
A Fast Algorithm for Adaptive Pre�x Coding1Marek Karpinski? and Yakov Nekri
h??Abstra
t. In this paper we present a new algorithm for adaptive pre�x
oding. Our algorithm en
odes a text S of m symbols in O(m) time, i.e.,in O(1) amortized time per symbol. The length of the en
oded string isbounded above by (H + 1)m+O(n log2m) bits where n is the alphabetsize and H is the entropy.This is the �rst algorithm that adaptively en
odes a text in O(m) timeand a
hieves an almost optimal bound on the en
oding length in theworst
ase. Besides that, our algorithm does not depend on an expli
it
ode tree traversal.Keywords: Data Compression, Pre�x-free Codes, Adaptive Coding.1 Introdu
tionThe pre�x
oding problem is a well-known and extensively studied al-gorithmi
 problem. Pre�x
oding is also one of the most popular data
ompression te
hniques nowadays. Di�erent methods of pre�x
oding areused in a large number of well-known
ompression programs and for-mats, su
h as gzip, JPEG, and JPEG-LS. In this paper we present analgorithm for adaptive pre�x
oding that en
odes in O(m) time, wherem is the number of symbols in the input string, and guarantees a goodupper bound on the en
oding length. This is the �rst algorithm with anupper bound on the en
oding length whose running time depends onlyon the number of symbols in the input string but does not depend on thelength of the en
oded string (or on the alphabet size).In the pre�x
oding problem, we are given a string S = s1s2 : : : sm overan alphabet A = fa1; a2; : : : ; ang. Ea
h alphabet symbol ai is assigned a
odeword
i 2 f0; 1g�, so that no
odeword is a pre�x of another one.In the stati
 pre�x
oding problem, the whole string S is known beforethe en
oding starts, and all o

urren
es of the same symbol are en
oded1 A preliminary version of this paper appeared in the Pro
eedings of the 2006 IEEEInternational Symposium on Information Theory (ISIT 2006).? Dept. of Computer S
ien
e, University of Bonn. Work partially supported by aDFG grant, Max-Plan
k Resear
h Prize, and IST grant 14036 (RAND-APX). Email:marek�
s.uni-bonn.de.?? Dept. of Computer S
ien
e, University of Bonn. Work partially supported by ISTgrant 14036 (RAND-APX). Email: yasha�
s.uni-bonn.de.

with the same
odeword. For the stati
 pre�x
oding, two passes over thedata are ne
essary. The spe
i�
ation of the
ode is stored as a pre�x ofthe en
oded data of length O(n logn). In this paper, logn denotes thebinary logarithm. In the
ase of adaptive pre�x
oding, ea
h symbol siis en
oded before the next symbol si+1 is re
eived. Assignment of
ode-words to symbols is based on their frequen
ies in the already en
odedstring s1s2 : : : si�1. Thus only one pass over the data is suÆ
ient, and the
odeword assignment is not stored with the en
oded data. In adaptive
oding, di�erent o

urren
es of the same symbol may be en
oded withdi�erent
odewords.The optimal algorithm for stati
 pre�x
oding was des
ribed by Hu�-man [9℄. The problem of optimal stati
 pre�x
oding was investigated ina large number of papers; fast and eÆ
ient algorithms for en
oding andde
oding of stati
 pre�x
odes are widely known (see e.g., [18℄, [2℄, [13℄,[11℄). The
lassi
al algorithm of [9℄ is based on the
onstru
tion of a
odetree. Ea
h leaf of the
ode tree
orresponds to a symbol of the input al-phabet, and ea
h edge is labeled with 0 or 1. The
odeword for a symbolai 2 A is a sequen
e of edge labels on the path from the root of the
odetree to the leaf
orresponding to ai. To generate a
odeword for somesymbol ai 2 A, we must traverse the path from the root of the
ode treeto the leaf asso
iated with ai. Hen
e, the en
oding time is proportional tothe number of bits in the en
oded string. However, we
an easily redu
ethe en
oding time to O(m) by
onstru
ting a table of
odewords. The bitlength M of the string S en
oded with the stati
 Hu�man
ode satis�esHm � M � (H + d)m, where H = Pa2A o

(a)m log(mo

(a)) is the empir-i
al zeroth-order entropy, o

(a) is the number of o

urren
es of symbola in S, and d is the redundan
y of the Hu�man
ode. Redundan
y d
an be estimated using the symbol probabilities (e.g., d < pmax + 0:086,where pmax is the probability of the most frequent symbol, or d < 1; otherestimates are also known, s. [3℄, [7℄).The �rst algorithm for adaptive Hu�man
oding was independentlyproposed by Faller [4℄ and Gallager [7℄, and later improved by Knuth [12℄.In the work of Milidiu, Laber, and Pessoa [14℄ it was shown that the algo-rithm of Faller, Gallager, and Knuth, also known as the FGK algorithm,uses at most 2m more bits to en
ode S than the stati
 Hu�man algo-rithm. Vitter [20℄ presented an improved version of the adaptive Hu�man
oding that uses at most m more bits than the stati
 Hu�man
oding.This means that FGK and Vitter's algorithm use respe
tively no morethan (H + 2 + d)m + O(n logn) and (H + 1 + d)m + O(n logn) bits inthe worst
ase, where d is the redundan
y of the stati

ode. Both the2

FGK algorithm and the algorithm of Vitter require �(M) time to en-
ode and de
ode S, where M is the number of bits in the en
oding ofS. Both algorithms maintain an optimal Hu�man tree that is used foren
oding and de
oding. Re
ently, Gagie [6℄ des
ribed an adaptive
odingmethod that is based on Shannon
oding. The upper bound on the en
od-ing length a
hieved by the method of [6℄ is (H + 1)m+ O(n logm) bits,for a parameter l > logn. The algorithm of [6℄ also requires �(M) timefor en
oding and depends on maintaining a minimax tree [8℄. It is inter-esting that although the method of [6℄ is based on sub-optimal Shannon
odes it often a
hieves a better upper bound on the en
oding length thanadaptive
oding methods of [20℄ and [12℄ that are based on maintainingthe optimal Hu�man
ode. All previous algorithms for adaptive pre�x
oding that guaranteed an upper bound on the length of en
oding arebased on maintaining the
ode tree. Therefore the best time that
an bea
hieved by su
h algorithms isO(M), for we must spend
onstant time forea
h output bit. Turpin and Mo�at [19℄ des
ribe an algorithm GEO foradaptive pre�x
oding. The main idea of the algorithm GEO is approxi-mation of the frequen
y distribution of
hara
ters: if fa is the frequen
yof a symbol a (i.e., a o

urs fa times), then approximate frequen
y of ais f 0a = T blogT o

(ai)
 for T = 21=k for an integer parameter k. That is, thesymbol frequen
y fa is repla
ed by the highest power of T that does notex
eed T . Turpin and Mofat [19℄ show good upper bounds on the en
odinglength of GEO. Although the authors demonstrate the pra
ti
al eÆ
ien
yof GEO by pra
ti
al experiments, the worst
ase asymptoti

omplexityof their en
oding algorithm is �(M). The method presented in our paperis also based on approximation, but in a di�erent way: we approximateprobabilities instead of frequen
ies,and a di�erent approximation formulais used.In this paper we show that adaptive
oding with a good upper boundon the en
oding length
an be a
hieved even if the input string is en
odedin O(m) time, i.e. in
onstant amortized time per symbol. We present analgorithm for adaptive
oding that en
odes in optimal O(m) time. Thisis the �rst algorithm with running time independent of the alphabet size.The length of the en
oding is bounded above by (H+1)m+O(n log2m).Thus our method a
hieves the upper bound on the en
oding length, whi
his better than that of [20℄ and [12℄ if n�m. At the same time our algo-rithm is faster than previous algorithms for adaptive pre�x
oding, sin
eall previous algorithms with a worst-
ase upper bound on the en
odinglength require O(M) = O(mH) time to en
ode the string of m symbolswith (zeroth-order) entropy H . We are able to a
hieve
onstant amor-3

tized time only for the en
oding algorithm. The de
oding algorithm
anwork slightly faster than in �(M) time, be
ause we use
anoni
al
odes.Details will be given in se
tion 7.Our approa
h is based on maintaining the Shannon
ode for the quan-tized symbol probabilities instead of using the exa
t symbol probabilities.This allows us to save time be
ause the quantized weights are in
rementedless frequently. We also use the ideas of
anoni
al pre�x
oding ([18℄, [2℄)to avoid the expli
it tree
onstru
tion.The rest of this paper has the following stru
ture. We give a high-leveldes
ription of the adaptive
oding in se
tion 2. In se
tion 3 we des
ribethe
anoni
al Shannon
odes. In se
tion 4 quantized Shannon
odes arepresented. We show that dynami
 quantized Shannon
oding takes O(m)time in se
tion 5 and prove the upper bound on the en
oding length inse
tion 6. In se
tion 6.1 we des
ribe a modi�
ation of our algorithm forthe
ase when the length of the text is unknown. De
oding methods aredes
ribed in se
tion 7. The
omputational model used in this paper isunit-
ost RAM with word size w =
(m).2 Preliminaries and NotationWe denote by o

(a; i) the number of o

urren
es of symbol a in s1s2 : : :si;o

(a) = o

(a;m) denotes the number of o

urren
es of a in S. Furtherin this paper, n denotes the number of symbols in the alphabet plus one(n = jAj+ 1).We use the following high-level des
ription of the adaptive
odingpro
ess. Suppose that the pre�x s1s2 : : :si�1 was already en
oded and weare going to en
ode si. The following operations are performed:1. Compute the pre�x
ode for (NYT)s1s2 : : : si�1 by modifying the pre-�x
ode for (NYT)s1s2 : : : si�2 (using e.g., the algorithm of Vitter [20℄or the algorithm des
ribed in this paper). Here (NYT) denotes a spe-
ial symbol that is di�erent from all symbols in the text.2. If symbol si o

urs in s1s2 : : :si�1, then the
odeword for si is output.That is, we use the
ode for s1s2 : : :si�1 to en
ode si.3. If si does not o

ur in s1s2 : : : si�1, then we output the
odewordfor (NYT) followed by a binary representation of the symbol si. Thesymbol (NYT) indi
ates the fa
t that si o

urs for the �rst time; thebinary representation of si takes at most dlog(n� 1)e bits.In our high-level des
ription we omitted some implementation details;see e.g., [12℄ for a more detailed des
ription. The steps 2 and 3 in the4

above des
ription are straightforward and
an be easily implemented inO(1) time; in the rest of this paper we des
ribe an eÆ
ient algorithm forthe step 1.3 Canoni
al Shannon CodingThe Shannon
ode was �rst des
ribed in the
lassi
al work of Shan-non [17℄. Let o

(ai)=m be the empiri
al probability of symbol ai ina string of length m. We assume that symbols are sorted a

ording totheir probabilities, o

(ai)=m � o

(aj)=m for i < j, and let
um i =Pi�1j=1 o

(aj)=m be the
umulative probability of the �rst i � 1 mostprobable symbols. The
odeword for the i-th symbol in a Shannon
ode
onsists of the �rst dlog(m=o

(ai))e bits of
um i.Gagie [6℄ modi�ed this de�nition in his paper on adaptive Shannon
odes; his
onstru
tion is based on minimax trees ([8℄).In this paper we
onstru
t adaptive
odes with
odeword length
loseto the
odeword lengths in the Shannon
ode, but our algorithm is basedon
anoni
al
odes ([2℄, [18℄). A
anoni
al
ode has the numeri
alsequen
e property:
odewords with the same length are binary represen-tations of
onse
utive integers. An example of a
anoni
al
ode is givenon Fig. 1.For ease of des
ription, we sometimes do not distinguish between a
odeword
 of length i and the number whose i-bit binary representa-tion equals to
. If all
odeword lengths are known, the
odeword
anbe found using the standard
anoni
al
oding pro
edure. Let ni be thenumber of
odewords of length i. Let base[i℄ be the �rst
odeword oflength i. Then the j-th
odeword of length i
an be
omputed with theformula base[i℄ + j � 1. The array base[℄
an be
omputed re
ursively:base[0℄ = 0, base[i℄ = (base[i � 1℄ + ni�1) � 2. Thus, if the length l ofthe
odeword for symbol a is known, and the index of the
odeword for aamong all
odewords of length l is known, the
odeword for symbol a
anbe
omputed in
onstant time. For example, in the
ode des
ribed on Fig.1, n1 = n2 = 0, n3 = 2, n4 = 6, and n5 = 8. Then, base[1℄ = base[2℄ = 0,base[3℄ = 0, base[4℄ = 4, and base[5℄ = 20. The
odeword for symbola6 is the 4-th
odeword of length 4; hen
e, the
odeword for a6
an be
omputed as base[4℄ + 3 = 4 + 3 = 7 or (0111)2 in binary.4 Quantized Shannon CodingFor an arbitrary quantization parameter q > 1, let o

q(a; i) = bo

(a; i)=q
and Pq(i) = di=qe. The main idea of our algorithm (further
alled quan-5

a1 000a2 001a3 0100a4 0101a5 0110a6 0111 a7 1000a8 1001a9 10100a10 10101: : : : : :a16 11011Fig. 1. An example of a
anoni
al pre�x
odetized Shannon
oding) is the
omputation of the
odeword length based onquantized empiri
al probabilities: if o

(si; i�1) � q, the
odeword lengthfor si is l(si) = dlog(Pq(i)o

q(si;i�1))e; if 0 < o

(si; i�1) < q, l(si) = dlog(i)e.The length l(ai) of the
odeword for symbol ai in a quantized Shannon
ode is greater than or equal to the
odeword length for the same symbolin the traditional Shannon
ode (denoted by lS(ai)). Sin
e Pq(i)q � i ando

q(si; i � 1)q � o

(si; i � 1), Pq(i)o

q(si;i�1) = qPq(i)qo

q(si;i�1) � io

(si;i�1) .Therefore l(ai) � lS(ai), and P 2�l(ai) � P 2�lS(ai) � 1 sin
e Shannon
ode is a pre�x
ode. Thus the
odeword lengths of the quantized
odesatisfy the Kraft-M
Millan inequality. Hen
e, it is possible to
onstru
ta pre�x
ode in whi
h a symbol ai is assigned the
odeword with lengthlS(ai). It
an be easily proven by indu
tion that the pro
edure for the
onstru
tion of a
anoni
al
ode des
ribed in se
tion 3
onstru
ts a pre�x
ode if
odeword lengths satisfy the Kraft-M
Millan inequality.In our
oding s
heme the
urrent text length i is repla
ed by a quan-tized length Pq(i), and the
urrent symbol frequen
y o

(si; i � 1) isrepla
ed by the quantized frequen
y o

q(si; i� 1). Due to this fa
t, we
an update the
ode less frequently: in a text of length m, Pq(i) is in
re-mented bm=q
 times, and the frequen
y of symbol a is in
remented onlybo

(a)=q
 times.However, when Pq(i) is in
remented, the lengths of up to n
odewordsin the quantized
ode may
hange. To avoid having to update a largenumber of
odewords, we use a method similar to the method used in [6℄.We allow l(si) to be slightly higher than dlog(Pq(i)o

q(si;i�1))e, and maintainthe following invariant:1. If o

(si; i� 1) � q, dlog(Pq(i)o

q(si;i�1))e � l(si) � dlog(Pq(i)+no

q(si;i�1))e.2. If 0 < o

(si; i� 1) < q, dlog(i)e � l(si) � dlog(i+ n)eWe store all symbols that o

urred at least on
e in a doubly-linked listR. When the length of the
odeword for a symbol a is updated, we set it todlog(Pq(i)+no

q(a;i�1))e or dlog(i+n)e (if s1s2 : : :si�1 was already en
oded). We6

guarantee that the length of the
odeword for a is updated at least on
ewhen an arbitrary length n substring sjsj+1 : : : sj+n of S is en
oded (evenif sjsj+1 : : :sj+n does not
ontain a): when lmax elements are en
oded,where lmax is the maximum
odeword length, we delete the �rst 2lmaxelements from R, update their lengths, and append the removed symbolsat the end of R. The detailed des
ription of the algorithm for updating aquantized Shannon
ode is given in the next se
tion.5 Adaptive Canoni
al CodingIn this se
tion we des
ribe the algorithm for updating the adaptive Shan-non
ode. For ea
h symbol aj in the alphabet we keep tra
k of the numberof o

urren
es of aj in s1s2 : : : si�1 where i is the length of the alreadyen
oded string. For every symbol aj 2 A, we store its
odeword lengthlen(aj) and its index among all
odewords of length len(aj) denoted byind(aj). Variable nl indi
ates the number of
odewords of length l; ar-ray base[l℄
ontains the �rst
odeword of length l. We store all symbolsaj 2 A su
h that o

(aj ; i � 1) > 0 in a list R. All symbols with
ode-words of length l are also kept in a doubly-linked list C[l℄, so that the last
odeword of length l
an be found in
onstant time. We denote by lmaxthe maximum
odeword length in a
ode.When the length of the
odeword for some symbol a
hanges froml1 to l2, we perform the following operations. Let ind(a) = i. Let a0 bethe symbol whose
odeword is the last
odeword of length l1. If l1 > 1,then the index of the last
odeword with length l1 is
hanged from nl1to i. We remove a0 from the end of C[l1℄, repla
e a with a0 in C[l1℄, andde
rement nl1 by one. Thus the new
odeword for a0 is the i-th
odewordof length l1 (i.e., the new
odeword for a0 is the old
odeword for a). Ifnl1 = 1, we simply set nl1 = 0 and remove a from C[l1℄ so that the listC[l1℄ be
omes empty. The new
odeword for a is the last
odeword oflength l2: we set ind(a) = nl2 + 1, in
rement nl2 , and add a at the endof C[l2℄. All operations above require O(1) time. When the values of niare updated, we
an re-
ompute the array base[℄ in O(lmax) time usingthe re
ursive formula given in se
tion 3. Thus
hanging the length of a
odeword requires O(lmax) time. However, we
an also
hange the lengthsof lmax
odewords in a
ode in O(lmax) time: �rstly, we
hange the valuesof nl and update the lists C[l℄ in O(lmax) time; then, we re-
ompute thearray base[℄ in O(lmax) time. As an example,
onsider the
ode on Fig.1 and suppose that the length of the
odeword for a6 has
hanged to 5.Then, we de
rement n4 and repla
e a6 with a8 in C[4℄; the index of a87

is
hanged to 4 (now the
odeword for a8 is (0111)2). We make a6 thelast
odeword of length 5: we set ind[a6℄ = 9, len[a6℄ = 5, and n5 = 9.The array base is
hanged a

ordingly: base[5℄ = 18 = (10010)2 Now,the
odeword for a6 is base[5℄ + ind[a6℄� 1 = (11010)2Suppose that the string s1s2 : : :si�1 was already pro
essed, and ween
ode symbol si. After en
oding si we modify the
ode as follows:{ If the symbol si o

urs for the �rst time, the length of the
odewordfor si is set to dlog(i+ n + 1)e, and si is inserted at the end of R.{ If o

(si; i � 1) > 0 and o

(si; i) � 0 (mod q), then we removesi from R, re-
ompute the length of the
odeword for si as l(si) =dlog Pq(i+1)+no

q(si;i) e and insert it at the end of R. We update the valuesof ind(si), len(si), nk1 , nk2 , and lists C[k1℄ and C[k2℄, where k1 andk2 are the lengths of the old and the new
odewords for si. Finally,we update the array base[t℄, t = 1; 2; : : : ; lmax. Those operations takeO(lmax) time.{ Besides that, if i � 0 (mod lmax), then the �rst k = 2lmax elementsar1 ; ar2 ; : : : ; ark are removed from R. The
odeword length for ea
harj is set to l(arj) = dlog Pq(i+1)+no

q(arj ;i)e (or l(arj) = dlog(i + n + 1)e ifo

(arj ; i) < q). Then, variables nt and lists C[t℄ for t = 1; 2; : : : ; lmax,and variables ind(arj) and len(arj) for j = 1; : : : ; k are
hanged a
-
ordingly in O(lmax) time. Then, the array base[℄ is re-
omputed.All those operations also take O(lmax) time. Finally, we re-insertar1 ; ar2 ; : : : ; ark at the end of list R.If we
hoose q so that q � lmax, then the quantized Shannon
ode
anbe updated in O(1) amortized time. The maximal
odeword length in aShannon
ode does not ex
eed log(m+n) = O(logm). Thus if we set thequantization parameter q to e.g., dlogme, then the quantized Shannon
ode
an be updated in O(1) amortized time.Implementation Remark The algorithm des
ribed above involves the
omputation of binary logarithms. We
an
ompute dlog(x)e for somenumber x in O(1) time by
omputing the index of the most signi�
antbit of x, msb(x). The index of the most signi�
ant bit
an be
omputedin O(1) time using e.g., the method des
ribed in [5℄, Lemma 3. It is alsopossible to
ompute msb(x) usingAC0 operations only; see the des
riptionof operation LeftmostOne(X) in [1℄, se
tion 2. Let mask(k) =Pk�1i=0 2k , i.e.mask(k) is the number with k rightmost bits equal to 1 and all other bitsequal to 0. To
ompute dlog(x)e, we �nd k = msb(x). If (x AND mask(k�1)) = 0, where AND denotes bitwise AND operation, then dlog(x)e = k.Otherwise dlog(x)e = k + 1. 8

6 Analysis of Adaptive Shannon CodingLet V be the set of indi
es i su
h that o

q(si; i � 1) > 0, and V 0 bethe set of i su
h that o

(si; i � 1) > 0. We denote by eH the sumPi2V log(io

(si;i�1)).We start by estimating the total en
oding length for all si, i 2 V .We prove an upper bound on eH , and then show that the total en
odinglength of all si, i 2 V , is not mu
h bigger than eH .Lemma 1. eH =Pi2V log(io

(si;i�1)) � Hm+O(n logm)Proof:Xi2V log(io

(si; i� 1)) �Xi2V 0 log(io

(si; i� 1)) <mXi=1 log i�Xi2V 0 log(o

(si; i� 1)) ➀= mXi=1 log i�Xa2A o

(a)�1Xi=1 log i =log(m!)�Xa2A log(o

(a)!) +Xa2A log(o

(a))We obtain the equality ➀ by observing that for any a 2 A, o

(si; i� 1),su
h that si = a and i 2 V 0, assumes all values between 1 and o

(a)�1.Applying Stirling's formula, x logx� x ln 2 < log(x!) < x logx� x ln 2 +O(logx). Therefore,eH � m logm�m ln 2+O(logm)�Xa2A(o

(a) log(o

(a))�o

(a) ln2)+O(n logm) =(�m ln 2 +Xa2Ao

(a) ln2) + (Xa2Ao

(a) logm�Xa2Ao

(a) log(o

(a)))+O(n logm) =Xa2A o

(a) log(mo

(a)) + O(n logm)In the equation above we used the fa
t that m =Pa2A o

(a).The
ompression loss
aused by
hoosing quantized empiri
al proba-bilities instead of the exa
t empiri
al probabilities for all si, i 2 V ,
anbe estimated as follows:Lemma 2. Pi2V log(Pq(i)o

q(si ;i�1)) � eH +O(nq logm)9

Proof: Let Pq(i)q = i+ ri. Then,Pq(i)o

q(si; i� 1) = Pq(i)qo

(si; i� 1) o

(si; i� 1)qo

q(si; i� 1) =o

(si; i� 1)qo

q(si; i� 1) i+ rio

(si; i� 1) = o

(si; i� 1)qo

q(si; i� 1) io

(si; i� 1)(1 + rii)Therefore,log(Pq(i)o

q(si; i� 1)) = log(io

(si; i� 1))+log(o

(si; i� 1)o

q(si; i� 1)q)+log(1+rii)The two last terms in this sum
an be estimated as follows. Sin
e 0 �ri < q, log(1 + rii) < log(1 + qi) < qi ln 2 . Summing up by all i 2 V ,Pi2V qi ln 2 � qln 2Pmi=1(1=i) = O(q logm). Let o

(a; i�1) = q �o

q(a; i�1) + ri(a) for a 2 A. Then, o

(si; i� 1) = o

q(si; i� 1)q + ri(si), andlog(o

(si;i�1)o

q(si;i�1)q) = log(1+ ri(si)o

q(si;i�1)q) < ri(si)o

q(si;i�1)q ln 2 < 1o

q(si;i�1) ln2 .Summing up by all i 2 V , we obtainXi2V 1ln 2 � o

q(si; i� 1) �Xa2A((q= ln2) o

q(a)�1Xj=1 (1=j)) = O(nq logm)Therefore,Xi2V log(Pq(i)o

q(si; i� 1)) =Xi2V (log(io

(si; i� 1))+log(o

(si; i� 1)o

q(si; i� 1)q))+ log(1 + rii) = eH + O(nq logm)In our method, the
odeword for symbol si
an use up to log(Pq(i)+no

q(si;i�1))bits instead of log(Pq(i)o

q(si;i�1)) bits (we ignore rounding up for a moment).We
an estimate the penalty for those additional bits using the followinglemma.Lemma 3. For any fun
tion g : V ! N and any q > 0,Pi2V log(di=qe+ng(i)) �Pi2V log(di=qeg(i)) +nq log(imax+ nq), where imax is the maximum elementin V .Proof: Xi2V log(di=qe+ ng(i)) =Xi2V (log(di=qeg(i)) + log(1 + ndi=qe))10

Besides that,Xi2V log(1 + ndi=qe) � Xi2V log(1 + nqi) = log(Qi2V (i+ nq)Qi2V i)Suppose that V
onsists of elements i1; i2; : : : ; iv = imax, so that i1 <i2 < : : : < iv. Then, ik+nq � ik + nq andQi2V (i+ nq)Qi2V i = (Qv�nqk=1 (ik + nq))(Qvk=v�nq+1(ik + nq))(Qvk=nq+1 ik)(Qnqk=1 ik) �(Qv�nqk=1 ik+nq)(Qvk=v�nq+1(imax + nq))(Qv�nqk=1 ik+nq) � 1 = (imax + nq)nqHen
e, Xi2V log(1 + ndi=qe) � nq log(imax + nq)and the statement follows.The total length of en
oding si for all i 2 V isPi2V log(Pq(i)+no

q(si ;i�1)). Itfollows from Lemma 3 thatPi2V log(Pq(i)+no

q(si;i�1)) �Pi2V log(Pq(i)o

q(si;i�1))+nq log(m+ nq). If nq < m, the last expression isPi2V log(Pq(i)o

q(si ;i�1)) +O(nq logm).It remains to estimate the length of en
oding si, i 62 V .Lemma 4. The total length of en
oding all si, i 62 V , is O(nq logm).Proof: Ea
h symbol si, i 2 (V 0 n V), i.e., ea
h symbol si, su
h that sialready o

urred in s1s2 : : : si�1, but its number of o

urren
es is less thanq, is en
oded with at most log(i + n) = O(logm) bits. Ea
h symbol sithat o

urs for the �rst time is en
oded with O(logm)+logn = O(logm)bits. Sin
e the total number of symbols si that o

urred less than q timesin s1s2 : : : si�1 is O(nq), the statement of the Lemma follows.Theorem 1. The quantized Shannon
oding uses (H+1)m+O(nq(log(m+nq))) bits.Proof: All symbols si, su
h that i 62 V
an be en
oded with O(nq logm)bits by Lemma 4. All symbols si, i 2 V , requirePi2V dlog(Pq(i)+no

q(si;i�1))e �Pi2V log(Pq(i)+no

q(si;i�1)) +m bits. Using Lemmas 1, 2, 3, and the dis
ussionabove,Pi2V log(Pq(i)+no

q(si;i�1)) = Hm+O(nq(log(m+ nq))). Therefore the11

total en
oding length does not ex
eed m(H + 1) + O(nq(log(m + nq)))bits.The main result of this paper follows if we substitute q = �(logm) inthe above theorem.Corollary 1. Quantized Shannon
oding with quantization parameterq = �(logm) uses (H + 1)m+O(n log2m) bits, and
an be implementedin O(m) time if m � n, where m is the text length and n is the extendedalphabet size.6.1 Adaptive Coding of a String of Unknown LengthIn the Corollary 1 we set q = �(logm), i.e. we assumed that the length mof the input string is known in advan
e. If the input length is unknown, we
an set q = dlogm1e for some tentative length m1; afterm1 input symbolsare en
oded, we set the tentative input length to some m2 �m1 and q =dlogm2e. Thus we produ
e a sequen
e of tentative input length until theinput string is en
oded
ompletely. For instan
e, we
an set q2 = dlogm1eform1 = n2. When the �rstm1 symbols are en
oded, we set q2 = dlogm2eform2 = 2n2. In this way we produ
e a sequen
e of tentative input lengthsm1; m2; : : : ; mk with m1 = n2 and mi = 2mi�1 for i > 1. When the �rstmi input symbols are en
oded, we set qi+1 = dlogmi+1e and update the
ode by re-
omputing
odeword lengths of all already en
oded symbolssj , o

(sj ; mi) > 0, as l(sj) = dlog Pqi+1 (mi+1)+no

qi+1 (sj ;mi) e. When the
ode isupdated, we must re-
ompute the lengths of at most n
odewords in O(n)time. Sin
e mi+1 �mi � n2, re-
omputing the
ode takes o(1) amortizedtime. It is easy to
he
k that the maximum quantization parameter qmaxused by this modi�ed algorithm satis�es qmax = O(logm). Therefore themodi�ed algorithm
an also be implemented in O(m) time, and the upperbound on the en
oded string length is (H + 1)m+ O(n log2m) bits.7 De
oding of a Quantized Shannon CodeSin
e quantized Shannon
ode is a
anoni
al
ode, de
oding of a quan-tized Shannon
ode
an work faster than tree-based
oding de
oding al-gorithms. Below we des
ribe two simple de
oding methods that work inO(m log logm) and O(m logH) time respe
tively.The de
oding algorithms des
ribed below rely heavily on the algo-rithms for de
oding of
anoni
al pre�x
odes [15℄.The de
oding algorithm maintains the quantized Shannon
ode asdes
ribed in se
tion 5. Additionally, we maintain a two-dimensional array12

sym[l; i℄, 1 � l � lmax, 1 � i � n. For every pair (l; i), su
h that 1 � l �lmax and 1 � i � nl, sym[l; i℄
ontains the symbols that
orresponds tothe i-th
odeword of length l. For i > nl, sym[i; l℄ is unde�ned. The arraysym uses O(nlmax) = O(n logm) words.Let Sbase[i℄ = base[i℄� (w�i), where w is the length of the ma
hineword. That is, Sbase[i℄ is obtained by shifting base[i℄ (w� i) bits to theleft. It
an be easily
he
ked that the values stored in array Sbase growmonotonously, so that Sbase[i℄ � Sbase[i + 1℄ for 1 � i < lmax. Thede
oding algorithm reads a sequen
e of bits from the input stream andtransforms it into a sequen
e of symbols. Let B denote the bu�er variablethat
ontains the next w not yet de
oded bits from the input stream. If thelength ` of the next
odeword is known, the next symbol
an be de
oded in
onstant time: The index of the next
odeword is i = (B � `)� base[`℄,and the next symbol is s = sym[`; i℄. Hen
e, the only time-
onsumingoperation is
omputing the length of the next
odeword in the inputstream.We
an obtain the length of the next
odeword by
omparing thevalue of B with elements of Sbase: if the length of the next
odewordis `, then Sbase[`℄ � B < Sbase[` + 1℄. If the elements of Sbase arestored in a balan
ed tree, su
h as the AVL tree, then `
an be found inO(log(lmax)) = O(log logm) time. Thus we obtain a O(m log logm) timede
oding algorithm.A more eÆ
ient algorithm
an be obtained with the following simplete
hnique. We
onse
utively
ompareB with Sbase[l1℄; Sbase[l2℄; : : :Sbase[li℄; : : :,where l1 is the minimum
odeword length and li = li�1 + 2i�1 for i > 1.Clearly, we
an �nd i, su
h that Sbase[li�1℄ < B � Sbase[li℄, in O(log `)time. After that, the
odeword length `
an be found by binary sear
hin O(log(li � li�1)) = O(log `) time. As shown in Corollary 1, the totalen
oding length is L = (H+1)m+O(n log2m). Hen
e, the average
ode-word length is lAV = O(H) for n < m= log2m. By Jensen's inequality,1mPmi=1 log(len(si)) � log(lAV) = O(logH). Therefore the total de
od-ing time is O(m logH).A
knowledgmentsWe thank Larry Larmore for interesting remarks and dis
ussions and theanonymous reviewers for their
omments and suggestions. Spe
ial thanksare to the anonymous reviewer for his suggestions on the implementationof the de
oding methods. 13

Referen
es1. A. Andersson, P. B. Miltersen, M. Thorup, \Fusion Trees
an be Implemented withAC0 Instru
tions Only", Theor. Comput. S
i. 215(1999), 337-344.2. J.B. Connell , \A Hu�man-Shannon-Fano Code", Pro
. of IEEE 61(1973), 1046-1047.3. R. M. Capo
elli, A. De Santis, \New Bounds on the Redundan
y of Hu�man Codes".IEEE Trans. Information Theory 37(1991), 1095-1104.4. N. Faller, \An Adaptive System for Data Compression", Pro
. 7th Asilomar Con-feren
e on Cir
uits, Systems, and Computers (1973), 593-597.5. M. L. Fredman, D. E. Willard, \Surpassing the Information Theoreti
 Bound withFusion Trees", J. Comput. Syst. S
i. 47(1993), 424-436.6. T. Gagie, \Dynami
 Shannon Coding", Pro
. the 12th European Symposium onAlgorithms (2004),LNCS 3221, 359-370; see also Information Pro
essing Letters102(2007), 113-117.7. R. G. Gallager, \Variations on a Theme by Hu�man", IEEE Trans. on InformationTheory 24(1978), 668-674.8. M. C. Golumbi
, \ Combinatorial Merging", IEEE Trans. Computers 25(1976),1164-1167.9. D.A.Hu�man, \A Method for Constru
tion of Minimum Redundan
y Codes", Pro
.IRE 40(1951), 1098-1101.10. G.H. O. Katona , T. O. H. Nemetz, \ Hu�man Codes and Self-information", IEEETrans. on Information Theory 22(1976), 337-340.11. S. T. Klein, \Spa
e- and Time-EÆ
ient De
oding with Canoni
al Hu�man Trees",Pro
. the 8th Annual Symposium on Combinatorial Pattern Mat
hing (1997), LNCS1264, 65 - 75.12. D. E. Knuth, \Dynami
 Hu�man Coding", J. Algorithms 6(1985), 163-180.13. D.A. Lelewer, D.S. Hirs
hberg, \Data Compression", ACM Computing Surveys19(1987), 261-296.14. R. L. Milidiu, E. S. Laber, A. A. Pessoa, \ Bounding the Compression Loss of theFGK Algorithm", J. Algorithms 32(1999), 195-211.15. A. Mo�at, A. Turpin, \On the Implementation of Minimum-Redundan
y Pre�xCodes", IEEE Transa
tions on Communi
ations, 45(1997), 1200-1207.16. L. Rueda, B. J. Oommen, \ A Fast and EÆ
ient Nearly-Optimal Adaptive FanoCoding S
heme" Information S
ien
es 176(2006), 1656-1683.17. C.E. Shannon, \A Mathemati
al Theory of Communi
ation", Bell System Te
h-ni
al Journal 27(1948), 379-423, 623-656.18. E.S. S
hwartz, B. Kalli
k, \Generating a Canoni
al Pre�x En
oding", Comm. ofthe ACM 7(1964), 166-169.19. A. Turpin, A. Mo�at, \On-line adaptive
anoni
al pre�x
oding with bounded
ompression loss", IEEE Trans. on Information Theory, 47(2001), 88{98.20. J. S. Vitter, " Design and Analysis of Dynami
 Hu�man Codes", J. ACM 34(1987),825-845. 14

