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Centre Tecnològic de Telecomunicacions de Catalunya

Universitat Polit̀ecnica de Catalunya



ii



Para Estela,

iii



iv



Abstract

In recent years, research on Wireless Sensor Networks (WSN)has attracted considerable

attention. This is in part motivated by the large number of applications in which WSNs are

called to play a pivotal role, such as parameter estimation (namely, moisture, temperature),

event detection (leakage of pollutants, earthquakes, fires), or localization and tracking (for e.g.

border control, inventory tracking), to name a few.

This PhD dissertation is focused on the design ofdecentralizedestimation schemes for wireless

sensor networks. In this context, sensors observe a given phenomenon of interest (e.g.

temperature). Consequently, sensor observations are conveyed over the wireless medium to

a Fusion Center (FC) for further processing. The ultimate goal of the WSN is theestimationor

reconstructionof the phenomenon with minimum distortion. The problem is addressed from

a signal processing and information-theoretical perspective. However, the interplay with some

selected functionalities at the link layer of the OSI protocol stack (e.g. scheduling protocols)

or network topologies (flat/hierarchical) are also taken into consideration where appropriate.

First, this dissertation addresses the power allocation problem in amplify-and-forward wireless

sensor networks for the estimation of aspatially-homogeneousparameter. This study is mainly

devoted to the analysis of a class of Opportunistic Power Allocation (OPA) strategies which

operate with low complexity and stringent signalling requirements. Several problems of interest

in WSNs are considered:i) the minimization of distortion,ii ) the minimization of transmit

power and,iii ) the enhancement of network lifetime. Finally, hierarchical network topologies

are introduced for those situations where sensor-to-FC channel links suffer from severe path

losses. In this context, the analysis is aimed to identify the power allocation strategy that

provides the best performance trade-off between the estimation accuracy and the signaling

requirements.

Second, sensor nodes are allowed to transmit their observationsdigitally. In this setting, two

encoding strategies are analyzed: Quantize-and-Estimate(Q&E) encoding and Compress-and-

Estimate (C&E) encoding, which operate with and without side information at the decoder,

respectively. This PhD dissertation addresses a number of issues of interest:i) the impact of

different channel models (Gaussian, Rayleigh-fading channels with/without transmit CSI) on

the accuracy of the estimates,ii ) the optimal number of sensors to be deployed and,iii ) the
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impact ofrealisticcontention-based multiple-access protocols on the estimation distortion.

Finally, this PhD dissertation focuses on the estimation ofspatial random fields. In this

scenario, the spatial variability of the parameter of interest is taken into account, rather than

assuming the estimation of asingle (i.e. spatially-homogeneous) parameter. Two different

scenarios are considered, namely, delay-constrainednetworks and delay-tolerant networks.

In addition, the case where sensors cannot acquire instantaneous transmit CSI (CSIT) is

addressed. In this context, the outage events experienced in the sensors-to-FC links result

in a random sampling effect which is investigated.
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Resumen

Las redes de sensores inalámbricas están compuestas por un gran número de dispositivos

de bajo coste y bajo consumo energético llamados sensores.Estos sensores incluyen

funcionalidades como: sensado, técnicas básicas de procesado de señal y un transceptor RF.

Las aplicaciones más comunes de las redes de sensores inal´ambricas son: monitorización

medioambiental, detección de eventos, monitorización de objetos, seguridad doméstica,

aplicaciones médicas y militares, entre otras.

Principalmente, el objetivo de esta tesis doctoral es el diseño de esquemas de estimación

descentralizados para redes de sensores inalámbricas. Entodos los escenarios considerados en

esta tesis, los sensores observan y muestrean un fenómeno de interés (e.g. temperatura, presión,

humedad. . . ). Posteriormente, las muestras almacenadas enlos sensores son transmitidas a

través de un canal inalámbrico hacia un centro de fusión para su procesamiento. El principal

objetivo de la red de sensores es la estimación o reconstrucción del fenómeno de interés

con la mı́nima distorsión. El problema se plantea desde un punto de vista de procesado

de señal y teorı́a de la información. Sin embargo, también se considera la interacción con

algunas funcionalidades de la capa de enlace de la pila de protocolos OSI (e.g. protocolos de

scheduling) además de diferentes topologı́as de red (plana y jerárquica).

En primer lugar, esta tesis se centra en el problema de asignación de potencia en redes

de sensores. En particular, los sensores amplifican y retransmiten sus observaciones hacia

el centro de fusión (i.e. comunicaciones analógicas). Eneste contexto, se proponen y

analizan varias técnicas de asignación de potencia oportunistas, cuyas caracterı́sticas son su

baja complejidad y requisitos de señalización. Se consideran varios problemas especı́ficos

de una red de sensores: i) la minimización de la distorsión, ii) la minimización de la potencia

transmitida y, iii) el aumento del tiempo de vida de la red. Finalmente, se introducen topologı́as

de red jerárquicas con el objetivo de paliar las pérdidas por propagación comunes en escenarios

donde los sensores están situados a una gran distancia del centro de fusión. En este escenario,

el objetivo es identificar la estrategia de asignación de potencia más apropiada, teniendo en

cuenta la calidad de estimación y los requisitos de señalización de ésta.

En segundo lugar, se considera el caso en que los sensores codifican sus observaciones

usando un determinado número de bits (i.e. comunicacionesdigitales). En este escenario,
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se analizan dos estrategias de codificación: Quantize-and-Estimate (Q&E) y Compress-and-

Estimate (C&E). A diferencia de Q&E, la estrategia C&E permite incorporar la información

disponible en el receptor en la codificación de las observaciones, obteniendo ası́ una menor

distorsión en el centro de fusión. En esta tesis se tratan varios problemas de interés: i) el

impacto de diferentes modelos de canal (canales Gausianos ycanales con desvanecimientos

Rayleigh con/sin información instantánea del canal) en la calidad de las estimaciones, ii) el

número óptimo de sensores que se debe desplegar para minimizar la distorsión y; iii) el impacto

de protocolos de contención de acceso al medio en la distorsión.

Por último, esta tesis se centra en la estimación de camposespaciales. En este contexto, se

adopta un modelo de correlación que, a diferencia de los estudios anteriores, tiene en cuenta

la variabilidad del parámetro en el espacio. En este contexto, el estudio se centra en dos tipos

de aplicaciones: redes de sensores con restricciones de retardo en la estimación y redes de

sensores con una cierta tolerancia en el retardo de la estimación. Finalmente, se analiza el

caso más realista, en el que los sensores no disponen de información instantánea del canal y

por lo tanto no pueden transmitir sus datos de manera fiable. Por consiguiente, el objetivo es el

análisis del impacto de este fenómeno en el muestreo del campo y de esta forma en la distorsión

del campo reconstruido.
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Chapter 1

Introduction

1.1 Motivation

Wireless Sensor Networks (WSN) consist of a potentially large number of energy-constrained

sensing devices (thesensors) which are capable of conveying data over wireless links to aFu-

sion Center (FC) where it is further processed. A non-exhaustive list of applications for WSNs

encompass environmental monitoring (e.g. determination of the concentration of pollutants,

temperature, pressure), event detection (leakage of substances, earthquakes, fire), localization

and tracking of assets, healthcare (remote patient monitoring), or military applications (sur-

veillance, border control) to name a few (see e.g. [1–4] for more examples). Due to such a

broad range of applications, in the coming years wireless sensor networks are called to play

a pivotal role in our daily lives. This has driven substantial advances in e.g. energy harvest-

ing techniques, microelectronics, decentralized signal processing, wireless communications or

networking.

Wirelesssensornetworks differ from otherdata networks in many aspects. To start with,

sensors are typically equipped with batteries which, unlike in e.g. mobile phones, are often

difficult or impossible to replace. Consequently, the development of energy-efficient signal

processing techniques and communication protocols capable of enhancing network lifetime

becomes a priority. Besides, both the computational and data transmission capabilities (rate,
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Chapter 1. Introduction

range, etc.) of sensor nodes are, in general, rather limited. Moreover, in many applications

sensors have to be deployed in remote and/or large areas. Allof the above, clearly advocates

for the adoption ofdecentralizedsignal processing techniques and networking protocols. This,

on the one hand, minimizes the need for nodes to coordinate with a central authority (which

translates into energy savings due to reduced signalling) and, on the other, allows for a more so-

phisticated processing of data by leveraging on the computational capabilities of the individual

sensor nodes.

Another distinctive feature of WSNs is that their design isapplication dependentwhereas wire-

lessdatanetworks (such as Wi-Fi, 3G or WiMax) are typically conceived as generic-purpose.

In terms of performance metrics, for instance, a WSN aimed todetect fires in a forest should

be optimized to attain the best trade-off between the probabilities of detection and false alarm

(latency consideration could also be taken into account). On the contrary, in environmental

monitoring applications one is more concerned about estimating the parameter of interest (e.g.

temperature) with the highest possible accuracy. Ultimately, those differences in terms of pur-

pose and performance metrics translate into a number of differences concerning architectural,

terminal or communication protocol designs.

Other particularities of WSNs stem from the fact that the number of sensors in such networks

is potentially large. Consequently, the unitary cost of those devices needs to be kept low which

often translates into an error-prone behavior. This has a number of implications. To start

with, network designs should be robust to such imperfections and possible malfunctioning.

For example, routing schemes should bear in mind that sporadically a specific node might be

unable to forward data. Besides, one should ensure that the designed algorithms and protocols

scale well with an increasing number of sensor nodes. For instance, detection rules with a

computational complexity which is e.g. exponential in the number of nodes might not be

suitable for large sensor networks.

Finally, an important aspect which impacts on the design of WSNs is the fact that sensor mea-

surements are often correlated (e.g. temperature measuredby sensors which are close to each

other). This assumption, which seldom holds in wirelessdatanetworks, triggers a number of

interesting design trade-offs. For instance, one could think of successive encoding schemes

capable of removing redundancy in the transmitted data and,by doing so, achieve substantial

energy savings. However, the resulting encoding scheme becomes more sensitive to channel

outages and dropped frames which, ultimately, might entailthe re-transmission of the whole

set of measurements. Clearly, this would be barely desirable in terms of latency and/or energy

consumption.

This PhD dissertation is focused on the design of decentralized estimation schemes for wire-

less sensor networks. The problem is mostly tackled from a signal processing and information-

theoretical perspective. Still, the interplay with some selected functionalities at the link layer

of the OSI protocol stack (e.g. scheduling protocols) or network topologies (flat/hierarchical)
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will be taken into consideration where appropriate. Ultimately, this PhD dissertation attempts

to find answers to questions such as what is the power allocation scheme that exhibits the best

trade-off in terms of performance, complexity and signalling requirements? What is the price

to be paid, in terms of estimation accuracy, in order to enhance network lifetime? What is the

optimal number of sensor nodes needed to be deployed as a function of the spatial variability

of the parameter to be estimated? Is it worth using successive encoding schemes in practi-

cal wireless sensor networks? What is the impact of contention-based (vs. contention-free)

multiple-access schemes on the attainable distortion?

In subsequent sections, we outline the contents and organization of this PhD Dissertation. Next,

we provide a list of journal and conference publications that have resulted from the realization

of this work.

1.2 Outline

This PhD dissertation is focused on the design and analysis of estimation techniques for WSNs.

Chapter 3 addresses the case of amplify-and-forward WSNs inwhich the sensor observations

are scaled by an amplifying factor for their transmission tothe FC (i.e.analogtransmissions).

On the contrary, in Chapters 4 and 5 sensors encode/quantizedata into a number of bits (i.e.dig-

ital transmissions) before sending them to the FC. Regarding theestimation problem, Chapters

3 and 4 are devoted to the estimation of a spatially-homogeneous parameter, whereas Chapter

5 addresses the more realistic case of the estimation of spatial random fields. In all cases, the

main performance metric is the distortion in the estimates.

This PhD dissertation is organized as follows:

Chapter 2 reviews a number of concepts which will be used in this PhD Dissertation. First, we

present an overview of hardware and network topologies issues in wireless sensor networks.

Next, some basic concepts on estimation theory, information theory and opportunistic commu-

nications are outlined, respectively.

Chapter 3 addresses the problem of estimating a spatially-homogeneousparameterwith amplify-

and-forward WSNs. In this setting, the main contribution isthe design of an Opportunistic

Power Allocation (OPA) scheme with low signalling requirements. The scheme is particular-

ized for several problems of interest:i) the minimization of distortion,ii ) the minimization

of transmit power and,iii ) the enhancement of network lifetime. Besides, a hierarchical net-

work topology is also proposed for scenarios in which sensors are placed at large distances

from the FC. In this setting, sensors are grouped into clusters and a cluster-head (CH) is in

charge of consolidating and sending a local estimate to the FC. For this network topology, an

exhaustive comparison of different power allocation strategies is conducted. In particular, all
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the strategies are compared in terms of estimation distortion and Channel State Information

(CSI) requirements.

In Chapter 4, the problem at hand continues to be the estimation of a spatially-homogeneous

parameter but, unlike in the previous chapter, sensor nodestransmit their observationsdigi-

tally. In particular, two encoding strategies are analyzed:i) Quantize-and-Estimate (Q&E)

and ii ) Compress-and-Estimate (C&E). First, Chapter 4 addressesa scenario withorthogonal

sensor-to-FC channels (i.e. TDMA/FDMA). In this setting and by constrainingbandwidth

andpower irrespectively of the network size, the distortion behavior is analyzed for different

channel models (Gaussian, Rayleigh-fading, with/withoutTransmit CSI (CSIT)). For scenarios

in which sensors operate without instantaneous CSIT, aconstantandcommonencoding rate

must be used. Such encoding rate must be carefully designed since, ultimately, it determines

the outage probability experienced at the sensors-to-FC channels,and the resolution at which

sensor observations are encoded (and both phenomena have animpact on the accuracy in the

estimates). For the C&E encoding strategy, the impact of theencoding order on the distortion,

which arises from the successive encoding/decoding structure of the strategy, is also investi-

gated. Next, Chapter 4 addresses a (more realistic) case in which sensors seize the channel

via contention-based multiple-access mechanisms (e.g. ALOHA). Furthermore, a hierarchical

topology is adopted and the performance of reservation-based protocols and contention-based

multiple-access protocols at different levels of the hierarchy is analyzed.

Chapter 5 goes one step beyond and focuses on the estimation of spatial randomfields. In this

setting, the correlation between the sensor observations is determined by the distance between

sensors. Two different scenarios are considered, namely, delay-constrainednetworks and

delay-tolerantnetworks. Besides, two different encoding strategies are adopted: i) quantize-

and-estimate encoding and,ii ) compress-and-estimate where each sensor exploits (at theen-

coder) the correlation between adjacent observations. Finally, the case in which sensors cannot

acquire instantaneous transmit CSI (CSIT) is addressed. Inthis context, as in Chapter 4, a

constantandcommonencoding rate is adopted at the sensor nodes which along network size

are optimized.

Chapter 6 concludes this PhD dissertation with a summary anda discussion of the main results

of this work. Some suggestions for future work are also outlined.

1.3 Contribution

Chapter 3

The main contributions of Chapter 3 have been published in 1 journal paper and 4 conference

papers while another 1 letter is under review.
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• J. Matamoros, C. Antón-Haro, Opportunistic Power Allocation and Sensor Selection

Schemes for Wireless Sensor Networks, IEEE Transactions onWireless Communica-

tions, vol. 9, no. 2, pp. 534–539, Feb. 2010.

• J. Matamoros, C. Antón-Haro, Scaling Law of an Opportunistic Power Allocation Scheme

for Amplify-and-Forward Wireless Sensor Networks, submitted to the IEEE Communi-

cations Letters.

• J. Matamoros, C. Antón-Haro, Opportunistic Power Allocation in Wireless Sensor Net-

works with Imperfect Channel State Information, in Proceedings of the ICT-Mobile Sum-

mit 2008, 10-12 June 2008, Stockholm (Sweden).

• J. Matamoros, C. Antón-Haro, Opportunistic Power Allocation Schemes for the Max-

imization of Network Lifetime in Wireless Sensors Networks, in Proceedings of IEEE

Int’l Conference on Audio, Speech and Signal Processing (ICASSP 2008), Apr. 2008,

Las Vegas, Nevada (USA).

• J. Matamoros, C. Antón-Haro, Hierarchical Organizationsof Sensors for Decentralized

Parameter Estimation, In Proc. IEEE Int’l Symposium on Signal Processing and Infor-

mation Technology (ISSPIT), Dec. 2007, El Cairo (Egypt).

• J. Matamoros, C. Antón-Haro, Opportunistic Power Allocation Schemes for Wireless

Sensor Networks, IEEE Int’l Symposium on Signal Processingand Information Tech-

nology (ISSPIT), Dec. 2007, El Cairo (Egypt).

Chapter 4

Contributions of Chapter 4 have been published in part in 5 conference papers, and 1 journal

paper is under review.

• J. Matamoros, C. Antón-Haro, Optimal Network Size and Encoding Rate for Wire-

less Sensor Network-based Decentralized Estimation underPower and Bandwidth Con-

straints, submitted to IEEE Transactions on Wireless Communications.

• J. Matamoros, C. Antón-Haro, Hierarchical Wireless Sensor Networks with Contention-

based Multiple-Access Schemes - A PHY/MAC Cross-layer Design, in Proceedings of

Second International Workshop on Cross Layer Design, (IWCLD 2009), 11-12 June

2009, Palma de Mallorca (Spain).

• J. Matamoros, C. Antón-Haro, Optimized Constant-Rate Encoding for Decentralized Pa-

rameter Estimation with Wireless Sensor Networks, in Proceedings of IEEE International

Workshop on Signal Processing Advances for Wireless Communications (SPAWC 2009),

21-24 June 2009, Perugia (Italy).
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• J. Matamoros, C. Antón-Haro, To Sort or not to Sort: OptimalSensor Scheduling for Suc-

cessive Compress-and-Estimate Encoding, in Proceedings of IEEE International Confer-

ence in Communications (ICC 2009), 14-18 June 2009, Dresden(Germany).

• J. Matamoros, C. Antón-Haro, Bandwidth Contraints in Wireless Sensor Networks for

Rayleigh Fading Channels, in Proceedings of NEWCOM++, ACoRN Joint Workshop,

30-1 April 2009, Barcelona (Spain).

• J. Matamoros, C. Antón-Haro, Bandwidth Constraints in Wireless Sensor-based Decen-

tralized Estimation Schemes for Gaussian Channels, in Proceedings of IEEE Global

Conference on Communications (GLOBECOM 2008), 30 November-4 December 2008,

Louisiana, New Orleans (USA).

Chapter 5

Finally, contributions of Chapter 5 have been published in part in 2 conference papers and, 1

journal paper and 2 conference papers are under review.

• J. Matamoros, C. Antón-Haro, Random Field Estimation withDelay-constrained and

Delay-tolerant Wireless Sensor Networks, submitted to EURASIP Journal on Wireless

Communications and Networking.

• J. Matamoros, C. Antón-Haro, Optimal network size and encoding rate for random

field estimation with wireless sensor networks, in Proceeding of The 3rd International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP

2009). 13-16 December 2009, Aruba (Dutch Antilles).

• J. Matamoros and C. Antón-Haro, Delay-tolerant vs. delay-constrained estimation of

spatial random fields, in Proceedings Future Network & Mobile Summit 2010, Florence,

Italy, 16-18 June 2010.

• J. Matamoros and C. Antón-Haro, Quantize-and-estimate encoding schemes for random

field estimation with delay-constrained and delay-tolerant wireless sensor networks, sub-

mitted to IEEE PIMRC 2010.

• J. Matamoros and C. Antón-Haro, Random field estimation with delay-tolerant wireless

sensor networks: Quantize-and-estimate vs. compress-and-estimate encoding, submitted

to IEEE Globecom 2010.

Other contributions not presented in this dissertation

During the first year of the PhD studies, two conference papers were published. In these works,

a novel random access technique is proposed for decentralized parameter estimation which

requires only local CSI at the sensor nodes.

6



1.3. Contribution

• J. Matamoros, C. Antón-Haro, Opportunistic Random Accessfor Distributed Parameter

Estimation in Wireless Sensor Networks, European Signal Processing Conference (EU-

SIPCO’07), Poznan (Poland), Sept. 2007, pp. 2439-2443.

• J. Matamoros, C. Antón-Haro, Distributed Scheduling in Wireless Sensor Networks

under Heterogeneity and Imperfect Channel State Information, IEEE Statistical Signal

Processing Workshop (SSP), August 2007.
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Chapter 2

Background

In this chapter we review a number of concepts and mathematical tools which will be used in

this PhD dissertation. First, in Section 2.1 we provide an overview of a number of hardware

and networking issues in WSNs. Then, in Section 2.2, we introduce several basic concepts in

estimation theory and some recent results on decentralizedestimation for wireless sensor net-

works. Next, we establish the link between estimation theory and information theory in Section

2.3. Finally, in Section 2.4, we introduce the concept of multi-user diversity and opportunistic

communications and their exploitation in a context of wireless sensor networks.

2.1 Wireless sensor networks: hardware and network issues

Nowadays, Crossbow Motes1 are perhaps the most popular sensor nodes due to their versatil-

ity. These commercial sensor nodes include all basic operations: sensing, simple digital signal

processing and an IEEE 802.15.4 RF transceiver. The key features of IEEE 802.15.4 technol-

ogy [5] are low cost, low complexity, low energy consumptionand low data rates. A sensor

node is mainly composed of a microprocessor, data storage components, Analog-to-Digital

Converters (ADCs), sensors, an RF transceiver and a battery(see Fig. 2.1). Research on

hardware is mainly aimed to build and design small electronic components with a low energy

1For further details see http://www.xbow.com
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Power unit (battery)

microprocessor

data storage

RF
transceiver

sensors

ADCs

SENSING PROCESSING COMMUNICATION

energy harvesting

Figure 2.1: Block diagram of a sensor node.

consumption requirements. This fact, along with energy harvesting methods [6] (e.g. wind

energy, solar cells), will enable the design of more energy-efficient wireless sensor nodes.

As far as network topologies are concerned,single-hoptransmission, in which a number of

staticsensor nodes transmit their observationsdirectly to the FC, is, by far, the most popular

one [7–12]. Still,multi-hoptransmission is also used in WSNs. In a multi-hop network, the

information from the source node hops over a set of intermediate nodes in order to reach the

destination (see Figure 2.2). In this context, the authors in [13] propose a multi-hop network

where a source transmits to the destination with the help of aset of tier of sensors acting as

relays. The authors derive expressions for the ergodic capacity and the outage probability for

different fading distributions. In [14] instead, the sensors are grouped into clusters where they

cooperate to form MIMO channels between clusters. The authors derive the optimal power

allocation (and time sharing) within intra-cluster and inter-cluster communications, in order to

minimize the end-to-end outage probability.

Hierarchicalnetwork topologies have also been addressed in a number of works (see [15] and

references therein). In this setting, sensors are organized into clusters, each of which is under

the supervision of a Cluster-Head (CH). Each CH is in charge of consolidating cluster data

and conveying such information to the FC (see Fig. 2.3). The nodes which act as the cluster-

heads can be determined in advance (e.g. more powerful ones)or, alternatively, can be selected

depending on thecurrent network conditions (e.g. the one with the strongest channelgain to

the FC or, the one with the higher residual energy).

In [16], the authors consider two different scenarios,i) multihop transmissions and,ii ) SENMA

(Sensor Networks with Mobile Access), originally introduced in [17] (see Fig. 2.4). This paper

studies the scaling behavior of the energy consumption by taking into account the transmission

energy and the listening energy. Besides, the case of multiple FCs (both for cooperative and

non-cooperative scenarios) is investigated as well.
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Figure 2.2: Multi-hop network.
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Cluster-head
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Figure 2.3: Hierarchical network.

Mobile Access Points

Sensor Network

Figure 2.4: Sensor Networks with Mobile Access.

2.2 Estimation theory

This PhD dissertation addresses the problem of theestimationof unknown parameters or ran-

dom field with WSNs. Hence, we start by reviewing some basic concepts of estimation theory.

First, we present the well-known problem ofcentralizedparameter estimation. Next, we focus

on the problem ofdecentralizedparameter estimation, where the observations containing in-

formation of the parameter of interest aregeographicallydistributed as it is the case in sensor

networks.

2.2.1 Centralized parameter estimation

The estimation of an unknown parameter is a classical problem [18]. This problem can be ap-

proached from two different perspectives: theclassicalestimation and theBayesianestimation.
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Classical estimation

In classical estimation, the parameter of interest, denoted in the sequel asθ, is assumed to be

deterministic but unknown. The deterministic assumption follows from the fact that no prior

statistical information ofθ is available. Standing on these basis, the goal is to obtain an estimate

of θ, that isθ̂, with minimum distortion. Usually, the distortionD in the estimatêθ, is defined

as the Mean Squared Error (MSE), that is

D = E

[

(

θ − θ̂
)2
]

=

∫

(

θ − θ̂
)2

p (x; θ) dx, (2.1)

wherex stands for the vector of observations, andp (x; θ) is the pdf of the observation vector

parameterized by the unknown parameterθ. The interest typically lies in unbiased estimators,

i.e. estimator for whichE[θ̂] = θ. In this context, the so-called Cramer-Rao-Lower-Bound

(CRLB), whose definition can be found in [18], constitutes the absolute benchmark. The esti-

mator with the minimum variance (i.e. the one which minimizes (2.1)) for allθ is the so-called

Minimum Variance Unbiased (MVU) estimator and, further, ifit attains the CRLB it is said to

be efficient. Unfortunately, the MVU estimator is in generaldifficult to find or may not even

exist. In this case, one can resort to the Maximum Likehood (ML) estimator, defined as

θ̂ML , arg max
θ
p (x; θ) , (2.2)

which can be shown to be unbiasedandefficient for an asymptotically large sample size.

An interesting case where the MVU estimator can always be determined is for linear data

models, namely

x = hθ + n, (2.3)

whereh = [h1, . . . , hN ]T is a known vector andn ∼ N (0, INσ
2
n) denotes the additive white

Gaussian noise (AWGN). By imposing unbiasedness, i.e.Ey

[

θ̂(y)
]

= θ, and according to the

distortion criteria of (2.1), the minimum variance unbiased estimator reads

θ̂ =

(

N
∑

k=1

h2
k

σ2
n

)−1( N
∑

k=1

hkxk
σ2
n

)

, (2.4)

with distortion given by

D =

(

N
∑

k=1

h2
k

σ2
n

)−1

. (2.5)

In this case, this estimator is efficient since it attains theCRLB. Besides, it turns out to be linear

in the data and, for linearized data models, it is often referred to as the Best Linear Unbiased

Estimator (BLUE).
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Bayesian estimation

Unlike in the classical estimation theory, in Bayesian estimation the unknown parameter is

assumed to berandomwith a known prior pdf. Consequently, one can exploit this fact by

incorporating this prior information into the design of theestimator. In this case, the distortion

metric is typically thebayesianmean squared error, namely

D = E

[

(

θ − θ̂
)2
]

=

∫ ∫

(

θ − θ̂
)2

p (x, θ) dxdθ, (2.6)

where the error is averaged over the joint pdfp (x, θ). It is straightforward to show that the

optimal estimator in terms of MSE is given by the posterior mean, that is

θ̂(x) = E[θ|x], (2.7)

with distortion given by

D = Var[θ|x]. (2.8)

As an example, we consider the following linear model

x = hθ + n, (2.9)

whereh = [h1, . . . , hN ]T is a known vector andn ∼ N (0, INσ
2
n) denotes AWGN. Here,

we assume that the prior pdf of the parameterθ is available and given byθ ∼ N (0, σ2
θ).

Consequently, from (2.7) we have that

θ̂ = E[θ|x] =

(

1

σ2
θ

+
N
∑

k=1

h2
k

σ2
n

)−1( N
∑

k=1

hkxk
σ2
n

)

, (2.10)

with distortion given by

D = Var[θ|x] =

(

1

σ2
θ

+
N
∑

k=1

h2
k

σ2
n

)−1

. (2.11)

Again, the optimal estimator turns out to be linear in the data and corresponds to the Linear

Mean Squared Error (LMMSE) estimator [18, Chapter 12]. By comparing (2.11) with (2.5),

we see that the prior information about the parameter of interest helps decrease the distortion

in the estimates.

2.2.2 Decentralized parameter estimation

In wireless sensor networks, sensor observations are geographically distributed and, hence,

the aforementioned estimators have to be designed to operate in a decentralized manner. Fur-

thermore, the sensor network topology has to be taken into account for the design of the de-

centralized estimation technique. In the sequel, we defineinfrastructure-basednetworks as a

networkwith a FC gathering and processing the information, andinfrastructurelessnetwork as

a networkwithoutany central device or coordinator.
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Infrastructure-based networks

For correlated Gaussian sources, theanalogre-transmission of the observations is known to

scale optimally in terms of distortion [12]. Motivated by this result, under orthogonal channels

and different local observation qualities, in [11] the optimal power allocation is derived for two

different situations:i) the minimization of distortion subject to a sum-power constraint, and

ii ) the minimization of transmit power subject to a maximum distortion target. Alternatively,

the authors in [9] address the problem of decentralized estimation, where each sensor is only

allowed to sendbinaryobservations to the FC. Interestingly, this paper introduces a class of ML

estimators that attain a variance close to the CRLB with merely 1 bit per observation. Besides,

by relaxing the bandwidth constraint, the best possible estimator under binary observations is

constructed. Similar analysis are conducted in [10] under unknown noise pdf leading to the

so-calleduniversal(pdf-unaware) estimators. Universal estimators based onquantizedsensor

data have been introduced in [8, 19]. In particular, the workof [19] suggests that the optimal

decentralized estimation scheme with 1-bit per observation should allocate 1/2 of the sensors

to estimate the first bit of the unknown parameter, 1/4 of the sensors to estimate the second bit,

and so on. In addition, [20] proposes a simple probabilisticquantization scheme in order to

obtain an unbiased binary message. By doing so, one can simply use a suboptimal and of low

complexity estimator, such estimator is the Best Linear Unbiased Estimator (BLUE).

Several models have been proposed in the literature (see [21] and references therein) to charac-

terize the spatial correlation associated to randomfields. In this context, the GMOU (Gaussian

Markov Ornstein-Ulenhbek) model [22] is commonly used in the literature (e.g. see [23–25])

and lends itself to a mathematical tractability. For a general Gaussian correlation model, the

interested reader is referred to [26]. The authors in [26] propose a bayesian framework for

adaptive quantization at the sensor nodes, which requires afeedback channel.

Infrastructureless networks

Infrastructureless approaches for distributed estimation have been considered in e.g. [27–31].

In [27] each sensor has a first-order dynamical system initialized with the local measurements

and, only communication between nearby nodes is allowed, exchanging their local states. In

this paper, the authors prove that each node converges to theglobally optimal ML estimator

under some stability conditions. In this class of estimators, some latency in the estimation

turns up, since the process to achieve consensus is iterative in nature. Hence, the energy con-

sumption, which is proportional to the total number of iterations, increases, as well. One could

think of decreasing the transmit power to reduce the energy consumption in each iteration but,

in that case, the connectivity would decrease as more iterations would be needed to achieve

consensus [28]. Besides, this paper studies the impact of the network topology on the en-

ergy consumption and it concludes that a random deployment is preferable to a regular grid of
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sensors.

Some algorithms have also been proposed in the context of target tracking with a WSN [32–34].

In [34], for instance, the authors consider a linear dynamical system and propose a bandwidth-

constrained distributed Kalman filter. More precisely, each sensor is only allowed to broadcast

the sign of the innovation (1-bit) but, surprisingly, its performance is shown to be close to that

of the traditional (i.e.analog) Kalman filter.

2.3 Information theory

In this section, we attempt to establish a link between the estimation theory and the information

theory. This will be needed in Chapters 4 and 5 where a number of information theoretical ap-

proaches will be adopted to encode observations at the sensor nodes. After a reminder of some

definitions, in Section 2.3.2, we introduce the concept oflosslesscompression for discrete ran-

dom variables. Next, in Section 2.3.3 we outline the principles of lossycompression. Finally,

the source-channel separation theorem is discussed in Section 2.3.4.

2.3.1 Reminder of definitions

LetX, Y be two discrete memoryless sources withjoint pmfpX,Y (x) and marginal pmf’spX(x)

andpY (y), respectively. We introduce the following definitions:

Entropy The entropy of a random variable is defined as follows:

H(X) , −
∑

x

pX(x) log pX(x).

Joint entropy Likewise, the joint entropy of two random variablesX andY is given by

H(X, Y ) , −
∑

x,y

pX,Y (x, y) log pX,Y (x, y).

Conditional entropy The conditional entropy ofX givenY reads

H(X|Y ) , −
∑

x,y

pX,Y (x, y) log pX|Y (x|y).

Mutual information The mutual information ofX andY is defined as follows:
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H(X,Y )

H(Y |X )H(X |Y )

H(Y )

I(X;Y )

H(X )

Figure 2.5: Graphical interpretation [35, Chap. 2].

I(X;Y ) ,
∑

x,y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

= I(Y ;X). (2.12)

In Fig. 2.5, the circles corresponding toH(X) andH(Y ) denote the information ofX andY .

Likewise, the joint entropyH(X, Y ) is the union of the information ofX andY . Therefore,

the conditional entropyH(X|Y ) denotes the quantity of information ofX independent ofY .

Finally, the mutual informationI(X;Y ) is the intersection of the information ofX andY .

2.3.2 Lossless compression

In a lossless compression setting, the source observed at the encoder can be compressed to

a finite number of bits and still be almost perfectly reconstructed. LetX be a memoryless

discrete source with a pmfpX(x). For losslesscompression ofX, the average number of bits

per sample must satisfy:

RX ≥ H(X). (2.13)

This compression rate can only be achieved by encoding largeblocks of samples. To show

that, consider a length-n vector of independent realizations ofX, i.e. x = x(1), . . . , x(n) with

probabilityPr (x) =
∏n

i=1 pX(x(i)). For largen, the total number oftypical sequences is ap-

proximately2nH(X) and all typical sequences are equiprobable [35, Chapter 3].Consequently,

the encoding-decoding process could be as follows:
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encoder #1

encoder #2Y

X

decoder ,X Y

X
R

Y
R

Figure 2.6: Separate encoding ofX andY .

1. At the encoder: Randomly generate a codebookCX containing all typical sequences, i.e.

2nH(X) codewords, and reveal it to the decoder. Each codeword has anassociated index

denoted bys ∈
[

1, . . . , 2nH(X)
]

. Sincex is a typical codeword with high probability, it

will be represented with probability close to 1 inCX . Select the corresponding indexs

corresponding to codewordx and send it to the decoder.

2. At the decoder: Receive indexs. Select the codeword corresponding to the indexs in

CX and obtainx.

Correlated random variables

Typically, sensor observations are correlated. By properly encoding such observations so

that redundant information is removed before transmission, substantial energy savings can be

achieved. To illustrate that, in this section we review the optimal encoding strategy for two

correlated sources.

Let X, Y be two discrete memoryless sources withjoint pmf pX,Y (x) and marginal pmf’s

pX(x) andpY (y), respectively. According to the previous result, a rate ofRXY ≥ H(X, Y )

bits per sample suffices to encode a large length-n sequence(x(1), y(1)), . . . , (x(n), y(n)). On

the contrary, ifX andY are observations available atseparateencoders (sensors), as depicted

in Fig. 2.6, by choosingRX ≥ H(X) andRY ≥ H(Y ) we can reconstructX andY perfectly

at the decoder. However, in the seminal paper of Slepian and Wolf [36], it is shown that

(x(1), y(1)), . . . , (x(n), y(n)) can be perfectly reconstructed at the decoder, if and only ifthe

corresponding rates satisfy the following conditions:

RX ≥ H(X|Y ) (2.14)

RY ≥ H(Y |X) (2.15)

RX +RY ≥ H(X, Y ). (2.16)

This rate region is depicted in Fig. 2.7. In other words, one can adopt an encoding strategy with

a sum rate identical to that of the centralized case, where both sourcesX andY are available

at the (joint) encoder. For instance, if encoder #1 encodes data at a rate ofRX ≥ H(X)
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Figure 2.7: Achievable rate region [36].

then encoder #2, can assume thatX will be available at the decoder and, thus, encode its

observations at a rateRY ≥ H(Y |X). This corresponds to one of the corner points of the rate

region shown in Fig. 2.7. Finally, we outline the corresponding encoding-decoding strategy

which allows the system to operate at one of the corner pointsof the achievable rate region:

1. At encoder #1: Randomly generate a codebookCX containing all typical sequences, i.e.

2nH(X) codewords, and reveal it to the decoder. Each codeword has anassociated index

denoted ass1 ∈
[

1, . . . , 2nH(X)
]

. Then, look for the codeword which is jointly typical

with the length-n source vectorx. Since,x is a typical codeword, it will be represented

with probability 1 inCX . Select the corresponding indexs1 and send it to the decoder.

2. At encoder #2: Randomly generate a codebookCY containing all typical sequences,

i.e. 2nH(Y ) codewords, and reveal it to the decoder. Randomly partitionthe codebook

into 2nRY bins and reveal the partition to the decoder. Next, send the indexof the bin

s2 ∈
[

1, . . . , 2nRY
]

to which the codeword belongs

3. At the decoder: First, receive indexs1 and extractx. To decodey, the decoder looks for

the codewordy which is jointly typical withx in the bin pointed by indexs2. To prevent

from ambiguity, the number of codewords in each bin must be less than2nI(X;Y ), which

yieldsRY ≥ H(Y |X).

It is worth noting that the remaining points of the rate region of Fig. 2.7 can be achieved
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2.3. Information theory

through time-sharing.

2.3.3 Lossy compression

In some applications, allowing some distortion in the reconstruction can be acceptable. For

instance, in the context of WSNs, one could think of decreasing the amount of transmitted data

(and, thus, the energy consumption that it entails) at the price of increasing distortion in the

resulting estimate. Besides, for continuous (i.e.analog) sources, an infinite number of bits

would be needed to achieve zero distortion in the estimates,which is not realistic. For this

reason, in subsequent sections, we review some basic results on rate-distortion trade-offs in

lossy data compression.

Rate-distortion function

Let x = x(1), x(2), . . . , x(n) be the set of observations andx̂ = x̂(1), . . . , x̂(n) their estimates at

the decoder. Then, for a given distortion metricd(·, ·) the distortion for largen is given by

D = d (x, x̂) =
1

n

n
∑

i=1

d
(

x(i), x̂(i)
)

(2.17)

= EX,X̂

[

d
(

X, X̂
)]

(2.18)

which follows from the law of large numbers. From [35, Chapter 13], the rate-distortion func-

tion can be defined as:

R(D) , min
f

X̂|X
(x̂|x):E

X,X̂[d(X−X̂)]≤D
I
(

X; X̂
)

where the minimization is over all conditional distributionsfX̂ |X (x̂|x) for which the distortion

constraint is satisfied.

Gaussian source: For a zero-mean Gaussian sourceX ∼ N (0, σ2
x), we have that [35, Chapter

13] (see also Fig. 2.8)

R(D) =







1

2
log

σ2
x

D
0 ≤ D ≤ σ2

x

0 D > σ2
x

.

The encoding-decoding process would be as follows:

1. At the encoder: Randomly generate a Gaussian codebookC containing2nR(D) code-

words, and reveal it to the decoder. Each codeword has associated an index denoted as

s ∈
[

1, . . . , 2nR(D)
]

. Then, look for a codeword̂x which isdistortion typical2 with the

length-n source vectorx. Select the corresponding indexs and send it to the decoder.
2The definition for distortion typical can be found in [35, Chapter 13]
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Figure 2.8: Rate-distortion function for a Gaussian source(σ2
x = 1).

2. At the decoder: Receive indexs. Select the codeword corresponding to the indexs in C
and obtain̂x.

Rate-distortion function with side information at the decoder

In this section, we ask ourselves about the impact of having as side information at the decoder

some random variableY which is correlated withX. To that aim, letX, Y be two continu-

ous memoryless sources with joint probability density function fX,Y (x, y) and marginal pdf’s

denoted byfX(x) andfY (y), respectively. From [37], the rate-distortion function with side

informationY at the decoder reads

RY (D) , min
fW |X(w|x),g:EX,W,Y [d(x,g(y,w))]≤D

(I (X;W )− I (Y ;W ))

whereW stands for an auxiliary random variable denoting the encoded version ofX. In the

next paragraphs, we outline the encoding-decoding strategy where we assume both the proba-

bility density functionfW |X and the reconstruction functiong to be known.

1. At the encoder: FromfW |X(w|x), computef(w) =
∫

fX(x)fW |X(w|x)dx. Then ran-

domly generate a codebookC containing2nR1 codewordsw(s) ∼ ∏n

i=1 fW (w(i)) in-

dexed bys ∈ 1, . . . , 2nR1 with R1 = I (X;W ). Randomly partition the codebook into
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2.3. Information theory

2nR bins. Next, look for the codewordw which is jointly typical with the source vector

x and send the index of the bin where the codeword belongs to.

2. At the decoder: First, receive the index of the bin where the codewordw belongs to.

From this, select the codeword which is jointly typical withthe side information given

by y. To prevent from ambiguity and ensure that the only jointly typical codeword with

y is the intended transmittedw, the number of codewords in each bin must be less than

2nI(W ;Y ), which leads toR ≥ I (X;W ) − I (Y ;W ). Finally, compute the per sample

estimate, i.e.̂x(1), . . . , x̂(n) = g(w(1), y(1)), . . . , g(w(n), y(n)), with average distortionD.

It is worth noting that this problem is similar to that of lossless compression with correlated

sources. Unfortunately, the extension of the setting of Fig. 2.6 for a lossy compression sce-

nario continues to be an open problem, and only some problemsof interest have been fully

characterized (e.g. the quadratic Gaussian CEO problem [38]).

2.3.4 Source-channel coding separation principle

In a sensor network, sensor nodes not only have to compress the collected samples but also they

have to transmit them over a noisy channel to the FC. From [35,Chapter 8], in point-to-point

communications, source channel separation is optimal. More precisely, a discrete source can

be perfectly reconstructed at the decoder if the following inequality is satisfied

nH(X) ≤ mC, (2.19)

where, in the above expression,C denotes the capacity (in bits per channel use) of a memory-

less channel characterized byf(y|z) (see Fig. 2.9), andm
n

denotes the ratio of channel uses per

source sample. The encoding/decoding process is as follows:

• At the encoder: First, then samples of the sourceX are encoded and represented by

an indexs which, as commented in Section 2.3.2,s ∈ 1, . . . , 2nH(x). The index is used

as an input for the channel coding stage. The channel codebook consists of at most2mC

codewords. A one-to-one mapping of each source codeword into a channel codeword

exists if nH(X) ≤ mC. Finally, the channel codeword corresponding to indexs is

transmitted to the decoder.

• At the decoder: The decoder receivesz (see Fig. 2.9) and, since the encoder is trans-

mitting at the maximum rate which can be reliably supported by the channel, i.e.C,

the transmitted codewordy (see Fig. 2.9) is decoded without errors. Next, the channel

decoder propagates the index of the transmitted codeword tothe source decoding stage.

Finally, the decoder looks for the source codeword associated to indexs and obtainsx.
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Figure 2.9: Separate source and channel coding.

Clearly, the fact that the source and channel coding can be treated (andoptimallysolved) as

independent problems leads to a high degree of modularity inthe implementation of commu-

nication systems.

Unfortunately, this optimality does not hold for multi-terminal settings such the Chief Ex-

ecutive Officer (CEO) problem of [39]. In the quadratic Gaussian CEO problem,N sen-

sors/terminals observe a common source of interestx embedded into (independent) Gaussian

noiseni ; i = 1, . . . , N . Sensors encode their observations for transmission over amultiple-

access channel. The destination, or fusion center, receives the data and produces an estimate

of x, that is, x̂. For this setting, the separation of source and channel coding was shown to

be suboptimal for asymptotically large WSNs [12]. To that aim, the authors proved that for

Amplify-and-Forward (A&F) strategies, where sensors transmit scaled versions of their obser-

vations, the distortion decreases in the number of sensor nodes as in the centralized case, that

is

DA&F ∼
1

N
,

whereas in a system where source and channel coding is carried out separately,

Dsep ∼
1

logN
.

Still, such optimality can only be achieved ifall the A&F sensors can be fully synchronized

(which is difficult to achieve in practical scenarios).

2.4 Multi-user diversity and opportunistic communications

One intrinsic characteristic of wireless channels is the fluctuation of the channel strength due to

constructive and destructive interference. This fluctuation, known asfading, can be combated

by creating a number of independent paths between the transmitter and the receiver through

time, space or frequency diversity. Besides, in multi-terminal networks one can also exploit the

so-calledMulti-User Diversity (MUD).

22



2.4. Multi-user diversity and opportunistic communications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

C
ha

nn
el

 m
ag

ni
tu

de

User 1
User 2

Figure 2.10: Channel fluctuations for two different users.

2.4.1 Opportunistic communications in wireless data networks

Multi-user diversity is the result of having a large population of users with independent fading

conditions. In their seminal work, Knopp and Humblet [40] established the roots of oppor-

tunistic communications. Their work showed that in the uplink of single-antenna multi-user

networks, the sum-rate under a sum-power constraint can be maximized by granting access to

the user experiencing the most favorable channel conditions (see also [41]). Similar results

were derived for the parallel broadcast (i.e. downlink) channel in [42]. In Figure 2.10, we

depict the channel magnitude for two different users in the uplink. In this example, diversity

appears in two dimensions: time and users. Here, one can exploit multi-user diversity by select-

ing at each time instant the user experiencing the most favorable channel condition to the Base

Station (BS). Clearly, by increasing the number of terminals (N), the probability of having a

user with a stronger channel gain increases too.

With independent and identical fading conditions, opportunistic approaches exhibit long-term

fairness since, onaverage, each user is scheduled the same number of times. Conversely, if

the fading coefficients arenon-identicallydistributed these strategies become unfair. In the

WSN context, this could entail, for instance, that sensors closer to the FC would die earlier,

which is not desirable. To avoid that, one can resort to Proportional Fair Scheduling (PFS)

strategies where the metric for the user selection is theaccumulatedthroughput in a sliding

observation window which ensures short-term fairness [43,44]. It is worth noting that all these

strategies assume that channels are fast-fading. For slow-fading scenarios, one can induce
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Figure 2.11: CDF of the strongest channel gain for differentnumber of users for Rayleigh-

fading channels.

pseudo-random fading by adopting the approach of [43].

The major drawback of all works cited above is the need forglobalandperfectCSI at the Base

Station (BS). For this reason, [45,46] analyze the impact ofdelayed and noisy CSI estimates on

multi-user diversity. To alleviate the need for global CSI,the authors in [47] proposed a simple

thresholding strategy, by which only those users with channel gains above a given threshold

report them to the BS. In the literature, this strategy is known as Selective Multi-User Diversity

(SMUD). By doing so, the load in the feedback channel decreases at the expense of a small

loss in terms of sum-rate. This follows from the fact that there exists an outage scheduling

probability for which no user reports its CSI to the BS. In this situation, the BS randomly

schedules one of the users.

However, in the previous algorithm analog feedback is stillrequired. The case of quantized

feedback is considered in [48], where merely 1 bit of feedback suffices to capture the optimal

growth in capacity for an increasing number of users. That is, for largeN the capacity scales

asC ∼ log logN . Similar results are obtained in [49] for multi-user MIMO settings.

An opportunistic variation of the well-known ALOHA protocol [50,51] is introduced in [52] by

which the scheduling decision made by theterminalsare on the basis oflocalCSI only. Clearly,

this scheduling protocol suffers from packet collisions but, still, it is shown to be asymptotically

optimal and to achieve the same capacity growth rate as acentralizedscheduler. More precisely,

the ratio of throughputs for the opportunistic ALOHA and thecentralizedschedulers is shown
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Figure 2.12: Opportunistic carrier sensing of [54].

to be1/e for a largeN . The reader is referred to [53] for the the case that the receiver can

handle multiple packet reception. .

2.4.2 Opportunistic schemes in wireless sensor networks

Although, the aforementioned strategies were derived in the context of wirelessdatanetworks,

opportunistic schemes are also suitable for wirelesssensornetworks. For instance, in a WSN

with a large population of sensors and a fixed communication rate, one can schedule each time

instant the sensor for which the transmission would result in the lowest energy consumption or,

alternatively, the one with the larger residual energy.

In [54, 55], the authors proposed an opportunistic backoff strategy where sensors choose their

backoff periods by mapping their corresponding channel strength onto a common backoff func-

tion. The backoff function is aimed at minimizing the energyconsumption and, hence, it pri-

oritizes the sensors with the most favorable channel conditions by assigning them the shorter

backoff times. For instance, for two sensor nodes with channel gainsγ1 andγ2 with γ1 > γ2,

sensors selectτ1 andτ2 as their respective backoff times according to Fig. 2.12. Therefore, the

sensor node with the strongest channel gainγ1 is the one actually scheduled in adistributed

fashion to transmit its information, sinceτ1 < τ2 and the second sensor will not transmit.

Opportunistic communications can also be useful for the enhancement of network lifetime [7,

56,57]. The definition of the Network Lifetime [58] is application dependent but, for simplicity

and mathematical tractability, is typically considered asthe time elapsed until one sensor runs

out of energy. The work in [7] considers the sensor scheduling problem with different levels
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of information, namely, CSI, Residual Energy Information (REI) and both. The conclusion is

that one should simultaneously use, REI and CSI to maximize the network lifetime. The idea

behind that is to schedule sensors experiencing the most favorable channel conditions when the

network is young and sensors with higher residual energies when the network grows older [59].
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Opportunistic Power Allocation Schemes

for Wireless Sensor Networks

In this chapter, the focus of our study is the analysis, in terms of complexity and CSI re-

quirements, of different power allocation strategies for decentralized parameter estimation

via WSNs. First, we propose and analyze a class of Opportunistic Power Allocation (OPA)

schemes. In all cases, only sensors experiencing favorableconditions (e.g. with channel gains

above a threshold) participate in the estimation process byadjusting their transmit power on the

basis of local Channel State Information (CSI) and, in some cases, Residual Energy Informa-

tion (REI). Interestingly, the signaling and CSI requirements associated with the OPA schemes

are substantially lower than those of the optimal (i.e. waterfilling-like) approaches, which de-

mand global CSI information in analog form and, still, theirperformance is virtually identical.

Next, for situations in which sensors are situated at a largedistances from the FC, we adopt a

hierarchical topology where sensors are grouped into clusters. In each cluster, a cluster-head

is in charge of processing and sending a cluster estimate to the FC. For this network topology,

we carry out an exhaustive performance assessment of different power allocation schemes.

Throughout the chapter, the proposed strategies are compared in terms of distortion and CSI

requirements.
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3.1 Introduction

The source-channel coding separation theorem by which source and channel coding can be

regarded as decoupled problems and thus be solved independently [35, Ch. 8], turns out to

provide suboptimal solutions in the case ofMultiple Accesschannels (MAC) with correlated

sources [12]. Conversely, an amplify-and-forward (A&F) strategy is known to scale optimally

in terms of estimation distortion, when the number of users grows without bound. However,

such asymptotic optimality is achieved if distributed synchronization of the sensor signals can

be orchestrated at the physical layer in order to achieve beamforming gains. In the more real-

istic case of orthogonal sensors-to-FC channels, the authors in [11] derived the optimal power

allocation for two different problems of interest:i) the minimization of distortion subject to a

sum-power constraint, andii ) the minimization of transmit power subject to a maximum dis-

tortion target. In both cases, the optimal power allocationis given by a kind of water-filling

solution (referred to in the sequel as WF-D and WF-P) in whichsensors with poor channel

gains or noisy observations should remain inactive to save power. This finding builds a bridge

between opportunistic communications (originally addressed in a wirelessdatanetwork con-

text for the multiple-access [40] and broadcast [42] channels, respectively) and the problem of

decentralized parameter estimation with wirelesssensornetworks.

The main drawbacks of [11,40,42] arei) the need forglobal (namely, the terminal-to-BS chan-

nel gains forall the terminals in the network) andinstantaneousCSI at the Base Station or

Fusion Center; andii ) the computational complexity that water-filling solutions entail. Con-

cerning CSI requirements, they can be alleviated by resorting to thresholding rules, e.g. [47], by

which only terminals with channel gains above a predefined threshold are allowed to feed back

information to the BS. By doing so, the signaling load decreases at the expense of a very mod-

erate performance loss [47]. Going one step beyond, [48] proved that, for an asymptotically

high number of terminals, just one bit of feedback (instead of analog) per terminal suffices to

capture the optimal capacity growth-rate of capacity. As for the high computational burden that

water-filling solutions entail, it is addressed in [60] by assuming that power is evenly allocated

over a subset of terminals. This results in a simplified water-filling scheme from which the

subset of active users can be easily determined.

Notwithstanding, not only energy efficiency but also network lifetime is of interest in WSNs.

The definition of the network lifetime (LT), namely, the amount of time for which the network

is operational, is clearly application-dependent. However, for simplicity and mathematical

tractability, one typically defines network LT as the time elapsed until one sensor runs out of

energy. In recent works [7], the authors show how a sensible use at the scheduler of Residual

Energy Information (REI) in combination with CSI information is key to extend network LT.
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3.1.1 Contribution

In this chapter, we propose and analyze a class of Opportunistic Power Allocation (OPA)

schemes suitable for decentralized parameter estimation with WSNs. We adopt the amplify-

and-forward technique proposed in [61] [11] and convey sensor observations to the FC through

a set of orthogonal channels. Inspired by [47] [49], all the OPA schemes proposed here have

one feature in common: only sensors experiencing certain local conditions (i.e. channel gain

and/or residual energy above a threshold) are allowed to participate in the estimation process.

This strategy is aimed at retaining as much performance as possible of the correspondingopti-

malpower allocation scheme while keeping network signalling and energy consumption under

control. More precisely, the proposed opportunistic schemes merely requirei) the sensor-to-FC

channel gains of thesubsetof active nodes plus somestatisticalCSI1 at the FC (in [11,60] the

channel gains ofall sensor nodes are needed),ii ) onebit of feedback per sensor (instead of

analog signaling as in [47] or [11]); andiii ) local CSI and, possibly REI, at each sensor node.

In particular, we derive opportunistic power allocation schemes for the following optimization

problems:

1. Minimization ofdistortion(OPA-D)

2. Minimization of transmitpower(OPA-P)

3. Enhancement of networklifetime(OPA-LT)

We also address the case in which the local channel state information available in the sensor

nodes is subject to impairments (e.g. noisy or delayed CSI estimates). For brevity, we focus

on deriving an improved version of the OPA-D scheme, referred to in the sequel as OPA-DR,

which is robust to such imperfect CSI estimates. However, the extensions tothe OPA-P and

OPA-LT schemes are relatively straightforward, as well. For all the above-mentioned cases, we

obtain closed-form expressions of the global reporting threshold (only numerical methods are

used in [60] to compute the optimal cut-off point which, in turn, determines the subset of active

nodes), and we derive the associated power allocation rule on the basis oflocal CSI only.

Next, we adopt ahierarchical topology which is suitable for scenarios with severe path loss

in the sensor-to-FC channels. Here, sensors are grouped into clusters where a cluster-head

acts as a local fusion center and consolidates the data gathered in the cluster. The cluster-

heads are coordinated by the Fusion Center where the final estimation is obtained. Unlike in

previous works [62], our goal is toestimatea parameter and, to that aim, we explicitly consider

the impact of the network topology on the attainable accuracy. By doing so, and unlike [11],

we can take advantage of the intra-cluster channel gains. Wealso show that balancing the

available power between the sensors and the cluster-heads is of paramount importance and, in

1In some cases, REI information is also needed
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particular, we derive the optimal fraction of power dedicated to each subset for the Uniform

Power Allocation (UPA) case. Last, we discuss some hybrid solutions which combine UPA

and WF power allocation schemes at the sensor and cluster-head levels.

The contents of this chapter have been partly published in references [63–68].

The chapter is organized as follows. First, in Section 3.2, we present the signal model. For

completeness, we review the optimal power allocation strategies in Section 3.3. Next, in Sec-

tion 3.4, we introduce the proposed opportunistic power allocation strategy and the associated

communication protocol in a general framework. In Section 3.5, we particularize the algo-

rithm to the problem of the minimization of distortion and derive the corresponding reporting

threshold and power allocation rule. In Sections 3.6 and 3.7, we focus our attention on the

transmit power and network lifetime enhancement problems,respectively. Next, in Section 3.8

we present some additional results for a hierarchical network topology. Finally, we close the

chapter by summarizing the main findings in Section 3.9.

3.2 Signal model

Consider a WSN composed of one Fusion Center (FC) and a large population ofNo energy-

constrained sensors which have been deployed to estimate anunknown scalar, slowly-varying

and spatially-homogeneous parameterθ. The observation at sensori can be expressed as

xi = θ + vi ; i = 1, . . . , No. (3.1)

wherevi denotes AWGN noise of varianceσ2
v (i.e. vi ∼ CN (0, σ2

v)). We adopt an amplify-and-

forward re-transmission strategy and, consequently, the observation at each sensor is scaled by

a factor
√
pi before transmission. Hence, the received signal at the FC (see Fig. 3.1) can be
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modeled as2:

yi =
√
pi
√
ci (θ + vi) + wi =

√
piciθ +

√
picivi + wi ; i = 1, . . . , No, (3.2)

wherewi stands for the i.i.d. AWGN noise (i.e.w ∼ CN (0, σ2
w)) andci denotes the channel

powergain. For non-frequency selective block Rayleigh-fading channels,ci turns out to be an

exponentially-distributed random variable of meanµc, that is,

fc(x) =
1

µc
e−

x
µc , (3.3)

which is assumed to be independent and identically distributed (i.i.d) over sensors. In each

time-slot, only a subset ofN ≤ No activesensors transmit their observations to the FC over

a set of orthogonal channels (e.g. FDMA). Consequently, theN × 1 received signal vectory

reads

y = hθ + z, (3.4)

with h =
[√
p1c1, . . . ,

√
pNcN

]T
and withz standing for AWGN with (diagonal) covariance

matrix C given bydiag [C] = [p1c1σ
2
v + σ2

w, . . . , pNcNσ
2
v + σ2

w]
T . In an attempt to make our

estimator simple and universal (i.e. independent of any particular distribution of the noise), we

adopt the Best Linear Unbiased Estimator (BLUE) [18, Ch. 6].The estimate at the FC is thus

given by

θ̂ =
(

hTC−1h
)−1

hTC−1y. (3.5)

This estimator is known to be efficient (and, of course, unbiased) for the linear signal model

described above and, hence, we can adopt the variance as a distortion measureD:

D = Var(θ̂) = E

[

(

θ̂ − θ
)2
]

=
(

hTC−1h
)−1

. (3.6)

Since matrixC is diagonal, the above equation can be written as

D = Var(θ̂) =

(

N
∑

i=1

pici
piciσ2

v + σ2
w

)−1

, (3.7)

from which it becomes apparent that the actual distortion depends on the power allocation

strategyand the number of active sensorsN .

3.3 Optimal power allocation strategies

In this section, we review theoptimalpower allocation strategy derived by Cuiet al. in [11].

More precisely, the authors addressed two problems of interest, namely,i) the minimization of

distortion for a given sum-power constraint and,ii ) the minimization of the transmit power for

a given distortion target.

2Implicitly, we also assume pair-wise synchronization between each sensor node and the FC.
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3.3.1 Minimization of distortion

The power allocation rule that minimizes the distortion fora given sum-power constraint is

given by the solution to the following problem:

min
p1,...,pNo

(

No
∑

i=1

pici
piciσ2

v + σ2
w

)−1

s.t. (σ2
v + U2)

No
∑

i=1

pi ≤ P ′
T (3.8)

whereP ′
T stands for the total transmit power and{−U . . . U} denotes the dynamic range of the

sensors3. From [11], it is given by the following waterfilling-like (WF-D) solution:

p∗i =
σ2
w

σ2
vci

[ √
ci√

λ0σw
− 1

]+

; i = 1, . . . , No. (3.9)

In this last expression, the operator[x]+ is defined as[x]+ = max{x, 0} andλ0 denotes the

optimal water-level which is computed at the FC fromci ; i = 1 . . .No in order to meet the

sum-power constraint. Clearly, only sensors with strong channels to the FC will be allocated

positive power (pi > 0) and, thus, will become part of the subset ofN active nodes. However,

the price to be paid for the optimality of such solution is two-fold: i) the need forglobal CSI

at the FC (the whole set of channel gains); andii ) the need for the FC to inform the sensor

nodes, on aframe-by-framebasis, about the optimal water-level. This unavoidably entails an

extensive signalling between the FC and the sensor nodes and, ultimately, an increased energy

consumption (which is barely desirable in WSNs).

When no CSI is available at the FC or in the absence of signalling channels between the FC

and the sensors, one can alternatively resort to a Uniform Power Allocation (UPA) rule. In this

case,all the sensors remain active (regardless of their channel conditions) and evenly allocate

transmit power according to

pi =
PT

No

; i = 1, . . . , No. (3.10)

Reasonably, a substantial performance gap can be expected between the WF (optimal) and UPA

strategies in many scenarios.

3For the ease of notation, in the sequel we re-definePT = P ′

T
/(σ2

v + U2).
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3.3.2 Minimization of transmit power

From [11], the power allocation rule that minimizes the total transmit power under a prescribed

distortion targetDT, i.e.

min
p1,...,pNo

No
∑

i=1

pi

s.t. D ≤ DT (3.11)

is given by the following waterfilling-like (WF-P) solution:

p∗i =
σ2
w

σ2
vci

[√
ciλ0

σw
− 1

]+

; i = 1, . . . , No. (3.12)

Again,λ0 denotes the optimal water-level which is computed at the FC from ci ; i = 1 . . . No

in order to meet the sum-power constraint. Clearly, only sensors experiencing high gains in the

sensors-to-FC channels will be allocated non-zero power (pi > 0) and, thus, will become part

of the subset ofN active nodes. As in WF-D, the drawbacks are again the need to obtainglobal

CSI at the FC and the need for the FC to report, on aframe-by-framebasis, about the optimal

water-level.

3.4 Opportunistic power allocation: general framework

In an attempt to keep signalling as low as possible while retaining part of the optimality of

the water-filling solution, we propose a novel Opportunistic Power Allocation (OPA) strategy.

Before particularizing OPA to a number of problems of interest (minimization of distortion,

or transmit power, or enhancement of network lifetime), we briefly describe the corresponding

communication protocol in a general framework, and discussthe associated CSI requirements.

3.4.1 Communication protocol

The Opportunistic Power Allocation (OPA) schemes operate according to the following com-

munication protocol:

1. Initialization : Compute and broadcast the reporting thresholdγth. This threshold ulti-

mately depends on the design criterion: minimization of thetransmit power, maximiza-

tion of the overall distortion, or the enhancement of network lifetime.

2. Identification of the subset of active sensors: Each sensor node notifies the FC whether

it will actually participate in the estimation process or not (see Fig. 3.2). Only sensors
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Figure 3.2: Identification of the subset of active sensors: sensors notify the FC about their

intention to participate (left) and the FC informs about thenumber of active sensors (right).

above the threshold will participate. Thenumberof active sensors in each timeslots,

N = N [s], is then broadcasted by the FC (see Fig. 3.2).

3. Power Allocation and Transmission: TheN active sensor nodes adjust their transmit

power accordingly and send their observations to the FC4.

4. Go to Step 2

3.4.2 CSI requirements

Prior to further formalizing the algorithms, we will brieflysummarize the signalling and CSI

requirements associated with this protocol.

• At the Fusion Center: As will be shown in subsequent sections, onlystatisticalCSI

(and, in some cases, REI) is needed in order to compute the closed-form expressions

of the reporting threshold in Step #1. The channel gains of the subset of active nodes

are also necessary to estimate the underlying parameterθ according to (3.5), whereas

in [11,60] all the channel gains must be known to the FC. As illustrated in Section 3.5.3,

the average number of active nodes is on the order of 10-20% ofthe whole population.

Consequently, the savings in terms of signalling and energyconsumption are potentially

very high.

• At the sensor nodes: Each sensor must be aware of itsown channel gain5 (i.e. local

Channel State Information) and, possibly, REI in order toi) determine whether it belongs

to the subset of active nodes (Step #2); andii ) adjust its transmit power accordingly (Step

#3). Besides, the number of active sensors in each timeslot must also be broadcasted by

the FC.
4The task of scheduling active sensors on orthogonal channels is delegated to the MAC layer and, therefore, is

out of the scope of this work.
5To that extent, a training sequence could be sent by the FC at the beginning of each timeslot. However,

most of the energy consumption here is restricted to the transmitter (the FC) rather than the receiver (the energy-

constrained sensor node).
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3.5. OPA for the minimization of distortion (OPA-D)

Finally, one signalling bit is needed for each sensor to indicate to the FC whether it belongs or

not to the subset of active nodes in the current time-slot (Step #2).

Interestingly, in a waterfilling-like solution the computational complexity at the FC is a conse-

quence of the sorting algorithm. The computational complexity of the best sorting algorithm

isO (No log(No)), whereas forall OPA schemes, the only operation carried out at the FC is a

sum in order to obtain the total of number active sensor nodes(see step #2 in Section 3.4.1).

3.5 OPA for the minimization of distortion (OPA-D)

Here, we attempt to find a thresholdγth that minimizes the expected distortion (w.r.t. the

channel realizations and the number of active sensors) subject to a sum-power constraint:

γ∗th = arg min
γth







E{ci}N
i=1,N ;γth





(

N
∑

i=1

pici
piciσ2

v + σ2
w

)−1










(3.13)

s.t.
N0
∑

i=1

pi ≤ PT.

We propose to uniformly allocate the available transmit power among the set ofactivesensors

only, namely

pi =

{

PT

N
if ci > γth ; i = 1, . . . , No

0 otherwise.
(3.14)

since, in this way, we avoid wasting resources in sensors experiencing non-favorable channel

conditions (e.g. as occurs in UPA schemes, whereall sensors transmit with identical power

levels). From Figure 3.3, the idea behind the OPA-D scheme isto mimic the optimal sensor

selectionof the waterfilling-like solution but, differently from (3.8), the transmit power for each

sensor node (after selection) is selected regardless its channel gain. Accordingly, the OPA-D

strategy retains:

1. The simple power allocation of the uniform power allocation.

2. Some of the optimality of the WF-D solution by only activating those sensors experienc-

ing favorable channel conditions.

In these conditions, the optimal thresholdγ∗th can be found by solving the following optimiza-

tion problem:

γ∗th = arg min
γth







EN ;γth



E{ci}N
i=1|N ;γth





(

N
∑

i=1

PT

N
ci

PT

N
ciσ2

v + σ2
w

)−1














. (3.15)
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Figure 3.3: Graphical interpretation of the OPA-D strategy.

Unfortunately, this last expression is barely tractable. Instead, we find a lower bound of the

argument in (3.15) which entails the use of the joint pdf of the random variables{ci}Ni=1|N ; γth

(or {ci}Ni=1; γth in short); and the pmf ofN ; γth that will be derived next. Since{ci}Ni=1; γth

are i.i.d. random variables, it suffices to find the pdf of the marginal truncated random variable

ci; γth. One can easily prove that:

fci;γth (x) =
fci (x)

1− Fci (γth)
=
e

γth
µc

µc
e−

x
µc , x ∈ [γth,∞) , (3.16)

whereFci(·) denotes the CDF function6 of the r.v.ci. Besides, for each truncated r.v. we have

thatEci;γth [x] =
∫∞
γth
xfci;γth (x) = µc + γth. ConcerningN ; γth, it clearly follows a binomial

distribution:

Pr {N = n; γth} =

(

No

n

)

pn (1− p)No−n . (3.17)

with individual probability of activation given byp = 1 − Fci (γth) = e−
γth
µc . Bearing all the

above in mind, expression (3.15) can be lower-bounded as follows,

EN ;γth



E{ci}N
i=1|N ;γth





(

N
∑

i=1

PT

N
ci

PT

N
ciσ2

v + σ2
w

)−1








≥ EN ;γth





(

E{ci}N
i=1;γth

[

N
∑

i=1

PT

N
ci

PT

N
ciσ2

v + σ2
w

])−1




6To recall,ci is an exponentially-distributed r.v. with meanµc

36
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≥ EN ;γth





(

PT (µc + γth)
PT

N
(µc + γth)σ2

v + σ2
w

)−1




≥





PT (µc + γth)
PT

Noe
−

γth
µc

(µc + γth) σ2
v + σ2

w





−1

. (3.18)

The first inequality holds becauseE{1/g(x)} ≥ 1/E{g(x)} as long asg(x) is a positive and

concave function [69, Ch. 3]. The two remaining inequalities follow from the fact that the

arguments in the expectation terms are convex inci andN , respectively, and thus, the Jensen

inequality applies. Finally, since (3.18) is convex inγth, its optimal value,̌γ∗th, can be found by

setting its first derivative to zero, which leads to the following expression:

1

2µc
(γth + µc)e

γth+µc
2µc =

1

2

√

Noσ2
wµce

PTσ2
vµc

. (3.19)

By definingx = γth+µc

2µc
, we have

x = W0

(

1

2

√

Noσ2
wµce

PTσ2
vµc

)

. (3.20)

and, finally,

γ̌∗th =

[

2µcW0

(

1

2

√

Noσ2
we

PTσ2
vµc

)

− µc
]+

(3.21)

whereW0 (x) stands for the positive real branch of the Lambert function which is defined as

x = W0 (x) eW0(x).

Figure 3.4 shows the actual distortion value (computed numerically) and the convex lower

bound given by equation (3.18) as a function ofγth. Clearly, the bound is tight, in particular,

for large networks when the Jensen inequalities above become even tighter. Consequently, we

will incur in marginal performance loss resulting from the use of the approximate thresholdγ̌∗th
instead of the actual one7.

In order to give some insight into the behavior of the (approximate) thresholďγ∗th, we depict

in Fig. 3.5 the corresponding individual probability of activation, i.e.,p = e−
γ̌∗th
µc as a function

of the transmit power,PT. First, one can observe that for an increasing transmit power, the

probability of activation grows, as well. In other words, since power is not a scarce resource

anymore, a higher number of sensors are allowed to participate in the estimation process (even

if their contribution might be somewhat marginal due to lessfavorable channel conditions).

Second, the growth rate of the individual probability of activation clearly depends on the quality

of the sensor observations. For observations with poor quality (e.g.σ2
v = 0.1), the system tends

7To insist, the important aspect here is that the approximatethreshold is very accurate; the fact that it was

obtained from a lower bound is incidental.
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Figure 3.4: Actual distortion and lower bound as a function of γth.

(No = 500, PT = 50, σ2
v = 0.01, σ2

w = 0.1, µc = 1).

to activate more sensors in order to average out the observation noise. Conversely, in scenarios

with higher observation qualities (e.g.σ2
v = 0.0001), to select the sensors with strongest

channel gains is more beneficial.

3.5.1 Asymptotic analysis of the distortion rate

In this section, we analyze the rate at which the distortion decreases when the number of sensors

grows without bound. To that aim, we resort to the derivationof asymptotic lower and upper

bounds for the distortion attainable by the OPA-D and WF-D strategies, respectively.

OPA-D: asymptotic upper bound

According to the previous section, the thresholdγ̌∗th stands for the minimum channel gain for a

sensor to be active and, thus, the channel gains of allactivesensor nodes can be lower-bounded

by γ̌∗th. By doing so, the distortion for a particular realization ofN can be upper-bounded as

follows:

DOPA−D ≤ DNo

OPA−D,UB
=

(

PT γ̌
∗
th

PT

N
γ̌∗thσ

2
v + σ2

w

)−1

. (3.22)
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On the other hand, in Appendix 3.A.5 we prove that

lim
No→∞

PT γ̌
∗
th

σ2
w

PT γ̌
∗
th

PT
N
γ̌∗thσ

2
v+σ2

w

P
= 1, (3.23)

where P
= denotes convergence in probability. This result states that distortion for the OPA-D

scheme decreasesat leastwith a rate given by

D∞
OPA−D,UB ∼

σ2
w

PT γ̌∗th
∼ σ2

w

PTW0 (No)
. (3.24)

As expected, in the OPA-D strategy adding sensors to the network pays off. Conversely, in

the case of Uniform Power Allocation (UPA) over all sensors,increasing the network size is

known to be not worthwhile, since distortion converges to a constant value [11].

WF-D: asymptotic lower bound

The fact that the optimal power allocation (WF-D) is computed by means of a waterfilling-like

algorithm, makes the asymptotic analysis of the distortionrate extremely involved. Alterna-

tively, we derive an absolute lower bound for any power allocation strategy. To that aim, note

that distortion in (3.7) can be lower-bounded by considering noiseless sensor observations,

39



Chapter 3. Opportunistic Power Allocation Schemes for Wireless Sensor Networks

namelyσ2
v = 0. By doing so, we have

D ≥ DLB =

(

No
∑

i=1

pi
σ2
w

ci

)−1

. (3.25)

It is straightforward to show that the optimal power allocation which minimizes this lower

bound (subject to a sum-power constraint
∑No

i=1 pi = PT ) is to allocate all the available power

PT to the sensor with the highest channel gain, that is,pi = PT if i = arg max
i
ci. Therefore,

the distortion for the optimal power allocation of [11] for any σ2
v > 0 can be lower-bounded by

DWF−D ≥ DWF−D,LB =

(

PT
σ2
w

max
i
ci

)−1

. (3.26)

On the other, for a large number of sensor nodes one can prove that

lim
No→∞

max
i
ci

E

[

max
i
ci

]

P
= 1, (3.27)

which follows from Tchebychev’s inequality. Besides, from[70] we have that

E

[

max
i
ci

]

=
No
∑

i=1

i−1

and, further,
No
∑

i=1

i−1 ∼ log(No).

Hence, from (3.25) (3.26) and (3.27) one finally concludes that the distortion for any power

allocation strategy and a large network size decaysat mostat a rate given by

D∞
WF−D,LB ∼

σ2
w

PT log(No)
. (3.28)

OPA-D: asymptotic distortion rate

For an arbitrary number of sensors, thedistortionattained by OPA-D with theoptimalthreshold

γ∗th necessarily lies between those of OPA-D with an approximatethresholdγ̌∗th and WF-D.

This also holds true for networks with an asymptotically large number of sensors. In this

circumstances, expressions (3.24) and (3.28) revealed that therateat which distortion decreases

in OPA-D can be upper- and lower-bounded byD∞
OPA−D,UB andD∞

WF−D,LB, respectively. From

[71], it is straightforward to show that

D∞
WF−D,LB

D∞
OPA−D,UB

= lim
No→∞

W0(No)

log(N0)
= 1, (3.29)
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namely, the rate at which the distortion for, on the one hand,the OPA-D scheme with the

approximate threshold and, on the other hand, WF-D schemes decrease isidentical. Conse-

quently, the distortion associated to OPA-D (with theoptimal thresholdγ∗th) also decreases at

the same rate that WF-D does when the number of sensors grows without bound. In other

words, there is no penalty (in terms of distortion rates) associated to the use of OPA-D instead

of WF-D.

3.5.2 Imperfect channel state information: OPA-DR scheme

In realistic scenarios, only imperfect (e.g. noisy or delayed) CSI estimates are available at the

sensors. Under this assumption, we derive next the corresponding reporting threshold.

To start with, lethi and ĥi denote the actual channel response and its estimate, andci and ĉi
denote their respective squared magnitudes. We can model the channel estimate as [72, Ch. 8]:

ĥi = hi + ei ; i = 1, . . . , No (3.30)

whereei is the estimation error which is i.i.d. over the sensors and independent ofhi. Fur-

thermore,ei is modeled as a complex circular Gaussian random variable ofvarianceσ2
e . With

these assumptions,hi andĥi turn out to be related through a Gaussian model and, hence, the

conditional random variablehi|ĥi follows a Gaussian distribution, that is,

hi|ĥi ∼ CN (ηiĥi, σ
2
i ), (3.31)

with

ηi =
µc

µc + σ2
e

σ2
i =

µcσ
2
e

µc + σ2
e

. (3.32)

Hereinafter, we attempt to minimize of distortion with suchimperfect channel estimates. The

expected distortion w.r.t. theactualchannel realizations (which determine the distortion in the

estimate), theestimatesof the channel gains (on the basis of which sensors decide whether they

belong to the active subset) and the number of active sensorsreads

EN ;γth



E{ci}N
i=1,{ĉi}

N
i=1|N ;γth





(

N
∑

i=1

PT

N
ci

PT

N
ciσ2

v + σ2
w

)−1






 (3.33)

≥ EN ;γth





(

E{ci}N
i=1,{ĉi}

N
i=1|N ;γth

[

N
∑

i=1

PT

N
ci

PT

N
ciσ2

v + σ2
w

])−1




= EN ;γth





(

N
∑

i=1

Eci,ĉi|N ;γth

[

PT

N
ci

PT

N
ciσ2

v + σ2
w

])−1




= EN ;γth





(

N
∑

i=1

Eĉi|N ;γth

[

Eci|ĉi

[

PT

N
ci

PT

N
ciσ2

v + σ2
w

]])−1


 . (3.34)
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Again, the first inequality holds becauseE [1/g(x)] ≥ 1/E [g(x)] as long asg(x) is a positive

and concave function [69, Ch. 3] w.r.t.ci (notice that the argument in the expectation term does

not depend on̂ci). The last equality holds because the random variableci is independent of the

selection process given̂ci. From [73, Ch. 2], we have that

Eĉi;γth

[

Ec|ĉi [c]
]

= µc +

(

µc
µc + σ2

e

)2

γth. (3.35)

From the above expressions and by repeatedly applying Jensen’s inequalities, a lower bound of

(3.34) the average distortion (3.33) reads








µc +
(

µc

µc+σ2
e

)2

γth

PT

Me
−

γth
µc

(

µc +
(

µc

µc+σ2
e

)2

γth

)

σ2
v + σ2

w









−1

. (3.36)

where the effect of the uncertainty in the channel estimatesbecomes apparent. To be more

precise, the larger the uncertainty, i.e.σ2
e →∞, the larger the lower bound of (3.36).

Finally, after some algebra, the approximate thresholdγ̌∗th with imperfectCSI can be expressed

in closed-form as follows:

γ̌∗th =







(

µc + σ2
e

)






2W0







1

2µc

√

√

√

√
Noσ2

w (µc + σ2
e) e

µc+σ2
e

µc

PTσ2
v






− µc + σ2

e

µc













+

. (3.37)

In the sequel, the opportunistic power allocation scheme which operates with such reporting

threshold will be referred to as Robust OPA-D (or OPA-DR). Asexpected, with perfect CSI

(i.e. σ2
e → 0) the above threshold converges to that of OPA-D which is given by equation

(3.21). Conversely, in scenarios with very poor CSI qualities (σ2
e → ∞) the system mimics

the behavior of a UPA scheme, namelyγ̌∗th → 0 (see proof in Appendix 3.A.2). Indeed, when

no reliable selection of sensors can be carried out because of very poor CSI on sensor-to-FC

channel conditions, the best thing to do is to let all the sensors participate in the estimation

process.

3.5.3 Simulations and numerical results

In Figure 3.6, we depict the average distortion attained by the OPA-D scheme as a function

of the network size (No) for a given sum-power constraint. First of all, one observes that the

proposed opportunistic power allocation scheme performs remarkably better than its uniform

power allocation counterpart: in OPA-D curves the overall distortion is150−280% lower than

in UPA. As expected, saving the available power for those sensors which experience better

channel conditions definitely pays-off. More importantly,the performance of OPA-D is virtu-

ally identical to that of the WF-D (i.e. optimal) power allocation scheme. To insist, the WF-D

42



3.5. OPA for the minimization of distortion (OPA-D)

100 200 300 400 500

1

1.5

2

2.5

3

x 10
−3

N
o

A
ve

ra
ge

 D
is

to
rt

io
n

250
9.6

9.7

9.8

x 10
−4

UPA
WF-D
OPA-D (̌γ∗

th)
OPA-D (γ∗

th)

Figure 3.6: Average distortion vs. network size (PT = 50, σ2
v = 0.01, σ2

w = 0.1). The

performance of OPA-D was evaluated with the approximate thresholdγ̌∗th in (3.21), whereas

markers on that curve (+) show results with the true optimal thresholdγ∗th that was computed

numerically.

scheme requires full and instantaneous CSI fromall the sensors in the network, whereas in

OPA-D this is only needed for the subset of active nodes, along with somestatisticalCSI. Be-

sides, OPA-D effectively exploits multi-user diversity (as we proved in Section 3.5.1) whereas

UPA quickly saturates, as already pointed out in [11]. Finally, the performance loss resulting

from the use of the approximate optimal thresholdγ̌∗th computed with the closed-form expres-

sion (3.21) instead of the actual one (which can only be computed numerically) is negligible

for the whole range of values ofNo considered. That is, the inequalities that we resorted to in

the derivation of the lower bound are tight forNo = 50, . . . , 650.

The gain of OPA with respect to UPA is better illustrated in Figure 3.7. For a low transmit

power constraint, OPA-D and WF-D schemes exhibit a substantial gain with respect to UPA.

Conversely, this gain decreases for an increasing transmitpowerPT. In that case, both WF-D

and OPA-D tend to activate the whole set of sensors.

In Figure 3.8, we depict the average number of active sensorsfor the OPA-D and WF-D

schemes. Interestingly, the number of active sensors is much lower for the OPA-D scheme.

However, the gain that the WF-D strategy attains with an increased number of active sensors

was shown to be marginal. Consequently, it is preferable to uniformly allocate power to a

smaller subset of sensors with high channel gains (OPA-D case) rather than spread resources

thinner and allocate some power to sensors with low channel gains (WF-D) that, ultimately,
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Figure 3.7: Distortion vs. sum-power constraintPT (σ2
w = 1, σ2

v = 0.1, No = 100)

would have a very limited contribution to the reduction of the overall distortion in the estimate.

Such reduced number of active sensors translates into a morerelaxed requirement in terms of

i) the number of orthogonal FC-sensor channels needed; andii ) the number of channel gains to

be estimated at the FC. In Figure 3.8, we also observe that both strategies tend to activate more

sensors as the transmit powerPT increases. As previously discussed, for very high values of

PT the optimal solution is to uniformly allocate the power among the sensors (i.e. same as in

UPA).

In Figure 3.9, we plot the average distortion attained by theOPA-DR scheme as a function of

the population size, and for different levels of CSI uncertainty ∆e = 10 log(µc/σ
2
e) for a given

network size (No = 500 sensors). Interestingly, for all the OPA-DR curves, the rate at which

the distortion decreases mostly mimics that of the OPA-D (with perfect CSI) and WF schemes.

Hence, OPA-DR is capable of exploiting multi-user diversity in the same way as such schemes

do even for high values of∆e (e.g. ∆e = 0dB). Complementarily, in Fig. 3.10 we depict the

average distortion vs. the amount of CSI uncertainty∆e. For ∆e = 15dB the performance

is virtually identical to the case of perfect CSI, and, more importantly, with∆e = 0dB it is

still significantly better than that of UPA. Indeed, the OPA-DR curve only approaches the UPA

bound (this meaning that no actual sensor selection is carried out) when the channel estimates

are of extremely poor quality (∆e = −15dB).
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3.6 OPA for the minimization of transmit power (OPA-P)

Energy efficiency is of paramount importance in wireless sensor networks. Hence, we change

our design criterion and now we attempt to find a reporting threshold which minimizes the total

transmitpowersubject to a given distortion constraint:

γ∗th = arg min
γth

E{ci}N
i=1,N ;γth

[

N
∑

i=1

pi

]

(3.38)

s.t. D = DT, (3.39)

whereD andDT stand for the actual and target distortion, respectively. From (3.7) the overall

distortionD can be readily expressed in terms of the individual contributionsDi of each active

sensor node, namely

D =

(

N
∑

i=1

1

Di

)−1

. (3.40)

Note thatDi stands for the distortion if only sensori transmits its observation. Likewise,

for a givenN , (3.40) stands for the distortion when the subset ofN activesensors transmit

their observations. Since onlylocal CSI can be assumed to be available at the sensor nodes,

we further impose their individual contributions to the overall distortion to be identical. To

guarantee that the constraint in (3.39) is met, we letDi = NDT and force each sensor to adjust
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Figure 3.11: Graphical interpretation of the OPA-P strategy.

locally its transmit power accordingly (see Figure 3.11). From (3.7), we have that necessarily

pi =







1
NDT

σ2
w

ci

�
1− 1

NDT
σ2

v

� ci > γth

0 otherwise.
(3.41)

for i = 1, . . . , No. Finally, the optimization problem can now be re-written as

γ∗th = arg min
γth

E{ci}N
i=1,N ;γth





N
∑

i=1

1
NDT

σ2
w

ci

(

1− 1
NDT

σ2
v

)



 . (3.42)

Again, the expression above is barely tractable. For that reason, we derive a lower bound by

repeatedly applying Jensen’s inequality:

EN ;γth



E{ci}N
i=1;γth





N
∑

i=1

1
NDT

σ2
w

ci

(

1− 1
NDT

σ2
v

)







 ≥ EN ;γth





1
DT
σ2
w

(µc + γth)
(

1− 1
NDT

σ2
v

)



(3.43)

≥
1
DT
σ2
w

(µc + γth)
(

1− 1
DTNoe

−γth/µc
σ2
v

) .(3.44)

The argument of the first expression is clearly convex inci. As for (3.43), the argument is

convex inN as long asN ≥ ⌈σ2
v/DT⌉. This means, in turn, that the target distortionDT

can be actually met since otherwise the transmit powerpi would take negative values (see

equation (3.41)))8. As it is shown in Appendix 3.A.3, for largeNo, the probability of the event

{N ≥ ⌈σ2
v/DT⌉} can be made arbitrarily close to 1 and, thus, the bound we are deriving is

almost surely valid.

Finally, we have to prove that the lower bound in (3.44) is convex inγth. Note that the denom-

inator in (3.44) is concave and positive forγth ∈ [0, µc log (DTNo/σ
2
v)). Sincef(x) = 1/x

is convex and non-increasing inx ∈ R
+ by composition [69, Ch. 3] we conclude that (3.44)

8Actually,Ncen = ⌈σ2
v/DT⌉ can be interpreted as the minimum number of observations needed in acentralized

scenario to attain a prescribed distortion levelDT with noisy observations of varianceσ2
v .
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is convex inγth ∈ [0, µc log (DTNo/σ
2
v)) which, as detailed in Appendix 3.A.1, is the only

domain ofγth in practice. Setting its derivative to zero yields

γ̌∗th =

[

µcW0

(

DTNoe
2

σ2
v

)

− 2µc

]+

. (3.45)

As in previous designs, the tighter the inequalities, the closer the approximate thresholdγ̌∗th
will be to its optimal valueγ∗th.

3.7 OPA for the enhancement of network lifetime (OPA-LT)

As far as this section is concerned, we define network lifetime (LT) as the time elapsed until

the first sensor runs out of energy [58]. When this occurs, theremainingN − 1 active sensors

scheduled in a timeslot are not capable of attaining the prescribed distortion level. Suchesti-

mation outageoccurs because power was allocated under the assumption of havingN active

sensors (see Eq. 3.41) whereas onlyN − 1 conveyed their observations to the FC.

Clearly, any sensor scheduling scheme aimed at increasing network LT should take into account

not only the channel propagation conditions (as done in the previous sections) but also the

information on the residual energy in the nodes (REI). In thespirit of [7], we let sensori

participate in the estimation process if and only if the product of its residual energy in time-slot

s, εi[s], and the channel gain is above a threshold, namely,εi[s]ci > γth[s]. In other words,

sensors experiencing favorable channel conditionsandsufficient residual energy are scheduled

with probability

Pr (εi[s]ci > γth[s]) = e
− γth[s]

µcεi[s] . (3.46)

This selection strategy is known to enhance the network lifetime while, as we will see later on,

it keeps the transmit power reasonably low [7]. However, it introduces individual thresholds for

eachsensor (instead of a single reporting threshold, as in OPA-Pand OPA-D) which have to be

re-computed during network lifetime and not only in the initialization phase. Note also that the

energy vector9 ε[s] = [ε1[s], . . . , εNo[s]] is a non-stationary stochastic process the individual

entries of which are locally updated as follows,

εi[s + 1] = εi[s]− pi[s]Ts with εi[0] = εo, (3.47)

wherepi[s] denotes the transmit power in slots, Ts is the duration of the timeslot andεo stands

for the initial energy. As for the power allocation rule, we again force each active sensor to

evenly contribute to the overall distortion, that is, each sensor adjusts locally its transmit power

according to (3.41).

9We assume that the energy budget is dominated by energy consumption during wireless transmission
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In this context, the optimal thresholdγ∗th[s] is the one which minimizes the total transmit power

under this REI-based selection rule10, namely

γ∗th[s] = arg min
γth[s]







E{ci}N
i=1,N ;γth[s],ε[s]





N
∑

i=1

1
NDT

σ2
w

ci

(

1− 1
NDT

σ2
v

)











. (3.48)

This problem is barely tractable and, again, we must resort to a lower bound. First, though, we

need to introduce three inequalities that will be useful forthe derivation of the bound. Without

loss of generality, letε[s] be anorderedvector, namelyε1[s] > ε2[s] > . . . > εNo [s]. By

resorting to Jensen’s inequality, the average number of active sensors (which, on the basis of

equation (3.46), can be computed as the summation of the individual activation probabilities of

No different binomial random variables) can be lower-boundedas follows:

EN ;γth[s],ε[s] [N ] =

No
∑

i=1

e
− γth[s]

εi[s]µc ≥ Noe
− γth[s]

µcNo

PNo
i=1

1
εi[s] . (3.49)

Besides, for an ordered vector of energies and for someN ′
o < No the average number of active

sensors can also be upper-bounded (see proof in Appendix 3.A.4) by:

EN ;γth[s],ε[s] [N ] =

No
∑

i=1

e
− γth[s]

εi[s]µc ≤ Noe
− γth[s]

µcN′
o

PN′
0

i=1
1

εi[s] (3.50)

for 0 ≤ γth[s] ≤ γ
′
, with γ′ being defined in equation (3.56) ahead. The interest in letting

N ′
o > 1 (for N ′

o = 1 the inequality is trivial for anyγth[s]) lies in the fact that the higherN ′
o,

the tighter the resulting upper bound. Still, forN ′
o > 1 the bound is only valid for part of the

function domain and, hence, one should first identifyγ
′
and then letN ′

o take the highest value

possible for which the inequality holds. We will go back to this issue later in this section.

From equation (3.49), it is straightforward to obtain the last inequality that we need:

Ec;γth[s],ε[s] [c] ≤ µc +
γth[s]

H(ε[s])1:No

. (3.51)

with H(ε[s])1:No = No

(

∑No

i=1 εi[s]
−1
)−1

standing for the harmonic mean of the firstNo ele-

ments of vectorε[s].

Now, by repeatedly applying Jensen’s inequality along withthese inequalities (as displayed in

10As discussed in the previous paragraphs, the optimal thresholdγ∗

th
[s], which depends on the vector of residual

energies, has to be re-computed on a timeslot-by-timeslot basis.
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the equations below), we can finally obtain the lower bound ofthe score function (3.48):

EN ;γth[s],ε[s]



E{ci}N
i=1;γth[s],ε[s]





N
∑

i=1

1
NDT

σ2
w

ci

(

1− 1
NDT

σ2
v

)







 (3.52)

(3.51)
≥ EN ;γth[s],ε[s]





1
DT
σ2
w

(

µc + γth[s]
H(ε[s])1:No

)(

1− 1
NDT

σ2
v

)



 (3.53)

≥
1
DT
σ2
w

(

µc + γth[s]
H(ε[s])1:No

)

(

1− 1PNo
i=1 e

−
γth[s]
µcε[s]DT

σ2
v

) (3.54)

(3.50)
≥

1
DT
σ2
w

(

µc + γth[s]
H(ε[s])1:No

)

(

1− 1

DTNoe
−

γth[s]

µcH(ε[s])
1:N′

o

σ2
v

) . (3.55)

The argument in the first expression is clearly convex inci. As for (3.54), the argument is

convex inN as long asN ≥ ⌈σ2
v/DT⌉, as discussed in the previous section. The highest value

of γth[s] for which (3.55) is still a convex function occurs when the second term in parenthesis

in the denominator, which is a decreasing function inγth[s], tends to zero (for negative values,

the bound is not a convex function anymore). Hence, we have:

γ
′

= µcH(ε[s])1:N ′
o
ln

(

NoDt

σ2
v

)

(3.56)

and, from this value, the FC can compute the highest value ofN ′
o for which inequality (3.50)

holds true. Finally, by setting its derivative respect toγth[s] to zero, we obtain the threshold

γ∗th[s] which minimizes the bound, that is,

γ∗th[s] = µcH(ε[s])1:N ′
o






W0







DTNoe

H(ε[s])
1:N′

o
+H(ε[s])1:No

H(ε[s])
1:N′

o

σ2
v






− H(ε[s])1:No +H(ε[s])1:N ′

o

H(ε[s])1:N ′
o







+

.

(3.57)

which can be shown to lie within[0, γ
′
) (the analysis is similar to that in Appendix 3.A.1).

From the equation above, one notices that the thresholdγ∗th[s] depends on the residual energy

vectorε[s] and thus, the FC needs REI for its computation. However, there is no need for

sensors to send updates of their REI. Instead,ε[s] can be locally updated at the FC as in (3.47),

since both the individual sensors that are scheduled to senddata and their channel gainsci are

known to it.

Finally, in the case of identical residual energies,εi[s] = ε[s] ; i = 1, . . . , No equation (3.50)

holds with equality for up toN ′
o = No. Thus, we haveH(ε[s])1:N ′

o
= H(ε[s])1:No = ε[s] and,

by replacing (3.57) into (3.46) we realize that actual sensor selection rule is identical to that of

the OPA-P case which simply disregards REI information.
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Figure 3.12: Average transmit power vs. network size (DT = 0.001, σ2
v = 0.01, σ2

w = 0.1).

The performance of OPA-P (dashed curve) was evaluated with the approximate thresholďγ∗th
in (3.45), whereas markers on that curve (+) show results with the true optimal thresholdγ∗th
that was computed numerically.

3.7.1 Simulations and numerical results

In Fig. 3.12, we compare the average transmit power as a function of the network size for a

given distortion target. First, we observe that the performance of OPA-P is close to that of the

WF-P (i.e. optimal) power allocation scheme. Note, however, that such a marginal gain of WF-

P entails a much larger amount of FC-sensor signalling and exchange of information. Besides,

the increase in the transmit power associated with the use ofOPA-LT can also be regarded as

very moderate (8 − 10%); this is despite of the fact that the sensor(s) experiencing the best

channel conditions might not be scheduled in some situations, for instance, when some other

sensor is running out of batteries. It is worth noting that, in the OPA-LT case, it is not possible

(within a reasonable time frame) to numerically compute thetrue optimal thresholds and, as

in the OPA-P case, to check the performance loss w.r.t. the approximate ones derived with the

bound. Still, such curve would necessarily lie in between those of OPA-LT (upper bound, given

by the approximate threshold) and OPA-P (lower bound, givenby a threshold which actually

disregards REI) which, as commented above, are very close toeach other.

For completeness, Figure 3.13 depicts the average number ofactive sensors for the OPA-P and

WF-P schemes. Again, the number of active sensors is substantially lower for the OPA scheme.

Besides, one can notice that, the higher the observation noise, the higher the number of active
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Figure 3.13: Average number of active sensors vs. network size for transmit power minimiza-

tion.

sensors for both strategies. Clearly, as long asσ2
v increases more sensors must be activated in

order to meet the pre-defined distortion target.

In Fig. 3.14, we depict the average network lifetime vs. the network size for a given distortion

target. First, one realizes that WF-P and OPA-P yield comparable network lifetimes. More

importantly, OPA-LT almost doubles the LT obtained with theother two solutions thanks to

a sensible use of REI information. However, as long as the scheduling rule and the reporting

threshold do not minimize the energy consumption at each time-slot anymore, the average

transmit power of OPA-LT, is slightly higher now (see Fig. 3.12).

If one incorporates REI into the scheduling process, the sensors with higher residual energies

are more prone to participate in the estimation task. Roughly speaking, by properly combining

REI with CSI into the scheduling process, one has a means to enforce energy to be uniformly

spent over sensors time-slot after time-slot. This extent is illustrated in Figure 3.15, where we

plot the energy dispersion defined asχε =
σ

ε[s]

µ
ε[s]

and with

µ
ε[s] =

1

No

No
∑

i=1

εi[s]

and

σ
ε[s] =

√

√

√

√

1

No

No
∑

i=1

(

εi[s]− µε[s]

)2
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Figure 3.14: Average network lifetime vs. network size (DT = 0.001, σ2
v = 0.01, σ2

w =

0.1, ε0 = 10).

denoting the mean and the standard deviation of the vector ofresidual energies. In Fig. 3.15,

one clearly observes that both strategies, OPA-P and OPA-LT, yield similar energy dispersion

values inyoungnetworks. The explanation for this behavior is quite straightforward: during

the first iterations all sensors have approximately the sameresidual energies, i.e. the energy

dispersion is already low, and, hence, the scheduler for both solutions relies mostly on the CSI.

However, as time elapses the OPA-LT scheme effectively exploits the REI information and

appropriately balances the residual energy in the network,this resulting into lower values of

χε. More formally, such balancing is carried out throughi) the introduction of the harmonic

mean of the energy vector into the threshold given by (3.57);andii ) the fact that the r.v. which

is checked against such threshold encompasses the product of CSI and local REI.

3.8 Power allocation strategies for hierarchical sensor net-

works

So far, we have considered a flat network topology where all the sensors transmit their obser-

vations to asinglecoordinator, i.e the FC. Notwithstanding, in situations where there exists a

strong path loss between the sensors and the FC, e.g. due to a large distance between the FC

and the sensor nodes, flat networks might not be appropriate.For this reason, in this section

we re-visit the problem of decentralized parameter estimation to analyze what power allocation
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Figure 3.15: Energy dispersion vs. network age (DT = 0.001, ε0 = 30, σ2
v = 0.01, σ2

w =

0.1, No = 500).

strategies are more suitable for hierarchical sensor networks.

Hierarchical topologies for Wireless Sensor Networks havebeen addressed in a number of

works (see [62] and references therein), where the purpose of clustering is either to minimize

the number of hops to the FC or to consolidate the amount of data sent. In our context, a

hierarchical structure is mostly introduced in order to reduce the complexity of the system, in

terms of CSI, and in some cases to increase the accuracy of theestimates.

3.8.1 Network Model

Again, our goal is to estimate a scalar, slowly-varying and spatially-homogenous parameter

θ. To this aim, we adopt a hierarchical structure which is composed of the following network

elements:

• Sensors,which are energy-constrained devices mainly aimed at sampling the unknown

parameterθ. TheN0 sensors nodes in the WSN are grouped intoNc clusters of sizeN

(namely,N0 = NNc).

• Cluster-heads: The purpose of the cluster-head is two-fold: to coordinatethe sensors in

the cluster in order to obtain a local estimate ofθ and, also, to transmit such an estimate
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Figure 3.16: Hierarchical organizations of sensors

to the FC. As detailed in Section 3.8.3, the sensors within each cluster take turns in

becoming cluster-heads.

• Fusion Center: Its main task is to coordinate theNc cluster-heads and, also, to provide

the final estimate of the parameterθ to the user.

Hence our hierarchical WSN is organized in two layers. The first (i.e. lower) layer is composed

of theNc clusters and their corresponding sensor nodes. The second (i.e. upper) layer encom-

passes theNc cluster-heads and the fusion center. Again, we consider orthogonal transmissions

by which each sensor in the first layer uses an orthogonal channel to convey its observation to

the cluster-head, this resulting into a maximum ofN − 1 orthogonal channels per cluster. The

cluster-head could just send again the entire vector of observations to the FC but, clearly, this

would result into a waste of resources in layer 2. Instead, weadopt a more scalableestimate-

and-forward strategy by which each cluster-head re-transmits its localestimate. As a result,

the maximum number of orthogonal channels required in layer2 is restricted toNc, regardless

of the network size (N0 >> Nc).
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Figure 3.17: System model.

3.8.2 Distortion analysis

Layer 1

The observation at sensori in thej-th cluster can be expressed as

xi,j = θ + vi,j. (3.58)

where the random variablevi,j denotes AWGN noise of varianceσ2
v (i.e. ni ∼ CN (0, σ2

v)).

Again, in each sensor the observation is scaled by a factor
√
ρi,j before being transmitted to

the cluster-head (i.e.amplify-and-forward). In the sequel, we assume non-frequency selective

Rayleigh block-fading and, further, pair-wise synchronization betweeni) each sensor node and

the cluster-head and,ii ) between each cluster-head and the FC. Hence, the signal received at

thej-th cluster-head (see Fig. 3.17) can be written as:

yi,j =
√
ρi,j
√
ci,j (θ + vi,j) + wi,j (3.59)

wherewi,j stands for i.i.d. AWGN (i.e.w ∼ CN (0, σ2
w)) andci,j denotes the channel power

gain which is modeled as an exponentially-distributed random variable with meanµc. Fur-

thermore, we assume that such channel gains are i.i.d acrosssensors and, there is no path-loss

within the clusters (i.e.µc = 1). In each time-slot,N ′ ≤ N sensors transmit their observations

to the cluster-head over a set of orthogonal channels (e.g. FDMA) and, thus, the(N ′ + 1)× 1

received signal vectoryj reads

yj = hjθ + zj, (3.60)

with hj =
[√
ρ1,jc1,j , . . . ,

√
ρN ′,jcN ′,j, 1

]T
andzj standing for AWGN with (diagonal) covari-

ance matrixCj given bydiag [Cj] = [ρ1,jc1,jσ
2
v + σ2

w, . . . , ρN ′,jcN ′,jσ
2
v + σ2

w, σ
2
v ]
T . The last

element inhj anddiag [Cj] accounts for the effect of the local observation at the cluster-head

which is also capable of taking measurements. The BLUE [18] estimate at each cluster-head

can be computed as

θ̂j =
(

hTj C
−1
j hj

)−1
hTj C

−1
j yj . (3.61)
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with variance given by

Var(θ̂j) = E

[

(

θ̂j − θ
)2
]

=
(

hTj C
−1
j hj

)−1
. (3.62)

Since matrixCj is diagonal, the equation above can be written in compact form as

σ2
j = Var(θ̂j) =

(

N ′
∑

i=1

ρi,jci,j
ρi,jci,jσ2

v + σ2
w

+
1

σ2
v

)−1

. (3.63)

The BLUE estimator is unbiased and, thus, the resulting estimate at thej-th cluster-head can

be modeled as,

θ̂j = θ + ej, (3.64)

whereej denotes AWGN noise with varianceσ2
j .

Layer 2

Each cluster-head re-transmits its local estimate scaled by a factor
√
ψk over one of the orthog-

onal channels. Hence, the signal received at the FC from thej-th cluster-head reads

rj =
√

ψkg∗j (θ + ej) + wj , (3.65)

wherewj stands for i.i.d. AWGN (i.e.w ∼ CN (0, σ2
w)) andg∗j denotes the channel power

gain from the cluster-head to the FC. Again, we assume that the channel gains are i.i.d across

cluster-heads but, unlike in the intra-cluster case, we introduce a path-loss model. Hence,g∗j is

selected from a set ofN i.i.d exponentially-distributed random variables with meanµg = d−δFC,

with δ standing for the path-loss coefficient, anddFC denoting the distance from the clusters

to the FC. It is worth noting thatg∗j will actually depend on the cluster-head selection method

(see Section 3.8.3). In each time-slot,N ′
c ≤ Nc cluster-heads re-transmit their observations to

the FC over a set of orthogonal channels and, finally, theN ′
c × 1 received signal vectorr reads

r = bθ + ν, (3.66)

whereb is aN ′
c × 1 column vector defined asb =

[√
ψ1g1, . . . ,

√

ψN ′
c
gN ′

c

]T
and,ν is AWGN

with (diagonal) covariance matrix given bydiag [Cν ] =
[

ψ1g1σ
2
1 + σ2

w, . . . , ψN ′
c
gN ′

c
σ2
N ′

c
+ σ2

w

]T

.

The variance of the BLUE estimator at the FC, which we will take as a distortion measureDF ,

is given by:

DF = Var(θ̂F ) =





N ′
c

∑

j=1

ψjg
∗
j

ψjg∗jσ
2
j + σ2

w





−1

, (3.67)

with

θ̂F =
(

bTC−1
ν b
)−1

bTC−1
ν r. (3.68)
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From (3.63) and (3.67), one concludes that the overall distortion is a function of the power

allocation inboth layers. Therefore, for a given sum-power constraint there exists a trade-

off between the fraction of power allocated to every clusterin layer 1 (and their associated

estimation variances), and the power allocated to layer 2 (which also impacts on the overall

distortion). In Section 3.8.4, we derive some strategies aimed at carefully balancing the power

allocation between layers in such hierarchical organizations.

3.8.3 Selection of the cluster-head

Let gi,j denote the sensor-to-FC channel gain of thei-th sensor in clusterj. At each time

instant, the sensor in each cluster experiencing the most favorable channel conditions becomes

the cluster-head, that is11

g∗j = max
i
{gi,j} 1 ≤ j ≤ Nc. (3.69)

Note thatg∗j is the first order statistic of an exponential parent distribution drawn from a popu-

lation of sizeN . Hence, its pdf is given by

fg∗k(x) = NF (x)N−1f(x), (3.70)

whereF (x) andf(x) stand for the CDF and pdf ofgi,j. This cluster-head selection method

has two advantages:i) the sensor experiencing the most favorable channel conditions is the

one which actually conveys the information to the FC, this resulting in a lower final distortion;

and,ii ) the selection method is fair, since each sensor has the sameprobability of becoming a

cluster-head (i.e. the energy is uniformly spent over sensors).

11This can be accomplished in a decentralized way (i.e. without participation of the FC) by resorting to the

distributed back-off strategy proposed in [74]. Besides, we assume a TDD (Time Division Duplex) duplexing

scheme, thus, the uplink channel gains can be derived from the downlink estimates obtained with the pilot symbols

broadcasted by the FC.
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3.8.4 Hierarchical power allocation strategies

Accordingly, the optimization problem can be posed as follows,

min
ψ1,...,ψNc ,ρ1,1,...,ρN−1,Nc

(

Nc
∑

j=1

ψig
∗
j

ψig∗jσ
2
j + σ2

w

)−1

(3.71)

s.t :

Nc
∑

j=1

(

ψj +

N−1
∑

i=1

ρi,j

)

≤ PT (3.72)

For 1 ≤ j ≤ Nc

σ2
j =

(

N−1
∑

i=1

ρi,jci,j
ρi,jci,jσ2

v + σ2
w

+
1

σ2
v

)−1

. (3.73)

The above problem is barely tractable since the optimization variables,ψ1, . . . , ψNc ,

ρ1,1, . . . , ρN−1,Nc, are coupled through the sum-power constraint (3.72). Furthermore, a solu-

tion to (3.71) would entail coordination and CSI exchange between layers which can be costly

and/or impractical. Consequently, we introduce an additional parameterα ∈ [0, 1) which deter-

mines the percentage of transmit power allocated to each layer. By doing so, we can decouple

the sum-power constraint leading to the following simplified problem:

min
ψ1,...,ψNc ,ρ1,1,...,ρN−1,Nc

(

Nc
∑

j=1

ψig
∗
j

ψig∗jσ
2
j + σ2

w

)−1

(3.74)

s.t :

Nc
∑

j=1

ψj ≤ (1− α)PT (3.75)

For 1 ≤ j ≤ Nc

N−1
∑

i=1

ρi,j ≤ α
PT

Nc

(3.76)

σ2
j =

(

N−1
∑

i=1

ρici,j
ρici,jσ2

v + σ2
w

+
1

σ2
v

)−1

. (3.77)

Note that in the expression above we have introduced anindividual power constraint foreach

cluster in layer 1. This reflects a situation where each cluster allocates power independently

from the remaining ones. Furthermore, theNc individual constraints in (3.76) are identical

since so are clusters and, in addition, the number of sensorsin each cluster is high (i.e. clusters

arestatisticallyidentical). From all the above, we can decompose the minimization problem in
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the following way [69]:

min
ψ1,...,ψNc

min
ρ1,1,...,ρN−1,1

· · · min
ρ1,Nc ,...,pN−1,Nc

(

Nc
∑

j=1

ψig
∗
j

ψig
∗
jσ

2
j + σ2

w

)−1

s.t :

Nc
∑

j=1

ψj ≤ (1− α)PT (3.78)

For 1 ≤ j ≤ Nc

N−1
∑

i=1

ρi,j ≤ α
PT

Nc

(3.79)

σ2
j =

(

N−1
∑

i=1

ρi,jci,j
ρi,jci,jσ2

v + σ2
w

+
1

σ2
v

)−1

. (3.80)

Sinceσ2
j exclusively depends onρ1,j , . . . , ρN−1,j, then it is straightforward to show that the

optimization problem can be decomposed intoNc + 1 parallel problems:

min
ρ1,j ,...,ρN−1,j

(

N−1
∑

i=1

ρi,jci,j
ρi,jci,jσ2

v + σ2
w

+
1

σ2
v

)−1

s.t :
N−1
∑

i=1

ρi,j ≤ α
Pt
Nc

(3.81)

for 1 ≤ j ≤ Nc and, also,

min
ψ1,...,ψNc

(

Nc
∑

j=1

ψjg
∗
j

ψjg∗jσ
2
j + σ2

w

)−1

s.t :
Nc
∑

j=1

ψj ≤ (1− α)PT . (3.82)

As commented above,α plays an important role in the optimization problem. In our analysis,

we will determine its optimum value,α∗, on the basis of partial (i.e. statistical) CSI only,

namely,

min
α







E{{ci,j}N−1
i=1 }Nc

j=1
,{g∗j }

Nc
j=1





(

Nc
∑

j=1

ψjg
∗
j

ψjg∗jσ
2
j + σ2

w

)−1










s.t :

σ2
j =

(

N−1
∑

i=1

ρi,jci,j
ρi,jci,jσ2

v + σ2
w

+
1

σ2
v

)−1

; 1 ≤ j ≤ Nc

α ∈ [0, 1).
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Figure 3.18: Actual distortion and lower bound for the UPA case as a function ofα (N =

40, Nc = 4, PT = 500, σ2
v = 0.001, σ2

w = 0.001).

From the expression above, one concludes that the optimal power split will depend on a number

of system parameters (such asNc,N , etc), the power allocation rule (i.e. uniform, waterfilling)

through its dependency onρi,j andψj and, also, on statistical CSI. As an example, the optimal

power splitα∗ will attempt to compensate for the path-loss effects between the cluster-heads

and the FC by allocating more power to layer 2 (i.e. by forcingα∗ to take smaller values).

In the following subsection, we compute the optimal power split between layers for the uniform

power allocation (UPA) case and, next, we discuss hybrid solutions featuring optimal (i.e.

waterfilling) power allocation scheme in at least one out of the two layers.

Uniform power allocation in both layers

In the absence of CSI at the cluster-headsand the FC, the best thing one can do is to uniformly

allocate the transmit power. Hence, each sensor transmits with powerα PT

(N−1)Nc
, and each

cluster-head with(1−α)PT

Nc
. The optimal fraction of powerα∗ is the one which minimizes the

following expression,

min
α







E





(

Nc
∑

j=1

(1− α)PT

Nc
g∗j

(1− α)PT

Nc
g∗jσ

2
j + σ2

w

)−1










(3.83)
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s.t :

σ2
j =

(

N−1
∑

i=1

α PT

(N−1)Nc
ci,j

α PT

(N−1)Nc
ci,jσ2

v + σ2
w

+
1

σ2
v

)−1

; 1 ≤ j ≤ Nc

α ∈ (0, 1).

Unfortunately, the resulting optimization problem is barely tractable and, in general, does not

have a closed-form solution. Instead, we will compute a lower bound for the cost function in

(3.83):

E{{ci,j}N−1
i=1 }Nc

j=1
,{g∗j }

Nc
j=1





(

Nc
∑

j=1

(1− α)PT

Nc
g∗j

(1− α)PT

Nc
g∗jσ

2
j + σ2

w

)−1




≥ E{{ci,j}N−1
i=1 }Nc

j=1





(

Nc
∑

j=1

(1− α)PT

Nc
µg∗

(1− α)PT

Nc
µg∗σ2

j + σ2
w

)−1




≥
(

(1− α)PTµg∗

(1− α)PT

Nc
µg∗D + σ2

w

)−1

(3.84)

with,

D =

(

αPT

Nc
µc

α PT

(N−1)Nc
µcσ2

v + σ2
w

+
1

σ2
v

)−1

(3.85)

and where the expectation of the first order statistic of an exponential parent distribution,µg∗,

can be efficiently computed as [70, Chapter 3]

µg∗ = E{g∗j} =
N
∑

k=1

µg
k
. (3.86)

The first inequality follows from the fact thatE[g(x)−1] ≥ 1/g(E[x]) provided thatg(x) is a

positive and concave function inx. The second inequality is due to the fact that the argument in

the expectation is convex in the sequence of random variables ci,k. Finally, one can prove that

(3.84) is convex inα and, hence, by setting its first derivative to zero we can obtain its optimal

value as follows:

α∗ =

[

(N − 1)
(

−
√

µg∗µ3
cPTσ

2
v −Ncσ

2
w

√
µc(N − 1)

√
µg∗ + µc (Nµg∗PTσ

2
v +NNcσ

2
w − µg∗)

)

PTµcσ2
v (N2 (µg∗ − µc) + µg∗ (1− 2N))

]+

(3.87)

where[x]+ = max{x, 0}.

In Figure 3.18, we depict the lower bound in (3.84) versus itsactual value as a function of the

power split. Clearly, the bound is tight for the whole range of α values and, as a result, only

marginal performance loss can be expected when approximating the true valueα∗ by the one

obtained with the lower bound.
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Hybrid WF-UPA solutions

If we can assume that full CSI is locally available either at the cluster-heads or at the FC (or

in both), then we can compute the optimal power allocations by solving equations (3.81) and

(3.82), respectively. According to Section 3.3.1 such optimal solutions are given by:

ρ∗i,j =
σ2
w

σ2
vci,j

[

√

ci,j
λ∗jσ

2
w

− 1

]+

(3.88)

ψ∗
j =

σ2
w

σ2
j gj

[
√

gj
β∗σ2

w

− 1

]+

, (3.89)

whereβ∗ andλ∗j ( j = 1 . . .Nc) stand for the optimal water-levels which must be computed

numerically as in [11]. For this very same reason, the optimumα∗ does not admit a closed-form

expression anymore and, thus, we must resort to numerical methods.

3.8.5 Simulations and numerical results

As far as computer simulations are concerned, we consider a network withNc = 4 clusters

andN = 40 sensors in each (i.e.No = 160 sensors in total). For the wireless links between

the cluster-heads and the FC, we assume a path-loss coefficient δ = 2. In Fig. 4, we depict

the overall distortion attained by the different combinations ofi) hierarchical and flat (i.e. non-

hierarchical) network models, andii ) power allocation schemes used in each layer. The cases

with a flat network model are used for benchmarking purposes only.

To start with, one can clearly observe the huge gap between the UPA/UPA (i.e. uniform power

allocation in both layers) and UPA (i.e. flat network structure and UPA scheme) curves for the

whole range of distances to the FC. The introduction of a network hierarchy and the compu-

tation of the optimal power split turn out to be very useful inensuring that the transmit power

is efficiently spent in obtaining accurate estimates in layer 1 clusters, rather than in forcing

every sensor to overcome the severe path-loss in the wireless links to the FC (to recall, in the

hierarchical case this task is conducted by the cluster heads, only). Besides, the performance

exhibited by the UPA/UPA scheme is comparable to (or, in somecases, even slightly better

than) that of a flat network scheme with WF power allocation which, additionally, would re-

quire full CSI at the FC. Indeed, some additional gain can be obtained by using WF in the

second layer (i.e. UPA/UPA vs. UPA/WF) curves. In the light of the increased CSI require-

ments at the FC, though, such gain can be regarded as marginal, in particular, fordFC < 120

m, namely, low-to-mid values. However, as we increase the cluster-head-to-FC distance and,

consequently, decrease the SNR in layer 2, the use of WF in thesecond layer becomes more

and more necessary (asymptotically, a single cluster-headwould send data to the FC only).
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Figure 3.19: Overall distortion attained by the different schemes. The curves labeled with

X/Y correspond to the cases with hierarchical structures, with X and Y denoting the power

allocation scheme (i.e. UPA or WF) in the first and second layers, respectively. The curves

labeled with only one power allocation scheme correspond tothe benchmark cases with flat

network structure. (N = 40,Nc = 4, PT = 500, σ2
v = 10−3, σ2

w = 10−3).

Next, one can clearly observe that, irrespectively of the power allocation strategy adopted in

layer 2, little or no improvement results from the use of WF inlayer 1. This is due to the

fact that the average SNR in layer 1 is potentially high, bothbecause of the low noise level

(σ2
w = 10−3) and the absence of path-loss effects.

Finally, it is worth noting that the UPA/WF (or WF/WF) and WF curves converge for an in-

creasingdFC. Certainly, when path-loss effects becomes more severe, the optimal power split

for the hierarchical schemes reserves virtually no power for layer 1 (α∗ → 0). In these circum-

stances, cluster-heads merely rely on their own parameter estimate (to recall, cluster-head takes

measurements, as well) which is then conveyed to the FC. As long as the WF scheme starts

activatingNc or less sensors, both the hierarchical and flat solutions areformally identical. The

same effect can be observed when the measurement noise (σ2
v) tends to zero. When this occurs,

the additional power required to further decrease the estimation noise in the cluster-heads (see

equation (3.73)) is too high and, thus, power is better spentin layer 2 (i.e.α∗ → 0 again).
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3.9 Chapter summary and conclusions

In this chapter, we have addressed the problem of power allocation in a context of amplify-

and-forward WSNs for decentralized parameter estimation.First, we have focused on aflat

topology and we have proposed a class of opportunistic powerallocation schemes. In such

OPA schemes, only sensors experiencing favorable conditions (i.e. above a threshold) partici-

pate in the estimation process by adjusting their transmit power on the basis of local CSI (and,

in some cases, REI) information only. We have addressed a number of classical problems of

interest such as the minimization of estimation distortion, the minimization of transmit power

or the enhancement of network lifetime. To that extent, we have particularized the general

OPA framework to each problem of interest (OPA-D, OPA-P and OPA-LT, respectively) which

entails the derivation of an approximate but tight closed-form expression of the threshold along

with the corresponding power allocation rule. Furthermore, we have also addressed the case

with imperfect CSI to derive an improved version of the OPA-Dscheme (OPA-DR) which is

robustto such imperfections. Computer simulation results revealthat with OPA-D the overall

distortion is150 − 280% lower than that of UPA and virtually identical to that of the optimal

waterfilling (WF-D) scheme. More significantly, we have proved that the rate at which distor-

tion decreases for the OPA-D and WF-D is identical when the number of sensor nodes grows

without bound. To stress, that the signaling and CSI requirements for all OPA schemes are

far more relaxed than those of WF approaches. We have also observed that the robust version

performs close to systems operating with perfect CSI even with moderate values of CSI un-

certainty (∆e = 0dB). From the comparison of OPA-LT with OPA-P, we have concluded that

OPA-LT leads to a two-fold extension of the network lifetime(due to a more balanced energy

consumption over sensors) at the expense of a slight increase in the transmit power (8− 10%).

Finally, we have found that, when compared to WF approaches,the whole family of OPA

schemes tend to activate a lower number of sensors. This is beneficial in terms of the number

of orthogonal channels needed and hence, the delay.

Finally, we have adopted a hierarchical network structure in which each cluster is governed by

a cluster-head which is the sensor experiencing the most favorable channel conditions to the

FC. Cluster-heads gather the measurements in their respective clusters and, then, forward the

cluster estimate to the FC. We have shown that by balancing the power between both layers

in the hierarchy, the minimization problem can be decomposed into smaller sub-problems and,

furthermore, we have derived a closed-form expression for the optimal power split between

layers for the UPA case. Computer simulation results revealthat a hierarchical network with

UPA schemes in both layers constitutes the best trade-off interms of the performance (namely,

estimation accuracy) vs. CSI requirements for almost the whole range of cluster-head-to-FC

distance values. For the scenario under consideration, we have also shown that using WF in

the second layer pays-off whereas it renders no or little gain in layer 1.
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3.A Appendix

3.A.1 Derivation of γ̌∗th’s domain

We want to identify in what circumstancěγ∗th ∈ [0, µc log (DTNo/σ
2
v)), with γ̌∗th given by

(3.45). Since, by definition,̌γ∗th takes only positive values, only the upper value of the range

has to be checked, namely

µcW0

(

DTNoe
2

σ2
v

)

− 2µc < µc log

(

DTNo

σ2
v

)

. (3.90)

Bearing in mind that2 = log (e2), we can re-write the inequality above as:

W0

(

DTNoe
2

σ2
v

)

< log

(

DTNoe
2

σ2
v

)

. (3.91)

which holds true if and only if the argument in theW0 and log functions is greater thane

or, equivalently,No >
σ2

v

DTe
.However, in the process of deriving the lower bound we already

imposedN ≥ ⌈σ2
v/DT⌉. SinceNo ≥ N , the inequality above automatically holds true and,

thus, the interval[0, µc log (DTNo/σ
2
v)) is the only possible domain ofγ∗th.

3.A.2 Proof of the convergence of OPA-DR to UPA for poor quality CSI

From equation (3.37), we have to show that the thresholdγ̌∗th → 0 asσ2
e → ∞. Consider first

the asymptotic expansion of the Lambert functionW0(z) as given in [71]:

W0(z) = log z − log log z + ν. (3.92)

Hereafter, we neglect the contribution of theν term since it vanishes forz →∞ (which holds

true forσ2
e →∞). If we definez = c

√
xex with c being a constant and positive value, we only

have to prove (see equation (3.37)) that

W0

(

c
√
xex
)

− x

2
≤ 0 (3.93)

whenx grows without bound. By using the asymptotic expansion presented above, we can

derive the following inequality:

W0

(

c
√
xex
)

− x

2
= log

(

c
√
xex
)

− log log
(

c
√
xex
)

− log
(√

ex
)

= log
(

c
√
x
)

− log log
(

c
√
xex
)

≤ log
(

c
√
x
)

− log

(

log c+
1

2
x

)

. (3.94)

Clearly, the right hand of the last expression takes negative values for sufficiently highx, which

concludes the proof.
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3.A.3 Proof ofPr{N > ⌈σ2
v/DT⌉} → 1 for large No

Let α = Ncen/No be the ratio between the number of observations needed in a centralized

scenarioNcen = ⌈σ2
v/DT⌉ and the total number of sensors in the networkNo. We want to

show thatPr {N ≤ Ncen} −→
No,Ncen→∞

0. That is, we decrease the distortion target as the popu-

lation grows. Hence, by resorting to the Chernoff’s bound for a binomial random variable, the

probability of the event of interest can be now upper boundedas

Pr {N ≤ Ncen} ≤ e−
1
2
No(p−α)2 (3.95)

wherep is the probability of activation and can be easily computed by using the optimal thresh-

old of (3.45). The bound of (3.95) is only valid ifp ≥ α and, hence, we only need to satisfy

p = αW0

(

e2

α

)

> α

which holds true forα < e. Therefore, it is now straightforward to show that

Pr {N ≤ Ncen} ≤ e−
1
2
N(p−α)2 −→

No,Ncen→∞
0. (3.96)

3.A.4 Proof of inequality (3.50)

Here, we want to prove that, for a given cut-off valueγ′, the following inequality holds true

EN ;γth[s]|ε[s] [N ] =
No
∑

i=1

e
− γth[s]

εi[s]µc ≤ Noe
− γth[s]

µcN′
o

PN′
0

i=1
1

εi[s] . (3.97)

for some range of values ofN ′
o and for allγth[s] ∈ [0, γ′). Let f andg be functions defined as

f (γth[s]) = Noe
− γth[s]

µcN′
o

PN′
0

i=1
1

εi[s] and g (γth[s]) =

No
∑

i=1

e
− γth[s]

εi[s]µc . (3.98)

Clearly, f andg are continuous, convex and non-increasing functions inγth[s]. Besides, we

have thatf(0) = g(0) and, also, that their respective derivatives fulfillf ′(0) > g′(0). Hence,

f(γ) does act as an upper bound ofg(γ) for some positive range of values ofγ around 0 (which,

ultimately, depends onµc,N ′
o andεi[s]).

Next, it is straightforward to verify that the above inequality always holds true forN ′
o = 1.

Besides, from Jensen’s inequality, one concludes that the above expression is strictly false for

N ′
o = No. Thus, for eachγ′ there exists someN ′

o which turns to be the highest value of in

[1, No) for which (3.97) holds true. Such value must be found with numerical methods.
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3.A.5 Convergence of the distortion for the OPA scheme for largeNo

Recall the ratio of (3.23) asgN . Therefore, we have to prove that

lim
N0→∞

Pr (|gN − 1| ≥ ǫ) = 0 (3.99)

with ǫ > 0. Hence, by substituting the definition ofgN in the argument of the limit we obtain

Pr (|gN − 1| ≥ ǫ) = Pr

(

N ≤ PTγ̌thσ
2
v

σ2
wǫ

)

(3.100)

Clearly,N is a binomial r.v. with mean given byE [N ] = Noe
−γ̌∗

th =
eW 2

0 (β
√
No)

β2 , whereβ is a

constant not depending onN orNo. The probability of (3.100) can be upper-bounded by using

Chernoff’s bound as follows

Pr

(

N ≤ PTγ̌thσ
2
v

σ2
wǫ

)

≤ e
−

 
E[N]−

PTγ̌thσ2
v

σ2
wǫ

!2

2E[N] , (3.101)

which holds true12 for E [N ] > PTγ̌thσ
2
v

σ2
wǫ

. After some algebra, one can easily prove that

lim
N0→∞

e−

 
E[N]−

PTγ̌thσ2
v

σ2
wǫ

!2

2E[N] = 0 (3.102)

which concludes the proof of (3.23).

12For largeNo one can easily prove thatE [N ] >
PTγ̌thσ

2

v

σ2
w

ǫ
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Chapter 4

Encoding Schemes in

Bandwidth-constrained Wireless Sensor

Networks

In this chapter, we continue to focus on the problem of decentralizedparameterestimation via

WSNs. However, we go one step beyond the amplify-and-forward (i.e. analog) retransmission

strategies and assume that sensors are capable of encoding their observations fordigital trans-

mission. In particular, we consider two different encodingstrategies, namely, Quantize-and-

Estimate (Q&E) and Compress-and-Estimate (C&E) and assumefirst that sensor observations

are conveyed to the Fusion Center (FC) over a number oforthogonalGaussian or Rayleigh-

fading channels. We constrain both powerand bandwidth to be constant irrespectively of the

network size and find approximate closed-form expressions of the optimal number of sensors

for a number of cases of interest. Besides, we derive the optimal encoding rate for the Q&E

scheme when, in the absence of Transmit Channel State Information (CSIT), sensors must en-

code their observations at acommonandconstantrate. For the (successive) C&E strategy, we

also determine the encoding order that minimizes the resulting distortion in the FC estimates.

We complement the analysis by deriving an expression of the asymptotic distortion when the

number of sensors grows without bound, and the rate at which distortion decreases in the high-

SNR regime. Finally, we introduce contention-based control multiple-access protocols in the
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system model. In the context of hierarchical networks we analyze the impact of the packet col-

lisions that contention-based multiple-access protocolsentail on the distortion in the estimates.

4.1 Introduction

As discussed in the previous chapter, in the context of Multiple-Access channels (MAC) an

amplify-and-forward strategy is known to scale optimally in terms of estimation distortion.

However for the case oforthogonalchannels considered here, solutions based on separate

source and channel coding outperform A&F-based ones. In this context, in [75] the source-

channel separation is shown to be optimal for the quadratic Gaussian CEO problem.

As far as source coding is concerned, the work in [76] constitutes a generalization to sen-

sor trees of Wyner and Ziv’s pioneering study [37]. More precisely, the authors compare two

different coding schemes, namely Quantize-and-Estimate (Q&E) and Compress-and-Estimate

(C&E). The former is a particularization of Wyner-Ziv’s problem to the case where no side in-

formation is available at the decoder; whereas the latter isasuccessiveWyner-Ziv-based coding

strategy capable of exploiting the correlation among sensor observations. Yet sub-optimal, the

performance of this successive encoding scheme is not far from that of other more complex

joint (over sensors) coding strategies. Besides, in [77] itis shown to achieve any point of the

rate-distortion region of the quadratic Gaussian CEO problem. In both cases, it is assumed that

sensors experienceGaussian(or, more generally,deterministic) channels, this meaning that

the transmissions rates are known and, consequently, all sensors convey their observationsre-

liably. Going one step beyond, the authors in [78] derive the rate-distortion region for the case

of erasure channels where afixedandknownnumber of observationsk are reliably received.

Nevertheless, when the erasure pattern is unknown and/or random, joint coding techniques or

successive encoding techniques such as [76], exhibit poor performance. This problem is ad-

dressed in [23], where a number of tradeoffs between reliability and efficiency are examined

for a losslesscompression setting.

In scenarios with non-reciprocal (e.g. Frequency DivisionDuplexing (FDD)) fading channels,

it is often assumed that onlystatisticalCSI is available at the transmitter. Consequently, the en-

coding rate at the sensor nodes cannot be dynamically adjusted to match instantaneous channel

conditions. In this context, the point-to-point communication of Gaussian sources over fading

channels has been recently investigated in [79] and [80] with the ultimate purpose of minimiz-

ing the expected distortion at the FC. These works stand on the seminal work of [81], in which

the source is encoded in multiple layers (each one representing a different channel state) by ex-

ploiting the so-called successive refinement property [82]. Accordingly, the receiver adaptively

decodes the information according to the realization of thechannel state.

In addition, in [75] and [76], it is considered that each sensor-to-FC communication occurs in
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a reserved orthogonal channel, i.e. sensors operate in a TDMA/FDMA fashion coordinated

by the FC. Nonetheless, in realistic WSN scenarios, where the number of nodes is poten-

tially very high, the centralized coordination that reservation-based multiple access schemes

entail is barely desirable. Alternatively, the design and performance analysis ofcontention-

basedmechanisms (e.g. ALOHA [50], Carrier-Sense Multiple-Access with Collision Avoid-

ance CSMA/CA) in wirelessdatanetworks has been studied for years. For instance, in [52]

the authors designed a channel-aware version of the ALOHA protocol capable of exploiting

multi-user diversity in a distributed manner. In the same vein, an opportunistic variation of the

CSMA/CA scheme has been recently proposed in [83].

4.1.1 Contribution

In this chapter, we extend and carry out an in-depth analysisof the Q&E and C&E encoding

strategies presented in [76]. First, we focus on a scenario with orthogonalGaussian channels

where, as commented above, the source-channel coding separation theorem holds. We go one

step beyond [76] and further constrain not only power but also bandwidthto be constant irre-

spectively of the number of sensors in the network. With these assumptions, we ask ourselves

whether increasing the population of sensors is always worth doing (in terms of estimation ac-

curacy) or if, alternatively, an optimal operating point exists. To answer this question, we derive

an approximate closed-form expression of the optimal number of sensors in the network. Next,

we move onto the case of orthogonalRayleigh-fadingchannels. For benchmarking purposes,

we initially assume that sensors are capable of acquiring instantaneous transmit CSI (CSIT).

Being C&E a successive encoding/decoding scheme, we analytically determine the optimal

encoding order (over sensors) which minimizes the resulting distortion. We complement the

analysis by deriving the asymptotic distortion attainableby the Q&E and C&E strategies for

both Gaussian and Rayleigh-fading channels.

Next, we realistically constrain the sensor nodes in thenetwork (and, by doing so, we go

beyond thepoint-to-pointanalysis of [79] and [80]) to operate withoutinstantaneoustransmit

CSI. Accordingly, the observations must be encoded at aconstantandcommon(i.e. identical

for all sensors) rate that we determine on the basis ofstatisticalCSI only. Such encoding rate

has an impact oni) the number of quantization bits allocated to the encoders;andii ) the actual

number of observations reliably received at the FC due to theoutage probability experienced

in the sensor-to-FC fading channels. This is in stark contrast with [78] and [23] where the

quantization process and the transmission problems are regarded as decoupled. In other words,

we analytically find theoptimal trade-off in terms of quantization bits (more finely-quantized

observations are beneficial in terms of the overall distortion) vs. the number of observations

actually received at the FC (the higher the number observations, the better the smoothing of the

observation noise). We solve the problem for two cases of interest, namely, sensors with high
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Figure 4.1: System model.

and low observation noise. Finally, we determine the asymptotic rate at which the distortion

decreases in the high-SNR regime of a large sensor network.

Finally, we go one step beyond [75] [76] [78] and explicitly take into account realistic multiple-

access schemes in a context ofhierarchicalWSNs. More precisely, we analyze the impact of

acontention-basedmechanism (ALOHA), and the packet collisions that it entails. Unlike [52]

and [83], our goal is to minimize the distortion in the estimates rather than maximize network

throughput. Since the number of received observations now becomes a random variable (due

to packet collisions) and for the sake of scalability, we depart from successive/joint coding

schemes and, instead, adopt in the sensor nodes and CHs the Q&E encoding strategy of [76].

The contents of this chapter have been partly published in references [84–89].

The chapter is organized as follows. First, in Section 4.2, we present the signal model. In

Sections 4.3 and 4.4 we present the distortion analysis for the Q&E and the C&E encoding

strategies. Next, Section 4.5 is devoted to the analysis of the aforementioned strategies for

Gaussian channels. Subsequently, in Section 4.6 we addressthe case of Rayleigh-fading chan-

nels with CSIT at the sensor nodes. Section 4.7 addresses thecase where sensors do not have

instantaneous CSIT. Next, the comparison of contention-based and Reservation-based multiple

access schemes is addressed in Section 4.8. Finally, we close the chapter by summarizing the

main findings in Section 4.9.
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4.2 Signal model

Consider a WSN composed of one Fusion Center (FC) andN energy-constrained sensor nodes.

The sensors observe acommonsource of interest which can be modeled as a length-n (with n

sufficiently large) vectorx = [x(1), . . . , x(n)]T of independent and identically-distributed (i.i.d)

complex circular Gaussian random variables, namely,p
(

x(1), . . . , x(n)
)

=
∏n

i=1 p
(

x(i)
)

, of

varianceσ2
x. Our goal is to estimatex from the sensor observations with the highest possible

accuracy. According to Fig. 5.12, the observation at sensork can be expressed as

yk = x + vk (4.1)

wherevk denotes memoryless AWGN noise (measurement noise) of varianceσ2
v and i.i.d.

over sensors. In order to convey the measurements to the Fusion Center, each sensor en-

codes a block ofn consecutive observationsyk = [y
(1)
k , . . . , y

(n)
k ]T , wheren denotes the

temporal variable, into a (length-n) codeworduk(s) ∈ C. Next, the corresponding indexes1

sk ∈ {1, . . . , 2nRk}; k = 1 . . .N are sent to the FC over the set ofN orthogonalchannels.

At this point, we introduceWs as thetemporalsampling rate of the source and, hence, for a

reliable transmission to occur, the encoding rateRk must satisfy:

WsRk ≤ wk log2

(

1 +
pkγk
wkNo

)

[b/s] (4.2)

wherewk andpk stand for the transmit power and bandwidth allocated to thek-th sensor/channel,

andNo denotes the noise spectral density. For the ease of notationand without loss of general-

ity, in the sequel we considerWs = 1. The channel (squared) gains,γk; k = 1, . . . , N , are sub-

sequently modeled as Gaussian channels (namely,γk = 1 ∀k), or as independent exponentially-

distributed unit-mean random variables (i.e. Rayleigh-fading channels). Besides, we further

impose a total bandwidth constraint,W , and a sum-power constraint,P . For simplicity, we

uniformly allocate powerandbandwidth to the set ofN sensors, this yieldingpk = P/N and

wk = W/N . Hence, the transmission rate at the output of thek-th encoder reads

Rk ≤
W

N
log2 (1 + SNR · γk) [b/s] (4.3)

with SNR , P
WNo

. Finally, the FC decodes the received signals and produces an estimatêx of

the source. Due to the measurement noise and the resource constraints, some distortion results

which, in the sequel, will be characterized by the followingmetric:

D =
1

n

n
∑

i=1

E
[

|x̂i − xi|2
]

. (4.4)

1As it will become apparent later, the codebookC consists of, at most,2nRk codewords.

73



Chapter 4. Encoding Schemes in Bandwidth-constrained Wireless Sensor Networks

4.3 Quantize-and-Estimate (Q&E): distortion analysis

In the Q&E scheme, each observation is encoded regardless ofany side information that could

be made available by the FC. From [35], the following inequality holds for the rate at the output

of thek-th encoder (quantizer):

Rk ≥ I (yk; uk) [b/sample] (4.5)

with I (·; ·) standing for the mutual information. The encoding process is modeled through the

auxiliary variableuk = yk + zk, with zk ∼ N (0, σ2
zk

I) and statistically independent ofyk.

From this, one concludes thatuk ←→ yk ←→ x form a Markov chain and, hence, the mutual

information reads:

I (yk; uk) = H(uk)− H(uk|yk)

= log

(

1 +
σ2
x + σ2

v

σ2
zk

)

[b/sample] (4.6)

From (4.3), (4.5) and (4.61), we have that

W

N
log (1 + SNRγk) ≥ Rk ≥ log

(

1 +
σ2
x + σ2

v

σ2
zk

)

. (4.7)

In the sequel, we further impose each sensor to encode its observation at the maximum rate

that can be reliably supported by the channel. By taking the above expressions with equality,

the variance of thequantizationnoise yields:

σ2
zk

=
σ2
v + σ2

x

(1 + SNRγk)
W
N − 1

. (4.8)

With the codewords sent by the set ofN sensors, the FC produces an MMSE estimate ofx

with total distortion given by [18, Ch.10]:

DN,Q&E = σ2
x|u1,...,uN

=

(

1

σ2
x

+

N
∑

k=1

1

σ2
v + σ2

zk

)−1

. (4.9)

Finally, by replacing (4.8) into the expression above, the resulting distortion can be re-written

as

DN,Q&E =

(

1

σ2
x

+

N
∑

k=1

(1 + SNRγk)
W
N − 1

σ2
v (1 + SNRγk)

W
N + σ2

x

)−1

. (4.10)

4.4 Compress-and-Estimate (C&E): distortion analysis

Here, the encoders do exploit the statistical knowledge of the decoder’s data as side informa-

tion. More precisely, we adopt the successive encoding scheme of [76] by which, in encoding
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data, thek-th sensor is aware of the distortion level attained with thepreviousk − 1 trans-

missions. By doing so, the encoding process can be adjusted in such a way that most of the

redundant information is removed before transmission. In this sense, we refer to this second

approach asCompress-and-Estimate(C&E) coding.

Let π be a given ordering of theN sensors in the network. For an arbitrary sensork, its

encoding rateRk in the presence of side information (resulting from theuπ(1), . . . , uπ(k−1)

codewords transmitted by the previous firstk − 1 sensors) verifies [76]:

Rπ(k) ≥ I
(

yπ(k); uπ(k)|uπ(1), . . . , uπ(k−1)

)

[b/sample] (4.11)

with uπ(k) = x + vπ(k) + zπ(k) andzπ(k) ∼ N (0, σ2
zπ(k)

I)). The above expression can be

re-written as follows:

Rπ(k) ≥ I
(

yπ(k); uπ(k)|uπ(1), . . . , uπ(k−1)

)

= H
(

uπ(k)|uπ(1), . . . , uπ(k−1)

)

− H
(

uπ(k)|yπ(k)

)

= log

(

1 +
σ2
x|uπ(1),...,uπ(k−1)

+ σ2
v

σ2
zπ(k)

)

[b/sample] (4.12)

where the first equality results from the fact thatuπ(k) ←→ yπ(k) ←→ uπ(1), . . . , uπ(k−1) neces-

sarily form a Markov chain [76] and, thus,uπ(k) is conditionally independent ofuπ(1), . . . , uπ(k−1)

givenyπ(k). Besides, the conditional varianceσ2
x|uπ(1),...,uπ(k−1)

is, by definition, the distortion at

the output of the MMSE estimator at the FC upon reception ofk − 1 measurements, namely,

D
(π)
k−1,C&E

(with D
(π)
0 = σ2

x). By imposing again each sensor to encode its observation atthe

maximum rate that can be reliably supported by the channel, the variance of the encoding noise

yields:

σ2
zπ(k)

=
σ2
v +D

(π)
k−1,C&E

(1 + SNRγk)
W
N − 1

. (4.13)

Since the encoding processes themselves are statisticallyindependent, the distortion after re-

ceivingN observations reads:

D
(π)
N,C&E =

(

1

σ2
x

+

N
∑

k=1

1

σ2
v + σ2

zπ(k)

)−1

=





1

σ2
x

+
N
∑

k=1

(

1 + SNRγπ(k)

)
W
N − 1

σ2
v

(

1 + SNRγπ(k)

)
W
N +D

(π)
k−1,C&E





−1

. (4.14)

Alternatively, at each step of the decoding structure the distortion can be computed in the

following recursive form:

D
(π)
k,C&E =





1

D
(π)
k−1,C&E

+

(

1 + SNRγπ(k)

)
W
N − 1

σ2
v

(

1 + SNRγπ(k)

)
W
N +D

(π)
k−1,C&E





−1

; k = 1, . . . , N.(4.15)
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It is worth noting that the additional computational complexity associated to the C&E scheme

is restricted to the successive decoder needed at the FC. Conversely, the complexity of the

encoders in the sensor nodes is comparable in both cases.

4.5 Gaussian channels

In Gaussian channels, all sensors experience identical channel conditions (γk = 1 ∀k in the

above expressions). Bearing this in mind, we derive some optimal operating points and/or

asymptotic distortion limits for the Q&E and C&E schemes.

4.5.1 Quantize-and-Estimate: optimal network size and asymptotic

distortion

From (4.10), the distortion attained by the Q&E scheme is given by,

1

DN,Q&E

=
1

σ2
x

+
N
(

(1 + SNR)
W
N − 1

)

σ2
v (1 + SNR)

W
N + σ2

x

(4.16)

First, we want to show that, for a given bandwidthW , there exists an optimal network size

which minimizes the overall distortion. To show that, we relaxN ∈ R
+ and prove in Appen-

dix 4.A.1 that (4.16) is aquasiconvexfunction inN and, therefore, there exists asingleoptimal

operating pointN∗. The intuition behind this fact is the following: for an increasing number

of sensors, the FC is capable of better smoothing the observation noise and, thus, the distortion

decreases (i.e. a more accurate estimate results). However, the available bandwidth has to be

shared among a higher number of sensors and, hence, the measurements undergo a rougher

quantization before transmission. As soon as this second effect dominates, the distortion in-

creases again.

Unfortunately, a closed-form expression of the optimal number of sensors,N∗, cannot be ob-

tained for the general case. Instead, we consider the following approximationfor the second

summation term in (4.16)

N
(

(1 + SNR)
W
N − 1

)

σ2
v (1 + SNR)

W
N + σ2

x

≈ N (1 + SNR)
W
N

σ2
v (1 + SNR)

W
N + σ2

x

(4.17)

which is valid forW
N
≫ 1. On the one hand, by setting the first derivative of (4.17) to zero, the

following two possible solutions yield:

N∗ ≈







W ln (1 + SNR)

1−W−1

(

−σ2
ve

σ2
x

) ,
W ln (1 + SNR)

1−W0

(

−σ2
ve

σ2
x

)







(4.18)
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with W0(·) andW−1(·) standing for the two real branches of the Lambert function [71], where

dom{W−1(x)} = (−1/e, 0) anddom{W0(x)} = (−1/e,∞). On the other, the approximation

(4.17) can be shown to be concave for

N ≤ Nth =
W ln (1 + SNR)

ln
(

σ2
x

σ2
v

) (4.19)

and convex otherwise. Now, notice thatW−1(−x) ≤ ln(−x) ≤ W0(−x) for x ∈ (0, 1/e) and,

hence, from (4.19), the (approximate) solution belonging to the concave domain of (4.17), that

is, forN∗ ≤ Nth, can only be given by

N∗ ≈ W ln (1 + SNR)

1−W−1

(

−σ2
ve

σ2
x

) . (4.20)

From this last expression and the aforementioned domain of theW−1(x) function, the approx-

imate solution of (4.20) is feasible (that is,N ∈ R
+) if and only if σ2

v ≤ σ2
x/e

2. For this

range of values, the solution of (4.20) gives a very accurateapproximation of the actual value

of N∗, as shown in Fig. 4.2. Besides, one also observes that increasing the overallSNR leads

to a higherN∗: the higher theSNR the higher the number of observations that can be accom-

modated (which results into an improved estimation accuracy). Conversely, for each curve,

if the correlationρ = Cov (yk, yl) /σyk
σyl

= σ2
x/ (σ2

x + σ2
v) between observations increases,

i.e. σ2
v decreases, then the optimal number of sensors decreases. Inother words, one should

refrain from conveying many observations to the FC because of their correlation and because

the bandwidth and powerper observationwould be smaller.

Next, we compute the asymptotic distortion when the number of sensors grows without bound,

that is,

D∞,Q&E =

(

1

σ2
x

+
W ln (1 + SNR)

σ2
x + σ2

v

.

)−1

. (4.21)

Interestingly, despite that power and bandwidth are spreadthinner and thinner, the asymptotic

distortion converges to a finite valueD∞,Q&E < σ2
x. In other words, performance is never worse

than that of a wild guess on the parameterx.

4.5.2 Compress-and-Estimate: discussion

The distortion associated to the C&E strategy, i.e.DN,C&E, is known to be a monotonically-

decreasing function inN , except forσ2
v → 0 (i.e. ρ = 1, fully correlated observations). In this

case, the particularization of (4.15) forσ2
v = 0 yields

DN,C&E = σ2
x (1 + SNR)−W (4.22)

which, clearly, is not a function ofN . In this particular case, the distortion attained by C&E

equals that of Q&E since, forσ2
v → 0, the optimal network size for the Q&E strategy can
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be shown to beN∗ = 1. Likewise, for large values ofσ2
v , i.e. uncorrelated observations, the

distortion for the C&E strategy is identical to that of Q&E asgiven by (4.16) particularized

for N∗ → ∞. For an arbitrary value ofσ2
v and when the number of sensors increases without

bound, the asymptotic distortionD∞,C&E of (4.14) forγk = 1 ∀k is given by the (numerical)

solution to the following equation [76]:

W ln (1 + SNR) =
σ2
v

σ2
x

(

σ2
x

D∞,C&E
− 1

)

+ log
σ2
x

D∞,C&E
(4.23)

4.5.3 Simulations and numerical results

In Fig. 4.3, we depict the distortion associated with the Q&Escheme as a function of the

network size (Gaussian channels). When the observation noise is low (σ2
v = 0.001), the distor-

tion function is sharp and, hence, optimizing on the number of sensors pays off. Conversely,

by increasingσ2
v the curves become flatter and, consequently, there exists some flexibility in

the number of sensors (performance degrades gracefully in the vicinity ofN∗). For scenarios

with very noisy observations (σ2
v = 0.5), distortion turns out to be a monotonically decreasing

convex function inN : increasing the number of sensors is worth doing since it allows for a

better smoothing of the observation noise. Besides, the larger the overallSNR the higher the

optimal number of sensors since, with additional transmit power, a higher number of sensor

observations can be accommodated.

78



4.6. Rayleigh-fading channels with transmit CSI

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

N

D
is

to
rt

io
n

SNR = 10 dB
SNR = 20 dB

σ
v
2 = 0.5

σ
v
2 = 0.1

σ
v
2 = 0.01

σ
v
2 = 0.001

Figure 4.3: Distortion for the Q&E strategy (Gaussian channels) vs. network sizeN (W = 100,
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In Figure 4.4, we depict the distortion attained by the Q&E encoding strategy evaluated at the

true optimal pointN∗ (namely,DQ&E,N∗) and the distortion attained by a large sensor network

(that is,DQ&E,∞). For scenarios with low observation noise (smallσ2
v), carefully designing the

network size pays off. On the contrary, asσ2
v increases, one can simply deploy a high number

of sensors (in order to average out the observation noise) without incurring in a substantial

performance loss with respect to the asymptotic case.

4.6 Rayleigh-fading channels with transmit CSI

For Rayleigh-fading channels, each sensor in the network experiences different channel con-

ditions. As a result, the distortion in the estimates at the FC depends on the specific set ofγk
values. This has diverse implications for the two strategies considered here. In Q&E encoding,

on the one hand,local channel state information is needed at the sensor nodes in order to lo-

cally adjust the encoding rate. On the other hand,global CSI is needed by the C&E strategy

since the encoding rate at the sensor nodes depends not only on their current local channel

gains but also on other sensor-to-FC channel gains. This will be further elaborated in the next

subsections.
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4.6.1 Quantize-and-Estimate: asymptotic distortion

In this section, we provide some asymptotic results on the attainable distortion when the num-

ber of sensor nodes grows without bound. To that end, we focuson the second term in (4.14)

and then we define:

N
∑

k=1

(1 + SNRγk)
W
N − 1

σ2
v (1 + SNRγk)

W
N + σ2

x

,

N
∑

k=1

g(γk, N)

f(γk, N)
. (4.24)

On the one hand, in Appendix 4.A.2 we prove that forN →∞

N
∑

k=1

g(γk, N)

f(γk, N)
−

N
∑

k=1

g(γk, N)

σ2
x + σ2

v

P−→ 0 (4.25)

where
P−→ denotes convergence in probability. Consequently, the left-hand side in (4.24) con-

verges (in probability) to the more manageable expression1
σ2

x+σ2
v

∑N

k=1 g(γk, N) in the case of

an asymptotically-large WSN. On the other hand, from Appendix 4.A.3 we know that

N
∑

i=1

g(γi, N)
P−→ We

1
SNR Γ

(

0,
1

SNR

)

(4.26)
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with Γ (a, x) =
∫∞
x
e−tta−1dt. From all the above, the asymptotic distortion when the number

of sensors grows without bound yields

D∞,Q&E

P−→
(

1

σ2
x

+
We

1
SNR Γ

(

0, 1
SNR

)

σ2
v + σ2

x

)−1

. (4.27)

By comparing the expression above these lines with that of Gaussian channels in (4.21) and

noticing thate
1
x Γ
(

0, 1
x

)

< ln (1 + x) ∀ x ≥ 0, one concludes that fading has anegativeimpact

in the (asymptotic) accuracy of the estimates.

4.6.2 Compress-and-Estimate: optimal sensor ordering andasymptotic

distortion

Being C&E a successive encoding strategy (as it follows from(4.14)) and due to the fact that

sensors experience different sensor-to-FC channel gains,one easily concludes that the ordering

π has an impact on the attainable distortion. For that reason,we are interested in determining

the optimal and worst-case ordering of sensors and, on that basis, analyze the corresponding

performance gap.

Optimal ordering

Consider two sensors with channel gainsγi ; i = 1, 2. Without loss of generality, assume

that γ1 ≥ γ2 and, define the two possible orderings (decreasing/increasing) asπD = (1, 2)

andπI = (2, 1). In this section, for the ease of notation and without loss ofgenerality, we let

SNR = 1 and W
N

= 1 and, further, we defineβ(π)
i , 1

D
(π)
i,C&E

. Hence, equation (4.15) can be

conveniently re-written as follows,

β
(π)
2 = β

(π)
1 +

β
(π)
1 γπ(2)

β
(π)
1

(

γπ(2)σ2
v + σ2

v

)

+ 1
(4.28)

where the termβ(π)
0 = 1/σ2

x, which is needed to be computeβ(π)
1 , does not depend on the par-

ticular ordering (πI/πD). The goal is to determine which ordering attains the lowestdistortion

or, equivalently, the highest value ofβ2, that is, whether

β
(πD)
2 − β(πI)

2 = β
(πD)
1 − β(πI)

1

+
β

(πD)
1 γ2

β
(πD)
1 (γ2σ2

v + σ2
v) + 1

− β
(πI)
1 γ1

β
(πI)
1 (γ1σ2

v + σ2
v) + 1

>
< 0. (4.29)

After some tedious manipulations, we have that
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β
(πD)
2 − β(πI)

2 =
γ1γ2 (γ2 + 1) (γ1 + 1) (γ1 − γ2) (β0σ

2
v + 1) σ4

vβ
3
0

2
∏

i=1,j 6=i

(

1 + β2
0σ

4
v(γ2 + 1)(γ1 + 1) + β0σ

2
v(γi + 1)(γj + 2)

)

. (4.30)

Under the initial assumption ofγ1 ≥ γ2, expression (4.30) is always greater than (or equal to)

zero, this meaning that the observation of the sensor experiencing the most favorable channel

condition should be encoded first (i.e. indecreasingorder of channel gains,πD) in order to

increase the side information at the FC at the next step. The equality in (4.29) holds in two

degraded cases only:i) for γ1 = γ2, i.e. identical channel gains and,ii ) γi = 0, for, at least, one

sensor. In Fig. 4.5, we plot the ratioD(πI)/D(πD) for several values ofγ1 andγ2 ∈ [0, γ1]. As

expected, forγ2
γ1
→ {0, 1} both orderings exhibit a comparable performance (degradedcases).

However, there exists a range of values for whichπD clearly outperformsπI. Besides, the

higherγ1 (i.e. high-SNR scenario), the more important using the optimal ordering can be (see

maxima on the curves).

Now, considern sensors with channel gainsγi ; i = 1, . . . , n. Without loss of generality,

assume thatγ1 ≥ γ2 ≥, . . . , γn. By induction, the optimal ordering foranygroup ofn sensors

is given byπ∗ = (1, 2, . . . , n), this meaning that the sensors must be sorted and their data

encoded in adecreasingorder of channel gains.

Next, we focus on the case withn+ 1 sensors. First, we divide the(n+ 1)! possible orderings

into n + 1 groups, where each group is denoted byGi. GroupGi is composed of all then!
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orderings havingi as its first element, namely,

πGi,k = (i, π′
Gi,k

); k = 1, . . . n! and i = 1, . . . n+ 1 (4.31)

whereπ′
Gi,k

denotes thek-th permutation of the remainingn elements. With this arrangement,

we can start discarding some orderings.

Remark 1 For all the orderings within a group, the distortion after the first iteration of the

decoder (D
(πGi,k)

1 ) is, by definition, identical. Therefore, it only remains todetermine the best

ordering (i.e. the one that attains the lowest distortion after n+ 1 transmissions) for the lastn

elements. By induction, such ordering is given when sensorsare sorted in a decreasing order

of channel gains.

As a result of Remark 1, for each group we only need to retain the best ordering, which is given

by:

π∗
Gi

=











(1, 2, . . . , n, n+ 1) ; i = 1

(i, 2, . . . , i− 1, i+ 1, . . . , n+ 1) ; i = 2 . . . n

(n + 1, 1, 2, . . . , n) ; i = n+ 1

.

Remark 2 According to(4.15), D(π)
n+1 (namely, the distortion after the (n + 1)-th iteration) is

a monotonically increasing function inD(π)
n .

It is worth noting that the firstn orderings, (π∗
Gi

; i = 1 . . . n), have their last element (i.e.n+1)

in common. Hence, fromRemark 2, the ordering that minimizes the distortion after then-th

iteration (D
(π∗

Gi
)

n ), does minimize the distortion after the (n + 1)-th iteration (D
(π∗

Gi
)

n+1 ), as well.

From all the above, one concludes that the best ordering out of the firstn groups turns out to

be:

π∗
G1

= (1, 2, . . . , n+ 1) . (4.32)

Finally, it only remains to determine which ordering out ofπ∗
G1

andπ∗
Gn+1

attains the lowest

distortion. However, one of the previously-discarded orderings within the first group, namely,

πG1,k0 = (1, 2, . . . , n + 1, n) is known to have a smaller distortion thanπ∗
Gn+1

. This follows

again fromRemark 2, from the fact that,i) by induction,D
(π∗

Gn+1
)

n ≥ D
(πGi,k0

)
n ; and ii ) again,

π∗
Gi

andπGi,k have their last element (n) in common. As a result,D
(π∗

Gn+1
)

n+1 ≥ D
(πGi,k)

n+1 ≥ D
(π∗

G1
)

n+1

and, hence,π∗
Gn+1

can be discarded. From all the above, the optimal ordering withn+1 sensors

turns out to be:

π∗ = π∗
G1

= (1, 2, . . . , n+ 1) . (4.33)

Interestingly, this ordering minimizes the distortion ateachiteration of the decoder in the re-

ceiver. Unfortunately, this does not hold true for the general case, as it occurs when sensors

experience identical channel gains anddifferentobservation noise variances (see [85]).
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Worst-case ordering

In order to gain some insight on the performance of a particular ordering (e.g. a pre-defined

ordering), we attempt to identify the sorting that leads to the highest distortion, that is, the

worst-case orderingπw. This, along with the optimal ordering, can be used as upper and lower

performance bounds, respectively.

By induction and on the basis of the results of previous section, the worst-case ordering for

any group of n sensors is given byπw = (n, n − 1, . . . , 1). For n + 1 sensors, the(n + 1)!

possible orderings can be divided inton+ 1 groups, as done before. By resorting to Remark 1,

we can discard again all elements but one from each group, which leads to the following subset

of worst-case orderings:

πwGi
=











(1, n+ 1, n, . . . , 2) ; i = 1

(i, n+ 1, n, . . . , i+ 1, i− 1, . . . , 1) ; i = 2 . . . n

(n+ 1, n, . . . , 1) ; i = n + 1.

Now, fromRemark 2, the worst-case ordering out of thei = 2 . . . n+ 1 groups turns out to be

πwGn+1
= (n+ 1, n, . . . , 1) . (4.34)

Finally, it only remains to determine which ordering out ofπwGn+1
andπwG1

attains the highest

distortion level. However, one of the previously-discarded orderings within the(n+1)-th group

πGn+1,k0 = (n + 1, n, . . . , 3, 1, 2) is known to have a higher distortion thanπwG1
. Therefore,πwG1

can be discarded and, consequently, the worst-case ordering with n + 1 sensors yields

πw = πwGn+1
= (n+ 1, n, . . . , 1) . (4.35)

In conclusion, the performance of an arbitrary orderingπ can be upper- and lower-bounded by

those of the optimal and worst-case orderings, that is,

D
(π∗)
n+1 ≤ D

(π)
n+1 ≤ D

(πw)
n+1 , (4.36)

as defined in expressions (4.33) and (4.35), respectively.

Asymptotic distortion expressions

To close this section, we derive a lower bound of the asymptotic distortion forN → ∞. By

settingD(π)
k−1,C&E

= 0 ∀k in (4.14), the following lower bound results

Dπ
∞,C&E ≥





1

σ2
x

+

N
∑

k=1

(

1 + SNRγπ(k)

)
W
N − 1

σ2
v

(

1 + SNRγπ(k)

)
W
N





−1

P−→
(

1

σ2
x

+
We

1
SNR Γ

(

0, 1
SNR

)

σ2
v

)−1

(4.37)

84



4.6. Rayleigh-fading channels with transmit CSI

0 50 100 150 200 250 300 350 400
10

−5

10
−4

10
−3

10
−2

10
−1

N

D
is

to
rt

io
n

Q&E
C&E

Quantize−and−Estimate − asymptotic distortion

Compress−and−Estimate − asymptotic distortion (lower
bound)

Figure 4.6: Distortion for Rayleigh-fading channels vs. network size (σ2
x = 1,W =

100, SNR = 10dB, σ2
v = 0.01).

which, interestingly, does not depend on the specific ordering π. From (4.10) and (4.14), it

follows thatD(π∗)
N,C&E

≤ DN,Q&E for all N . Besides, in the high-SNR regime bothi) the lower

bound ofDπ
∞,C&E given by (4.37); andii ) D∞,Q&E behave ase

1
SNR Γ

(

0, 1
SNR

)

∼ 1
ln SNR

. From

this, one concludes that, necessarily, the actual distortionD(π∗)
∞,C&E decreases as 1

lnSNR
, as well.

4.6.3 Simulations and numerical results

In Figure 4.6, we illustrate the behavior of the Q&E and C&E encoding schemes with CSIT

for a varying number of sensors (Rayleigh-fading channels). For a small number of sensors

(N < 40), the performance of both encoding schemes is virtually identical. Although Q&E

cannot avoid sending redundant information, the bandwidthper sensor in this region is still

high, the observations can be accurately encoded and the noise-averaging effect (which is iden-

tical for both strategies) dominates. AsN grows, the messages undergo a rougher encoding

(quantization) process. This can be partly compensated by the C&E scheme which, by succes-

sively encoding data, is able to remove the correlation in the observations. Consequently, and

unlike in Q&E encoding, distortion continues to decrease. Besides, one also observes that the

distortion attained by the Q&E and C&E schemes converge to the asymptotic limits derived in

the text and, interestingly, the asymptotic bound (4.37) isshown to be tight.
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Different channel gains (N = 25 sensors, andW
N

= 1).

By plotting the ratio between the optimal and worst-case distortions (D(πw)/D(π∗)), we eval-

uate the impact of the encoding order on the C&E scheme (Fig. 4.7). For a low correlation

coefficientρ (i.e. noisy observations), the impact of the ordering vanishes: the quality of the

observations is very poor and the impact of sorting the observations differently is marginal.

For ρ → 1 (namely,σ2
v → 0), the observations are identical and, likewise, it does notreally

matter in which order they are encoded. For intermediate values ofρ, the ordering does play a

role, although the higher theSNR (i.e. the available transmit power), the lesser the impact of

the ordering. Still, for very low transmit power (SNR = −10 dB) the achievable rates over the

sensor-to-FC channels are small, the (roughly encoded) observations do not provide significant

gains when used as side information at the FC and, again, all orderings attain similar distortion

levels.

4.7 Rayleigh-fading channels without transmit CSI

In the absence of instantaneous transmit CSI, neither can the encoding rate be dynamically

adjusted to channel conditions, nor is suitable the C&E scheme2. Hence, we focus on the Q&E

scheme and propose a modification by which each sensor observation is encoded at acommon

2Being C&E a successive encoding scheme, as soon as one sensoris in outage and the observation cannot

be successfully decoded at the FC (see further details aheadin the text), the distortion in the estimate increases

dramatically.
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andconstantrate given by

R = Rk = log2

(

1 +
σ2
x + σ2

v

σ2
z

)

; ∀k. (4.38)

Clearly, the goal now is to find the optimal value ofR, as a function ofstatisticalCSI only,

which minimizes the distortion attained at the FC. To that end, we first compute the outage

probability, that is, the probability that the encoding rateR exceeds the instantaneous channel

rate, namely

pout = Pr

(

log2

(

1 +
σ2
x + σ2

v

σ2
z

)

>
W

N
log2(1 + SNR · γk)

)

= Fγ







(

1 + σ2
x+σ2

v

σ2
z

)
N
W − 1

SNR






(4.39)

whereFγ(x) stands for the CDF ofγk; k = 1, . . . , N . According to (4.39), the variance of the

quantization noise can be expressed as a function ofpout, as

σ2
z(pout) =

σ2
x + σ2

v
(

1 + SNR · F−1
γ (pout)

)W
N − 1

, (4.40)

with F−1
γ (·) standing for the inverse of the CDF ofγ. From theNd ≤ N codewords reliably

decoded at the FC, an MMSE estimate ofx with an overall distortion given by [18, Ch.10]

DNd,Q&E = σ2
x|u1,...,uNd

=

(

1

σ2
x

+
Nd

σ2
v + σ2

z(pout)

)−1

(4.41)
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can be obtained. Clearly, the expression above depends onNd which is a random variable.

Due to the fact that sensors experience independent and identical fading conditions, it follows a

binomial distribution with probability of activationp = 1−pout. For Rayleigh-fading channels,

F−1
γ (·) turns out to be the inverse of the CDF of an exponentially-distributed random variable,

namely

F−1
γ (pout) = ln

(

1

1− pout

)

. (4.42)

By replacing (4.40) and (4.42) into (4.41) the expected distortion yields

DQ&E = ENd











1

σ2
x

+
Nd

(

(1− SNR · ln (1− pout))
W
N − 1

)

σ2
v (1− SNR · ln (1− pout))

W
N + σ2

x





−1





.

Unfortunately, a closed form expression of the expected distortion is extremely difficult to

obtain and, hence, it cannot be used as a score function to optimizeN . However, the argument

in the expectation function is convex inNd and, thus, we can resort to the following lower

bound:

DQ&E ≥ DLB
Q&E =





1

σ2
x

+
N (1− pout)

(

(1− SNR · ln (1− pout))
W
N − 1

)

σ2
v (1− SNR· ln (1− pout))

W
N + σ2

x





−1

(4.43)

which follows from Jensen’s inequality. This bound can be shown to be tight asN grows

without bound (see Appendix 4.A.4) and, interestingly, it also performs reasonably well for

practical values ofN as shown in Fig. 4.9. In this plot, we also observe that this bound is a

convex function inpout and, hence, there exists a single optimal operating pointp∗out. Therefore,

the subsequent analysis focuses on the bound given by (4.43)which, due to its tightness, allows

us to find an accurate approximation of the optimal encoding rate,R∗, along with the optimal

number of sensor nodes of the network,N∗. From (4.38) and (4.40),R is, in turn, a function of

N andpout and, therefore, we equivalently minimize with respect to these two variables. This

optimization problem can be re-written as follows [69]:

min
N,pout

DLB (N, pout) = min
pout

(

min
N

DLB (N, pout)
)

(4.44)

, min
pout

D̃LB (pout) (4.45)

with 0 ≤ pout ≤ 1. In general, this problem is non-convex and, thus, difficultto solve. How-

ever it can be efficiently solved in two cases of interest, namely, scenarios with high and low

observations noises. Complementarily, we analyze the rateat which the distortion decreases in

the high-SNR regime.

88



4.7. Rayleigh-fading channels without transmit CSI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

p
out

D
is

to
rt

io
n

Actual value

Lower bound

N=50

N=100

Figure 4.9: Distortion vs. outage probabilitypout for different network sizes (W = 200, σ2
x =

1, σ2
v = 0.05, SNR = 10dB).

4.7.1 Scenario 1: high observation noise

Here, we consider thatσ2
v ≫ σ2

x, and, consequently, theinner minimization problem in (4.44)

can be approximated as follows

min
N

DLB (N, pout) ≡ max
N





N (1− pout)
(

(1− SNR · ln (1− pout))
W
N − 1

)

σ2
v (1− SNR · ln (1− pout))

W
N + σ2

x



 (4.46)

≈ max
N





N (1− pout)
(

(1− SNR · ln (1− pout))
W
N − 1

)

σ2
v (1− SNR · ln (1− pout))

W
N



 .(4.47)

The resulting cost function turns out to be concave and monotonically increasing inN and,

hence, the optimal number of sensors isN∗ →∞ (that is, many sensors are needed in order to

smooth the observation noise). Bearing this in mind, theouterminimization problem yields:

min
pout

D̃LB (pout) = min
pout

(

1

σ2
x

+
W (1− pout) ln (1− SNR · ln (1− pout))

σ2
v

)−1

, (4.48)

which can be easily shown to be a convex problem. Setting its first derivative to zero yields

p∗out = 1− e
1

SNR
− 1

W0(SNR) . (4.49)

As far as distortion is concerned, increasing the averageSNR = P
WNo

in the sensor-to-FC

channels has two beneficial effects. On the one hand,p∗out decreases and, hence, a higher
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percentage of observations can be successfully decoded at the FC. On the other, observations

can be more finely quantized, as it follows from (4.40).

4.7.2 Scenario 2: low observation noise

Here, we consider thatσ2
v ≪ σ2

x. Following the same steps as in the case of Gaussian channels,

(Section 4.5), theinner minimization problem in (4.44) yields:

N∗(pout) ≈ −
W ln (1− SNR ln (1− pout))

W−1

(

−σ2
ve

σ2
x

)

− 1
. (4.50)

From (4.50) theouteroptimization problem now reads,

min
pout

D̃LB (pout) ≈ max
pout

C (1− pout) ln (1− SNR ln (1− pout)) (4.51)

with C standing for a positive constant. Surprisingly, the resulting optimization problem is

equivalent to that of (4.48) and, hence, the optimal{N∗, p∗out} pair is given by

N∗ ≈
W ln

(

SNR

W0(SNR)

)

W−1

(

1− σ2
ve

σ2
x

) , (4.52)

p∗out ≈ 1− e
1

SNR
− 1

W0(SNR) . (4.53)

Finally, by subsequently substitutingN∗ andp∗out into (4.40) and (4.38), we have that

R∗ ≈ W−1

(

−σ
2
ve

σ2
x

)

− 1. (4.54)

Interestingly, as long asσ2
v ≪ σ2

x the encoding rate exclusively depends on the variance of the

observation noise. On the contrary, the optimal number of sensor nodes is a function of the

available bandwidth and power (throughSNR = P
WNo

), as well.

4.7.3 Asymptotic law in the high-SNR regime

From Appendix 4.A.4, the average distortionDQ&E converges in probability to its lower bound

DLB
Q&E for largeN . This holds true for anypout and, in particular, forp∗out = 1 − e

1
SNR

− 1
W0(SNR)

which can be shown to be the optimal outage probability asN → ∞. Hence, from this last

result and (4.43), we have

lim
N→∞

DQ&E(p∗out)

DLB
Q&E

(p∗out)
= lim

N→∞

DNd,Q&E(p
∗
out)

(

1
σ2

x
+

We
1

SNR
− 1

W0(SNR) ln
�

SNR

W0(SNR)

�
σ2

v+σ2
x

)−1

P−→ 1. (4.55)
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Besides, it is straightforward to prove that the denominator in this last equation satisfies

lim
SNR→∞

W ln(SNR)
σ2

v+σ2
x

1
σ2

x
+

We
1

SNR
− 1

W0(SNR) ln
�

SNR

W0(SNR)

�
σ2

v+σ2
x

= 1. (4.56)

Finally, from the numerators in (4.55) and (4.56), we conclude that

DQ&E ∼
σ2
x + σ2

v

W ln (SNR)
. (4.57)

In other words, for large sensor networks the (optimal) distortion in the high-SNR regime

decreases as1/ ln (SNR). Interestingly, this law is identical to that of (4.21) although the latter

was derived in the (more favorable) case of Q&E encodingwith CSIT at the sensor nodes,

whereall the observations can be successfully decoded by the FC.

4.7.4 Simulations and numerical results

Figure 4.10 illustrates the impact of CSIT on the behavior ofthe Q&E scheme (Rayleigh-fading

channels). As expected, the lack of CSIT translates into an increased distortion (Fig. 4.10a).

Notwithstanding, the gap between both strategies is relatively small andconstantfor the whole

range of (sensor-to-FC)SNR values. Complementarily, Figure 4.10b depicts the optimalnum-

ber of sensor nodes with and without CSIT. First, we observe that the approximation for low

observation noise scenarios of (4.50) is very accurate for the whole range ofSNRs. Second, the

optimal number of sensor nodes without CSIT is smaller than with CSIT (constant and variable

encoding rates, respectively). The intuition behind this is the following: for a constant encod-

ing rate, some outage probability will unavoidably occur and, in order to partly compensate

for that, one should increase the transmit powerper sensorby allocating the available transmit

power to areducednumber of sensor nodes.

Next, Fig. 4.11 depicts the asymptotic distortion (for large networks) as a function of theSNR.

As discussed in the last paragraphs of sections 4.6 and 4.7, the rate at which the distortion

decreases in the high-SNR regime is identical for the Q&E andC&E with CSIT, and Q&E

without CSIT encoding strategies (1/ln(SNR)). In the high-SNR regime, the impact of CSIT

or the encoding scheme restricts to a scale factor in the attainable distortion.

4.8 Contention-based vs. reservation-based multiple-access

schemes

In previous sections, we have considered orthogonal channels to the FC and, implicitly, the

adoption of a reservation-based multiple-access scheme (e.g. FDMA/TDMA). In realistic sce-
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Figure 4.10: a) Minimum distortion for Rayleigh-fading channels vs. SNR and b) optimal

network size vs.SNR (W = 100, σ2
v = 0.01, σ2

x = 1).

narios, where the number of sensor nodes is potentially veryhigh, the centralized coordina-

tion that reservation-based multiple access schemes entail is barely desirable. Instead, letting

sensors seize the transmission medium via contention-based mechanisms (e.g. CSMA/CA or

ALOHA protocols), is far more attractive.

Therefore, to close this chapter we extend the previous analysis to encompass the effect of

contention-based multiple-access schemes. We focus our attention on the (more challenging)

scenario ofhierarchicalwireless sensor networks.

4.8.1 Signal and network model

Consider a hierarchical WSN where sensor nodes are grouped intoNc clusters3 withN sensors

each (see Fig. 4.12a). Each cluster is coordinated by a Cluster-Head (CH) and, in turn, the set

of CHs is coordinated by the Fusion Center (FC). Within each cluster, the (common) source

of interest is modeled as a length-n (with n sufficiently large) vectorxi = [x
(1)
i , . . . , x

(n)
i ]T of

independent and identically-distributed zero mean Gaussian random variables of varianceσ2
x,

with joint pdf p
(

x
(1)
i , . . . , x

(n)
i

)

=
∏n

j=1 p
(

x
(j)
i

)

. Thenoisyobservation at thek-th sensor in

3We assume a quasi-static network topology and, hence, we neglect the impact of the signalling associated

with the clustering protocol.
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clusteri reads

yk,i = xi + vk,i (4.58)

wherevk denotes memoryless AWGN noise (measurement noise) of varianceσ2
v and i.i.d. over

sensors and clusters. Next, each sensor encodes its observation yk,i = [y
(1)
k,i , . . . , y

(n)
k,i ]

T into a

length-n codeworduk,i(s) ∈ C and, finally, the corresponding indexsk,i is transmitted. As

shown in Fig.4.12b, data communication is organized in two phases within each timeslot (i.e.

half-duplex operation). In the first phase, of durationT1 = αTs, sensors convey their encoded

data to the corresponding cluster-head. In the second phase, of durationT2 = (1 − α)Ts,

cluster-heads send the processed data to the Fusion Center (FC). In all cases, we assume (for

mathematical tractability) that communications take place over Gaussian channels. From all

the above, the effective rates in bits per sample for each phase/layer in the hierarchy are given

by

R1 = αR′
1 = αW log2 (1 + SNR1) , (4.59)

R2 = (1− α)R′
2 = (1− α)W log2 (1 + SNR2) (4.60)

whereSNR1 andSNR2 stand for the average signal-to-noise ratio in each layer. Besides, we

assume that the sources of interest which are monitored by the clusters are statistically inde-

pendent (e.g. a random field being sampled bydistantclusters of sensors). Consequently, the

quality of thek-th element in the vector of FC estimatesx̂1, x̂2, . . . , x̂Nc (see Fig.4.12b),exclu-

sivelydepends on the data being received from thek-th cluster head. For that reason, in the
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Figure 4.12: Hierarchical wireless sensor network.

following we will focus our analysis on an arbitrary clusterin the network and, accordingly,

the cluster indexi will be dropped.

4.8.2 Reservation-based multiple access

Throughout this section, we assume that a reservation-based multiple-access scheme (e.g.

TDMA or FDMA) is in place. Hence, the allocation of the orthogonal channels to data pack-

ets is either static or, alternatively, it is organized by a centralized scheduler. Consequently,

no packet collisions occur. This multiple-access scheme will be used as a benchmark for

contention-basedones, to be presented later.

With these assumptions, the available rateper sensorin Layer 1 turns out to beR1

N
and, hence,

the codebookC consists of, at most,2n
R1
N codewordsuk(s) with s ∈ {1, 2, . . . , 2nR1

N }. We

adopt the Q&E strategy4 where the encoding process is modeled through the auxiliaryvariable

uk = yk + zk with zk ∼ N (0, σ2
zI) and statistically independent ofyk. Consequently,uk ←→

yk ←→ x form a Markov chain withuk = x + vk + zk. Bearing this in mind, the encoding

rate must satisfy:

R1

N
≥ I (yk; uk) = H(uk)− H(uk|yk)

= log2

(

1 +
σ2
x + σ2

v

σ2
z

)

(4.61)

4We adopt the Q&E strategy since the encoding process at the sensors is carried out independently. This will

be particularly important when, in the sequel, we consider the packet losses at the MAC layer.
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and, hence, the variance of the quantization noise for the lowest possible encoding rate reads

σ2
z =

σ2
x + σ2

v

2
R1
N − 1

. (4.62)

The distortion of the MMSE estimate ofx at the CH is given by [18]:

DCH,N =

(

1

σ2
x

+
N

σ2
z + σ2

v

)−1

=





1

σ2
x

+
N
(

2
R1
N − 1

)

σ2
v2

R1
N + σ2

x





−1

. (4.63)

Such CH estimate can now be modeled as

yCH = x + vCH (4.64)

wherevCH ∼ CN
(

0, σ2
vCH

I
)

stands for theequivalentobservation noise at the CH with vari-

ance given by5

σ2
vCH

=

(

1

DCH,N

− 1

σ2
x

)−1

=
σ2
v2

R1
N + σ2

x

N
(

2
R1
N − 1

) . (4.65)

Next, the CH encodesyCH into the auxiliary random variableuCH with rate R2

Nc
(to recall,Nc

orthogonal channels are available in Layer 2). Again, the codeworduCH can be modeled as,

uCH = yCH + zCH (4.66)

wherezCH ∼ CN
(

0, σ2
zCH

I
)

denotes the quantization noise at the CH, with variance given by

σ2
zCH

=
σ2
vCH

+ σ2
x

2
R2
Nc − 1

, (4.67)

which is computed similarly to (4.62). From (4.65) and (4.67), the distortion of the estimate of

x at the FC can be finally expressed as follows:

DFC,N =

(

1

σ2
x

+
1

σ2
vCH

+ σ2
zCH

)−1

(4.68)

=

(

1

σ2
x

+
2

R2
Nc − 1

σ2
vCH

2
R2
Nc + σ2

x

)−1

. (4.69)

4.8.3 Contention-based multiple access

In this section, we assume that acontention-basedmultiple-access scheme is adopted inboth

layers of the hierarchical network. For mathematical tractability, we focus our analysis on the

5This follows from equation (4.63) forN = 1.
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results achieved with the ALOHA protocol6, which relieves sensor nodes/CHs from sensing the

medium before transmitting data. Besides, we further assume that no packet collisions result

from simultaneous transmissions indifferentclusters (i.e. distant clusters).

A quick overview of the ALOHA protocol

In the classical ALOHA protocol [50] , the distribution of the (initial) transmission time of a

packet follows a uniform distribution in(0, T ), whereT stands for the duration of the corre-

sponding timeslot7. For a fully-loaded system, a packet duration ofTp seconds and by neglect-

ing the border effects, the probability that two packets collide can be computed as:

pcol = 1−
(

1− 2Tp
T

)N−1

. (4.70)

Now, we re-defineT = NTp whereN is the number of terminals (sensors or CHs). From

(4.70), the probability of collision yields

pcol = 1−
(

1− 2

N

)N−1

. (4.71)

Next, we are interested in characterizing the pmf of the random variableNs, namely, the num-

ber of successful packet transmissions in a given timeslot (with 0 ≤ Ns ≤ N). Clearly, we

have that

Pr(Ns = n) =

(

N

n

)

pnqN−n (4.72)

wherepn stands for the probability that one particular subset ofn sensors (or CHs) successfully

transmit their data, andqN−n accounts for the probability that the packets from the remaining

N − n sensors (or CHs) collide. Unfortunately, this probability(and pmf) turns out to be ex-

tremely complex to characterize. Instead, in Appendix 4.A.5 we show that one can approximate

the pmf ofNs for largeN by that of abinomialrandom variableNb, that is,

Pr(Ns = n) ≈ Pr(Nb = n) =

(

N

n

)

(1− pcol)
n pN−n

col
. (4.73)

In Figure 4.13, we plot the actual CDF ofNs and its binomial counterpart. Clearly, forN =

100, the binomial approximation is quite accurate. For low and moderate values ofN (i.e.

N = 20, 50), the approximation continues to be acceptable.

6Clearly, by using more sophisticated MAC protocols like CSMA/CA more realistic results would follow.

However, for an initial analysis like this, the ALOHA protocol constitutes a fairly simple and attractive alternative.
7Here,T plays the same role asT1 andT2 in Section 4.8.1.
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Figure 4.13: Cumulative density functions: actual vs. binomial approximation.

Distortion analysis

On the basis of the Bayes theorem, the average distortion attained at the FC can be expressed

as:

DFC = pcol,2E [DFC|col.] + (1− pcol,2) E [DFC|no col.]

= pcol,2σ
2
x + (1− pcol,2) E [DFC,Ns] (4.74)

with pcol,2 standing for the probability of collision in Layer 2 (which follows from replacingN

withNc in (4.71)). In the case of a packet collision (first term in thesummation), the FC simply

outputs the statistical mean ofx, this resulting into a conditional distortion ofE [DFC|col.] =

σ2
x. On the contrary, if the packet is successfully received by the FC (second term in the

summation), the distortion depends on the actual number of packets successfully received in

Layer 1 (Ns), with expected value given byE [DFC|no col.] = ENs [DFC,Ns], namely,

ENs [DFC,Ns] = ENs





(

1

σ2
x

+
2

R2
Nc − 1

σ2
vCH

(Ns)2
R2
Nc + σ2

x

)−1


 . (4.75)

In the expression above, variableσ2
vCH

(Ns) stands for the variance of the equivalent observation

noise at the cluster-head observation, that is

σ2
vCH

(Ns) =

(

1

DCH,Ns

− 1

σ2
x

)−1

=
σ2
v2

R1
N + σ2

x

Ns

(

2
R1
N − 1

) . (4.76)
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Unfortunately, a closed-form expression of the expected distortion given by (4.75) is extremely

difficult to obtain. Instead and by realizing that the argument in the expectation term of (4.75)

is a convex function inNs, one can resort to Jensen’s inequality and derive the following lower

bound:

ENs [DFC,Ns] ≥
(

1

σ2
x

+
2

R2
Nc − 1

σ2
vCH

(

N
)

2
R2
Nc + σ2

x

)−1

(4.77)

where we have definedN = E [Ns]. According to Section 4.8.3, we can now replaceN ≈
(1− pcol,1)N , namely, the mean of the binomial pmf approximation of (4.73), with pcol,1 given

by (4.71). Interestingly, this bound can be shown to be tightfor N →∞. Finally, by replacing

(4.77) into (4.74) a (tight) lower bound for the overall distortion follows. As a remark, it is

worth noting that by particularizing (4.74) forpcol,1 = 0 and (4.77) forpcol,2 = 0, we obtain the

distortion associated to the reservation-based protocol presented in the previous section.

4.8.4 Resource allocation problem

Here, we attempt to minimize the expected distortion at the FC with respect toα ∈ [0, 1], which

determines the time devoted in each timeslot to sensor-to-CH and CH-to-FC communications

(T1 = αTs andT2 = (1− α)Ts, respectively). To that extent, we realize that the only term in

(4.74) involved in the minimization w.r.t.α turns out to be (4.75). Therefore, byi) recalling

from (4.59) and (4.60) thatR1 = αR′
1 andR2 = (1− α)R′

2; and ii ) resorting to the lower

bound of (4.77), the minimization problem now reads

min
α∈[0,1]

2(1−α)
R′

2
Nc σ2

vCH

(

N
)

+ σ2
x

2(1−α)
R′

2
Nc − 1

. (4.78)

In the sequel, we assume that2(1−α)
R′

2
Nc ≫ 1 or, in other words, that each CH-to-FC link in

Layer 2 is capable of conveying large amounts of information8. Bearing this in mind, the

minimization problem above these lines can be approximatedas follows:

min
α∈[0,1]

σ2
vCH

(

N
)

+
σ2
x

2(1−α)
R′

2
Nc

. (4.79)

In subsequent sections, we compute the optimalα9 for two cases of interest in Layer 1, namely,

i) high data rate per sensor andii ) low data rate per sensor.

8The underlying assumption here is that the number of cluster-heads is relatively low.
9Strictly speaking, the minimization of (4.79) yields aquasi-optimal value ofα since (4.79) turns out to be an

approximation to the actual distortion.
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High data rate per sensor in Layer 1

First, we address the case where2α
R′

1
N ≫ 1 which holds when the cluster sizeN is small com-

pared to the available channel rateR′
1. In these conditions, the argument in the minimization

problem (4.79), re-defined asf(α), simplifies to:

f(α) ≈ 1

N (1− pcol,1)

(

σ2
v +

σ2
x

2α
R′

1
N

)

+
σ2
x

2(1−α)
R′

2
Nc

. (4.80)

This problem is now convex inα and, hence, a closed-form solutionα∗ can be found by just

setting the first derivative of (4.80) to zero, namely

α∗ =

(

R′
1

N
+
R′

2

Nc

)−1(
R′

2

Nc

+ log2

(

R′
1Nc

R′
2N

2 (1− pcol,1)

))

. (4.81)

From this expression, one concludes that the system tends toallocate more resources (time)

to the layer with the lowest channel rate. IfR′
1 → ∞ (andR′

2 does not) thenα∗ → 0 which

prioritizes CH-to-FC transmissions. Conversely, ifR′
2 → ∞ thenα∗ → 1, this meaning that

sensor-to-CH transmissions become a priority. Besides, the optimalα is clearly an increasing

function in the probability of collision in Layer 1 (the higher the probability of collision, the

longer the time devoted to Layer 1 to partly compensate for this effect).

Low data rate per sensor in Layer 1

Here, we address the realistic case where the number of sensors in Layer 1 is high and, hence,

2α
R′

1
N → 1. To start with, we compute

lim
N→∞

σ2
vCH

(

N
)

=
σ2
v + σ2

x

αR1 (1− pcol,1) ln(2)
. (4.82)

and, next, we substitute this into minimization problem (4.79) which is now convex. As in the

previous section, a closed-form expression of the optimal operating point can be easily found

and it reads

α∗ =
2Nc

ln(2)R′
2

W0

(

1

2

√

R′
2 (σ2

x + σ2
v)

NcR
′
1 (1− pcol,1) σ2

x

e
R′

2 ln(2)

2Nc

)

(4.83)

withW0(·) standing for the Lambert function [71]. Similar conclusions to those of the high data

rate per sensor case can be drawn from this last expression. However, the optimalα depends

now on the quality of the observations at the sensor nodes, aswell. For noisy observations

(namely, high values ofσ2
v), it is necessary to increaseα∗ in order not to introduce excessive

quantization noise in Layer 1.
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Figure 4.14: Distortion for reservation-based mechanismsin Layer 1 and Layer 2 (Nc = 3,

SNR1 = 20dB, SNR2 = 10dB, W ′ = 20, σ2
v = 0.05, σ2

x = 1). Markers on the curves denote

the optimal operating points given by (4.81) and (4.83).

4.8.5 Simulations and numerical results

Figure 4.14 illustrates the accuracy of the approximationsof the optimization problem given

by (4.79) in both highand low data rate per sensor scenarios. In particular, we focus on

the case where a reservation-based multiple access mechanism is adopted in both layers (i.e.

pcol,1 = pcol,2 = 0). In scenarios with high data rate per sensor (N = 10), the approximate

distortion given by (4.80) is quite tight and, hence, the optimal value ofα can be accurately

computed with (4.81). On the contrary, in scenarios with lowdata rate per sensor (N = 200)

the approximation (4.80) turns out to be loose. Hence, one has to resort to (4.83) to determine

the optimal operating pointα∗.

Next, in Fig. 4.15, we show the impact of reservation-based and contention-based mechanisms

on the overall performance. Clearly, adopting reservation-based schemes in both layers (curve

labeled with ’TDMA Layer 1, TDMA Layer 2’) yields the lowest possible distortion for the

whole range ofα. As expected, the introduction of contention-based mechanisms (and the

packet collisions that they entail) results into an increased distortion level. Contention-based

mechanisms are particulary harmful in Layer 2 since a packetcollision in a CH-to-FC link pre-

ventsall the data collected by that specific CH from being used to estimate the parameter. The

impact of contention-based mechanisms in Layer 1 is moderate: when a packet is dropped, the

(noisy) observations sent by other sensors are still helpful for the estimation of the parameter
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Figure 4.15: Impact of reservation-based and contention-based mechanisms on distortion

(Nc = 3, N = 40, SNR1 = 20dB, SNR2 = 10dB, W ′ = 40, σ2
v = 0.05, σ2

x = 1). Mark-

ers on the curves denote the optimal operating points given by (4.81) and (4.83).

of interest. Besides, we observe that the lower bound that was found by substituting (4.77) into

(4.74) is tight (dotted curve). This validates the optimal resource allocations given by (4.81)

and (4.83). Finally, the presence of collisions in Layer 1 leads to an increased value ofα∗. This

effect is captured by the closed-form solutions given by (4.81) and (4.83), as commented in

Section 4.8.4.

Finally, Fig. 4.16 depicts the expected distortion at the FCas a function of the signal to noise

ratio experienced in Layer 1,SNR1 (for the optimalα, high number of sensors per cluster case).

Interestingly, therateat which the distortion decreases with reservation-based and contention-

based isidenticalin both cases. In other words, when the number of sensors per cluster is high,

only a constant penalty in terms of distortion can be expected.

4.9 Chapter summary and conclusions

In this chapter, we have first conducted an in-depth analysisof the Quantize-and-Estimate

(Q&E) and Compress-and-Estimate (C&E) encoding strategies in (orthogonal) Gaussian and

Rayleigh-fading channels under powerand bandwidth constraints. For the Q&E scheme, we

have proved that there exists an optimal number of sensor nodes which minimizes the overall
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Figure 4.16: Impact ofSNR1 on distortion for a high number of sensors per cluster case (Nc =

3, SNR2 = 10dB,W ′ = 20, σ2
v = 0.05, σ2

x = 1).

distortion in the estimates. Conversely, in C&E encoding, increasing the number of sensors

always pays off. For the Q&E scheme, we have derived an approximate closed-form expression

of its optimal operating point (Gaussian channels and some cases of interest in Rayleigh-fading

channels without CSIT) and concluded that optimizing on thenumber of sensors is particularly

useful when the observation noise is low. For the C&E scheme,we have analytically shown that

encoding the observations in a decreasing order of (sensor-to-FC) channel gains minimizes the

resulting distortion. Computer simulation results revealthat ordering is particularly important

in scenarios with moderate observation noise or transmit power. We have also derived, in a

context of Rayleigh-fading channels, closed-form expressions of the distortion attained by the

Q&E and C&E (lower bound) schemes for an asymptotically-high number of sensors. From

this, we conclude that, as expected, distortion is lower in the C&E case. Besides, in the absence

of CSIT, we have found the optimal value of thecommonandconstantencoding rate of the

Q&E scheme. In other words, we have identified the optimal trade-off in terms of quantization

bits vs. the number of observations actually received at theFC (due to outage effects). We have

approximately solved the problem for two cases of interest,namely, sensors with high and low

observation noise and found out that, interestingly, the lack of CSIT translates into a moderate

increase of distortion for the whole range of SNR values.

Second, and unlike the previous analysis where each sensor-to-FC communication occurs in

a reservedorthogonal channel (e.g. TDMA/FDMA), we have addressed a more realistic sce-
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nario, where sensors seize the channel via contention-based multiple-access protocols. We

have adopted a hierarchical topology where sensors are grouped into clusters and each cluster

is governed by a cluster-head, which is in charge of consolidating the cluster estimate and send

it to the FC. First, we have derived aclosed-formexpression of the distortion attained at the FC

with a reservation-based protocol (e.g. TDMA) which has been used as a benchmark. Next, we

have extended the analysis to encompass the effect of packetcollisions stemming from the use

of contention-based schemes. Specifically, we have found anapproximate (yet tight) expres-

sion of the distortion associated to the ALOHA protocol. On that basis, we have identified the

optimal time split,α∗, for sensor-to-CH (Layer 1) and CH-to-FC (Layer 2) communications.

Furthermore, we have derived (approximate) closed-form expressions ofα∗ for two cases of

interest, namely, high data rate and low data rate per sensor. Simulation results reveal that

the adoption of contention-based mechanisms is particulary harmful in Layer 2 whereas their

impact in Layer 1 is moderate. Besides, we have found (both analytically and numerically)

that the presence of packet collisions in Layer 1 leads to an increased value ofα∗. Finally, we

have also observed that therateat which the distortion decreases with theSNR1 is identicalfor

reservation-based and contention-based schemes.
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4.A Appendix

4.A.1 Quasiconvexity of the distortion function for Q&E encoding and

Gaussian channels

We want to prove that the distortion given by (4.16) is a quasiconvex function inN (we relax

N ∈ R). Mathematically, the distortionDN,Q&E is a quasiconvex function if its domain and all

its sublevel sets

Sα =
{

N ∈ R
+
∣

∣

∣
DN,Q&E ≤ α

}

(4.84)

for α ∈ R are convex (i.e. continuous) [69, Chapter 3]

The problem is equivalent to prove that the second term in (4.16) is aquasiconcavefunction

or, mathematically, that its domain and all itssuperlevelsets (see definition below) are convex

(i.e. continuous). To that aim, we re-write the superlevel sets of (4.84) as follows:

Sα =
{

N ∈ R
+
∣

∣

∣
DN,Q&E ≤ α

}

(4.85)

=







N ∈ R
+,
N
(

(1 + SNR)
W
N − 1

)

σ2
v (1 + SNR)

W
N + σ2

x

≥ β







= Sβ , (4.86)

with β = 1
α
− 1

σ2
x
∈ R. After some manipulations, the above sets can be re-writtenas:

Sβ =
{

N ∈ R
+, f(N) ≥ σ2

x + σ2
v

}

(4.87)

with

f(N) =

(

N

β
− σ2

v

)

(

(1 + SNR)
W
N − 1

)

. (4.88)

Hence, the problem is equivalent to prove thatf(N) is also a quasiconcave function inN . On

the one hand, we have thatf(N) asymptotically converges to

lim
N→∞

f(N) =
W

β
ln (1 + SNR) . (4.89)

On the other, from the second derivative off(N) w.r.t. N it easily follows that, forβ <
W log(1+SNR)

2σ2
v

f(N)→
{

concave if N < W log(1+SNR)σ2
vβ

W log(1+SNR)−2σ2
vβ

convex if N > W log(1+SNR)σ2
vβ

W log(1+SNR)−2σ2
vβ

. (4.90)

whereas forβ > W log(1+SNR)
2σ2

v
, f(N) is concave for allN > 0. According to this analysis along

with the asymptotic value computed in (4.89),f(N) is necessarily a quasiconcave function.

Besides, it has (at most) one change of sign in its first derivative. From all this, one concludes

that Sα are convex sets and, hence, distortion is a quasiconvex function in N with a single

optimal valueN∗.
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4.A.2 Convergence in probability of
∑N

i=1
g(γi,N)
f(γi,N) for large N

We want to prove that

N
∑

k=1

g(γk, N)

f(γk, N)

P−→ 1

σ2
x + σ2

v

N
∑

k=1

g(γk, N) (4.91)

or, alternatively, that

N
∑

k=1

g(γk, N)

f(γk, N)

(

f(γk, N)− (σ2
x + σ2

v)

σ2
x + σ2

v

)

P−→ 0 (4.92)

for N → ∞. Besides, from their respective definitions in (4.24), we know thatf (γi, N) and

g (γi, N) are related through

g (γi, N) =
f (γi, N)− (σ2

x + σ2
v)

σ2
v

. (4.93)

Replacing (4.93) into (4.92) yields

N
∑

k=1

(f(γk, N)− (σ2
x + σ2

v))
2

σ2
vf(γk, N) (σ2

x + σ2
v)

(4.94)

≤
N
∑

k=1

(f(γk, N)− (σ2
x + σ2

v))
2

σ2
v (σ2

x + σ2
v)

2 (4.95)

≤ N

(

f(γ(1:N), N)− (σ2
x + σ2

v)
)2

σ2
v (σ2

x + σ2
v)

2 (4.96)

Inequality of (4.95) follows from the fact thatf (γi, N) ≥ σ2
x + σ2

v . Inequality (4.96), where

γ(1:N) = maxi=1..N{γi} denotes the first order statistic of a set ofN random variables, is a

straightforward upper bound on the summation term. From this last expression, we want to

show that

lim
N→∞

Pr
{

N
(

f
(

γ(1:N)

)

−
(

σ2
x + σ2

v

))2 ≤ ǫ
}

= 1. (4.97)

For the sake of clarity and without loss of generality, in thesequel we particularize the ex-

pressions for theSNR = 1 andW = 1 case and, hence, this last expression can be re-written

as:

lim
N→∞

Pr

{

γ(1:N) ≤
( √

ǫ

σ2
v

√
N

+ 1

)N

− 1

}

. (4.98)

By using the CDF of the first order statisticγ(1:N), which is defined asFγ(1:N)
(x) = FN

γ (x) =

(1− e−x)N , one finally obtains

= lim
N→∞

(

1− exp

(

−
( √

ǫ

σ2
v

√
N

+ 1

)N

+ 1

))N

= 1,

which concludes the proof.
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4.A.3 Convergence in probability of
∑N

i=1 g (γi, N) for large N

By resorting to the power seriesax =
∑∞

k=0
xk lnk(a)

k!
[90, 1.211.2], we can factorize the sum-

mation term as follows:

N
∑

i=1

g(γi, N) =
1

N

N
∑

i=1

W ln (1 + SNRγi)

+

N
∑

i=1

∞
∑

k=2

W k lnk (1 + SNRγi)

k!Nk
. (4.99)

The second term in (4.99) vanishes asN →∞. As for the first term, by the weak law of large

numbers, we have

1

N

N
∑

i=1

W ln (1 + SNRγi)
P−→ Eγ [W ln (1 + SNRγi)] (4.100)

where the expectation term can be easily computed as

Eγ [W ln (1 + γiSNR)] = We
1

SNR Γ

(

0,
1

SNR

)

(4.101)

with Γ(a, x) standing for the incomplete Gamma function [90, 8.350.2]. In conclusion, we

have that

D∞,Q&E

P−→
(

1

σ2
x

+
We

1
SNR Γ

(

0, 1
SNR

)

σ2
v + σ2

x

)−1

, (4.102)

which concludes the proof.

4.A.4 Proof of the tightness of bound(4.43)

In this section, we prove that the bound derived in (4.43) is asymptotically tight for largeN or,

in other words, that the probabilityPr

{∣

∣

∣

∣

1

σ2
x

+XN

1

σ2
x

+µN
− 1

∣

∣

∣

∣

≥ δ

}

can be made arbitrarily small for

anyδ > 0, whereXN is a random variable with an arbitrary distribution of meanµN > 0 and

varianceσ2
N . For anyδ > 0, we have

Pr

{∣

∣

∣

∣

∣

1
σ2

x
+XN

1
σ2

x
+ µN

− 1

∣

∣

∣

∣

∣

≥ δ

}

= Pr

{∣

∣

∣

∣

∣

XN − µN
1
σ2

x
+ µN

∣

∣

∣

∣

∣

≥ δ

}

≤ 1

δ2

σ2
N

(

µN + 1
σ2

x

)2 (4.103)

≤ σ2
x

2δ2

σ2
N

µN
, (4.104)
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where inequality (4.103) follows from Tchebychev’s bound.Since, in our case,

XN =
Nd

(

(

1 + SNR · F−1
γ (pout)

)
W
N − 1

)

σ2
v

(

1 + SNR·F−1
γ (pout)

)
W
N + σ2

x

turns out to be a binomial random variable, it is straightforward to computeσ2
N andµN to

realize that the ratioσ
2
N

µN
→ 0 as N grows without bound. Therefore, from (4.104) we have that

lim
N→∞

1
σ2

x
+XN

1
σ2

x
+ µN

P
= 1 (4.105)

where
P
= denotes convergence in probability. Since the point-wise limit lim

N→∞

1

σ2
x

+ µN =

1

σ2
x

+ µ∞, i.e. converges to a constant value, we have that

lim
N→∞

1

σ2
x

+XN
P
=

1

σ2
x

+ µ∞. (4.106)

This fact means that the bound derived in (4.43) is asymptotically tight inN , which concludes

the proof.

4.A.5 Binomial approximation of Ns

By neglecting the border effects, the value ofpn for the random variableNs reads

pn =
n−1
∏

i=0

(

1− 2

N − i

)N−i−1

. (4.107)

By considering that for largeN the probability thatn sensors packets are received without

collisions, whenn is close toN , is negligible then, for a fixed and relatively smalln and large

N we have that

pn = lim
N→∞

n
∏

i=0

(

1− 2

N − i

)N−i−1

=

= lim
N→∞

(1− pcol)
n = e−2n. (4.108)

Now, by substituting (4.108) into (4.72) and due to the fact that the sum of probabilities of the

approximate pmf must be 1, one concludes thatqN−n ≈ limN→∞ pN−n
col

= (1− e−2)
N−n.
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Chapter 5

Estimation of Random Fields with

Wireless Sensor Networks

In this chapter, we study the problem of random field estimation with wireless sensor networks.

We consider two encoding strategies, namely Compress-and-Estimate (C&E) and Quantize-

and-Estimate (Q&E), which operate with and without side information at the decoder, respec-

tively. We focus our attention on two scenarios of interest:delay-constrainednetworks, in

which the observations collected in a particular timeslot must be immediately encoded and

conveyed to the Fusion Center (FC); anddelay-tolerant(DT) networks, where the time horizon

is enlarged to a number of consecutive timeslots. For both scenarios and encoding strategies,

we extensively analyze the distortion in the reconstructedrandom field. In DT scenarios, we

find closed-form expressions of the optimal number of samples to be encoded in each timeslot

(Q&E and C&E cases). Besides, we identify buffer stability conditions and a number of inter-

esting distortion vs. buffer occupancy trade-offs. Latency issues in the reconstruction of the

random field are addressed as well. Finally, we address the case in which the system operates

without instantaneous transmit CSI at the sensor nodes (fora delay-constrained scenario). As

in the previous chapter, we consider that the sensors adopt acommonandconstantencoding

rate. The constant encoding rate along with the network sizeare optimized in order to minimize

the attainable distortion in the reconstruction of the spatial random field.
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5.1 Introduction

In many cases, the physical phenomena observed by sensor networks (e.g. environmental pa-

rameters, crop conditions) can be modelled as a spatial random field. The set of observations

captured by different sensor nodes are, thus, correlated inspace. Therefore, the goal now is the

reconstruction of the spatial random field atall the spatial points (see e.g. [21,25,91,92]).

In a context of random fieldestimationwith WSNs, the pioneering work of [93] introduced

the so-called ”bit-conservation principle”. The authors prove that, for spatiallybandlimited

processes, the bit budget per Nyquist-period can be arbitrarily re-allocated along the quantiza-

tion precision and/or the space (by adding more sensor nodes) axes, while retaining the same

decay profile of the reconstruction error. In [94] and, again, for bandlimited processes with

arbitrary statistical distributions, the authors propose a mathematical framework to study the

impact of the random sampling effect (arising from the adoption of contention-based multiple-

access schemes) on the resulting estimation accuracy. ForGaussianobservations, [26] presents

a feedback-assisted Bayesian framework for adaptive quantization at the sensor nodes.

From a different perspective but still in the context of random field estimation, [25] proposes

a novel MAC protocol which minimizes the number of attempts to transmit correlated data.

By doing so, not only energy but also bandwidth is preserved.Besides, in [24] the authors

investigate the impact ofrandomsampling, as opposed to deterministic sampling (i.e. equally-

spaced sensors) which is difficult to achieve in practice, inthe reconstruction of the field. The

main conclusion is that, whereas deterministic sampling pays off in the high-SNR regime, both

schemes exhibit comparable performances in the low-SNR regime.

In scenarios with non-reciprocal (e.g. FDD systems) fadingchannels, it is often assumed that

only statistical CSI is available at the transmitter. Consequently, the encoding rate at the sen-

sor nodes cannot be dynamically adjusted to match instantaneous channel conditions. In this

context, the estimation of a spatially homogeneous parameter without instantaneous CSI has

been considered in the previous Chapter (see also [79, 80]).Unlike previous works, for spatial

random fields the outage events experienced in the sensor-to-FC links modifies the sampling

pattern and, hence, needs to be investigated.

5.1.1 Contribution

In this chapter, we go one step beyond Chapters 3 and 4 and address the problem of (non-

necessarily bandlimited) random field estimation via wireless sensor networks. To that aim,

we adopt the Q&E and C&E encoding schemes of [76] and analyze their performance in two

scenarios of interest:delay-constrained(DC) anddelay-tolerant(DT) sensor networks. In

DC scenarios, the observations collected in a particular timeslot must be immediately encoded

110



5.2. Signal model and distortion analysis

and conveyed to the FC. In DT networks, on the contrary, the time horizon is enlarged to

L consecutive timeslots. Clearly, this entails the use of local buffers but, in exchange, the

distortion in the reconstructed random field is lower. To capitalize on this, we derive closed-

form expressions of the distortion attainable in DT scenarios (unlike in [24,25,94], we explicitly

take into account quantization effects) and, from this, we determine the optimal number of

samples to be encoded in each of theL timeslots as a function of the channel conditions of

that particular timeslot. Along with that, we identify under which circumstances the buffers are

stable (i.e. buffer occupancy does not grow without bound) and, besides, we study a number

of distortion vs. buffer occupancy trade-offs. Complementarily, we analyze the latency in the

reconstruction ofn consecutive realizations (i.e. those collected in one timeslot) of the random

field.

Finally and unlike in previous works, we address the case where sensors operate in the absence

of transmit CSI (for delay-constrained applications). Consequently, we propose aconstant-

rate encoding strategy which unavoidably entails some outage probability in Rayleigh-fading

scenarios. This effect, along with the spatial sampling process and the power and bandwidth

constraints that we impose, results into some distortion that we attempt to minimize by carefully

selecting the optimal number of sensor nodes to be deployed and the corresponding encoding

rate.

The contents of this chapter have been partly published in [95–99].

The chapter is organized as follows. First, in Section 5.2, we present the signal model, the

communication model and the distortion analysis respectively. Next, Section 5.3 focuses on the

strategies for delay-constrained WSNs. In Sections 5.4 and5.5, we study the compress-and-

estimate and quantize-and-estimate strategies for delay-tolerant WSNs. Subsequently, Section

5.6 addresses the latency analysis for the delay-constrained strategies. Next, in Section 5.7, in

the context of delay-constrained applications, we consider the case where sensors operate in

the absence of instantaneous transmit CSI. Finally, we close the chapter by summarizing the

main findings in Section 5.8.

5.2 Signal model and distortion analysis

Let Y (s) be a one-dimensional random field defined in the ranges ∈ [0, d], with s denoting the

spatial variable. As in [23–25], we adopt a stationary homogeneous Gaussian Markov Ornstein-

Uhlenbeck (GMOU) model [100] to characterize the dynamics and spatial correlation ofY (s).

GMOU random fields obey the following linear stochastic differential equation:

dY (s) = θY (s) ds+ σW (s) (5.1)
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Figure 5.1: System model.

where, by definition,Y (s) ∼ N
(

0, σ2
y

)

with σ2
y = σ

2θ
, W (s) denotes Brownian Motion with

unit variance parameter, andθ, σ are constants reflecting the (spatial) variability of the field

and itsnoisybehaviour, respectively. According to this model, the autocorrelation function is

given byRY (s1, s2) = σ2
ye

−θ|s2−s1| and, hence, the process is not (spatially) bandlimited.

The random field is uniformly sampled byN sensor nodes, with inter-sensor distance given

by d/(N − 1) ≃ d/N (see Fig. 5.1). The spatial samples can thus be readily expressed as

follows [22]:

yk = Y

(

k
d

N

)

= e−θ
d

2N yk−1 + nk ; k = 1, . . . , N (5.2)

wherenk ∼ N
(

0, σ2
y

(

1− e−θ d
N

))

.

5.2.1 Communication Model

As shown in Fig. 5.2, each time slot is composed of two distinctive phases:i) thesensingphase

and,ii ) thetransmissionphase. In the former, each sensor collects and stores in a local buffer a

large block ofn independent and consecutive observationsyk = [y
(1)
k , . . . , y

(n)
k ]T . Next, in the

transmission phase, the length-n vector of observations,yk, is block-encoded into a length-n

codeworduk(vk) ∈ C at a rate ofRk bits per sample. The encoding (quantization) process

is modeled through the auxiliary random variableuk = yk + zk with zk ∼ N (0, σ2
zk
I) and

112



5.2. Signal model and distortion analysis
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Figure 5.2: Sensing and transmission phases.

statistically independent ofyk. The corresponding index1 vk ∈ {1, . . . , 2nRk}; k = 1 . . .N is

then conveyed2 to the FC, in a total ofm
N

channel uses, over one of theN orthogonalchannels

available. For a reliable transmission to occur, the encoding rateRk must satisfy:

nRk ≤
m

N
log2 (1 + SNRγk) [b/s] (5.3)

whereSNR stands for the average signal-to-noise ratio experienced in the sensor-to-FC chan-

nels. Besides,γ1, . . . , γN denote the channel (squared) gains that, in the sequel, we model as

independent and exponentially-distributed unit-mean random variables (Rayleigh-fading chan-

nels). We further assume that the channel gains are independent over time slots (block fading

assumption).

From thesetof decoded codewords, the FC reconstructs the random fieldY (s) for all s ∈ [0, d].

As a result of the spatial sampling process and the channel bandwidth constraint, the recon-

structed fieldŶ (s) is subject to some distortion which will be characterized bythe following

metric:

D(s) = E

[

∣

∣

∣
Ŷ (s)− Y (s)

∣

∣

∣

2
]

; ∀s ∈ [0, d]. (5.4)

5.2.2 Distortion analysis: a general framework

For the distortion metric given by (5.4), the optimal estimator turns out to be the posterior mean

given all the codewords3 ur = [u1, . . . , uN ]T , that is, the MMSE estimator [18, Ch. 10]:

Ŷ (s) = E [Y (s)|ur] ; ∀s ∈ [0, d] . (5.5)

For mathematical tractability, however, only thetwo closestdecoded codewords, namelyuk−1

anduk, will be used to reconstructY (s) for all the corresponding intermediate spatial points

1As it will become apparent later, the codebookC consists of, at most,2nRk codewords.
2In the case of random binning, instead of sending the index ofthe codeword, the sensor sends the index of the

bin where the codeworduk is contained. In this case, one can re-definenRk as the number of bins and, hence,

the actual bits per sample needed to senduk. It is worth noting that random binning is assumed in the CEDCand

CEDT strategies ahead. For further details, the reader is referred to Section 2.3.3.
3Without loss of generality, we focus on the per-sample distortion.
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(see Fig. 5.1), i.e.

Ŷ (s) = E [Y (s)|uk−1, uk] ; ∀s ∈
[

(k − 1)
d

N
, k
d

N

]

, k = 2, . . . , N. (5.6)

For the ease of notation and without loss of generality, in the sequel we will assumek = 1 and,

hence, the interval between observations becomess ∈
[

0, d
N

]

. The distortion associated to the

estimator (5.6) reads [18, Ch. 10]

Dk(s) = σ2
Y (s)|uk−1,uk

= σ2
Y (s)|uk−1

− Cov2 (Y (s), uk|uk−1)

σ2
uk|uk−1

(5.7)

where

σ2
Y (s)|uk−1

=

(

1

σ2
y

+
e−θs

(1− e−θs)σ2
y + σ2

zk−1

)−1

. (5.8)

After some algebra, we obtain

Cov (Y (s), uk|uk−1) = E

[(

Y (s)− E
[

Y (s)
∣

∣uk−1

]

∣

∣

∣
uk−1

)(

uk − E
[

uk
∣

∣uk−1

]

∣

∣

∣
uk−1

)]

(5.9)

=

√

e−θ(
d
N
−s)σ2

Y (s)|uk−1
, (5.10)

and

σ2
uk |uk−1

= e−θ(
d
N
−s)σ2

Y (s)|uk−1
+
(

1− e−θ( d
N
−s)
)

σ2
y + σ2

zk
.

It is worth noting that the variance of the quantization noise σ2
zk−1

andσ2
zk

are determined by

the encoding strategy in use at the sensor nodes.

5.3 Delay-constrained WSNs

In delay-constrained applications, then samples collected in the sensing phase of a given times-

lot must be necessarily encoded and transmitted to the FC in the subsequent transmission phase.

The goal of this section is to particularize the analysis of Section 5.2.2 and compute the average

distortion for the cases of Delay-Constrained Quantize-and-Estimate (QEDC) and Compress-

and-Estimate (CEDC) encoding strategies.

5.3.1 Quantize-and-Estimate: average distortion

In this approach, each sensor encodes its observation regardless of any side information that

could be made available by the FC. From [35], the following inequality should hold for the rate

at the output of thek-th encoder (quantizer):

Rk ≥ I (yk; uk) [b/sample] (5.11)
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with I (·; ·) standing for the mutual information. As discussed before, the encoding (quanti-

zation) process is modeled (see e.g. [76, 78] for further details) through the auxiliary variable

uk = yk + zk with zk ∼ N (0, σ2
zk
I) and statistically independent ofyk. From this, the mini-

mum rate per sample can be expressed as follows:

I (yk; uk) = H(uk)− H(uk|yk) = log

(

1 +
σ2
y

σ2
zk

)

[b/sample] . (5.12)

From (5.3), (5.11) and (5.12) we have that, necessarily

m

N
log2 (1 + SNR · γk) ≥ n log2

(

1 +
σ2
y

σ2
zk

)

. (5.13)

By letting equality hold in (5.13), the minimum variance of thequantizationnoise yields

σ2
zk

=
σ2
y

(1 + SNRγk)
W
N − 1

; k = 1, . . . , N (5.14)

with W = m
n

standing for the channel uses-to-samples ratio. By substituting (5.14) into (5.7),

the distortion in an arbitrary spatial points in thek-th segment reads

DQEDC

k (s) =





1

σ2
Y (s)|uk−1

+
e−θ(

d
N
−s)
(

(1 + SNRγk (i))
W
N − 1

)

(

(1 + SNRγk (i))
W
N − 1

)(

1− e−θ( d
N
−s)
)

σ2
y + σ2

y





−1

(5.15)

with

σ2
Y (s)|uk−1

=





1

σ2
y

+
e−θs

(

(1 + SNRγk (i))
W
N − 1

)

(

(1 + SNRγk (i))
W
N − 1

)

(1− e−θs)σ2
y + σ2

y





−1

. (5.16)

The average distortion (over the spatial variables) in the k − th network segment can be

computed as

D
QEDC

k =
N

d

∫ d
N

0

DQEDC

k (s)ds, (5.17)

and, from this, the average distortion (over channel realizations) follows:

D
QEDC

= Eγ1,...,γN

[

1

N − 1

N−1
∑

k=1

D
QEDC

k+1

]

. (5.18)

5.3.2 Compress-and-Estimate: average distortion

In this approach, we allow each sensor (encoder) to use the side information provided by its

neighbors. For simplicity, we let each sensor to encode its current observationuk based only
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on the adjacent sensor (encoded) observation4 uk−1. Accordingly, we have that the minimum

rate per sample can be expressed as follows:

Rk ≥ I (yk; uk|uk−1) = H(uk|uk−1)−H(uk|yk, uk−1)

= H (yk + zk|uk−1)−H (yk + zk|yk)

= log2

(

1 +
σ2
yk |uk−1

σ2
zk

)

[b/sample]. (5.19)

where the second equality is due to the fact thatuk ↔ yk ↔ uk−1 form a Markov chain.

Bearing this in mind, for a reliable transmission we must satisfy:

m

N
log2 (1 + SNR · γk) ≥ n log2

(

1 +
σ2
yk|uk−1

σ2
zk

)

. (5.20)

By taking equality in (5.20), we can compute the minimum variance of thequantizationnoise

σ2
zk

as

σ2
zk

=
σ2
yk|uk−1

(1 + SNRγk)
W
N − 1

; k = 1, . . . , N, (5.21)

whereσ2
yk|uk−1

can be easily computed as follows:

σ2
yk |uk−1

= e−θ(
d
N
−s)σ2

Y (s)|uk
+
(

1− e−θ( d
N
−s)
)

σ2
y . (5.22)

From (5.7), the distortion at an arbitrary spatial points reads:

DCEDC
k (s) =

σ2
yσ

2
Y (s)|uk−1

(

eθ(
d
N
−s) − 1

)

σ2
y

(

eθ(
d
N
−s) − 1

)

+ σ2
Y (s)|uk−1

+
σ4
Y (s)|uk−1

(1 + SNRγk)
−W

N

σ2
y

(

eθ(
d
N
−s) − 1

)

+ σ2
Y (s)|uk−1

. (5.23)

with

σ2
Y (s)|uk−1

=





1

σ2
y

+
e−θs

(

(1 + SNRγk (i))
W
N − 1

)

(

(1 + SNRγk (i))
W
N − 1

)

(1− e−θs) σ2
y + σ2

yk−1|uk−2





−1

. (5.24)

The average distortion for each network segment can be computed as follows:

D
CEDC

k =
N

d

∫ d
N

0

DCEDC
k (s) (5.25)

and, finally, the average distortion (over the channel realizations and network segments) yields:

D
CEDC

= Eγ1,...,γN

[

1

N − 1

N−1
∑

k=1

D
CEDC

k+1

]

. (5.26)

4Alternatively, we could useall the sensor observations but due to the (spatial) Markov property of the random

field model, this would not decrease significantly the encoding rate.
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5.4 Delay-tolerant WSNs with Quantize-and-Estimate

encoding

Here, we only impose along-termdelay constraint: theLn samples collected inL consecutive

timeslots must be conveyed to the FC in suchL timeslots. In other words, sensors have now the

flexibility to encode and transmit a variable number of samples in each time slot. This provide

additional degrees of freedom to adjust the (per-sample) encoding rate to the actual channel

conditions and, by doing so, attain a lower distortion.

Let nk(i) = αk(i)n be the number of samples encoded inm/N channel uses by sensork in

time-sloti. As in the previous section, we need

m

N
log2 (1 + SNR · γk(i)) ≥ αk(i)n log2

(

1 +
σ2
y

σ2
zk

)

; k = 1, . . . , N. (5.27)

By replacingσ2
zk

from (5.27) into (5.7), the distortion per timeslot yields

DQEDT

k,αk(i)(s) =





1

σ2
Y (s)|uk−1

+
e−θ(

d
N
−s)
(

(1 + SNRγk (i))
W

Nαk − 1
)

(

(1 + SNRγk (i))
W

Nαk − 1
)(

1− e−θ( d
N
−s)
)

σ2
y + σ2

y





−1

(5.28)

The ultimate goal is to minimize theaveragedistortion overL timeslots at an arbitrary spatial

point s (the average distortion over the entire random field will be computed in Section 5.4.1

ahead). Hence, the optimization problem can be posed as follows5:

min
αk(1),...,αk(L)

1

L

L
∑

i=1

αk(i)D
QEDT

k,αk(i)(s) (5.29)

s.t.

L
∑

i=1

αk(i)n = Ln (5.30)

where the constraint in (5.30) is introduced to ensure the stability of the system. Unfortunately,

a closed form solution cannot be obtained for the general case. Alternatively, we consider a

suboptimal encoding strategy: sensork will assume that the FC does not exploituk−1 (the

codeword sent by the adjacent sensor) but onlyuk in order to reconstruct the random fieldY (s)

in s ∈
[

(k − 1) d
N
, k d

N

]

.6 The new cost function can be readily expressed as follows:

ĎQEDT

k,αk(i)(s) = σ2
Y (s)|uk

= σ2
y

(

1− e−θs
)

+ σ2
ye

−θs (1 + SNRγk(i))
− W

Nαk(i) .

5Implicitly, we are assuming that the (k-1)-th sensor encodes at a constant rate over timeslots. This will be

verified later on in this section.
6Still, the FC continues to use bothuk anduk−1 to reconstruct the random field. Yet suboptimal, this solution

still outperforms those obtained in delay-constrained scenarios (see computer simulations section).
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Clearly, only the second term in the summation of the cost function ĎQEDT

k,αk(i)(s) is relevant to

the optimization problem, which can be re-written as

min
αk(1),...,αk(L)

1

L

L
∑

i=1

αk(i) (1 + SNRγk(i))
− W

Nαk(i)

s.t.
1

L

L
∑

i=1

αk(i) = 1. (5.31)

It is straightforward to show that this is a convex problem. Hence, one can construct the La-

grangian function as follows:

L (λ, αk(1), . . . , αk(L)) =
1

L

L
∑

i=1

αk(i) (1 + SNRγk(i))
− W

Nαk(i)

+ λ

(

1

L

L
∑

i=1

αk(i)− 1

)

(5.32)

whereλ is the Lagrange multiplier. Therefore, by setting the first derivative of (5.32) w.r.t.

αk(i) to zero we obtain

α∗
k(i) =

W

N

ln (1 + SNRγk(i))

1−W−1

(

λ
e

) (5.33)

with W−1 (·) denoting the negative real branch of the Lambert function [71]. Apparently, the

future channel gains (γk(i + 1), . . . , γk(L)) would also be needed in order to computeλ∗.

However, asL→∞ this non-casuality requirement vanishes: by the law of large numbers, we

have that

lim
L→∞

1

L

L
∑

i=1

α∗
k(i) =

W

N

Eγ [ln (1 + SNRγ)]

1−W−1

(

λ
e

) (5.34)

whereγ a exponential distributed random variable. Hence,λ∗ can be readily obtained by

replacing into the constraint of (5.31), namely

λ∗ = −σ2
y

(

W

N
R ln(2) + 1

)

e−
W
N
R ln(2) (5.35)

where we have defined

R , Eγ [log2 (1 + SNRγ)] . (5.36)

Finally, replacingλ∗ into (5.33) yields

α∗
k(i) =

log2 (1 + SNRγk(i))

R
;

i = 1, . . . , L

k = 1, . . . , N
, (5.37)

and, by substitutingα∗
k(i) into (5.43), the quantization noise for thek-th sensor node reads:

σ2
z = σ2

zk
=

σ2
y

2
W
N
R − 1

;
i = 1, . . . , L

k = 1, . . . , N
. (5.38)
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5.4.1 Average distortion in the reconstructed random field

By insertingα∗
k(i) into theoriginal cost function of (5.28), the distortion for an arbitrary point

in thek-th network segment reads:

DQEDT

k,αk(i)(s) = DQEDT

k (s) =





1

σ2
Y (s)|uk−1

+
e−θ(

d
N
−s)
(

2
m
n
R − 1

)

(

2
m
n
R − 1

)(

1− e−θ( d
N
−s)
)

σ2
y + σ2

y





−1

(5.39)

Interestingly, distortion is not a function of the channel gain experienced by thek-th sensor in

timesloti (i.e. distortion does not depend onα∗
k(i)). As a result and unlike in QEDC encoding,

the distortion experienced in every timesloti = 1, . . . , L is identical. This can be useful in

applications where a constant distortion level is needed.

After some tedious manipulations, the average distortion in thewhole reconstructed random

field can be expressed as:

D
QEDT

=
1

N − 1

N−1
∑

k=1

N

d

∫ d
N

0

DQEDT

k+1 (s)ds (5.40)

=

(

(

σ2
y + σ2

z

)2
e

θd
N + σ4

y

)

θd
N
− 2σ4

y

(

σ2
y + σ2

z

)

(

e
θ d
N − 1

)

(

(

σ2
y + σ2

z

)2
e

θ d
N − σ4

y

)

θd
N

. (5.41)

5.4.2 Buffer stability considerations

In order to derive a closed-form solution of the optimal number of samples to be encoded in

each time slot (α∗
k (i)), in (5.34) we let the number of timeslotsL grow to infinity. Clearly,

this might lead to a situation were buffer occupancy grows without bound, that is, to buffer

unstability. To avoid that, we will encode and transmit a (slightly) higher number of samples

per timeslot, namely

α′
k(i)n =

log2 (1 + SNRγk(i))

R− δ n > α∗
k(i)n (5.42)

with 0 < δ < R. By doing so, one can prove (see Appendix 5.A.1) that buffersare stable. Un-

surprisingly, this come at the expense of an increased distortion in the estimates (see computer

simulation results in Section 5.4.3).

5.4.3 Simulations and numerical results

Figure 5.3 depicts the (per-timeslot) distortion in the reconstructed random field for both the

QEDC and QEDT encoding strategies and different SNR values.For the QEDC strategy, we

show the average value along with the±σ confidence interval (to recall that, unlike in the
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Figure 5.3: Average distortion vs. network sizeN (W = 150, θd = 10).

QEDT case, the distortion in QEDC encoding varies from timeslot to timeslot). Several con-

clusions can be drawn. First, for each curve there exists an optimal operating point, that is, a

network size for which distortion can be minimized. The intuition behind this fact is that, de-

spite that spatial variations of the random field are better captured by a denser grid of sensors,

for a total bandwidth constraint the available rate per sensor progressively diminishes, this re-

sulting in a more rougher quantization of the observations.Thus, the optimal trade-off between

these two effects needs to be identified. Second, the distortion associated to delay-tolerant

strategies is, as expected, lower than for the delay-constrained ones. Moreover, the lower the

average SNR in the sensor-to-FC channels (namely, sensors with lower transmit power), the

higher the gain (up to 3 dB for SNR=0 dB). Third, guaranteing buffer stability in the QEDT

scheme only results into a marginal penalty in distortion, as shown in the curves labeled with

δ = 0 andδ = 0.1. Complementarily, in Fig. 5.4, we depict buffer occupancy for several values

of δ. For δ = 0, the system is clearly unstable. Conversely, by lettingδ take positive values,

e.g. forδ = 0.1 as in Fig.5.3, the average buffer occupancy can be kept undercontrol (with a

relatively small average buffer occupancy of3n samples, in this case). Clearly, increasingδ has

a two-fold effect: the average buffer occupancy diminishesbut, simultaneously, the resulting

distortion increases.

Finally, the rate at which the distortion decreases for the QEDC and QEDT schemes (evaluated

at their respective optimal operating points) for an increasing SNR is shown in Figure 5.5.
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Figure 5.4: Average buffer size vs. timeslot (SNR = 0 dB).

For intermediate distortion values, the gap is approximately 4 dB. That is, for a prescribed

distortion level, the energy consumption in delay-constrained networks is 2.5 times higher.

5.5 Delay-tolerant WSNs with Compress-and-Estimate

encoding

As in the previous section, letnk(i) = αk(i)n be the number of samples encoded inm/N

channel uses (i.e. one timeslot). For reliable decoding at the FC, the rate at the output of the

C&E encoder must satisfy:

m

N
log2 (1 + SNR · γk(i)) ≥ αk(i)n log2

(

1 +
σ2
yk|uk−1

σ2
zk

)

. (5.43)

To stress that expression (5.43) differs from (5.27) in thatthe C&E encoder assumes that the FC

will useuk−1 to decodeuk and, hence,σ2
yk

has been replaced byσ2
yk|uk−1

. Therefore, from (5.7)

and the definition ofσ2
yk|uk−1

in (5.22), we have that for the current block ofαk(i)n samples the

distortion reads
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Figure 5.5: Average distortion vs.SNR (W = 150, θd = 10).

DCEDT
k,αk(i)(s) =

σ2
yσ

2
Y (s)|uk−1

(

eθ(
d
N
−s) − 1

)

σ2
y

(

eθ(
d
N
−s) − 1

)

+ σ2
Y (s)|uk−1

+
σ4
Y (s)|uk−1

(1 + SNRγk)(i))
− m

αk(i)n

σ2
y

(

eθ(
d
N
−s) − 1

)

+ σ2
Y (s)|uk−1

. (5.44)

and by averaging overL timeslots, the following problem results:

min
αk(1),...,αk(L)

1

L

L
∑

i=1

αk(i)D
CEDT
k,αk(i)(s) (5.45)

s.t.
L
∑

i=1

αk(i)n = Ln. (5.46)

Solving this problem leads to a closed-form solution that isidentical to that of the QEDT case,

namely,

α∗
k(i) =

log2 (1 + SNRγk(i))

R
. (5.47)

Finally, by replacingα∗
k(i) into (5.43) yields

σ2
zk

=
σ2
yk|uk−1

2
W
N
R − 1

;
i = 1, . . . , L

k = 1, . . . , N
. (5.48)

As in the QEDT case, this last expression reveals that all sensors encode their observations at a

constant rate. This was implicitly assumed in the score function (5.46). To remark, the stability

analysis of Section 5.4.2 also applies here.
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5.5.1 Average distortion in the reconstructed random field

By insertingα∗
k(i) into the original cost function of (5.46), the distortion for an arbitrary point

in thek-th segment reads

DCEDT
k,αk(i)(s) =

σ2
yσ

2
Y (s)|uk−1

(

eθ(
d
N
−s) − 1

)

σ2
y

(

eθ(
d
N
−s) − 1

)

+ σ2
Y (s)|uk−1

+
σ4
Y (s)|uk−1

2−
W
N
R

σ2
y

(

eθ(
d
N
−s) − 1

)

+ σ2
Y (s)|uk−1

.(5.49)

As in the QEDT case, distortion is not a function of the channel gain experienced by thek-

th sensor in timesloti. Hence, the distortion experienced in every timesloti = 1, . . . , L is

identical. Therefore, the average distortion for each network segment can be computed as

follows:

D
CEDT

k =
N

d

∫ d
N

0

DCEDT
k (s) (5.50)

=

((

σ2
y + σ2

zk−1

)

(

σ2
y + σ2

zk

)

e
θd
N + σ4

y

)

θd
N
− 2σ4

y

(

2σ2
y + σ2

zk−1
σ2
zk

)(

e
θ d
N − 1

)

((

σ2
y + σ2

zk−1

)

(

σ2
y + σ2

zk

)

e
θ d
N − σ4

y

)

θd
N

.(5.51)

Finally, the average distortion in thewholereconstructed random field can be expressed as:

D
CEDT

=
1

N − 1

N−1
∑

k=1

D
CEDT

k+1 . (5.52)

Interestingly, the average distortion has a simple closed-form expression, this being in a stark

contrast with the CEDC strategy where, in general, a closed-form expression for the average

distortion (over different channel realizations) cannot be found.

5.5.2 Simulations and numerical results

Figure 5.6 illustrates the average distortion in the reconstructed random field for the CEDC

and CEDT encoding strategies. As in quantize-and-estimateencoding, there exists an optimal

number of sensors nodes. Finding suchN∗ is particularly useful for random fields with low

SNR per sensor, since the curve is sharper in this case. The gap between the minimum distortion

attainable by the CEDC and CEDT schemes (which results from an adequate exploitation of

channel fluctuation in the delay-tolerant approach) is approximately 2-3 dB. Concerning buffer

occupancy-distortion trade-offs, the same comments as in the quantize-and-estimate case apply.

Finally, in Fig. 5.7, we compare the distortion attained by QEDT/CEDT encoding strategies

for random fields with low and high spatial variabilities (θd = 1, θd = 10, respectively). Due

to the fact that CEDT is capable of exploiting spatial correlation, it always outperforms QEDT.

Moreover, the higher the spatial correlation (θd = 1), the larger the gap between the curves.
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5.6 Latency analysis

As discussed in the previous sections, in delay-tolerant networks the number of samples en-

coded in each timeslot is not constant. Unavoidably, this introduces some delay in the recon-

struction of the random field for each block ofn consecutive samples (whereas in the case of

DC scenarios, then consecutive realizations of the random field can be immediately recon-

structed).

In the sequel, we analytically assess the latency at the FC for reconstructing the entire random

field. To that end, first we propose a model, which accounts forthe latency in receivingn

consecutive samples fromoneparticular sensor node. Next, we derive the latency of the QEDT

and CEDT encoding strategies, respectively.

5.6.1 Latency analysis for a single sensor node

Let n∗
k(i) = ⌊α∗

k(i)n⌋ the number of samples encoded inm
N

channel uses in timesloti. The

probability thatl = 0, . . . , n−1 samples are encoded in an arbitrary timesloti can be expressed

as

pl = Pr (n∗
k(i) = l) (5.53)

= Pr

(

l

n
≤ α∗

k(i) <
l + 1

n

)

; l = 0, . . . , n− 1. (5.54)

Besides, we define

pn = Pr (n∗
k(i) ≥ n) (5.55)

= Pr (α∗
k(i) ≥ 1) . (5.56)

On that basis, we model our system as an absorbing Markov chain [101, Chapter 8] withn

transientstates (S1, . . . ,Sn−1) and oneabsorbingstate (Sn) defined as follows:

Sl =

{

l samples have been transmitted in previous timeslots; l = 0, . . . , n− 1

n or more samples have been transmitted in previous timeslots; l = n
.

(5.57)

The transition matrixP of an absorbing Markov chain has the following canonical form [101,

Chapter 8]:

P =

[

Q r

0T 1

]

, (5.58)

whereQ denotes the(n+ 1) × (n+ 1) transient matrix,r is a (n+ 1) × 1 non-zero vector

(otherwise the absorbing state could never be reached from the transient states). The entries of

the matrixQ can be computed as follows:

ql,j =

{

0 j < l

pj−l otherwise
, (5.59)
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Figure 5.8: An absorbing Markov chain.

and, the entries of the(n+ 1) × 1 r vector, which denote the probability of absorbtion from

each transient states, are given by

rl = 1−
n−1
∑

j=0

ql,j ; l = 0, . . . , n− 1. (5.60)

Our goal is to characterize the time elapsed until the absorbing state is reached or, in other

words, the time needed to transmitn consecutive samples of the local observation of the random

field at sensork (i.e. the latency). For an absorbing Markov chain defined as in (5.58), the

random variableτ , standing for the time to absorbtion, obeys the so-called Discrete PHase-type

(DPH) distribution. From [102], the probability mass and cumulative distribution functions can

be expressed as:

fτ (t) = Pr (τ = t) = π
TQt−1r ; t = 1, . . . ,∞ (5.61)

Fτ (t) = Pr (τ ≤ t) = 1− π
TQt1 ; t = 1, . . . ,∞ (5.62)

where in the expressions above the(n + 1) × 1 vectorπ denotes the initial conditions. Since

we assume that in the beginning no samples have been transmitted, it yields

π
T = [1, 0, . . . , 0]T .

The average time to absorbtion reads:

E [τ ] =

∞
∑

t=1

tfτ (t). (5.63)

Alternatively, from [101, Chapter 8], one can compute

u = (I−Q1)
−1

1 (5.64)
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with the first element ofu denoting the average time to absorbtion, i.e.

E [τ ] = u(1).

Finally, the only missing point is to find a closed-form expression for the set of probabilities

{p0, p1, . . . , pn} defined in (5.54) and (5.56). From (5.37), we have that

α∗
k(i) =

log2 (1 + SNRγk(i))

R
. (5.65)

with R = Eγ [log2 (1 + γSNR)] and, hence,

pl = Pr

(

l

n
≤ α∗

k(i) <
l + 1

n

)

(5.66)

= Pr

(

l

n
R ≤ log2 (1 + SNRγk(i)) <

l + 1

n
R

)

(5.67)

= Fγ

(

2
l+1
n
R − 1

SNR

)

− Fγ
(

2
l
n
R − 1

SNR

)

(5.68)

for l = 0, . . . , n − 1 andpn = 1− Fγ
(

2R−1
SNR

)

. For Rayleigh-fading channels, the CDF of the

channel gain is given byFγ (x) = 1− e−x.

5.6.2 Latency analysis for QEDT encoding

At this point, the interest lies in characterizing the time elapsed untilN sensors in the network

encode and transmit their correspondingn first samples of the random field. That is, we attempt

to characterize the latency in reconstructing the firstn consecutive realizations of thewhole

random field. LetΨ be a random variable which models such latency, namely

Ψ = max
k=1,...,N

τk, (5.69)

whereτk stands for the latency associated to the individual sensork as defined in the previous

section. Since, on the one hand, sensors are assumed to experience i.i.d fading channels to the

FC and, on the other, the FC decodes the samples received fromeach sensor independently,

τ1, . . . , τN turn out to be i.i.d. DPH random variables with marginal pmf’s and CDFs given by

(5.61) and (5.62), respectively. From all the above, the CDFof the latency associated to QEDT

encoding reads

FΨ (t) = Pr (Ψ ≤ t) = Pr
(

max
k

τk ≤ t
)

(5.70)

= Pr (τ1 ≤ t, τ2 ≤ t, . . . , τN ≤ t) (5.71)

= FN
τ (t) =

(

1− π
TQt1

)N
t = 1, . . . ,∞ (5.72)
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From (5.72), it follows that the probability mass function reads

fΨ (t) = Pr (Ψ = t) (5.73)

= FΨ (t)− FΨ (t− 1) (5.74)

=
(

1− π
TQt1

)N −
(

1− π
TQt−11

)N
t = 1, . . . ,∞.

Finally, the average latency yields:

E [Ψ] =

∞
∑

t=1

tfΨ (t) . (5.75)

It is worth noting that the average latency of the system willincrease with the number of sensor

nodesN , since for a large network size the higher the time to absorbtion for the slowest sensor

node.

5.6.3 Latency analysis for CEDT encoding

Due to the successive encoding of the observations that C&E strategies entail, the latency analy-

sis here is far more involved and, in general, does not allow for the derivation of closed-form

expressions. To circumvent that, we will resort to an approximate (yet accurate) approximation.

In order for the FC to successfully decode the codeword received from sensork, the codeword

sent by the adjacent sensork − 1 must have been decoded first. Clearly, this means that the

codeword received from sensorN will be the last one to be decoded. Due to the fact that

sensors experience i.i.d. fading conditions (and, thus, the number of observations received

from different sensors are not time-aligned), when the firstn samples sent by sensorN are

ready to be decoded, a total ofn + con (instead of onlyn) samples from sensorN − 1 have

already been decoded on average. Accordingly, a total ofn+(N − 1) con samples from sensor

#1 have already been decoded too (see Fig. 5.9). Hence, the first n realizations of theentire

random field can be reconstructed if, equivalently,n + (N − 1) con samples sent by the first

sensor have already been decoded by the FC. Since the encoding process for the first sensor is

identical in C&E and Q&E encoding, in order to compute the latency for the reconstruction of

therandom field, it suffices to compute the time to absorbtion for anindividual sensor (sensor

#1). The only change with respect to the model given in (5.58)is that the Markov chain has

now a total ofn+(N − 1) con states (instead ofn) and, hence, the size and elements of matrix

Q and vectorsπ andr in (5.61) and (5.62) must be adjusted accordingly.

As for parameterco (which exclusively depends on the pdf of the sensor-to-FC channel gains),

it can only be determined empirically (see next Section).
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Figure 5.9: Approximate CEDT decoding for the analysis of the latency.

5.6.4 Simulations and numerical results

In Figures 5.10 and 5.11 we depict the average latency for theQEDT and CEDT strategies, re-

spectively. Interestingly, there exists a trade-off in terms of the attainable distortion vs. latency.

Whereas in CEDT encoding latency exhibits alinear increase in the number of sensors, in

QEDT encoding latency growslogarithmically (i.e. more slowly). However, CEDT schemes

attain lower distortions than QEDT ones. Besides, in Fig. 5.10 it is also worth noting the

perfect match between the simulations and the numerical results and, unsurprisingly, that the

higher the averageSNR, the lower the latency. Also, Figure 5.11 reveals that by using an ap-

propriate value ofco (i.e. co = 0.6), the latency associated to the approximate model described

in Section 5.6.3 matches the actual one.

5.7 Random field estimation without transmit CSI

In the absence of (instantaneous) transmit CSI, neither canthe encoding rate be dynamically ad-

justed to channel conditions, nor is the successive C&E encoding strategy applicable7. Hence,

we focus on the Q&E scheme and propose a modification by which each sensor observation is

independentlyencoded at acommonandconstantrate given by

R = Rk = log2

(

1 +
σ2
y

σ2
z

)

; ∀k. (5.76)

The outage probability, namely, the probability that the encoding rateR exceeds the instanta-

neous channel rate (and, hence, the codeword cannot be successfully decoded at the FC), can

7See discussion in Section 4.6.
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be expressed as

pout = Pr

(

log2

(

1 +
σ2
y

σ2
z

)

>
W

N
log2(1 + SNR · γk)

)

= Fγ

(

1

SNR

(

1 +
σ2
y

σ2
z

)

N
W

− 1

SNR

)

(5.77)

whereFγ(x) stands for the CDF of the channel gainsγk. From (5.77), the variance of the

quantization noise reads

σ2
z(N, pout) =

σ2
y

(

1 + SNR · F−1
γ (pout)

)
W
N − 1

, (5.78)

whereF−1
γ (pout) = log

(

1
1−pout

)

. Interestingly, the actual (spatial) sampling pattern is de-

fined by two system parameters:i) the number of sensors (N) and,ii ) the outage probability

experienced in the sensor-to-FC links (pout). The former determines the inter-sensor distance,

whereas the latter introduces a random sampling effect which modifies the spatial sampling

pattern (see Fig. 5.12).

As far as the distortion analysis is concerned, it is similarto that of Section 5.2.2. For each

network segment, the random field is estimated based on the two closestsuccessfully-decoded

codewords, namelyuk anduk+Nh
, that is,

Ŷ (s) = E [Y (s)|uk, uk+Nh
] ; ∀s ∈

[

k
d

N
, (k +Nh)

d

N

]

(5.79)
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whereNh is a geometrically-distributed random variable with probability of success given by

p = 1− pout. Accordingly, the distortion associated to the estimator of (5.79) is given by

DNh
(s) = σ2

Y (s)|uk,uk+Nh
= σ2

Y (s)|uk
− Cov2 (Y (s)|uk, uk+Nh

)

σ2
uk+Nh

|uk

(5.80)

where

σ2
Y (s)|uk

=

(

1

σ2
y

+
e−θs

(1− e−θs)σ2
y + σ2

z

)−1

, (5.81)

Cov2 (Y (s), uk+Nh
|uk) = e−θ(Nh

d
N
−s)σ4

Y (s)|uk
, (5.82)

σ2
uk+Nh

|uk
= e−θ(Nh

d
N
−s)σ2

Y (s)|uk

+
(

1− e−θ(Nh
d
N
−s)
)

σ2
y + σ2

z . (5.83)

5.7.1 Optimization problem: optimal network design and encoding rate

Here, we are interested in a min-max design by which we attempt to minimize the maximum

value of distortion in each segment. For each network segment, namelys ∈
[

0, Nh
d
N

]

, the

highest distortion is attained at the middle point (see [24]), i.e. s = 1
2
Nh

d
N

, and reads

DNh
(s) ≤ max

s∈[0,Nh
d
N ]
DNh

(s) = Dmax
Nh

= σ2
y

1− e−θNh
d

2N + σ2
z

1 + e−θNh
d

2N + σ2
z

.

For networks with a sufficiently-high number of sensors and by neglecting border effects, this

yields an average value of

Dmax = Dmax (N, pout) = σ2
yENh

[

1− e−θNh
d

2N + σ2
z

1 + e−θNh
d

2N + σ2
z

]

(5.84)

≤ Dub (N, pout) = σ2
y

1− e−θ d
2N(1−pout) + σ2

z

1 + e−θ
d

2N(1−pout) + σ2
z

, (5.85)

where again the upper bound follows from the application of Jensen’s inequality.

Our goal is, thus, to find the optimal number of sensor nodesN in the network and the corre-

sponding encoding rateR which minimizes the cost function (5.85). From (5.76) and (5.78),

R is, in turn, a function ofN andpout and, therefore, we equivalently minimize with respect to

these two variables. This optimization problem can be solved in two steps [69]:

min
N,pout

Dub (N, pout) = min
pout

(

min
N

Dub (N, pout)
)

(5.86)

= min
pout

D̃ub (pout) . (5.87)

Hence, in the next subsections, we first solve for the optimalN(pout) in the inner minimization

problem of (5.86), and then we solve (5.87) for the optimalpout.
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and optimal outage probability vs.SNR (right).

5.7.2 Optimal network size for arbitrary outage probabilit y

According to (5.86), we have

N∗(pout) = arg min
N

Dub (N, pout) . (5.88)

By relaxingN ∈ R
+, the objective function becomes convex inN and a closed-form expres-

sion ofN can be readily obtained from its first derivative:

N∗(pout) =
WR (pout)

(1− pout) log2

(

1 + 2WR(pout)
θd

) , (5.89)

with R (pout) given by

R (pout) = (1− pout) log2 (1− SNR ln (1− pout)) . (5.90)

As shown in Fig. 5.13a,N∗(pout) is a monotonically increasing function inpout. For high

encoding rates, we have thatpout → 1 and, hence, the number of sensors must be increased

to partly compensate for such lost codewords. Conversely, if sensors encode at low data rates

thenpout → 0, a more uniform sampling of the random field results and then aminimum of

N∗ → 1
2
θd sensors suffices.
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5.7.3 Optimal outage probability, network size and encoding rate

Now, replacing the optimal number of sensor nodes of (5.89) into (5.86) yields:

D̃ub (pout) = σ2
y

1− (1 + CR (pout))
− 1

CR(pout) + 1
CR(pout)

1 + (1 + CR (pout))
− 1

CR(pout) + 1
CR(pout)

(5.91)

with C = 2 ln(2)
θd

andR (pout) given by (5.90). On the other, the objective function of (5.91)

can be shown to be monotonically decreasing inR (pout) and, hence, the original optimization

problem of (5.87) is equivalent to

min
pout

D̃ub ≡ max
pout

R (pout) . (5.92)

The cost functionR (pout) is concave inpout and the optimal value ofpout can be readily shown

to be

p∗out = 1− e
1

SNR
− 1

W0(SNR) (5.93)

whereW0 (·) stands for the positive real branch of the Lambert function [71]. As depicted in

Fig. 5.13b, the optimal outage probability is a monotonically decreasing function in theSNR

and, from (5.93), it converges to a constant value in the lowSNR regime, namely

lim
SNR→0

pout =
1

e
. (5.94)

From (5.89) and (5.93), the optimal network size is given by

N∗ =
W log2

(

SNR

W0(SNR)

)

log2

(

1 + 2W
θd
e

1
SNR

− 1
W0(SNR) ln

(

SNR

W0(SNR)

)) (5.95)

and, finally, from (5.76) and (5.78) the optimal encoding rate results:

R∗ = log2

(

1 +
2W

θd
e

1
SNR

− 1
W0(SNR) ln

(

SNR

W0 (SNR)

))

. (5.96)

5.7.4 Simulations and numerical results

In Fig. 5.14, we plot the optimal number of nodesN∗ and the optimal encoding rateR∗ given

in (5.95) and (5.96), respectively. First, we can observe that both parameters are increasing

functions in the overallSNR = P
WNo

: the higher the available transmit power, the higher the

number of nodes that can be accommodated and the higher the achievable rates. Second, for

random fields with low spatial variability, i.e.θd = 10, the optimal encoding rate is higher

and the network size lower, this meaning that it is better to sparsely sense the field with high

resolution observations. On the contrary, for random fieldswith high spatial variability, this
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effect must be captured by increasing the number of sensor nodes and, due to the bandwidth

and power constraints, decrease the number of bits per sensor accordingly.

Next, in Fig. 5.15, we depict themin-maxdistortion evaluated atR∗(N) (computed numeri-

cally) along with the corresponding upper bound. For completeness, we also show theaverage

distortion in the reconstruction of the random field which, as expected, constitutes a lower

bound of the min-max distortion. In all cases, an optimal operating pointN∗ exists, which is

illustrated through the markers on the curves. Finding suchN∗ (along withR∗) reveals partic-

ularly useful for random fields with low spatial variability(θd = 10) since the curve is sharper

in this case. More importantly, the upper bound of the distortion given by (5.85) is tight for the

whole range ofN . Consequently, the solutions of (5.95) and (5.96) turn out to be accurate ap-

proximations of the true optimal pairN∗ −R∗ that minimizes the resulting distortion. Finally,

one can also observe that, indeed, the higher the variability of the random field, the higher the

distortion for allN .

5.8 Chapter summary and conclusions

In this chapter, we have extensively analyzed the problem ofrandom field estimation with

wireless sensor networks. In order to characterize the dynamics and spatial correlation of

the random field, we have adopted a stationary homogeneous Gaussian Markov Ornstein-

Uhlenbeck model. We have considered two scenarios of interest: delay-constrained (DC) and

delay-tolerant (DT) networks. For each scenario, we have analyzed two encoding schemes,

namely, quantize-and-estimate (Q&E) and compress-and-estimate (C&E). In all cases (QEDC,

QEDT, CEDC and CEDT), we have carried out an extensive analysis of the average distortion

experienced in the reconstructed random field. Moreover, for the QEDT and CEDT strategies

we have derived closed-form expressions ofi) the average distortion in the estimates, andii )

the optimal number of samples of the random field to be encodedin each timeslot (under some

simplifying assumptions). Interestingly, the resulting per-timeslot distortion in DT scenarios is

deterministic and constant whereas, in DC scenarios, it ultimately depends on the fading con-

ditions experienced in each timeslot. Next, we have focusedon the latency associated to the

QEDT and CEDT strategies. We have modeled our system as an absorbing Markov chain and,

on that basis, we have fully characterized the pdf, CDF, and the average latency for the QEDT

case. For CEDT encoding, we have identified an approximate system model suitable for the

computation of the average latency. Simulation results reveal that, under a total bandwidth con-

straint, there exists an optimal number of sensors for whichthe distortion in the reconstructed

random field can be minimized (QEDC, QEDT, CEDC and CEDT cases). This constitutes the

best trade-off in terms of, on the one hand, the ability to capture the spatial variations of the

random field and, on the other, the per-sensor channel bandwidth available to encode observa-

tions. Besides, the distortion associated to delay-tolerant strategies is, as expected, lower than
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for delay-constrained ones: some 2-3 dB for both the QE and CEencoding schemes. Moreover,

buffer occupancy can be kept at very moderate levels (3 timeslots) with a marginal penalty in

terms of distortion (less than 0.3 dB). We also observe that CE schemes effectively exploit the

spatial correlation and, by doing so, attain a lower distortion than their QE counterparts (DC

and DT scenarios). As far as latency is concerned, we have empirically shown that CEDT

exhibits alinear increase in the number of sensors whereas in QEDT encoding latency grows

logarithmically (i.e. more slowly). However, CEDT schemes attain a lower distortion than

QEDT ones. Besides, for the QEDT case, there is a perfect match between simulations and the

theoretical model and, for the CEDT case, latency can be accurately represented by adequately

parameterizing the aforementioned approximate system model.

Finally, we have addressed scenarios where sensor nodes operate without transmit CSI. We

have proposed a constant-rate encoding strategy which unavoidably entails some outage prob-

ability in Rayleigh-fading scenarios. This effect, along with the spatial sampling process and

the power and bandwidth constraints that we impose, resultsin some distortion that we attempt

to minimize by carefully selecting the optimal number of sensor nodes to be deployed and the

corresponding encoding rate. On the basis of a (tight) upperbound on the maximum distor-

tion in each network segment, we have derived closed-form expressions of the corresponding

optimal values. Computer simulations reveal that random fields with low spatial variability

should be sparsely sampled with high resolution observations. Contrarily, in scenarios with

high spatial variability, the random field is better represented (i.e. the distortion is lower) if the

number of sensors is increased despite that the encoding rate must be necessarily lower due to

the bandwidth and power constraints. Finding an optimal operating pairN∗-R∗ reveals par-

ticularly useful for random fields with low spatial variability due to the fact that the distortion

curve is sharper in this case.
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5.A Appendix

5.A.1 Stability analysis

We want to prove that buffers are stable (i.e. their occupancy is bounded) for largeL. Let

bk(i) denote the number of samples in the buffer of thek-th sensor in time sloti, with initial

conditions given bybk(0) = L0n. After L timeslots, the increase in the number of samples

stored in the buffer can be expressed as

bk(L)− bk(0) = Ln−
L
∑

i=1

α′
k(i)n (5.97)

whereLn accounts for the number of samples generated in thoseL timeslots, and
∑L

i=1 α
′
k(i)n

with

α′
k(i) =

log2 (1 + SNRγk(i))

R− δ > α∗
k(i) (5.98)

stands for the actual number of samples encoded and transmitted by thek-th sensor node. The

probability of experiencing an increase greater thanǫn in the number of samples stored reads

Pr (bk (L)− bk (0) ≥ ǫn) = Pr

(

Ln−
L
∑

i=1

α′
k(i)n ≥ ǫn

)

(5.99)

= Pr

(

L
∑

i=1

α′
k(i) ≤ L− ǫ

)

. (5.100)

for anyǫ > 0. Replacing (5.98) into this last expression yields:

Pr (bk (L)− bk (0) ≥ ǫn) (5.101)

= Pr

(

L
∑

i=1

log2 (1 + SNRγk(i))

R− δ ≤ L− ǫ
)

(5.102)

= Pr

(

L
∑

i=1

log2 (1 + SNRγk(i))− LR ≤ (ǫ− L) δ − ǫR
)

(5.103)

= Pr

(

L
∑

i=1

log2 (1 + SNRγk(i))− R
√

LVar (R)
≤ (ǫ− L) δ − ǫR

√

LVar (R)

)

(5.104)

where we have defined

Var (R) , Eγ

[

(

log2 (1 + SNRγ(i))− R
)2
]

.

For largeL, we can resort to the central limit theorem by which

Z =

L
∑

i=1

log2 (1 + SNRγk(i))− R
√

LVar (R)
∼ N (0, 1) . (5.105)
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Hence, as long asδ takes strictly positive values (δ > 0), we have that

lim
L→∞

Pr (bk (L)− bk (0) ≥ ǫ n) = lim
L→∞

Pr

(

Z ≤ (ǫ− L) δ − ǫR
√

LVar (R)

)

= 0. (5.106)

This result states that, as long as we encode a slightly higher number of samples per timeslot

(which depends on parameterδ) the probability that the increase in buffer occupancy exceeds

ǫn samples (for afinitevalue ofǫ) can be made arbitrary small for large L. That is, buffers are

stable. Conversely,δ = 0 yields

lim
L→∞

Pr (bk (L)− bk (0) ≥ ǫn)
δ=0
=

1

2
, (5.107)

this meaning that, even for arbitrarily large values ofǫ, the probability that buffer occupancy

increases beyondǫ n is unavoidably1/2 (i.e. unstable buffers).

In addition to this main result, the probability for buffersto drain afterL timeslots can be

expressed as

pdrain = Pr (bk(L) = 0) (5.108)

= Pr

(

L
∑

i=1

α′
k(i)n ≥ (L+ L0)n

)

(5.109)

= Pr

(

L
∑

i=1

log2 (1 + SNRγk(i))

R− δ ≥ L+ L0

)

. (5.110)

By resorting again to the central limit theorem, we have thatfor any positive value ofδ

lim
L→∞

pdrain = lim
L→∞

Pr

(

Z ≥ L0R− (L+ L0) δ
√

LVar (R)

)

= 1 (5.111)

and, thus, buffers will drain with probability one after a sufficiently large number of timeslots.

5.A.2 Decoding structure

In this appendix, we provide a decoding structure that makespossible the decoding of the data

when sensors adopt the CEDT strategy. Without loss of generality, consider two sensor nodes

k ∈ {1, 2}, where sensork = 1 will be referred as themastersensor node and, sensor node

k = 2, as theslavesensor node, respectively.

Encoding and decoding master sensor’s data

At the sensor node:The sensor constructs a codebook consisting of2n1(i)R1(i) codewords and
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sends the index of the codeword8 u1(i), that isv1(i) ∈ 1, . . . , 2n1(i)R1(i).

At the FC: Sincen1(i)R1(i) ≤ mRc(γ1(i)) where

Rc(γ) = log2 (1 + SNRγ) ,

the indexv1(i) is successfully decoded and soui,1, which containsn1(i) samples.

Next,u1(i) is stored into a local buffer for a future use. Therefore, afterL′ timeslots we have

uL′ =
[

uT1 (i), . . . ,uT1 (i+ L′)
]T

containing a total ofnL′ =
L′−1
∑

l=0

n1(i+ l) quantized samples.

Encoding and decoding slave sensor’s data

At the sensor node:In each timeslot, the sensor construct a codebook consisting of 2n2(i)R′
2(i)

codewords. Then, the codebook is partitioned into2n2(i)R2(i) bins as in [35, Theorem 14.9.1].

The sensor sends the index of the binv2(i) ∈ 1, . . . 2n2(i)R2(i) where the codewordu2(i) belongs

to.

At the FC: Sincen2(i)R2(i) ≤ mRc(γ2(i)) the indexv2(i) is successfully decoded. Therefore,

the FC has located the bin where the true codewordu2(i) is. For a reliable decoding, the FC

has to be available to distinguish the true codewordu2(i) within bin v2(i). To that extent, we

first assume the set of samplesuL′ at the decoding buffer of the master sensor is of length

nL′ ≥ n2(i). In this case, the minimum number of bins, i.e.2n2(i)R2(i) or, equivalently, the

minimum rate per samplen2(i)R2(i) must satisfy:

n2(i)R2(i) ≥ I (y2(i);u2(i)|uL′) (5.112)

=

n2(i)
∑

n=1

I (y2(i); u2(i)|uL′(i)) (5.113)

where the second equality is due to the memoryless property of the sourcey and, due to ca-

suality, the set of samples contained inuL′ which aretemporally correlatedwith u2(i) are the

first n2(i) samples. Note that if the master sensor encodes its blocks ofsamples according to

(5.37) then, it is straightforward to show that the encodingrate per sample is the same in each

block. Namely, we have thatuL′ = y1 + z1 wherez1 ∼ CN
(

0, σ2
z1
I
)

whereσ2
z1

is defined as

in (5.48). Consequently, from (5.113) we can drop the sampleindex and obtain

n2(i)R2(i) ≥
n2(i)
∑

n=1

I (y2(n); u2(n)|uL′(n)) (5.114)

= n2(i)I (y2; u2|u1) (5.115)

= n2(i) log2

(

1 +
σ2
y2|u1

σ2
z2

)

, (5.116)

8To recall,i stands for the timeslot index
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Figure 5.16: Decoding structure for the CEDT encoding strategy.

whereσ2
y2|u1

doesnot depend on the timeslot indexi andσ2
z2

is a function only oflocal sensor

parameters. In particular, the value ofσ2
z2

is setlocally according to (5.48) and, hence, we can

decodeu2(i) reliably. Next, the block of decoded samples are deleted from the buffers at the

FC.

Contrarily, if the set of samplesuL′ at the decoding buffer of the master sensor is of length

nL′ ≤ n2(i), the FC will store the indexv2(i) and wait untilnL′ ≥ n2(i). The decoding

structure is summarized in Figure 5.16.

Generalization to an arbitrary number of sensor nodes

The strategy above can be easily generalized to an arbitrarynumber of sensor nodesN . In par-

ticular, a slave sensor will act as a master sensor for the next sensor node in the encoding chain.

Interestingly, this strategy can be implemented at the sensor nodes by usinglocal information

only, whereas in the CEDC strategy the encoding rate used at the master node must be known

in advance at the slave sensor node for a reliable decoding atthe FC.
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Chapter 6

Conclusions and Future Work

In this PhD dissertation, we have focused on the design of decentralized estimation schemes for

wireless sensor networks. Essentially, we have addressed the problem from a signal processing

and information theoretical perspective. Still, we have also considered the impact of some

selected functionalities at the link layer of the OSI protocol stack (e.g. scheduling protocols)

or network topologies (flat/hierarchical). First, in Chapter 3, we have addressed the power

allocation problem in amplify-and-forward WSNs, where sensor observations are scaled by

an amplifying factor and transmitted to the FC (i.e.analog transmissions). Conversely, in

Chapters 4 and 5, we have focused on the case where sensors encode their observations into

a number of bits (i.e.digital transmissions) before sending them to the FC. Regarding the

estimation problem, in Chapters 3 and 4 we have addressed theproblem of the estimation of a

spatially-homogeneous parameter, whereas, in Chapter 5, we have focused on the more realistic

case of the estimation of spatial random fields. In the sequel, we summarize the main findings

of each chapter of this dissertation.
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6.1 Conclusions

Chapter 3

In this chapter, we have addressed the problem of power allocation in a context of amplify-

and-forward WSNs for decentralized parameter estimation.First, we have focused on a flat

topology and we have proposed a class of opportunistic powerallocation schemes. Such OPA

schemes have one feature in common: only sensors experiencing certain local conditions (i.e.

channel gain and/or residual energy above a threshold) are allowed to participate in the es-

timation process. We have addressed a number of classical problems of interest such as the

minimization of estimation distortion (OPA-D), the minimization of transmit power (OPA-P)

or the enhancement of network lifetime (OPA-LT). In all cases, we have derived a closed-form

expression of an approximate but tight closed-form expression of the threshold along with the

corresponding power allocation rule. Furthermore, we havealso addressed the case with im-

perfect CSI to derive an improved version of the OPA-D scheme(OPA-DR) which is robust to

such imperfections.

Interestingly, computer simulation results have revealedthat the performance of the OPA-D

and OPA-P schemes are virtually identical to that of the optimal schemes (WF-D and WF-P,

respectively). More significantly, we have proved that the rate at which distortion decreases for

the OPA-D and WF-D is identical when the number of sensor nodes increases without bound.

We have also observed that the robust version (OPA-DR) performs close to systems operating

with perfect CSI even with moderate values of CSI uncertainty. From the comparison of OPA-

LT with OPA-P, we have concluded that a sensible use of REI results in a two-fold extension

of network lifetime.

Finally, we have adopted a hierarchical network structure which is suitable for scenarios with

severe path loss in the sensor-to-FC channels. In this scenario, we have addressed the power

allocation problem for the minimization of the attainable distortion at the FC. We have shown

that the minimization problem can be decomposed into smaller sub-problems and, further-

more, we have derived a closed-form expression for the optimal power split between layers

for the UPA case. Computer simulation results have shown that a hierarchical network with

UPA schemes in both layers constitutes the best trade-off interms of performance (namely,

estimation accuracy) vs. CSI requirements.

Chapter 4

In Chapter 4, we have focused again on the problem of decentralized parameter estimation with

WSNs. Unlike in previous chapter, we have considered that sensors are capable of encoding

their observations for digital transmission.

First, we have conducted an in-depth analysis of the Quantize-and-Estimate (Q&E) and Compress-
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and-Estimate (C&E) encoding strategies in (orthogonal) Gaussian and Rayleigh-fading chan-

nels under powerandbandwidth constraints. For the Q&E scheme, we have shown that there

exists an optimal network size which minimizes the overall distortion in the estimates. Addi-

tionally, we have derived an approximate closed-form expression of its optimal operating point

(Gaussian channels and some cases of interest in Rayleigh-fading channels without CSIT). For

the C&E scheme, we have analytically shown that encoding theobservations in adecreasing

order of (sensor-to-FC) channel gains minimizes the resulting distortion. Computer simula-

tion results reveal that ordering is particularly important in scenarios with moderate observa-

tion noise or transmit power. We have also derived, in a context of Rayleigh-fading channels,

closed-form expressions of the distortion attained by the Q&E and C&E (lower bound) schemes

when the number of sensor nodes increases without bound. Next, we have constrained sensor

nodes to operate without instantaneous transmit CSI. In this context, we have proposed to adopt

a constant and common rate for all sensors. Next, we have approximately computed the op-

timal encoding rate for two cases of interest, namely, sensors with high and low observation

noise and found out that, interestingly, the lack of CSIT translates into a moderate increase of

distortion for the whole range of SNR values.

Finally, we have explicitly taken into account realistic multiple-access schemes in a context of

hierarchicalWSNs. More precisely, we have analyzed the impact of a contention-based mech-

anism (ALOHA), and the packet collisions that it entails. First, we have derived aclosed-form

expression of the distortion attained at the FC with a reservation-based protocol (e.g. TDMA)

which has been used as a benchmark. Next, we have extended theanalysis to encompass

the effect of packet collisions stemming from the use of contention-based schemes. Specifi-

cally, we have found an approximate (yet tight) expression of the distortion associated to the

ALOHA protocol. On that basis, we have identified the optimaltime split, for sensor-to-CH

(Layer 1) and CH-to-FC (Layer 2) communications. Furthermore, we have derived (approxi-

mate) closed-form expressions of the optimal time split fortwo cases of interest, namely, high

data rate and low data rate per sensor. By means of computer simulations, we have shown that

the adoption of contention-based mechanisms is particulary harmful in Layer 2 whereas their

impact in Layer 1 is moderate.

Chapter 5

In Chapter 5, we have extensively analyzed the problem of random field estimation with wire-

less sensor networks. In order to characterize the dynamicsand spatial correlation of the ran-

dom field, we have adopted a stationary homogeneous GaussianMarkov Ornstein-Uhlenbeck

model.

First, we have considered two scenarios of interest: delay-constrained (DC) and delay-tolerant

(DT) networks. For each scenario, we have analyzed two encoding schemes, namely, Quantize-

and-Estimate (Q&E) and Compress-and-Estimate (C&E). In all cases (QEDC, QEDT, CEDC

and CEDT), we have carried out an extensive analysis of the average distortion experienced in
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the reconstructed random field. For delay-tolerant cases, we have derived closed-form expres-

sions ofi) the average distortion in the estimates, andii ) the optimal number of samples of the

random field to be encoded in each timeslot. Interestingly, the resulting per-timeslot distortion

in DT scenarios is deterministic and constant whereas, in DCscenarios, it ultimately depends

on the fading conditions experienced in each timeslot. Simulation results reveal that, under a

total bandwidth constraint, there exists an optimal numberof sensors for which the distortion

in the reconstructed random field can be minimized (QEDC, QEDT, CEDC and CEDT cases).

This constitutes the best trade-off in terms of, on the one hand, the ability to capture the spatial

variations of the random field and, on the other, the per-sensor channel bandwidth available to

encode observations. Besides, the distortion associated to delay-tolerant strategies is, as ex-

pected, lower than for delay-constrained ones. Moreover, buffer occupancy can be kept at very

moderate levels with a marginal penalty in terms of distortion. We have also observed that CE

schemes effectively exploit the spatial correlation and, by doing so, attain a lower distortion

than their QE counterparts (DC and DT scenarios). As far as latency is concerned, we have

shown that CEDT exhibits alinear increase in the number of sensors whereas in QEDT encod-

ing latency growslogarithmically(i.e. more slowly). However, CEDT schemes attain a lower

distortion than QEDT ones.

Finally, we have closed the chapter by addressing the case where sensors operate without CSIT.

We have proposed a constant-rate encoding strategy which unavoidably entails some outage

probability in Rayleigh fading scenarios. On the basis of a (tight) upper bound of the max-

imum distortion in each network segment, we have derived closed-form expressions of the

corresponding optimal values. Results have revealed that the optimal operating point is par-

ticularly useful for random fields with low spatial variability due to the fact that the distortion

curve is sharper in this case.

6.2 Future work

In this section, we discuss a number of research areas and related topics for further work in the

field of decentralized parameter estimation via wireless sensor networks.

• Opportunistic power allocation schemes with different sensor observation qualities.

The OPA framework could be extended by considering different observations qualities at

the sensor nodes (namely, different observation noises). In this case, the sensor selection

algorithm should consider not only the uplink channel quality of each sensor node but

also the quality of the sensor observations.

• Joint source-channel coding with non-synchronized sensors. Amplify-and-forward

schemes are known to be asymptotically optimal where sensortransmissions are fully
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synchronized. However, distributed synchronization of the sensor signals can be difficult

to achieve in practice. An interesting extension would the consideration of synchroniza-

tion errors and their impact on the rate at which distortion decreases.

• Encoding strategies and signal processing techniques for hierarchical network topolo-

gies. An important open issue is how data is processed at the cluster-heads. Various

options are possible:i) consolidation of the cluster information into a cluster estimate

and re-transmission to the FC,ii ) re-transmission of all the sensors measurements to the

FC or, iii ) hybrid strategies. In all cases, a number of interesting trade-offs (reliability,

accuracy, etc) turn up. Besides, it would be interesting theanalysis of different encoding

strategies (e.g. amplify-and-forward, quantize-and-estimate and compress-and-estimate)

on such hierarchical WSN topology.

• Successive refinement techniques with random access mechanisms. By adopting suc-

cessive refinement techniques along with superposition coding techniques, sensors can

adaptively encode their observation by considering somelevelsof side information at the

FC. Motivated by this fact, it would be interesting the design and analysis of such succes-

sive refinement techniques in the context of contention-based multiple access channels,

where sensors are not aware of the current side information available at the FC.

• Opportunistic random field estimation. Future work on random field estimation also

encompasses the extension of the analysis carried out in Chapter 5 by addressing the case

where only those sensors experiencing favorable channel conditions actually sample the

field.

• Uniform/nonuniform sampling of spatial random fields. Here, the focus would be on

assessing the impact ofrandom(vs. deterministic) deployment of the sensor nodes in the

reconstruction of the random field.
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