Z(MPO((gn)ﬁzl))il ink Xitins in € [do]forl <n <N (1)

where gl e RlxdlxlxR g2 e RRxdgxlxR . gN—l c RRde,lxlxR gN c RRdexlcxl
) ) ) )

and the entries of each G" for n € [N] are drawn independently from standard Gaussian distribution.

We call the map defined in eqn. [[lan MPO RP.

Even though this map satisfies expected isometry property, it is not JLT as its variance does not

decrease to zero when the size of random dimension increases.

Proposition 1. Let X € R4**IN_ The MPO RP defined in eqn. (1) satisfies the following
properties

oE|f(X)5 =X}
o Var (| F(X)I3) = 2 |X|[p + 2(1+ 2) tx((X"X)?) for N =2

Proof. We start by showing the expected isometry property. For a fixed k € [k], suppose
Y = Zil,...iN (MPO((gn)r]yZl)zl CINGR Xil, AN ands - MPO((g )n 1) ke With these
definitions y = [y1,...,yx] and f(X) = Wy As itis shown in [29] (e.g., see section 5.1), for
T = <<./\/117 oMY )) with the entries of each core tenors drawn independently from a Gaussian
distribution with mean zero and variance one, we have E(T ® 7T, X @ X) = RV ~1||x||%. Therefore,

S, = (G',.. gN ) and E[y,{] E[(S,. ® 8., X ® X)) = RVN~!|X||%. From which we can
conclude IE[||f( )% = =5 2. Ely2] = ”X”F

Now, in order to find a bound for variance of ||y||3 we need first to find a bound for E[||y||§] For
N =2,let T =MPO(G",G*) and yr = >, ;. TirinkXirsin = Ezl,zz 3, G107 i1 Xiriy- In

terms of tensor network diagrams, we have y = . By defining a tensor M €

dXRxdXR : : _ 2 2 . 1
R element-wise via My, ripry = D5 0 Xiyj1 G0 kG 7y rak Kingas since G ~ N(0,1)
using Isserlis’ theorem [14] gives us

E[lyl5] = E[(G")®*, M*?)] = (E[(G")®], ELM™?))
Z Z g2117"1g%z?"zgzlg,ugzim]]E[MhhizrzMi3r3i4r4]

= Z E 6i1i2 5isi467"17”2 67‘3T4+6i1i35i2145T1T3 67"27>4+5731714 5i2i357‘1T467"27"3) E[Mi1T1i2T2M137‘si4T4]

=E § : MilTlilTlMi3r3i3T3 +E E Mi1T1i4T4Mi1T1i47’4 +E E MilTliszMiszilﬁ

41,13 i1,1q i1,i2
T1,73 1,74 1,72

=E [t (XGP) (0%)TXT) tr (X0 (0%)TXT) | + 2237 37 Misriiri Mirriion

11,04 T1,74



where the second term in above equation is obtained by using symmetry property of tensor M, i.e.,
Miriigry = Migryiyr - Since G2 ~ N(0,1) and Gty (G7))" € R is a random symmetric
positive definite matrix, by standard properties of the Wishart distribution (see e.g., Section 3.3.6
of [9]) we have R?k? || X% + 2Rk tr(XTX)?) + 2E S, . 30, Miryisry My ryiar,- Again,
by using Isserlis’ theorem element-wise for the tensor G2, we can simplify the third term in above
equation

E E § Mi1T1i4T4Mi17‘1i4T4

01,44 71,74

2
_EZ Z Z Z X“71 J1T1k1 72T4k1Xi4j2) (X1173 jariks j4T4k2Xi4j4)

11,14 71,74 J1,J2,k1 J3,j4,k2

=E E E 0515205354 0r1ra 1065153052540k ko +0415405352 0k ko T1T4)X11]1X1432X1133X14j4

11,94 J1,J2- k1
T1,T4 j3,j4,k2

=E > X5 X X Xiags +E Y X5, X5, X5, Xy +E D Xy, X Xy Xy,

i1,%4,71 i1,14,51,34 i1,94,71,74
J1,33,k1,k2 ki,k2 J1,d2k1.k2
= Rk2tr((XTX)?) + kR? | X ||} + kR tr((XTX)?).
Therefore,
Ellylly] = R*k(k + 2) | X7 + 2kR(2 + k) tr((XTX)?).
Finally,
1.1 1.1
Var (I£(X)13) = Elllk# B2y |3 — B[k~ R-3y1312 = =E llyll3 - IX
1
= oo (B2h(k+2) X5 + 2kR2 + B) 6(XTX)%)) = X
2 1 2 2 T2
= —[|X —(1+ =) tr((X'X)*). O
C I E + 51+ ) e(XTX)?)

As we can see for N = 2, by increasing k the variance does not vanish which validates the fact
that the map in eqn. is not a JLT. Using the MPO format to perform a randomized SVD for
larges matrices was proposed in [5] for the first time. As mentioned by the authors, even though
numerical experiments demonstrate promising results, the paper suffers from a lack of theoretical
guarantees (e.g., such as probabilistic bounds for the classical randomized SVD [[10]). The result we
just showed in Proposition |1|actually demonstrates that obtaining such guarantees is not possible,
since the underlying MPO RP used in [5] is not a JLT. As shown in [29]] this problem can be fixed by
enforcing a low rank tensor structure on the rows of the random projection matrix.

3.2 Tensor Train Random Projection with Rademacher Variables

We now formally define the map proposed by Rakhshan and Rabusseau and show that the probabilistic
bounds obtained in [29] can be extended to the Rademacher distribution.

Following the lines in the work done by [29] and due to the computational efficiency of TT decompo-
sition, we propose a similar map to frr(g) by enforcing a low rank TT structure on the rows of A,
where for each row of A the core elements are drawn independently from {—1, 1} with probability
1/2, i.e., Rademacher distribution. We generalize and unify the definition of fTT( R) with Rademacher
random projection by first defining the TT distribution and then TT random projection.

Definition 1. A tensor T is drawn from a TT-Gaussian (resp. TT-Rademacher) distribution with
rank parameter R, denoted by T ~ TTpr(R) (resp. T ~ TTrw(R)), if

_ 1 1 2 N
T—W«g G, G0,
where gl c Rlxd1XR7g2 c RRxdng7.__ ’ngl c RRXdN—1><R7gN c RRdexl and the

entries of each G" for n € [N] are drawn independently from the standard normal distribution (resp.
the Rademacher distribution).



Definition 2. A TT Gaussian (resp. TT Rademacher) random projection of rank R is a linear map
JTr(R) R xxdn s RF defined component-wise by

1
(fTT(R)(X))i = VERN-D

where T ; ~ TTar(R) (resp. T3 ~ TTraa(R)).

(T4, X), i€ [k],

Our main results show that the tensorized Rademacher random projection still benefits from JLT
properties as it is an expected isometric map and the variance decays to zero as the random dimension
size grows. The following theorems state that using Rademacher random variables instead of standard
Gaussian random variables gives us the same results for the bound of the variance while preserving
the same lower bound for the size of the random dimension k.

Theorem 2. Let X € RUXd2XXdn gnd Jet frp R) be either a tensorized Gaussian RP or a
tensorized Rademacher RP of rank R (see Deﬁnition . The random projection map frr(r) satisfies
the following properties:

o E [l frr (X)3] = 1X|%
o Var (|| from) (X)I3) < 23 (1+ 2)" 7 =) |2

Proof. The proof for the Gaussian TT random projection is given in [29]]. We now show the result
for the tensorized Rademacher RP. The proof of the expected isometry part follows the exact same
technique as in [29] (see section 5.1, expected isometry part), we thus omit it here. Our proof to
bound the variance of frr(r) when the core elements are drawn independently from a Rademacher
distribution relies on the following lemmas.

Lemma 3. Let A € R™*"™ be a random matrix whose entries are i.i.d Rademacher random variables
with mean zero and variance one, and let B € R™*™ be a (random) matrix independent of A. Then,

E(A,B)* <3E|B]}.

Proof. Setting a = vec(A) € R™” and b = vec(B) € R™”, we have
]E<A7B>4 = E<a7b>4 = E< @4 b®4 Z E allaalzaalsaalAE[bll?blz?bls?b ]

91,92,13,%4
we can see that in four cases we have non-zero values for Ela;, , a;,, a;,, a;,], i.e.,
1 ifi1:i2:i3=i4 or
ilzig#i3:i4 or
E[ail,aiwais,au] = il = i3 # 7;2 = i4 or (2)
i1 =14 # g = i3.
0 otherwise.

Therefore,
ZE a; | + ) E[a} |E[a}JE[b} |E[b] ] + > E[a] |E[a} |E[b JE[b ]
11713 i17£i4
+ ) E| JE[b JE[b?,].
i1 702

Since E[a} | = E[a? ] = E[a? ] = E[a? ] = E[a,] = 1, the equation above can be simplified as

1 12 3

= ZE bil+ Y EBZIEDL]+ Y EDBZIEDL]+ Y Eb?]EDb?]

11713 11744 11742
—EZb +E) bib2 —E > b +E) bib’
11,13 11=13 11,14
CEY b ES b Y bt - 35|B4 - 2E|bli < 37(BJS.
11—1,4 ’Ll 'LQ ’Z1:i2



Lemma 4. Let A € R¥E pe g random matrix whose entries are i.i.d Rademacher random variables
with mean zero and variance one, and let B € RP*4 be a random matrix independent of A, then

E[BA|% < R(R + 2)E|B|.

Proof. Setting M = BTB we have
E|BA|; =E[tr (BTBAAT) tr (BTBAAT)] = E(M,AAT)?
= > E[(AAT);, i, (AAT);, i, JE[M;, 5, My, ]
11,12,13,%4

= Z Z E[ AvuAszAvsk’AiM]E[MmzMmJ-

11,92,13,24 J,k

Since the components of A are drawn from a Rademacher distribution, the non-zero summands in
the previous equation can be grouped in four cases (which follows from Eq. (2)):

E ||BA||F - Z Z E A"L21]A’le E[Mflll] (21 = 7:2 = 23 = 14)
i1€[d] j,k€[R]
+ Z Z A’L21JAZ3]€ E[M2111M13i3] (il = i3 7£ iy = i4)
ir€ldl,  j k€e[R)]
ig€ld]\{i1}

+ Z Z E[Ai j A Ak Ay k|E[M, i, My, | (i = iy # ia = id3)
ieldl,  jke[R]

ig €[d]\{i1}
2 . . . .
+ ) > E[A AL ALRALKEM], ] (i1 = i3 # g = i4)
i1€ldl,  j k€e[R)
ig €[d]\{i1}

Now by splitting the summations over j, k € [R] in two cases j = k and j # k, and observing that
the 3rd and 4th summands in the previous equation vanish when j # k, we obtain

4
E|BAg

Z Z 11] 1171 +Z Z A121]A2 }E[Mi“]

i1€[d] jE€[R] i1 €[d] kE[R]\{J}
2 2 2
+ E : E EA‘leAZ3j [ 1111 1313 E : E EAzle23k] [MililMiSiS]
i1€ldl,  j€[R] i1 €ld],
ig€ld]\{i1} ig€[d]\{i1} kE[R]\{J}
+ ) > E[A7 A7 EM;, My ]+ ) > E[A} A7 EM] ]
11] Z2J i12 1211 i1] Z4J 1114
i1 €[d], c[R i1 €[d], clR
ig€[d]\{i1} iclR] ig€[d]\{i1} i€l

Since E[A} ;] = 1 and E[A? ;A7 ;] = 1 whenever j # k, it follows that

E ”BAHL}U‘ = R2 ZE 1111 ZE 1111 13i3] +R ZE 1112 1211 + ZE 21z4

Zl€[d i1 €[d], i1 €[d], i1 €[d
ig€ld ]\{71} ig €[d]\{i1} 146[0”\{71}
=R’E > M;; M, +RE Y MM, +RE > M}, —2RE > M,
11, de[d] 11 de[d] 11 Z4€{d] Zle[d}
<R’E[tr(M)’]+ RE Y M;;,M;,;, +RE > M,
i1,i2€[d] i1,i4€[d]

— R’E[tr(BTB)?] + 2RE[tr((BTB)?)),

where in the last equation, we used the fact that M = BT B is symmetric. Finally, by the submultipli-
cavity property of the Frobenius norm, we obtain

E|BA|; = R’E|B||; + 2RE HBTBHF < R’E|B|| + 2RE|B|/}, = R(R + 2)E|BJ}. &



By using these lemmas and the exact same proof technique as in [29] one can find the bound for the
variance (e.g. see section 5.1, bound on the variance of fTT( R) part). |

By employing Theorem 2] Theorem 5 in [29] and the hypercontractivity concentration inequality [30]]
we obtain the following theorem which leverages the bound on the variance to give a probabilistic
bound on the RP’s quality.

Theorem 5. Let P C R4 > %X XN pe q set of m order N tensors. Then, for any ¢ > 0 and any
0 > 0, the following hold simultaneously for all X € P:

. _ m
P(|| fror) (X H2 (1+£¢) ||X||F) >1-6 if k>e2(1+2/R)Nog?V <§> .
Proof. The proof follows the one of Theorem 2 in [29] mutatis mutandi. |

4 Experiments
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Figure 1: Comparison of the distortion ratio of tensorized Rademacher and tensorized Gaussian RPs
and classical Gaussian RP for small-order (left), medium-order (center) and high-order (right) input
tensors for different value of the rank parameter R.

We first compare the embedding performance of tensorized Rademacher and tensorized Gaussian
RPs with classical Gaussian and very sparse [19] RPs on synthetic data for different size of input
tensor and rank parameters. Second, to illustrate that the MPO RP used in [5] is not a well-suited
dimension reduction map, we compare the Gaussian RP f(g) proposed in [29] with the MPO RP
defined in Section For both parts, the synthetic /NV-th order d dimensional tensor X is generated
in the TT format with the rank parameter equals to 10 with the entries of each core tensors drawn
independently from the standard Gaussian distribution.

To compare tensorized Rademacher and Gaussian RPs, following [29] we consider three cases for
different rank parameters: small-order (d = 15, N = 3), medium-order (d =3, N = 12) and high-
order (d = 3, N = 25). The embedding quality of each map is evaluated using the average distortion

ratio D(f, X) = ’ I "cl(;(”)z“ -1 ’ over 100 trials and is reported as a function of the projection size k in

Figure[l] Note that due to memory requirements, the high order case cannot be handled with Gaussian
or very sparse RPs. As we can see in the small-order case both tensorized maps perform competitively
with classical Gaussian RP for all values of the rank parameter. In medium and high order cases, the
quality of embedding of the tensorized Rademacher RP outperforms tensorized Gaussian RP for each
value of the rank parameter. Moreover, the tensorized Rademacher RP gives us this speed up as there
is no multiplication requirement in the calculations. This is shown in Figure [2| (right) where we report
the time complexity of tensorized Rademacher RP vs tensorized Gaussian RP.

To validate the theoretical analysis in Proposition we consider the medium-order case (d = 3, N =
12) and compare the Gaussian RP frp(g) with the MPO RP for different values of the rank parameter

"For these experiments we use T7-Toolbox v2.2 [26].



Medium-order case: Distortions Higher-order case: Running Times

100<
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Figure 2: Comparison of distortion ratio of tensorized Gaussian RP and MPO RP for the medium-
order case with different values for the rank parameter (left). Comparison of the running times
between tensorized Rademacher and tensorized Gaussian RPs (right).

R = 2,5,10. These values correspond to roughly the same number of parameters that the two maps
require. The quality of embedding via average distortion ratio over 100 trials is reported in Figure 2]
where we see that the MPO RP performs really badly, which is predicted by our analysis. We also
report the performance of the MPO RP with R = 100 to emphasize that the quality of the embedding
does not reach acceptable levels even by greatly increasing the rank.

5 Conclusion

We presented an extension of the tensorized Gaussian embedding proposed in [29]] for high-order
tensors: Tensorized Rademacher random projection map. Our theoretical and empirical analysis show
that the Gaussian tensorized RP in [29] can be replaced by the tensorized Rademacher RP while still
benefiting from the JLT properties.We also showed, both in theory and practice, the RP in an MPO
format is not a suitable dimension reduction map. Future research directions include leveraging and
developing efficient sketching algorithms relying on tensorized RPs to find theoretical guarantees
for randomized SVD and regression problems of very high-dimensional matrices given in the TT
format.
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