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Abstract. In this paper we present a new algorithm for adaptive prefix
coding. Our algorithm encodes a text S of m symbols in O(m) time, i.e.,
in O(1) amortized time per symbol. The length of the encoded string is
bounded above by (H + 1)m + O(nlog? m) bits where n is the alphabet
size and H is the entropy.

This is the first algorithm that adaptively encodes a text in O(m) time
and achieves an almost optimal bound on the encoding length in the
worst case. Besides that, our algorithm does not depend on an explicit
code tree traversal.
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1 Introduction

The prefix coding problem is a well-known and extensively studied al-
gorithmic problem. Prefix coding is also one of the most popular data
compression techniques nowadays. Different methods of prefix coding are
used in a large number of well-known compression programs and for-
mats, such as gzip, JPEG, and JPEG-LS. In this paper we present an
algorithm for adaptive prefix coding that encodes in O(m) time, where
m is the number of symbols in the input string, and guarantees a good
upper bound on the encoding length. This is the first algorithm with an
upper bound on the encoding length whose running time depends only
on the number of symbols in the input string but does not depend on the
length of the encoded string (or on the alphabet size).

In the prefix coding problem, we are given a string .S = s182. .. §,,, Over
an alphabet A = {a1, a9, ..., a,}. Fach alphabet symbol a; is assigned a
codeword ¢; € {0,1}*, so that no codeword is a prefix of another one.
In the static prefix coding problem, the whole string .5 is known before
the encoding starts, and all occurrences of the same symbol are encoded
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with the same codeword. For the static prefix coding, two passes over the
data are necessary. The specification of the code is stored as a prefix of
the encoded data of length O(nlogn). In this paper, logn denotes the
binary logarithm. In the case of adaptive prefix coding, each symbol s;
is encoded before the next symbol s;;1 is received. Assignment of code-
words to symbols is based on their frequencies in the already encoded
string s182 . ..5;—1. Thus only one pass over the data is sufficient, and the
codeword assignment is not stored with the encoded data. In adaptive
coding, different occurrences of the same symbol may be encoded with
different codewords.

The optimal algorithm for static prefix coding was described by Huff-
man [9]. The problem of optimal static prefix coding was investigated in
a large number of papers; fast and efficient algorithms for encoding and
decoding of static prefix codes are widely known (see e.g., [18], [2], [13],
[11]). The classical algorithm of [9] is based on the construction of a code
tree. Fach leaf of the code tree corresponds to a symbol of the input al-
phabet, and each edge is labeled with 0 or 1. The codeword for a symbol
a; € A is a sequence of edge labels on the path from the root of the code
tree to the leaf corresponding to a;. To generate a codeword for some
symbol a; € A, we must traverse the path from the root of the code tree
to the leaf associated with a;. Hence, the encoding time is proportional to
the number of bits in the encoded string. However, we can easily reduce
the encoding time to O(m) by constructing a table of codewords. The bit
length M of the string S encoded with the static Huffman code satisfies
Hm < M < (H +d)m, where H = 3", 4 °°;Ea) log(5oeray) is the empir-
ical zeroth-order entropy, occ(a) is the number of occurrences of symbol
a in S, and d is the redundancy of the Huffman code. Redundancy d
can be estimated using the symbol probabilities (e.g., d < Pmaz + 0.086,
where Pz is the probability of the most frequent symbol, or d < 1; other
estimates are also known, s. [3], [7]).

The first algorithm for adaptive Huffman coding was independently
proposed by Faller [4] and Gallager [7], and later improved by Knuth [12].
In the work of Milidiu, Laber, and Pessoa [14] it was shown that the algo-
rithm of Faller, Gallager, and Knuth, also known as the FGK algorithm,
uses at most 2m more bits to encode S than the static Huffman algo-
rithm. Vitter [20] presented an improved version of the adaptive Huffman
coding that uses at most m more bits than the static Huffman coding.
This means that FGK and Vitter’s algorithm use respectively no more
than (H + 2 + d)m + O(nlogn) and (H + 1 + d)m + O(nlogn) bits in
the worst case, where d is the redundancy of the static code. Both the



FGK algorithm and the algorithm of Vitter require @(M) time to en-
code and decode S, where M is the number of bits in the encoding of
S. Both algorithms maintain an optimal Huffman tree that is used for
encoding and decoding. Recently, Gagie [6] described an adaptive coding
method that is based on Shannon coding. The upper bound on the encod-
ing length achieved by the method of [6] is (H + 1)m + O(nlogm) bits,
for a parameter [ > logn. The algorithm of [6] also requires @(M) time
for encoding and depends on maintaining a minimax tree [8]. It is inter-
esting that although the method of [6] is based on sub-optimal Shannon
codes it often achieves a better upper bound on the encoding length than
adaptive coding methods of [20] and [12] that are based on maintaining
the optimal Huffman code. All previous algorithms for adaptive prefix
coding that guaranteed an upper bound on the length of encoding are
based on maintaining the code tree. Therefore the best time that can be
achieved by such algorithms is O(M), for we must spend constant time for
each output bit. Turpin and Moffat [19] describe an algorithm GEO for
adaptive prefix coding. The main idea of the algorithm GEO is approxi-
mation of the frequency distribution of characters: if f, is the frequency
of a symbol a (i.e., a occurs f, times), then approximate frequency of a
is fI = T logrocelai)] for T = 91/k for an integer parameter k. That is, the
symbol frequency f, is replaced by the highest power of T" that does not
exceed T. Turpin and Mofat [19] show good upper bounds on the encoding
length of GEO. Although the authors demonstrate the practical efficiency
of GEO by practical experiments, the worst case asymptotic complexity
of their encoding algorithm is @(M). The method presented in our paper
is also based on approximation, but in a different way: we approximate
probabilities instead of frequencies,and a different approximation formula
is used.

In this paper we show that adaptive coding with a good upper bound
on the encoding length can be achieved even if the input string is encoded
in O(m) time, i.e. in constant amortized time per symbol. We present an
algorithm for adaptive coding that encodes in optimal O(m) time. This
is the first algorithm with running time independent of the alphabet size.
The length of the encoding is bounded above by (H + 1)m + O(n log>m).
Thus our method achieves the upper bound on the encoding length, which
is better than that of [20] and [12] if n < m. At the same time our algo-
rithm is faster than previous algorithms for adaptive prefix coding, since
all previous algorithms with a worst-case upper bound on the encoding
length require O(M) = O(mH ) time to encode the string of m symbols
with (zeroth-order) entropy H. We are able to achieve constant amor-



tized time only for the encoding algorithm. The decoding algorithm can
work slightly faster than in @(M) time, because we use canonical codes.
Details will be given in section 7.

Our approach is based on maintaining the Shannon code for the quan-
tized symbol probabilities instead of using the exact symbol probabilities.
This allows us to save time because the quantized weights are incremented
less frequently. We also use the ideas of canonical prefix coding ([18], [2])
to avoid the explicit tree construction.

The rest of this paper has the following structure. We give a high-level
description of the adaptive coding in section 2. In section 3 we describe
the canonical Shannon codes. In section 4 quantized Shannon codes are
presented. We show that dynamic quantized Shannon coding takes O(m)
time in section 5 and prove the upper bound on the encoding length in
section 6. In section 6.1 we describe a modification of our algorithm for
the case when the length of the text is unknown. Decoding methods are
described in section 7. The computational model used in this paper is
unit-cost RAM with word size w = 2(m).

2 Preliminaries and Notation

We denote by occ(a, i) the number of occurrences of symbol a in 5182 . . . 8;;
occ(a) = occ(a, m) denotes the number of occurrences of a in S. Further
in this paper, n denotes the number of symbols in the alphabet plus one
(n=|A] +1).

We use the following high-level description of the adaptive coding
process. Suppose that the prefix s152...5;,-1 was already encoded and we
are going to encode s;. The following operations are performed:

1. Compute the prefix code for (NYT)s$182 ... $,—1 by modifying the pre-
fix code for (NYT)s182 ... 8;—2 (using e.g., the algorithm of Vitter [20]
or the algorithm described in this paper). Here (NYT) denotes a spe-
cial symbol that is different from all symbols in the text.

2. If symbol s; occurs in s15s .. .5;-1, then the codeword for s; is output.
That is, we use the code for s1s2...5;—1 to encode s;.

3. If s; does not occur in $182...8;—1, then we output the codeword
for (NYT) followed by a binary representation of the symbol s;. The
symbol (NYT) indicates the fact that s; occurs for the first time; the
binary representation of s; takes at most [log(n — 1)] bits.

In our high-level description we omitted some implementation details;
see e.g., [12] for a more detailed description. The steps 2 and 3 in the



above description are straightforward and can be easily implemented in
O(1) time; in the rest of this paper we describe an efficient algorithm for
the step 1.

3 Canonical Shannon Coding

The Shannon code was first described in the classical work of Shan-
non [17]. Let occ(a;)/m be the empirical probability of symbol a; in
a string of length m. We assume that symbols are sorted according to
their probabilities, occ(a;)/m > occ(a;)/m for i < j, and let cum; =
Z;;ll occ(a;)/m be the cumulative probability of the first ¢ — 1 most
probable symbols. The codeword for the ¢-th symbol in a Shannon code
consists of the first [log(m/occ(a;))] bits of cum;.

Gagie [6] modified this definition in his paper on adaptive Shannon
codes; his construction is based on minimax trees ([8]).

In this paper we construct adaptive codes with codeword length close
to the codeword lengths in the Shannon code, but our algorithm is based
on canonical codes ([2], [18]). A canonical code has the numerical
sequence property: codewords with the same length are binary represen-
tations of consecutive integers. An example of a canonical code is given
on Fig. 1.

For ease of description, we sometimes do not distinguish between a
codeword ¢ of length ¢ and the number whose i-bit binary representa-
tion equals to c. If all codeword lengths are known, the codeword can
be found using the standard canonical coding procedure. Let n; be the
number of codewords of length i. Let baseli] be the first codeword of
length ¢. Then the j-th codeword of length ¢ can be computed with the
formula baseli| + j — 1. The array base|| can be computed recursively:
base[0] = 0, base[i] = (base[i — 1] + n;—1) x 2. Thus, if the length [ of
the codeword for symbol a is known, and the index of the codeword for a
among all codewords of length [ is known, the codeword for symbol a can
be computed in constant time. For example, in the code described on Fig.
1,71 =n2 =0, n3 =2, ngy = 6, and nz = 8. Then, base[l] = base[2] =0,
base[3| = 0, base[4] = 4, and base[5] = 20. The codeword for symbol
ag is the 4-th codeword of length 4; hence, the codeword for ag can be
computed as base[4] +3 =4+ 3 =7 or (0111)9 in binary.

4 Quantized Shannon Coding

For an arbitrary quantization parameter q > 1,let occy(a, i) = |occ(a,i)/q]
and P,(i) = [i/q]. The main idea of our algorithm (further called quan-
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Fig. 1. An example of a canonical prefix code

tized Shannon coding) is the computation of the codeword length based on

quantized empirical probabilities: if occ(s;, i—1) > ¢, the codeword length

for s; isl(s;) = ﬂOg(Wgznﬂv if 0 < occe(si,i—1) < g, 1(s;) = [log(i)].

The length [(a;) of the codeword for symbol a; in a quantized Shannon
code is greater than or equal to the codeword length for the same symbol
in the traditional Shannon code (denoted by I°(a;)). Since P,(i)q > i and
1) Py (i) _ qPq (i) ]

? occq(sii—1)

occy(si, i — 1)g < oce(s;, i —

Therefore I(a;) > 1%(a;), and 3" 27He) < 22_15(‘“) < 1 since Shannon
code is a prefix code. Thus the codeword lengths of the quantized code
satisfy the Kraft-McMillan inequality. Hence, it is possible to construct
a prefix code in which a symbol a; is assigned the codeword with length
I%(a;). It can be easily proven by induction that the procedure for the
construction of a canonical code described in section 3 constructs a prefix
code if codeword lengths satisfy the Kraft-McMillan inequality.

In our coding scheme the current text length 1 is replaced by a quan-
tized length F,(i), and the current symbol frequency occ(s;,i — 1) is
replaced by the quantized frequency occy(s;, @ — 1). Due to this fact, we
can update the code less frequently: in a text of length m, P,(i) is incre-
mented |m/q| times, and the frequency of symbol a is incremented only
locc(a)/q| times.

However, when P, (i) is incremented, the lengths of up to n codewords
in the quantized code may change. To avoid having to update a large
number of codewords, we use a method similar to the method used in [6].

We allow [(s;) to be slightly higher than [log_g(Pqi(i).)]7 and maintain

occq(s;,i—1)

i
goccg(s;,i—1) = occ(s;i—1)"

the following invariant:

L Tf oce(siyi — 1) > g, [log(gemid=y)] < I(s:) < [log(soef ™).
2. If0 < occ(s,, —1) < q, [log(i)] < I(s;) < [log(i + n)]

We store all symbols that occurred at least once in a doubly-linked list
R. When the length of the codeword for a symbol @ is updated, we set it to

[lo g(%)] or [log(i+mn)] (if $182...8;—1 was already encoded). We

6



guarantee that the length of the codeword for a is updated at least once
when an arbitrary length n substring s;s;41 ... 8;4n 0of S is encoded (even
if $;Sj41...8j4n does not contain a): when [,,,, elements are encoded,
where l,,q, 18 the maximum codeword length, we delete the first 21,4z
elements from R, update their lengths, and append the removed symbols
at the end of R. The detailed description of the algorithm for updating a
quantized Shannon code is given in the next section.

5 Adaptive Canonical Coding

In this section we describe the algorithm for updating the adaptive Shan-
non code. For each symbol a; in the alphabet we keep track of the number
of occurrences of a; in s182...5;—1 where ¢ is the length of the already
encoded string. For every symbol a; € A, we store its codeword length
len(a;) and its index among all codewords of length len(a;) denoted by
ind(a;). Variable n; indicates the number of codewords of length /; ar-
ray base|l| contains the first codeword of length . We store all symbols
a; € A such that occ(a;,i — 1) > 0 in a list R. All symbols with code-
words of length [ are also kept in a doubly-linked list C[l], so that the last
codeword of length [ can be found in constant time. We denote by l,az
the maximum codeword length in a code.

When the length of the codeword for some symbol a changes from
[ to Iz, we perform the following operations. Let ind(a) = i. Let o’ be
the symbol whose codeword is the last codeword of length [y. If [; > 1,
then the index of the last codeword with length /; is changed from ny,
to i. We remove a’ from the end of C|l1], replace a with a’ in C[l1], and
decrement ny, by one. Thus the new codeword for a’ is the i-th codeword
of length Iy (i.e., the new codeword for @ is the old codeword for a). If
ny, = 1, we simply set n;;, = 0 and remove a from C|l;] so that the list
C[l1] becomes empty. The new codeword for a is the last codeword of
length ly: we set ind(a) = ny, + 1, increment ny,, and add a at the end
of Clls]. All operations above require O(1) time. When the values of n;
are updated, we can re-compute the array base|| in O(lq,) time using
the recursive formula given in section 3. Thus changing the length of a
codeword requires O(l,,q2) time. However, we can also change the lengths
Of Iz codewords in a code in O(lq,) time: firstly, we change the values
of m; and update the lists C[l] in O(l;q2) time; then, we re-compute the
array basel|] in O(lnq) time. As an example, consider the code on Fig.
1 and suppose that the length of the codeword for ag has changed to 5.
Then, we decrement ny and replace ag with ag in C[4]; the index of ag



is changed to 4 (now the codeword for ag is (0111)2). We make ag the
last codeword of length 5: we set ind[ag] = 9, len|ag] = 5, and ns = 9.
The array base is changed accordingly: base[5] = 18 = (10010)2 Now,
the codeword for ag is base[5| 4 ind|ag] — 1 = (11010)2

Suppose that the string s1s5...5,-1 was already processed, and we
encode symbol s;. After encoding s; we modify the code as follows:

— If the symbol s; occurs for the first time, the length of the codeword
for s; is set to [log(i +n + 1)], and s; is inserted at the end of R.

— If occ(si, i — 1) > 0 and oce(s;, i) = 0 (mod g), then we remove
s; from R, re-compute the length of the codeword for s; as I(s;) =
[lo M] and insert it at the end of R. We update the values

of ind(sz(),“l)en(s,'), Nk, Ny, and lists Clk;] and Clks|, where k; and
ko are the lengths of the old and the new codewords for s;. Finally,
we update the array base[t], t = 1,2,. .., [ ;e Those operations take
O(lmaz) time.

— Besides that, if i = 0 (mod les), then the first k& = 2[,,,,, elements
Qry s Qpyy - - -, Qr, are removed from R. The codeword length for each
ar; is set to l(a,;) = [log %] (or l(ar;) = [log(i +n + 1)] if
occ(ayr;, 1) < q). Then, variables ;Lt and lists C[t] fort = 1,2, ..., lnax,
and variables ind(a,;) and len(a,,) for j = 1,..., k are changed ac-
cordingly in O(lpqz) time. Then, the array basel| is re-computed.
All those operations also take O(l,4.) time. Finally, we re-insert
Qrys Qryy - - -, Qr, at the end of list R.

If we choose g so that ¢ > [,,42, then the quantized Shannon code can
be updated in O(1) amortized time. The maximal codeword length in a
Shannon code does not exceed log(m +n) = O(logm). Thus if we set the
quantization parameter q to e.g., [logm], then the quantized Shannon
code can be updated in O(1) amortized time.

Implementation Remark The algorithm described above involves the
computation of binary logarithms. We can compute [log(z)] for some
number z in O(1) time by computing the index of the most significant
bit of x, msb(x). The index of the most significant bit can be computed
in O(1) time using e.g., the method described in [5], Lemma 3. It is also
possible to compute msb(z) using AC? operations only; see the description
of operation LeftmostOne (X) in [1], section 2. Let mask(k) = Zf:_ol 2F i.e.
mask(k) is the number with k£ rightmost bits equal to 1 and all other bits
equal to 0. To compute [log(x)], we find £ = msb(x). If (x AND mask(k —
1)) = 0, where AND denotes bitwise AND operation, then [log(x)] = k.
Otherwise [log(x)] =k + 1.



6 Analysis of Adaptive Shannon Coding

Let V' be the set of indices i such that occy(s;,i — 1) > 0, and V' be
the set of ¢ such that occ(s;,i — 1) > 0. We denote by H the sum
>iev 108(soemmny)-

We start by estimating the total encoding length for all s;, i € V.
We prove an upper bound on H, and then show that the total encoding
length of all s;, ¢ € V, is not much bigger than H.

Lemma 1. [ — > ey log( < Hm + O(nlogm)

occ(sl i—1) )

Proof:
ZGZVIOg occ s,,z—l Zez‘;,bg oce( s,,z—l))
Zlogz—Zlog occ(s;, i Zlogz—z Z long
eV’ a€A  i=1
log(m!) Zlog occ(a)!) + Zlog occ(a))
a€A a€A

We obtain the equality O by observing that for any a € A, occ(s;,i—1),
such that s; = a and i € V’, assumes all values between 1 and occ(a) —1.
Applying Stirling’s formula, xlogz — xIn2 < log(z!) < zlogax —xIn2 +
O(logz). Therefore,

H < mlogm-mIn2+0(logm)—> (occ(a) log(oce(a))—occ(a) In2)+

a€A
O(nlogm) =
(—mIn2 + Z occ(a)In2) + (Z occ(a) logm — Z occ(a) log(oce(a)))
a€A a€A a€A
+ O(nlogm) = ; occ(a) log(occ(a)) + O(nlogm)
In the equation above we used the fact that m = 3 . 4 occ(a). 0

The compression loss caused by choosing quantized empirical proba-
bilities instead of the exact empirical probabilities for all s;, ¢ € V, can
be estimated as follows:

Lemma 2. Zievlog(P‘fi@) < H + O(nglogm)

occq(si,i—1)



Proof: Let Py(i)qg =i+ r;. Then,

P Pg  occlsni—1)
occy(s;, i —1)  occ(si,i—1) goccy(s;,i—1)
occ(s;, i —1) i+ occ(s;, i —1) i r;
. N — N N (1 + —)
qoccy(s;, 1 — 1) occ(s;,i—1)  goccy(s;, i — 1) oce(s;, i — 1) i
Therefore,
P, (i) occ(s;, i — 1)

log( ) = log( )+Hog( )+log(1+%)

occy(8;,1—1) occ(s;, 1 — 1) occy(8,1—1)q

The two last terms in this sum can be estimated as follows. Since 0 <
ri < q, log(1 + %) < log(l + %) < L5. Summing up by all i € V,
Yoiev s < 5 2oy (1/7) = O(qlogm). Let occ(a,i—1) = gq-occy(a, i—

1) +ri(a) for a € A. Then, occ(s;,i — 1) = occy(si, i — 1)g + ri(s;), and
occ(ss,i—1) \ 7:(s:) ri(s5;) 1
log(m) - lOg(l + occq(si,i—l)q) < occy(s;,t—1)gln2 < occy(s;,t—1)In2°
Summing up by all ¢ € V, we obtain
occg(a)—1
< In2) 1/7)) = O(ngl
Z 3 e oD < 2@/ Y (/D) = Olnglogm)
a€A j=1
Therefore,
(1) i occ(s;, 1 — 1)
lo = 1 1
ZGZV o8 occy( s,,z — 1)) ;/( Og(occ(si,i — 1))Jr Og(occq(si,i — 1)q))

+ log(1 + %) — H + O(nglogm)

In our method, the codeword for symbol s; can use up to log(
Py (@)

occ (s i—1)

We can estimate the penalty for those additional bits using the following
lemma.

()+D

occq(s“z 1

bits instead of log( ) bits (we ignore rounding up for a moment).

Lemma 3. Forany functiong:V — Nand anyq > 0, ) .oy log( [z/tz(1)+n) <

> ey log( [’{qﬂ) +nq1og(imaez + Nq), Where imae 18 the mazximum element
mV.

Proof:

> tog( L0 — 510 220 o1+

i€V i€V )

\‘3
L
=

[i/q]

10



Besides that,

n i+ n
i€V i€V ! [Tiev
Suppose that V' consists of elements i1,42,...,% = %maz, SO that i1 <

tg < ... <ty Then, it yng > i +nqg and

[Liev(i+ng)  (TT=7 Gk + 1) (TTj—o—ng i1 (i + nq))
[Levi (ITh g i1 )T T2, i) N
(TT=? htng) T Tz nq+1(imal’+nq))
(Hk: 1 ik+nq) 1

— (imaz + nq)nq

Hence,

Z log(1 ) < nqlog(imaez + nq)
i€V

and the statement follows. 0
The total length of encoding s; foralli € Vis ),y log(#) It

occq(si,i—1)

follows from Lemma 3 that 3, log(%) <Y iev 10g(occpq7())+

occq(s;,i—1 q(s5,6—1)
nqlog(m +nq). If ng < m, the last expression is D,y 10g($§2—1)) +
O(nglogm).
It remains to estimate the length of encoding s;, i ¢ V.

Lemma 4. The total length of encoding all s;, i € V', is O(ngqlogm).

Proof: Each symbol s;, i € (V/'\ V), i.e., each symbol s;, such that s;
already occurred in 5189 . . . §;—1, but its number of occurrences is less than
q, is encoded with at most log(i + n) = O(logm) bits. Each symbol s;
that occurs for the first time is encoded with O(logm) +logn = O(logm)
bits. Since the total number of symbols s; that occurred less than ¢ times
in s182...8;—1 is O(ng), the statement of the Lemma follows. 0

Theorem 1. The quantized Shannon coding uses (H+1)m~+O(nqg(log(m+
nq))) bits.

Proof: All symbols s;, such that ¢ € V' can be encoded with O(nglogm)

bits by Lemma 4. All symbols s;, i € V', require Zlevﬂog(%)] <
y (i) +n

Y icv log(m) +m bits. Using Lemmas 1, 2, 3, and the discussion

above, >,y log(%) = Hm+ O(ng(log(m + ngq))). Therefore the

11



total encoding length does not exceed m(H + 1) + O(ng(log(m + nq)))
bits.

The main result of this paper follows if we substitute ¢ = ©@(logm) in
the above theorem.

Corollary 1. Quantized Shannon coding with quantization parameter
q = O(logm) uses (H + 1)m + O(nlog?m) bits, and can be implemented
in O(m) time if m > n, where m is the text length and n is the extended
alphabet size.

6.1 Adaptive Coding of a String of Unknown Length

In the Corollary 1 we set ¢ = &(logm), i.e. we assumed that the length m
of the input string is known in advance. If the input length is unknown, we
can set ¢ = [logmy] for some tentative length mq; after my input symbols
are encoded, we set the tentative input length to some mo > my and ¢ =
[logms]. Thus we produce a sequence of tentative input length until the
input string is encoded completely. For instance, we can set g2 = [logmy |
for my = n%. When the first m; symbols are encoded, we set gz = [log ma]
for mo = 2n2. In this way we produce a sequence of tentative input lengths
mi, Ma, ..., ms with m; = n? and m; = 2m;—; for i > 1. When the first
m; input symbols are encoded, we set ¢;11 = [logm;1] and update the
code by re-computing codeword lengths of all already encoded symbols

Pavyy (it D40 ywhen the code is

occq, 4 (55,m4)
updated, we must re-compute the lengths oflat most n codewords in O(n)
time. Since m; 1 —m; > n?, re-computing the code takes o(1) amortized
time. It is easy to check that the maximum quantization parameter gumax
used by this modified algorithm satisfies gmax = O(logm). Therefore the
modified algorithm can also be implemented in O(m) time, and the upper
bound on the encoded string length is (H + 1)m + O(n log®m) bits.

85, occ(s;,m;) > 0, as l(s;) = [log

7 Decoding of a Quantized Shannon Code

Since quantized Shannon code is a canonical code, decoding of a quan-
tized Shannon code can work faster than tree-based coding decoding al-
gorithms. Below we describe two simple decoding methods that work in
O(mloglogm) and O(mlog H) time respectively.

The decoding algorithms described below rely heavily on the algo-
rithms for decoding of canonical prefix codes [15].

The decoding algorithm maintains the quantized Shannon code as
described in section 5. Additionally, we maintain a two-dimensional array
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sym[l,i], 1 <1 < lnae, 1 <14 <n. For every pair ([,1), such that 1 <[ <
Imaz and 1 < i < ny, sym[l,i] contains the symbols that corresponds to
the i-th codeword of length [. For i > ny, sym[i, (] is undefined. The array
sym uses O(nlmae) = O(nlogm) words.

Let Sbase[i| = base[i| < (w—1), where w is the length of the machine
word. That is, Sbase[i] is obtained by shifting base[i] (w — i) bits to the
left. It can be easily checked that the values stored in array Sbase grow
monotonously, so that Sbaseli] < Sbaseli + 1| for 1 < i < lnae. The
decoding algorithm reads a sequence of bits from the input stream and
transforms it into a sequence of symbols. Let B denote the buffer variable
that contains the next w not yet decoded bits from the input stream. If the
length £ of the next codeword is known, the next symbol can be decoded in
constant time: The index of the next codeword is i = (B >> ¢) — base[/],
and the next symbol is s = sym[¢,i]. Hence, the only time-consuming
operation is computing the length of the next codeword in the input
stream.

We can obtain the length of the next codeword by comparing the
value of B with elements of Sbase: if the length of the next codeword
is ¢, then Sbase[f| < B < Sbase[f + 1]. If the elements of Sbase are
stored in a balanced tree, such as the AVL tree, then ¢ can be found in
O(log(lmaez)) = O(loglogm) time. Thus we obtain a O(mloglogm) time
decoding algorithm.

A more efficient algorithm can be obtained with the following simple
technique. We consecutively compare B with Sbasell;|, Sbase|l|, . ..Sbase[l;], .. .,
where {1 is the minimum codeword length and {; = I;_1 +2¢! for i > 1.
Clearly, we can find 4, such that Sbase|l;_1] < B < Sbase[l;|, in O(log¥)
time. After that, the codeword length ¢ can be found by binary search
in O(log(l; — ;1)) = O(log¥) time. As shown in Corollary 1, the total
encoding length is L = (H + 1)m + O(n log? m). Hence, the average code-
word length is [4 = O(H) for n < m/log?m. By Jensen’s inequality,
LS log(len(s;)) < log(lav) = O(log H). Therefore the total decod-
ing time is O(mlog H).
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