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Abstract

In recent years, research on Wireless Sensor Networks (Wf@hl)attracted considerable
attention. This is in part motivated by the large number gil@ations in which WSNs are

called to play a pivotal role, such as parameter estimatiamegly, moisture, temperature),
event detection (leakage of pollutants, earthquakes) fioe$ocalization and tracking (for e.g.

border control, inventory tracking), to name a few.

This PhD dissertation is focused on the desigdexfentralizeckstimation schemes for wireless
sensor networks. In this context, sensors observe a givengohenon of interest (e.g.
temperature). Consequently, sensor observations areeyedwover the wireless medium to
a Fusion Center (FC) for further processing. The ultimatd gbthe WSN is theestimatioror
reconstructionof the phenomenon with minimum distortion. The problem idradsed from
a signal processing and information-theoretical persgpeddowever, the interplay with some
selected functionalities at the link layer of the OSI pratiostack (e.g. scheduling protocols)
or network topologies (flat/hierarchical) are also taken gonsideration where appropriate.

First, this dissertation addresses the power allocatioblpm in amplify-and-forward wireless
sensor networks for the estimation cdatially-homogeneoysmrameter. This study is mainly
devoted to the analysis of a class of Opportunistic Powesaoallion (OPA) strategies which
operate with low complexity and stringent signalling reqments. Several problems of interest
in WSNs are considered) the minimization of distortionii) the minimization of transmit
power andjii) the enhancement of network lifetime. Finally, hierarahicetwork topologies
are introduced for those situations where sensor-to-F@retdinks suffer from severe path
losses. In this context, the analysis is aimed to identi®y plower allocation strategy that
provides the best performance trade-off between the estimaccuracy and the signaling
requirements.

Second, sensor nodes are allowed to transmit their obgamgaligitally. In this setting, two
encoding strategies are analyzed: Quantize-and-Est(@&E) encoding and Compress-and-
Estimate (C&E) encoding, which operate with and withouesidformation at the decoder,
respectively. This PhD dissertation addresses a numbessoés of interest) the impact of
different channel models (Gaussian, Rayleigh-fading okEnwith/without transmit CSI) on
the accuracy of the estimatas), the optimal number of sensors to be deployed aingdthe



impact ofrealistic contention-based multiple-access protocols on the egsamdistortion.

Finally, this PhD dissertation focuses on the estimatiorspdtial random fields. In this
scenario, the spatial variability of the parameter of ies¢iis taken into account, rather than
assuming the estimation ofsangle (i.e. spatially-homogeneous) parameter. Two different
scenarios are considered, namely, dalagstrainednetworks and delayelerant networks.

In addition, the case where sensors cannot acquire inseoua transmit CSI (CSIT) is
addressed. In this context, the outage events experiencttk isensors-to-FC links result
in a random sampling effect which is investigated.
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Resumen

Las redes de sensores inalambricas estan compuestas gyam numero de dispositivos

de bajo coste y bajo consumo energético llamados sensoEestos sensores incluyen

funcionalidades como: sensado, técnicas basicas degado de sefial y un transceptor RF.
Las aplicaciones mas comunes de las redes de sensoraslimaias son: monitorizacion

medioambiental, deteccion de eventos, monitorizaciénodjetos, seguridad domeéstica,
aplicaciones médicas y militares, entre otras.

Principalmente, el objetivo de esta tesis doctoral es elfidisde esquemas de estimacion
descentralizados para redes de sensores inalambricé&sdd@nlos escenarios considerados en
esta tesis, los sensores observan y muestrean un fenomerier@s (e.g. temperatura, presion,
humedad. ..). Posteriormente, las muestras almacenadas sansores son transmitidas a
través de un canal inalambrico hacia un centro de fus&@a pu procesamiento. El principal
objetivo de la red de sensores es la estimacion o recongirudel fenomeno de interés
con la minima distorsion. El problema se plantea desdewnopde vista de procesado
de sefal y teoria de la informacion. Sin embargo, tamB& considera la interaccion con
algunas funcionalidades de la capa de enlace de la pila tiecptos OSI (e.g. protocolos de
scheduling) ademas de diferentes topologias de reda(plgrarquica).

En primer lugar, esta tesis se centra en el problema de asignde potencia en redes
de sensores. En patrticular, los sensores amplifican y setigan sus observaciones hacia
el centro de fusion (i.e. comunicaciones analogicas). eEfe contexto, se proponen y
analizan varias técnicas de asignacion de potenciawpstas, cuyas caracteristicas son su
baja complejidad y requisitos de sefializacion. Se cenaidvarios problemas especificos
de una red de sensores: i) la minimizacion de la distoysipla minimizacion de la potencia
transmitida y, iii) el aumento del tiempo de vida de la rechafinente, se introducen topologias
de red jerarquicas con el objetivo de paliar las pérdidapppagacion comunes en escenarios
donde los sensores estan situados a una gran distancienti® de fusion. En este escenario,
el objetivo es identificar la estrategia de asignacion derma mas apropiada, teniendo en
cuenta la calidad de estimacion y los requisitos de sed@én de ésta.

En segundo lugar, se considera el caso en que los sensonéisacndus observaciones
usando un determinado niUmero de bits (i.e. comunicacidigémles). En este escenario,
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se analizan dos estrategias de codificacion: Quantizezatichate (Q&E) y Compress-and-
Estimate (C&E). A diferencia de Q&E, la estrategia C&E pdgmincorporar la informacion
disponible en el receptor en la codificacion de las obsesuas, obteniendo asi una menor
distorsion en el centro de fusiobn. En esta tesis se traaaios/problemas de interés: i) el
impacto de diferentes modelos de canal (canales Gausiacasajes con desvanecimientos
Rayleigh con/sin informacion instantanea del canal)aendlidad de las estimaciones, ii) el
namero optimo de sensores que se debe desplegar paraipainiadistorsion y; iii) el impacto
de protocolos de contencion de acceso al medio en la distors

Por Gltimo, esta tesis se centra en la estimacion de caegpeciales. En este contexto, se
adopta un modelo de correlacion que, a diferencia de losliest anteriores, tiene en cuenta
la variabilidad del parametro en el espacio. En este ctmtekestudio se centra en dos tipos
de aplicaciones: redes de sensores con restriccionesatdaein la estimacion y redes de
sensores con una cierta tolerancia en el retardo de la eshmaFinalmente, se analiza el

caso mas realista, en el que los sensores no disponen deauion instantanea del canal y
por lo tanto no pueden transmitir sus datos de manera fiabteeddsiguiente, el objetivo es el

analisis del impacto de este fenbmeno en el muestreo agla@y de esta forma en la distorsion
del campo reconstruido.
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Chapter 1

Introduction

1.1 Motivation

Wireless Sensor Networks (WSN) consist of a potentiallgygarumber of energy-constrained
sensing devices (theensorywhich are capable of conveying data over wireless linksFoi-a
sion Center (FC) where it is further processed. A non-exthakst of applications for WSNs
encompass environmental monitoring (e.g. determinatfahe concentration of pollutants,
temperature, pressure), event detection (leakage ofasules, earthquakes, fire), localization
and tracking of assets, healthcare (remote patient mamgforor military applications (sur-
veillance, border control) to name a few (see e.g. [1-4] forerexamples). Due to such a
broad range of applications, in the coming years wireleas@enetworks are called to play
a pivotal role in our daily lives. This has driven substdrdidvances in e.g. energy harvest-
ing techniques, microelectronics, decentralized sigratgssing, wireless communications or
networking.

Wirelesssensornetworks differ from othedata networks in many aspects. To start with,
sensors are typically equipped with batteries which, @nirke.g. mobile phones, are often
difficult or impossible to replace. Consequently, the depeient of energy-efficient signal
processing techniques and communication protocols capefbénhancing network lifetime
becomes a priority. Besides, both the computational ana lahsmission capabilities (rate,
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range, etc.) of sensor nodes are, in general, rather limitéakeover, in many applications
sensors have to be deployed in remote and/or large areasf thié above, clearly advocates
for the adoption oflecentralizedignal processing techniques and networking protocolss, Th
on the one hand, minimizes the need for nodes to coordindteancentral authority (which
translates into energy savings due to reduced signallimdy)@n the other, allows for a more so-
phisticated processing of data by leveraging on the coniputd capabilities of the individual
sensor nodes.

Another distinctive feature of WSNs is that their desigapglication dependenthereas wire-
lessdatanetworks (such as Wi-Fi, 3G or WiMax) are typically conceivgs generic-purpose.
In terms of performance metrics, for instance, a WSN aimetktect fires in a forest should
be optimized to attain the best trade-off between the pritibeb of detection and false alarm
(latency consideration could also be taken into account).ti@ contrary, in environmental
monitoring applications one is more concerned about esitignghe parameter of interest (e.g.
temperature) with the highest possible accuracy. Ultiigatieose differences in terms of pur-
pose and performance metrics translate into a number @rdiftes concerning architectural,
terminal or communication protocol designs.

Other particularities of WSNs stem from the fact that the hanof sensors in such networks
is potentially large. Consequently, the unitary cost osthdevices needs to be kept low which
often translates into an error-prone behavior. This hasrabeu of implications. To start
with, network designs should be robust to such imperfestimnd possible malfunctioning.
For example, routing schemes should bear in mind that spaddda specific node might be
unable to forward data. Besides, one should ensure thaethgreed algorithms and protocols
scale well with an increasing number of sensor nodes. Fdéanoe, detection rules with a
computational complexity which is e.g. exponential in thenber of nodes might not be
suitable for large sensor networks.

Finally, an important aspect which impacts on the design 8N is the fact that sensor mea-
surements are often correlated (e.g. temperature measyszhsors which are close to each
other). This assumption, which seldom holds in wireléata networks, triggers a number of
interesting design trade-offs. For instance, one couldktlof successive encoding schemes
capable of removing redundancy in the transmitted datalandping so, achieve substantial
energy savings. However, the resulting encoding schemenfiex more sensitive to channel
outages and dropped frames which, ultimately, might ethailre-transmission of the whole
set of measurements. Clearly, this would be barely degrialterms of latency and/or energy
consumption.

This PhD dissertation is focused on the design of decenti@dlestimation schemes for wire-
less sensor networks. The problem is mostly tackled frorgraesiprocessing and information-
theoretical perspective. Still, the interplay with somkesed functionalities at the link layer
of the OSI protocol stack (e.g. scheduling protocols) owoek topologies (flat/hierarchical)
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1.2. Outline

will be taken into consideration where appropriate. Ultiehg this PhD dissertation attempts
to find answers to questions such as what is the power altlocatheme that exhibits the best
trade-off in terms of performance, complexity and sigmglrequirements? What is the price
to be paid, in terms of estimation accuracy, in order to enbaretwork lifetime? What is the
optimal number of sensor nodes needed to be deployed ast@ofuntthe spatial variability
of the parameter to be estimated? Is it worth using suceessicoding schemes in practi-
cal wireless sensor networks? What is the impact of core+iiased (vs. contention-free)
multiple-access schemes on the attainable distortion?

In subsequent sections, we outline the contents and org@maf this PhD Dissertation. Next,
we provide a list of journal and conference publications Have resulted from the realization
of this work.

1.2 Outline

This PhD dissertation is focused on the design and analf/s&ionation techniques for WSNSs.
Chapter 3 addresses the case of amplify-and-forward WSMich the sensor observations
are scaled by an amplifying factor for their transmissioth®FC (i.e.analogtransmissions).
On the contrary, in Chapters 4 and 5 sensors encode/qudataeto a number of bits (i.elig-

ital transmissions) before sending them to the FC. Regardingstimaation problem, Chapters
3 and 4 are devoted to the estimation of a spatially-homagenparameter, whereas Chapter
5 addresses the more realistic case of the estimation aakpatdom fields. In all cases, the
main performance metric is the distortion in the estimates.

This PhD dissertation is organized as follows:

Chapter 2 reviews a number of concepts which will be usedisnRhD Dissertation. First, we

present an overview of hardware and network topologieesgu wireless sensor networks.
Next, some basic concepts on estimation theory, informahieory and opportunistic commu-
nications are outlined, respectively.

Chapter 3 addresses the problem of estimating a spatiaitysgeneouparametemwith amplify-
and-forward WSNs. In this setting, the main contributiorthe design of an Opportunistic
Power Allocation (OPA) scheme with low signalling requiremis. The scheme is particular-
ized for several problems of interes): the minimization of distortionii) the minimization
of transmit power andiji) the enhancement of network lifetime. Besides, a hieraathet-
work topology is also proposed for scenarios in which sensoe placed at large distances
from the FC. In this setting, sensors are grouped into alssted a cluster-head (CH) is in
charge of consolidating and sending a local estimate to @&6r this network topology, an
exhaustive comparison of different power allocation sgé&s is conducted. In particular, all
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the strategies are compared in terms of estimation distognd Channel State Information
(CSI) requirements.

In Chapter 4, the problem at hand continues to be the estmafia spatially-homogeneous
parameter but, unlike in the previous chapter, sensor ntvdasmit their observationdigi-
tally. In particular, two encoding strategies are analyzgdQuantize-and-Estimate (Q&E)
andii) Compress-and-Estimate (C&E). First, Chapter 4 addressegnario witlorthogonal
sensor-to-FC channels (i.e. TDMA/FDMA). In this settingddoy constrainingoandwidth
andpowerirrespectively of the network size, the distortion behavsoanalyzed for different
channel models (Gaussian, Rayleigh-fading, with/withigahsmit CSI (CSIT)). For scenarios
in which sensors operate without instantaneous CSEQrestantand commonencoding rate
must be used. Such encoding rate must be carefully designesl siltimately, it determines
the outage probability experienced at the sensors-to-F@rakis,and the resolution at which
sensor observations are encoded (and both phenomena hewmpat on the accuracy in the
estimates). For the C&E encoding strategy, the impact oéttfewding order on the distortion,
which arises from the successive encoding/decoding steicif the strategy, is also investi-
gated. Next, Chapter 4 addresses a (more realistic) cas@iaihwensors seize the channel
via contention-based multiple-access mechanisms (e.@HW). Furthermore, a hierarchical
topology is adopted and the performance of reservatiorebpsotocols and contention-based
multiple-access protocols at different levels of the hehng is analyzed.

Chapter 5 goes one step beyond and focuses on the estimbsipat@l randonfields In this
setting, the correlation between the sensor observatsostermined by the distance between
sensors. Two different scenarios are considered, namelgy-donstrainednetworks and
delaytolerantnetworks. Besides, two different encoding strategies dopi@d:i) quantize-
and-estimate encoding anid) compress-and-estimate where each sensor exploits (anthe
coder) the correlation between adjacent observationalliithe case in which sensors cannot
acquire instantaneous transmit CSI (CSIT) is addressedhisncontext, as in Chapter 4, a
constantandcommonrencoding rate is adopted at the sensor nodes which alongriesize
are optimized.

Chapter 6 concludes this PhD dissertation with a summangaahsicussion of the main results
of this work. Some suggestions for future work are also nadi

1.3 Contribution

Chapter 3

The main contributions of Chapter 3 have been published oufnpl paper and 4 conference
papers while another 1 letter is under review.
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Chapter 5

Finally, contributions of Chapter 5 have been publishedart ;m 2 conference papers and, 1
journal paper and 2 conference papers are under review.

e J. Matamoros, C. Antbn-Haro, Random Field Estimation viday-constrained and
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Other contributions not presented in this dissertation

During the first year of the PhD studies, two conference sawere published. In these works,
a novel random access technique is proposed for deceptighiarameter estimation which
requires only local CSI at the sensor nodes.

6



1.3. Contribution

e J. Matamoros, C. Antbn-Haro, Opportunistic Random AcdesBistributed Parameter
Estimation in Wireless Sensor Networks, European Signadéasing Conference (EU-
SIPCO’07), Poznan (Poland), Sept. 2007, pp. 2439-2443.

e J. Matamoros, C. Anton-Haro, Distributed Scheduling inréMiss Sensor Networks
under Heterogeneity and Imperfect Channel State InfoonatEEE Statistical Signal
Processing Workshop (SSP), August 2007.



Chapter 1. Introduction




Chapter 2
Background

In this chapter we review a number of concepts and matheabatials which will be used in
this PhD dissertation. First, in Section 2.1 we provide aereoew of a number of hardware
and networking issues in WSNs. Then, in Section 2.2, we dgluite several basic concepts in
estimation theory and some recent results on decentradiigahation for wireless sensor net-
works. Next, we establish the link between estimation theod information theory in Section
2.3. Finally, in Section 2.4, we introduce the concept oftiruger diversity and opportunistic
communications and their exploitation in a context of wass sensor networks.

2.1 Wireless sensor networks: hardware and network issues

Nowadays, Crossbow Moteare perhaps the most popular sensor nodes due to theirilversat
ity. These commercial sensor nodes include all basic apestsensing, simple digital signal
processing and an IEEE 802.15.4 RF transceiver. The keyrésabf IEEE 802.15.4 technol-
ogy [5] are low cost, low complexity, low energy consumptenmd low data rates. A sensor
node is mainly composed of a microprocessor, data storagg@aeents, Analog-to-Digital
Converters (ADCs), sensors, an RF transceiver and a bgtegyFig. 2.1). Research on
hardware is mainly aimed to build and design small electraomponents with a low energy

For further details see http://www.xbow.com



Chapter 2. Background
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Figure 2.1: Block diagram of a sensor node.

consumption requirements. This fact, along with energyéstmg methods [6] (e.g. wind
energy, solar cells), will enable the design of more en@&ffijgient wireless sensor nodes.

As far as network topologies are concernsthgle-hoptransmission, in which a number of
static sensor nodes transmit their observatidirectly to the FC, is, by far, the most popular
one [7-12]. Still,multi-hoptransmission is also used in WSNs. In a multi-hop networg, th
information from the source node hops over a set of interatediodes in order to reach the
destination (see Figure 2.2). In this context, the authof43] propose a multi-hop network
where a source transmits to the destination with the helps#taf tier of sensors acting as
relays. The authors derive expressions for the ergodicotigend the outage probability for
different fading distributions. In [14] instead, the serssare grouped into clusters where they
cooperate to form MIMO channels between clusters. The asittierive the optimal power
allocation (and time sharing) within intra-cluster ancemtluster communications, in order to
minimize the end-to-end outage probability.

Hierarchical network topologies have also been addressed in a numberrk$\{gee [15] and
references therein). In this setting, sensors are orgamte clusters, each of which is under
the supervision of a Cluster-Head (CH). Each CH is in chafgeoasolidating cluster data
and conveying such information to the FC (see Fig. 2.3). Tduea which act as the cluster-
heads can be determined in advance (e.g. more powerful onedjernatively, can be selected
depending on theurrent network conditions (e.g. the one with the strongest chagail to
the FC or, the one with the higher residual energy).

In [16], the authors consider two different scenaripsjultinop transmissions anil) SENMA
(Sensor Networks with Mobile Access), originally introeddn [17] (see Fig. 2.4). This paper
studies the scaling behavior of the energy consumptionligdganto account the transmission
energy and the listening energy. Besides, the case of naukiPs (both for cooperative and
non-cooperative scenarios) is investigated as well.
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Figure 2.2: Multi-hop network.

Figure 2.3: Hierarchical network.

Mobile Access Points

Figure 2.4: Sensor Networks with Mobile Access.
2.2 Estimation theory

This PhD dissertation addresses the problem oestenationof unknown parameters or ran-
dom field with WSNs. Hence, we start by reviewing some basicepts of estimation theory.
First, we present the well-known problema#ntralizedparameter estimation. Next, we focus
on the problem oflecentralizedbarameter estimation, where the observations containing i
formation of the parameter of interest gyeographicallydistributed as it is the case in sensor
networks.

2.2.1 Centralized parameter estimation

The estimation of an unknown parameter is a classical pnofl&]. This problem can be ap-
proached from two different perspectives: thassicalestimation and thBayesiarestimation.

11
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Classical estimation

In classical estimation, the parameter of interest, dehimt¢he sequel a8, is assumed to be
deterministic but unknown. The deterministic assumptmiofvs from the fact that no prior
statistical information of is available. Standing on these basis, the goal is to obte@s@mate
of 6, that isé, with minimum distortion. Usually, the distortiaf in the estimatd, is defined
as the Mean Squared Error (MSE), that is

D:E[(e—éﬂ :/<9—§>2p(x;9)dx, 2.1)

wherex stands for the vector of observations, and; ¢) is the pdf of the observation vector
parameterized by the unknown parametethe interest typically lies in unbiased estimators,
i.e. estimator for whictE[d] = 6. In this context, the so-called Cramer-Rao-Lower-Bound
(CRLB), whose definition can be found in [18], constitutes #bsolute benchmark. The esti-
mator with the minimum variance (i.e. the one which minirsi¢2.1)) for alld is the so-called
Minimum Variance Unbiased (MVU) estimator and, furtheit éttains the CRLB it is said to
be efficient. Unfortunately, the MVU estimator is in genetdficult to find or may not even

exist. In this case, one can resort to the Maximum Likehood)(&timator, defined as
Orir, & arg maxp (x;0), (2.2)
which can be shown to be unbiasaad efficient for an asymptotically large sample size.

An interesting case where the MVU estimator can always beroheted is for linear data
models, namely
x = hf + n, (2.3)

whereh = [y, ..., hy]T is a known vector ané ~ N (0,Iy0?) denotes the additive white
Gaussian noise (AWGN). By imposing unbiasednessIEjye[.é(y)] = ¢, and according to the
distortion criteria of (2.1), the minimum variance unbidestimator reads

N o\ /N
EEY) -

k=1 " k=1

with distortion given by
b= (i hi>l (2.5)
o2 ’ '
k=1 T
In this case, this estimator is efficient since it attaing@RLB. Besides, it turns out to be linear

in the data and, for linearized data models, it is often refikto as the Best Linear Unbiased
Estimator (BLUE).

12
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Bayesian estimation

Unlike in the classical estimation theory, in Bayesianmation the unknown parameter is
assumed to beandomwith a known prior pdf. Consequently, one can exploit thist fay
incorporating this prior information into the design of #agtimator. In this case, the distortion
metric is typically thebayesiarmean squared error, namely

D= E[ ] // 9 9 p (X, ) dxdo, (2.6)

where the error is averaged over the joint pdk, #). It is straightforward to show that the
optimal estimator in terms of MSE is given by the posterioamehat is

0(x) = E[0]X, (2.7)
with distortion given by

D = Var[0|x]. (2.8)
As an example, we consider the following linear model

x = hf + n, (2.9)

whereh = [hy,...,hy|" is a known vector ansh ~ N (0,Iy02) denotes AWGN. Here,
we assume that the prior pdf of the parametés available and given by ~ A (0,03).
Consequently, from (2.7) we have that

E[0|x] = < +ZJQ> <Zh§f’“> (2.10)

n k=1

IM

with distortion given by

D = Var[f|x] = < +Z ) . (2.11)

Again, the optimal estimator turns out to be Ilnear in theadatd corresponds to the Linear
Mean Squared Error (LMMSE) estimator [18, Chapter 12]. Bynparing (2.11) with (2.5),
we see that the prior information about the parameter ofestehelps decrease the distortion
in the estimates.

2.2.2 Decentralized parameter estimation

In wireless sensor networks, sensor observations are gaaigally distributed and, hence,
the aforementioned estimators have to be designed to egaratdecentralized manner. Fur-
thermore, the sensor network topology has to be taken irdoust for the design of the de-
centralized estimation technique. In the sequel, we défifnastructure-basecdetworks as a
networkwith a FC gathering and processing the information, iafrdstructurelesmetwork as

a networkwithoutany central device or coordinator.

13
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Infrastructure-based networks

For correlated Gaussian sources, #malogre-transmission of the observations is known to
scale optimally in terms of distortion [12]. Motivated byghmesult, under orthogonal channels
and different local observation qualities, in [11] the omdi power allocation is derived for two
different situations:i) the minimization of distortion subject to a sum-power doaist, and

i) the minimization of transmit power subject to a maximuntdalion target. Alternatively,
the authors in [9] address the problem of decentralizednesiton, where each sensor is only
allowed to sendbinaryobservations to the FC. Interestingly, this paper intreducclass of ML
estimators that attain a variance close to the CRLB with ipdréit per observation. Besides,
by relaxing the bandwidth constraint, the best possiblenasor under binary observations is
constructed. Similar analysis are conducted in [10] unadnown noise pdf leading to the
so-calleduniversal(pdf-unaware) estimators. Universal estimators baseguamtizedsensor
data have been introduced in [8, 19]. In particular, the wairKL9] suggests that the optimal
decentralized estimation scheme with 1-bit per obsematiwuld allocate 1/2 of the sensors
to estimate the first bit of the unknown parameter, 1/4 of gresers to estimate the second bit,
and so on. In addition, [20] proposes a simple probabiligtiantization scheme in order to
obtain an unbiased binary message. By doing so, one canysus@la suboptimal and of low
complexity estimator, such estimator is the Best Lineariblsdd Estimator (BLUE).

Several models have been proposed in the literature (s¢ari@dXeferences therein) to charac-
terize the spatial correlation associated to randiefds In this context, the GMOU (Gaussian

Markov Ornstein-Ulenhbek) model [22] is commonly used ie literature (e.g. see [23-25])

and lends itself to a mathematical tractability. For a gah@aussian correlation model, the
interested reader is referred to [26]. The authors in [26ppse a bayesian framework for
adaptive quantization at the sensor nodes, which requiessddack channel.

Infrastructureless networks

Infrastructureless approaches for distributed estimat@ve been considered in e.g. [27-31].
In [27] each sensor has a first-order dynamical system lizitich with the local measurements
and, only communication between nearby nodes is allowezhaging their local states. In
this paper, the authors prove that each node converges gidhally optimal ML estimator
under some stability conditions. In this class of estimgtgome latency in the estimation
turns up, since the process to achieve consensus is ieemathature. Hence, the energy con-
sumption, which is proportional to the total number of itemas, increases, as well. One could
think of decreasing the transmit power to reduce the enesggumption in each iteration but,
in that case, the connectivity would decrease as moreitesatvould be needed to achieve
consensus [28]. Besides, this paper studies the impacteoheébwork topology on the en-
ergy consumption and it concludes that a random deployrseneferable to a regular grid of

14
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Sensors.

Some algorithms have also been proposed in the contexgefttmacking with a WSN [32—-34].
In [34], for instance, the authors consider a linear dynairsgstem and propose a bandwidth-
constrained distributed Kalman filter. More precisely,leaensor is only allowed to broadcast
the sign of the innovation (1-bit) but, surprisingly, itsfe@mance is shown to be close to that
of the traditional (i.eanalog Kalman filter.

2.3 Information theory

In this section, we attempt to establish a link between thimasion theory and the information
theory. This will be needed in Chapters 4 and 5 where a nunfbefasmation theoretical ap-
proaches will be adopted to encode observations at thersendes. After a reminder of some
definitions, in Section 2.3.2, we introduce the concepbos$lescompression for discrete ran-
dom variables. Next, in Section 2.3.3 we outline the prilegmflossycompression. Finally,
the source-channel separation theorem is discussed iw®2c3.4.

2.3.1 Reminder of definitions

Let X, Y be two discrete memoryless sources igint pmfpx y (z) and marginal pmf'®y (z)
andpy (y), respectively. We introduce the following definitions:

Entropy The entropy of a random variable is defined as follows:

Z px(7)log px (z).

Joint entropy Likewise, the joint entropy of two random variabl&sandY” is given by

H(X,Y) 2 =Y pxy(z,y)logpxy(a,y).

x7y

Conditional entropy The conditional entropy ok givenY reads

H(X]Y) & - ZPX,Y(% y) log px |y (z]y).

x?y

Mutual information The mutual information o’ andY is defined as follows:

15
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H(X) H(Y)

Figure 2.5: Graphical interpretation [35, Chap. 2].

I(X;Y) 2 ) pxy(x,y)log ]%

= H(X)— H(X|Y)=H(Y) - H(Y|X)
= I(Y;X). (2.12)

In Fig. 2.5, the circles corresponding #6(.X') and H (Y") denote the information ok andY'.
Likewise, the joint entropyd (X, Y) is the union of the information ok andY". Therefore,
the conditional entropy? (X |Y') denotes the quantity of information of independent of".
Finally, the mutual informatiod (X; V) is the intersection of the information &f andY".

2.3.2 Lossless compression

In a lossless compression setting, the source observe@ @nttoder can be compressed to
a finite number of bits and still be almost perfectly recamstied. LetX be a memoryless
discrete source with a pmfy (z). Forlosslescompression o, the average number of bits
per sample must satisfy:

Rx > H(X). (2.13)

This compression rate can only be achieved by encoding laogks of samples. To show
that, consider a length-vector of independent realizations &f, i.e. x = (1), ... (™ with
probability Pr (x) = []_, px(z®). For largen, the total number ofypical sequences is ap-
proximately2”(X) and all typical sequences are equiprobable [35, Chapt&€@@jsequently,
the encoding-decoding process could be as follows:

16
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Ry

X —— encoder #1

R, decoder ——»X Y

Y —— encoder #2

Figure 2.6: Separate encodingdfandY’.

1. Atthe encoder. Randomly generate a codebadk containing all typical sequences, i.e.
2nH(X) codewords, and reveal it to the decoder. Each codeword hassaciated index
denoted by € [1,...,2"7%)]. Sincex is a typical codeword with high probability, it
will be represented with probability close to 1@ . Select the corresponding index
corresponding to codewosdand send it to the decoder.

2. At the decoder. Receive index. Select the codeword corresponding to the insléx
Cx and obtainx.

Correlated random variables

Typically, sensor observations are correlated. By prgpericoding such observations so
that redundant information is removed before transmissohstantial energy savings can be
achieved. To illustrate that, in this section we review tipéiroal encoding strategy for two
correlated sources.

Let X,Y be two discrete memoryless sources witmt pmf px y(z) and marginal pmf’s
px(z) andpy (y), respectively. According to the previous result, a rateRef, > H(X,Y)
bits per sample suffices to encode a large lengtiequencéz®, y™1)) ... (2™ y™), On
the contrary, ifX andY are observations available sgparateencoders (sensors), as depicted
in Fig. 2.6, by choosind?x > H(X) andRy > H(Y) we can reconstrucX andY perfectly

at the decoder. However, in the seminal paper of Slepian aolfl [86], it is shown that
(M M), ... (2™ y™) can be perfectly reconstructed at the decoder, if and onfigeif
corresponding rates satisfy the following conditions:

Rx > H(XI|Y) (2.14)
Ry > H(Y|X) (2.15)
Rx + Ry > H(X,Y). (2.16)

This rate region is depicted in Fig. 2.7. In other words, careadopt an encoding strategy with
a sum rate identical to that of the centralized case, whette dmurcesX andY are available
at the (joint) encoder. For instance, if encoder #1 encodes dt a rate oy > H(X)
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Figure 2.7: Achievable rate region [36].

then encoder #2, can assume thatwill be available at the decoder and, thus, encode its
observations at a rat@,, > H(Y'|X). This corresponds to one of the corner points of the rate
region shown in Fig. 2.7. Finally, we outline the correspagdencoding-decoding strategy
which allows the system to operate at one of the corner poirttee achievable rate region:

1. Atencoder #1 Randomly generate a codebadk containing all typical sequences, i.e.
2m1(X) codewords, and reveal it to the decoder. Each codeword hassaciated index
denoted as; € [1,...,2"#(]. Then, look for the codeword which is jointly typical
with the lengthr source vectok. Since,x is a typical codeword, it will be represented
with probability 1 inCx. Select the corresponding indexand send it to the decoder.

2. At encoder #2 Randomly generate a codeboBk containing all typical sequences,
i.e. 2"#(Y) codewords, and reveal it to the decoder. Randomly partttiencodebook
into 2"fv binsand reveal the partition to the decoder. Next, send the indde bin
sy € [1,...,2"%] to which the codeword belongs

3. Atthe decoder. First, receive index; and extrack. To decodey, the decoder looks for
the codeword, which is jointly typical withx in the bin pointed by index,. To prevent
from ambiguity, the number of codewords in each bin must be tear2™/ (XY which
yieldsRy > H(Y|X).

It is worth noting that the remaining points of the rate regaf Fig. 2.7 can be achieved
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through time-sharing.

2.3.3 Lossy compression

In some applications, allowing some distortion in the restnrction can be acceptable. For
instance, in the context of WSNs, one could think of decreptie amount of transmitted data
(and, thus, the energy consumption that it entails) at tiee@f increasing distortion in the
resulting estimate. Besides, for continuous (ia@alog sources, an infinite number of bits
would be needed to achieve zero distortion in the estimatkgh is not realistic. For this
reason, in subsequent sections, we review some basicg@suliate-distortion trade-offs in
lossy data compression.

Rate-distortion function

Letx = 2z, 2@ ... z(™ be the set of observations agd= V), ... 2™ their estimates at
the decoder. Then, for a given distortion mettie, -) the distortion for large: is given by

D=d(x,%) = %id (2, 2@) (2.17)
— By [d (X, Xﬂ (2.18)

which follows from the law of large numbers. From [35, Chai8], the rate-distortion func-
tion can be defined as:
R(D) 2 min I (X; X)
f)%\x(ﬂx):]Ex,X[d(Xfx)]gD
where the minimization is over all conditional distributsf ;| (|x) for which the distortion
constraint is satisfied.

Gaussian source For a zero-mean Gaussian souf¢ev A (0, 02), we have that [35, Chapter
13] (see also Fig. 2.8)
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The encoding-decoding process would be as follows:

1. At the encoder. Randomly generate a Gaussian codeb6atontaining2™#”) code-
words, and reveal it to the decoder. Each codeword has assd@n index denoted as
s € [1,...,2""P)]. Then, look for a codeword which isdistortion typical® with the
length# source vectok. Select the corresponding indexand send it to the decoder.

2The definition for distortion typical can be found in [35, Qier 13]
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Figure 2.8: Rate-distortion function for a Gaussian so@ée= 1).

2. Atthe decoder. Receive index. Select the codeword corresponding to the inglexC
and obtainx.

Rate-distortion function with side information at the decoder

In this section, we ask ourselves about the impact of havsrgjde information at the decoder
some random variabl& which is correlated withX. To that aim, letX, Y be two continu-
ous memoryless sources with joint probability density fiorcfx y (=, y) and marginal pdf’s
denoted byfx(z) and fy(y), respectively. From [37], the rate-distortion functiorthwside
informationY” at the decoder reads

Ry (D) £ min (I(X;W)—=I1(Y;W))

Jwx (w]x),g:Ex w,y [d(z,9(y,w))]<D

whereW stands for an auxiliary random variable denoting the endagesion ofX. In the
next paragraphs, we outline the encoding-decoding sirategre we assume both the proba-
bility density functionfy, x and the reconstruction functignto be known.

1. At the encoder. From fyy x(w|z), computef(w) = [ fx(x)fw|x(w|z)dz. Then ran-

domly generate a codebodkcontaining2"® codewordsw(s) ~ [, fwr(w®) in-
dexed bys € 1,...,2"% with R, = I (X;W). Randomly partition the codebook into
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2"% bins. Next, look for the codeword/ which is jointly typical with the source vector
x and send the index of the bin where the codeword belongs to.

2. At the decoder. First, receive the index of the bin where the codewartielongs to.
From this, select the codeword which is jointly typical witte side information given
by y. To prevent from ambiguity and ensure that the only joinglyital codeword with
y is the intended transmittest, the number of codewords in each bin must be less than
2 (W3Y) “which leads toR > I (X;W) — I (Y;W). Finally, compute the per sample
estimate, i.ez™, ... 2™ = g(w®, yM), ... g(w™,y™), with average distortiom.

It is worth noting that this problem is similar to that of ltsss compression with correlated
sources. Unfortunately, the extension of the setting of Rig for a lossy compression sce-
nario continues to be an open problem, and only some probdénméerest have been fully
characterized (e.g. the quadratic Gaussian CEO problen [38

2.3.4 Source-channel coding separation principle

In a sensor network, sensor nodes not only have to compressliected samples but also they
have to transmit them over a noisy channel to the FC. From@8apter 8], in point-to-point
communications, source channel separation is optimal.eNdoecisely, a discrete source can
be perfectly reconstructed at the decoder if the followmgguality is satisfied

nH(X) <mC, (2.19)

where, in the above expressian denotes the capacity (in bits per channel use) of a memory-
less channel characterized Jijy|~) (see Fig. 2.9), ang" denotes the ratio of channel uses per
source sample. The encoding/decoding process is as follows

e At the encoder: First, then samples of the sourc& are encoded and represented by
an indexs which, as commented in Section 2.3s2¢ 1,...,2" @) The index is used
as an input for the channel coding stage. The channel coétedamsists of at most™¢
codewords. A one-to-one mapping of each source codewondairmhannel codeword
exists ifnH(X) < mC. Finally, the channel codeword corresponding to indes
transmitted to the decoder.

e At the decoder: The decoder receives(see Fig. 2.9) and, since the encoder is trans-
mitting at the maximum rate which can be reliably supportgdhe channel, i.e.C,
the transmitted codewory (see Fig. 2.9) is decoded without errors. Next, the channel
decoder propagates the index of the transmitted codewdtetsource decoding stage.
Finally, the decoder looks for the source codeword assetti@tindexs and obtains.
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Figure 2.9: Separate source and channel coding.

Clearly, the fact that the source and channel coding candaget (andptimally solved) as
independent problems leads to a high degree of modularityemmplementation of commu-
nication systems.

Unfortunately, this optimality does not hold for multi-teinal settings such the Chief Ex-
ecutive Officer (CEO) problem of [39]. In the quadratic GaassCEO problem,N sen-
sors/terminals observe a common source of intereshbedded into (independent) Gaussian
noisen; ; ¢ = 1,..., N. Sensors encode their observations for transmission onerligple-
access channel. The destination, or fusion center, recéivedata and produces an estimate
of z, that is,z. For this setting, the separation of source and channehgogas shown to
be suboptimal for asymptotically large WSNs [12]. To thahathe authors proved that for
Amplify-and-Forward (A&F) strategies, where sensors $rait scaled versions of their obser-
vations, the distortion decreases in the number of sengstesas in the centralized case, that
is

1

Dagr ~ N’

whereas in a system where source and channel coding isctatrieseparately,

1
Dsep ~ log N

Still, such optimality can only be achievedatfl the A&F sensors can be fully synchronized
(which is difficult to achieve in practical scenarios).

2.4 Multi-user diversity and opportunistic communications

One intrinsic characteristic of wireless channels is thetdiation of the channel strength due to
constructive and destructive interference. This flucimtknown adading can be combated
by creating a number of independent paths between the titesand the receiver through
time, space or frequency diversity. Besides, in multi-ieahnetworks one can also exploit the
so-calledMulti-User Diversity (MUD).
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Figure 2.10: Channel fluctuations for two different users.

2.4.1 Opportunistic communications in wireless data netwds

Multi-user diversity is the result of having a large popidatof users with independent fading
conditions. In their seminal work, Knopp and Humblet [40jaddished the roots of oppor-
tunistic communications. Their work showed that in the niplof single-antenna multi-user
networks, the sum-rate under a sum-power constraint canalz@mzed by granting access to
the user experiencing the most favorable channel conditjsee also [41]). Similar results
were derived for the parallel broadcast (i.e. downlink)rofel in [42]. In Figure 2.10, we
depict the channel magnitude for two different users in thinl. In this example, diversity
appears in two dimensions: time and users. Here, one caniexpllti-user diversity by select-
ing at each time instant the user experiencing the mostd@®ichannel condition to the Base
Station (BS). Clearly, by increasing the number of terngr(al), the probability of having a
user with a stronger channel gain increases too.

With independent and identical fading conditions, oppuaigtic approaches exhibit long-term
fairness since, oaverage each user is scheduled the same number of times. Convéfsely
the fading coefficients areon-identicallydistributed these strategies become unfair. In the
WSN context, this could entail, for instance, that senstwser to the FC would die earlier,
which is not desirable. To avoid that, one can resort to Rtapwl Fair Scheduling (PFS)
strategies where the metric for the user selection isateimulatedhroughput in a sliding
observation window which ensures short-term fairness44p3,It is worth noting that all these
strategies assume that channels are fast-fading. Forfaliiwg scenarios, one can induce
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Figure 2.11: CDF of the strongest channel gain for differanmnber of users for Rayleigh-
fading channels.

pseudo-random fading by adopting the approach of [43].

The major drawback of all works cited above is the needjfobal andperfectCSI at the Base
Station (BS). For this reason, [45,46] analyze the impadetdyed and noisy CSl estimates on
multi-user diversity. To alleviate the need for global 8k authors in [47] proposed a simple
thresholding strategy, by which only those users with ckedgains above a given threshold
report them to the BS. In the literature, this strategy isskmas Selective Multi-User Diversity
(SMUD). By doing so, the load in the feedback channel dee®as the expense of a small
loss in terms of sum-rate. This follows from the fact thatréhexists an outage scheduling
probability for which no user reports its CSI to the BS. Instlituation, the BS randomly
schedules one of the users.

However, in the previous algorithm analog feedback is stifjuired. The case of quantized
feedback is considered in [48], where merely 1 bit of fee@lsadfices to capture the optimal
growth in capacity for an increasing number of users. Thdbislarge NV the capacity scales
asC' ~ loglog N. Similar results are obtained in [49] for multi-user MIMCQttsegs.

An opportunistic variation of the well-known ALOHA protold0,51] is introduced in [52] by
which the scheduling decision made by thaminalsare on the basis ddcal CSI only. Clearly,
this scheduling protocol suffers from packet collisions btill, it is shown to be asymptotically
optimal and to achieve the same capacity growth ratecas@alizedscheduler. More precisely,
the ratio of throughputs for the opportunistic ALOHA and tientralizedschedulers is shown
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Figure 2.12: Opportunistic carrier sensing of [54].

to bel/e for a largeN. The reader is referred to [53] for the the case that the vecean
handle multiple packet reception. .

2.4.2 Opportunistic schemes in wireless sensor networks

Although, the aforementioned strategies were derivedarcdntext of wirelesdatanetworks,
opportunistic schemes are also suitable for wiretessometworks. For instance, in a WSN
with a large population of sensors and a fixed communicatite pne can schedule each time
instant the sensor for which the transmission would reauhe lowest energy consumption or,
alternatively, the one with the larger residual energy.

In [54, 55], the authors proposed an opportunistic backoditegy where sensors choose their
backoff periods by mapping their corresponding channehsfth onto a common backoff func-
tion. The backoff function is aimed at minimizing the enecpnsumption and, hence, it pri-
oritizes the sensors with the most favorable channel cmmditoy assigning them the shorter
backoff times. For instance, for two sensor nodes with cebgainsy; and~; with v, > ~,,
sensors seleet andr, as their respective backoff times according to Fig. 2.12r&fore, the
sensor node with the strongest channel gaimns the one actually scheduled indéstributed
fashion to transmit its information, sineg < 7 and the second sensor will not transmit.

Opportunistic communications can also be useful for th@aoément of network lifetime [7,
56,57]. The definition of the Network Lifetime [58] is apmitton dependent but, for simplicity
and mathematical tractability, is typically consideredtestime elapsed until one sensor runs
out of energy. The work in [7] considers the sensor schedymoblem with different levels
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of information, namely, CSI, Residual Energy Informati&®E() and both. The conclusion is
that one should simultaneously use, REI and CSI to maxinneaetwork lifetime. The idea
behind that is to schedule sensors experiencing the mastifiale channel conditions when the
network is young and sensors with higher residual energmesthe network grows older [59].
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Chapter 3

Opportunistic Power Allocation Schemes
for Wireless Sensor Networks

In this chapter, the focus of our study is the analysis, imtgepf complexity and CSI re-
quirements, of different power allocation strategies fecehtralized parameter estimation
via WSNSs. First, we propose and analyze a class of Oppotitiiswer Allocation (OPA)
schemes. In all cases, only sensors experiencing favoctahdtions (e.g. with channel gains
above a threshold) participate in the estimation processlfysting their transmit power on the
basis of local Channel State Information (CSI) and, in soases, Residual Energy Informa-
tion (REI). Interestingly, the signaling and CSI requirentseassociated with the OPA schemes
are substantially lower than those of the optimal (i.e. vigliag-like) approaches, which de-
mand global CSI information in analog form and, still, the@rformance is virtually identical.
Next, for situations in which sensors are situated at a ldrgiances from the FC, we adopt a
hierarchical topology where sensors are grouped intoeisisin each cluster, a cluster-head
is in charge of processing and sending a cluster estimatetb€. For this network topology,
we carry out an exhaustive performance assessment ofatiff@ower allocation schemes.
Throughout the chapter, the proposed strategies are ceohpaterms of distortion and CSI
requirements.
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3.1 Introduction

The source-channel coding separation theorem by whichceaaumd channel coding can be
regarded as decoupled problems and thus be solved indeyibngds, Ch. 8], turns out to
provide suboptimal solutions in the caseMilltiple Accesshannels (MAC) with correlated
sources [12]. Conversely, an amplify-and-forward (A&Fpstgy is known to scale optimally
in terms of estimation distortion, when the number of useosvg without bound. However,
such asymptotic optimality is achieved if distributed dyranization of the sensor signals can
be orchestrated at the physical layer in order to achievenimaning gains. In the more real-
istic case of orthogonal sensors-to-FC channels, the euth$11] derived the optimal power
allocation for two different problems of interesj:the minimization of distortion subject to a
sum-power constraint, arig) the minimization of transmit power subject to a maximum dis
tortion target. In both cases, the optimal power allocaitogiven by a kind of water-filling
solution (referred to in the sequel as WF-D and WF-P) in wigehsors with poor channel
gains or noisy observations should remain inactive to sawep This finding builds a bridge
between opportunistic communications (originally addegsin a wirelesslata network con-
text for the multiple-access [40] and broadcast [42] chiEmmespectively) and the problem of
decentralized parameter estimation with wirelesssometworks.

The main drawbacks of [11,40,42] dajehe need foglobal (hamely, the terminal-to-BS chan-
nel gains forall the terminals in the network) aridstantaneou<SI at the Base Station or
Fusion Center; and) the computational complexity that water-filling solutgantail. Con-
cerning CSl requirements, they can be alleviated by resptti thresholding rules, e.qg. [47], by
which only terminals with channel gains above a predefinesstiold are allowed to feed back
information to the BS. By doing so, the signaling load desesaat the expense of a very mod-
erate performance loss [47]. Going one step beyond, [48]garohat, for an asymptotically
high number of terminals, just one bit of feedback (instekdmalog per terminal suffices to
capture the optimal capacity growth-rate of capacity. Aglie high computational burden that
water-filling solutions entall, it is addressed in [60] bygasing that power is evenly allocated
over a subset of terminals. This results in a simplified waliearg scheme from which the
subset of active users can be easily determined.

Notwithstanding, not only energy efficiency but also netwifietime is of interest in WSNSs.
The definition of the network lifetime (LT), namely, the aimbof time for which the network
is operational, is clearly application-dependent. Howef@ simplicity and mathematical
tractability, one typically defines network LT as the timapsed until one sensor runs out of
energy. In recent works [7], the authors show how a sens##eatithe scheduler of Residual
Energy Information (REI) in combination with CSI informatti is key to extend network LT.
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3.1.1 Contribution

In this chapter, we propose and analyze a class of Oppotiiswer Allocation (OPA)
schemes suitable for decentralized parameter estimaithnWSNs. We adopt the amplify-
and-forward technique proposed in [61] [11] and conveyseaBservations to the FC through
a set of orthogonal channels. Inspired by [47] [49], all tRAGschemes proposed here have
one feature in common: only sensors experiencing certaa lmonditions (i.e. channel gain
and/or residual energy above a threshold) are allowed tcjpate in the estimation process.
This strategy is aimed at retaining as much performance ssilgle of the correspondirapti-
mal power allocation scheme while keeping network signallind anergy consumption under
control. More precisely, the proposed opportunistic satemerely require the sensor-to-FC
channel gains of theubsebf active nodes plus sonstatisticalCSI* at the FC (in [11, 60] the
channel gains oéll sensor nodes are needeitl),onebit of feedback per sensor (instead of
analog signaling as in [47] or [11]); andl) local CSI and, possibly REI, at each sensor node.
In particular, we derive opportunistic power allocatiohames for the following optimization
problems:

1. Minimization ofdistortion (OPA-D)
2. Minimization of transmipower(OPA-P)

3. Enhancement of netwotietime (OPA-LT)

We also address the case in which the local channel stateriafmn available in the sensor
nodes is subject to impairments (e.g. noisy or delayed C8hates). For brevity, we focus
on deriving an improved version of the OPA-D scheme, retetoein the sequel as OPA-DR,
which isrobustto such imperfect CSl estimates. However, the extensiotiset@®PA-P and
OPA-LT schemes are relatively straightforward, as welk. &bthe above-mentioned cases, we
obtain closed-form expressions of the global reportingghold (only numerical methods are
used in [60] to compute the optimal cut-off point which, imrtudetermines the subset of active
nodes), and we derive the associated power allocation rulkeobasis ofocal CSI only.

Next, we adopt dierarchicaltopology which is suitable for scenarios with severe pa#s lo
in the sensor-to-FC channels. Here, sensors are groupedlidters where a cluster-head
acts as a local fusion center and consolidates the datargdtirethe cluster. The cluster-
heads are coordinated by the Fusion Center where the finalaggtn is obtained. Unlike in
previous works [62], our goal is tstimatea parameter and, to that aim, we explicitly consider
the impact of the network topology on the attainable acqur8y doing so, and unlike [11],
we can take advantage of the intra-cluster channel gains.algéeshow that balancing the
available power between the sensors and the cluster-heaflparamount importance and, in

1In some cases, REI information is also needed
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Figure 3.1: System model.

particular, we derive the optimal fraction of power dedéchto each subset for the Uniform
Power Allocation (UPA) case. Last, we discuss some hybridtisms which combine UPA
and WF power allocation schemes at the sensor and clusteriaeels.

The contents of this chapter have been partly publishedeneeces [63—68].

The chapter is organized as follows. First, in Section 3.2,present the signal model. For
completeness, we review the optimal power allocationegiats in Section 3.3. Next, in Sec-
tion 3.4, we introduce the proposed opportunistic powercallion strategy and the associated
communication protocol in a general framework. In Sectids, 3ve particularize the algo-
rithm to the problem of the minimization of distortion andrigle the corresponding reporting
threshold and power allocation rule. In Sections 3.6 and\8e/focus our attention on the
transmit power and network lifetime enhancement probleaspectively. Next, in Section 3.8
we present some additional results for a hierarchical nétwapology. Finally, we close the
chapter by summarizing the main findings in Section 3.9.

3.2 Signal model

Consider a WSN composed of one Fusion Center (FC) and a lamdation of N, energy-
constrained sensors which have been deployed to estimatekaown scalar, slowly-varying
and spatially-homogeneous paraméterhe observation at sensocan be expressed as

n=0+v, ; i=1...,N,. (3.1)

wherev; denotes AWGN noise of varianeg (i.e. v; ~ CN (0, 02)). We adopt an amplify-and-
forward re-transmission strategy and, consequently, ltiserwation at each sensor is scaled by
a factor,/p; before transmission. Hence, the received signal at the 8€Kgy. 3.1) can be
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modeled &%

Vi = \/Pin/G (0 +v;) + w; = \/pici + /picivi +w; 5 i=1,...,N,, (3.2)

wherew; stands for the i.i.d. AWGN noise (i.ev ~ CN (0,02)) and¢; denotes the channel
powergain. For non-frequency selective block Rayleigh-fadihgrmnels; turns out to be an
exponentially-distributed random variable of meanthat is,

fla) = e i, (3.3)
He
which is assumed to be independent and identically digewg.i.d) over sensors. In each
time-slot, only a subset oV < N, activesensors transmit their observations to the FC over
a set of orthogonal channels (e.g. FDMA). Consequentlyhe 1 received signal vectay

reads

y = hl + z, (3.4)
with h = [/picr, .. ., /chN}T and withz standing for AWGN with (diagonal) covariance
matrix C given bydiag [C] = [pic102 4+ 02, ..., pyeno? +02]". In an attempt to make our

estimator simple and universal (i.e. independent of angrquéar distribution of the noise), we
adopt the Best Linear Unbiased Estimator (BLUE) [18, Ch.Téle estimate at the FC is thus
given by

6= (W"C'h)'n’Cly. (3.5)
This estimator is known to be efficient (and, of course, usdxg for the linear signal model
described above and, hence, we can adopt the variance dsrdiciismeasure):

D =Var(f) =E {(0 ~9) 1 — (h’C"'h) " (3.6)

Since matrixC is diagonal, the above equation can be written as

N -1
H DiCi

i=1
from which it becomes apparent that the actual distortigmedds on the power allocation
strategyandthe number of active sensahs

3.3 Optimal power allocation strategies

In this section, we review theptimal power allocation strategy derived by Gatial. in [11].
More precisely, the authors addressed two problems ofastenamelyi) the minimization of
distortion for a given sum-power constraint angifhe minimization of the transmit power for
a given distortion target.

2Implicitly, we also assume pair-wise synchronization eweach sensor node and the FC.
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3.3.1 Minimization of distortion

The power allocation rule that minimizes the distortion ogiven sum-power constraint is
given by the solution to the following problem:

N, -1
. PiCi
— D2 4 02
D15+9P N, picios + of

i=1

No
st. (2+U)) p <P (3.8)

i=1

whereP; stands for the total transmit power afidU ... U} denotes the dynamic range of the
sensord From [11], itis given by the following waterfilling-like (\W-D) solution:

2 - +
pi= e | ] is1 N, 39
oaci [V 0w

In this last expression, the operafet™ is defined agxz]™ = max{x,0} and )\, denotes the
optimal water-level which is computed at the FC fremi = 1... N, in order to meet the
sum-power constraint. Clearly, only sensors with strorgneciels to the FC will be allocated
positive power g; > 0) and, thus, will become part of the subset'dofactive nodes. However,
the price to be paid for the optimality of such solution is tfetd: i) the need foglobal CSI

at the FC (the whole set of channel gains); @ndhe need for the FC to inform the sensor
nodes, on drame-by-framevasis, about the optimal water-level. This unavoidablyagnan
extensive signalling between the FC and the sensor nodesilintately, an increased energy
consumption (which is barely desirable in WSNSs).

When no CSl is available at the FC or in the absence of signgadihannels between the FC
and the sensors, one can alternatively resort to a UnifonvePAllocation (UPA) rule. In this
caseall the sensors remain active (regardless of their channeitommg) and evenly allocate
transmit power according to

Pi = —3; izl,...,NO. (310)

Reasonably, a substantial performance gap can be expetteedn the WF (optimal) and UPA
strategies in many scenarios.

3For the ease of notation, in the sequel we re-defipe= P} /(02 + U?).
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3.3.2 Minimization of transmit power

From [11], the power allocation rule that minimizes the kat@nsmit power under a prescribed
distortion targetDr, i.e.

No
min i
3
st. D<Dyp (3.11)

2 /\ +
pr = 2w [VC@ 0—1} . i=1,...,N, (3.12)
osci | ow

Again, \q denotes the optimal water-level which is computed at thele@t;;: = 1... N,

in order to meet the sum-power constraint. Clearly, onlyseenexperiencing high gains in the
sensors-to-FC channels will be allocated non-zero power (0) and, thus, will become part
of the subset oiV active nodes. As in WF-D, the drawbacks are again the nedatainglobal
CSI at the FC and the need for the FC to report, drame-by-framéasis, about the optimal
water-level.

3.4 Opportunistic power allocation: general framework

In an attempt to keep signalling as low as possible whileingtg part of the optimality of
the water-filling solution, we propose a novel Opportugigtower Allocation (OPA) strategy.
Before particularizing OPA to a number of problems of insgr@gninimization of distortion,
or transmit power, or enhancement of network lifetime), wefty describe the corresponding
communication protocol in a general framework, and distiissssociated CSI requirements.

3.4.1 Communication protocol

The Opportunistic Power Allocation (OPA) schemes operateing to the following com-
munication protocol:

1. Initialization : Compute and broadcast the reporting threshgld This threshold ulti-
mately depends on the design criterion: minimization oftthasmit power, maximiza-
tion of the overall distortion, or the enhancement of nekidetime.

2. |Identification of the subset of active sensorsEach sensor node notifies the FC whether
it will actually participate in the estimation process ot (gee Fig. 3.2). Only sensors
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Figure 3.2: ldentification of the subset of active sensoegisers notify the FC about their
intention to participate (left) and the FC informs abouttibenber of active sensors (right).

above the threshold will participate. Tiemberof active sensors in each timesigt
N = N]s], is then broadcasted by the FC (see Fig. 3.2).

3. Power Allocation and Transmission The N active sensor nodes adjust their transmit
power accordingly and send their observations to th& FC

4. Go to Step 2

3.4.2 CSlrequirements

Prior to further formalizing the algorithms, we will briefsummarize the signalling and CSI
requirements associated with this protocol.

e At the Fusion Center. As will be shown in subsequent sections, ostgtistical CSl
(and, in some cases, REI) is needed in order to compute tlsectimrm expressions
of the reporting threshold in Step #1. The channel gains @ktlbset of active nodes
are also necessary to estimate the underlying pararfietecording to (3.5), whereas
in [11,60] all the channel gains must be known to the FC. Asthated in Section 3.5.3,
the average number of active nodes is on the order of 10-20¥%eai/hole population.
Consequently, the savings in terms of signalling and eneogggumption are potentially
very high.

¢ At the sensor nodes Each sensor must be aware of @wn channel gaih (i.e. local
Channel State Information) and, possibly, REI in ordej ttetermine whether it belongs
to the subset of active nodes (Step #2); mphddjust its transmit power accordingly (Step
#3). Besides, the number of active sensors in each timesist also be broadcasted by
the FC.

4The task of scheduling active sensors on orthogonal chaimeélegated to the MAC layer and, therefore, is

out of the scope of this work.
5To that extent, a training sequence could be sent by the Fleabeginning of each timeslot. However,

most of the energy consumption here is restricted to thesinétter (the FC) rather than the receiver (the energy-
constrained sensor node).
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Finally, one signalling bit is needed for each sensor tocaid to the FC whether it belongs or
not to the subset of active nodes in the current time-sl&8R).

Interestingly, in a waterfilling-like solution the comptitanal complexity at the FC is a conse-
guence of the sorting algorithm. The computational complesf the best sorting algorithm

is O (N, log(N,)), whereas forll OPA schemes, the only operation carried out at the FC is a
sum in order to obtain the total of number active sensor n(ekesstep #2 in Section 3.4.1).

3.5 OPA for the minimization of distortion (OPA-D)

Here, we attempt to find a threshold, that minimizes the expected distortion (w.r.t. the
channel realizations and the number of active sensorsgsiuioja sum-power constraint:

N —1
* DbiCi
v = argmind By o <§:7> (3.13)

Yth —t piciag + (7121;

No
=1

We propose to uniformly allocate the available transmit @oamong the set @fctivesensors
only, namely

(3.14)

b — Zoife>ym 3 i=1,...,N,
‘ 0 otherwise.

since, in this way, we avoid wasting resources in sensorsreqring non-favorable channel
conditions (e.g. as occurs in UPA schemes, wlakesensors transmit with identical power
levels). From Figure 3.3, the idea behind the OPA-D schente mimic the optimal sensor
selectiorof the waterfilling-like solution but, differently from (8), the transmit power for each
sensor node (after selection) is selected regardlessatmeth gain. Accordingly, the OPA-D
strategy retains:

1. The simple power allocation of the uniform power allocati

2. Some of the optimality of the WF-D solution by only actimgtthose sensors experienc-
ing favorable channel conditions.

In these conditions, the optimal threshelf] can be found by solving the following optimiza-
tion problem:

Pr_ 2., =2
=1 N Ci0y T 0y

N PTC -1
Yen = argrffun Eniven | Efev 1N (Z jon ) : (3.15)
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Figure 3.3: Graphical interpretation of the OPA-D strategy

Unfortunately, this last expression is barely tractablestéad, we find a lower bound of the
argument in (3.15) which entails the use of the joint pdf eftthndom variable&c; } ¥, | N; v
(or {¢;}¥ ;; v in short); and the pmf ofV; v, that will be derived next. Sincée; }Y ;v
are i.i.d. random variables, it suffices to find the pdf of trergmal truncated random variable
¢i; Y- One can easily prove that:

Jth

fc- (:E) Che _ =z
. = - = c 3.16
fCu’Ych (ZL‘) 1 o Fci (Vth) ,uc e » ) S [’7th; OO) 9 ( )

whereF,.(-) denotes the CDF functidhof the r.v.c;. Besides, for each truncated r.v. we have
thatE,,.,, [2] = [ @ fein (2) = pie + . COncerningV; vy, it clearly follows a binomial
distribution:

Pe(y =nisa) = () (1= )" (3.17)

_Jth

with individual probability of activation given by = 1 — F., () = e # . Bearing all the
above in mind, expression (3.15) can be lower-bounded ks

N Pr 1
N C;
EN; Yth {Ci}'71|NWth z : Pr 2 2
= X _N 1% + g,

i=1 v w
o -1
N Pr.
> E E NG
— Niven {ei} il vm Z Pr . 2 4 452
— N, oy

5To recall,c; is an exponentially-distributed r.v. with meap
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-1
> EN- PT (,uc + /Yth)
B o P—]\}F (fte +Yin) 02 + 02

-1

Pr (pte + 7n)
Npﬁ (fe +Yen) 02 + 02

oe M

>

(3.18)

The first inequality holds becau&d 1/g(x)} > 1/E{g(z)} as long agj(x) is a positive and
concave function [69, Ch. 3]. The two remaining inequaditiellow from the fact that the
arguments in the expectation terms are convex end N, respectively, and thus, the Jensen
inequality applies. Finally, since (3.18) is convexin, its optimal values;; , can be found by
setting its first derivative to zero, which leads to the faliog expression:

1 YthtHe 1 NOO'2 M€
e e =yl ——o—. 3.19

Tal] +lie
By definingz = 2472, we have

1 | N,o2uce
=Wol st/ —55%5— |- 3.20
z 0 (2 Pro2p. ) ( )

+
1 | N,ole
=1 2u.Wo | = 9w — e 3.21
Vih [u o<2 PTa?,uc> u] (3.21)

and, finally,

whereW, (=) stands for the positive real branch of the Lambert functidwctv is defined as
x =W, (z) eVol@),

Figure 3.4 shows the actual distortion value (computed migaley) and the convex lower
bound given by equation (3.18) as a functiomgf. Clearly, the bound is tight, in particular,
for large networks when the Jensen inequalities above beewen tighter. Consequently, we
will incur in marginal performance loss resulting from theewof the approximate threshojg,
instead of the actual ohe

In order to give some insight into the behavior of the (apprate) threshol*d’yg‘h, we depict

in Fig. 3.5 the corresponding individual probability of iation, i.e.,p = ¢~ as a function
of the transmit powerPr. First, one can observe that for an increasing transmit pcive
probability of activation grows, as well. In other wordspe@ power is not a scarce resource
anymore, a higher number of sensors are allowed to partecipahe estimation process (even
if their contribution might be somewhat marginal due to lessrable channel conditions).
Second, the growth rate of the individual probability ofization clearly depends on the quality

of the sensor observations. For observations with pooitgyelg. o> = 0.1), the system tends

"To insist, the important aspect here is that the approxithatshold is very accurate; the fact that it was
obtained from a lower bound is incidental.
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Figure 3.4: Actual distortion and lower bound as a functionf oy,.
(N, = 500, Py = 50,02 = 0.01,02 = 0.1, . = 1).

to activate more sensors in order to average out the obgarvaiise. Conversely, in scenarios
with higher observation qualities (e.gr> = 0.0001), to select the sensors with strongest
channel gains is more beneficial.

3.5.1 Asymptotic analysis of the distortion rate

In this section, we analyze the rate at which the distortexrelases when the number of sensors
grows without bound. To that aim, we resort to the derivabbasymptotic lower and upper
bounds for the distortion attainable by the OPA-D and WF4latsgies, respectively.

OPA-D: asymptotic upper bound

According to the previous section, the thresh@idstands for the minimum channel gain for a
sensor to be active and, thus, the channel gains attitesensor nodes can be lower-bounded
by 4;,. By doing so, the distortion for a particular realization/éfcan be upper-bounded as

follows:

1
P~
Dopa—p < DgE,A,D,UB = <¢> : (3.22)

Prxx 2 2
N’ythgv +O_w
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Figure 3.5: Probability of activation vs. total transmitygr for different values of the obser-
vation noise variance? (N, = 300, 02 = 0.1).

On the other hand, in Appendix 3.A.5 we prove that

Pryg,
. o2 P
lim —— 7 L, (3.23)
Ny—o00 TVth

P
T x% 224 2
N Yen s T

whereZ denotes convergence in probability. This result statesdistéortion for the OPA-D
scheme decreasasleastwith a rate given by

o2 o2

DSoa ~ =Y~ © . 3.24
OPA—-D,UB PT’V:h PTWO (No) ( )

As expected, in the OPA-D strategy adding sensors to theanktpays off. Conversely, in
the case of Uniform Power Allocation (UPA) over all sensamsyeasing the network size is
known to be not worthwhile, since distortion converges toastant value [11].

WEF-D: asymptotic lower bound

The fact that the optimal power allocation (WF-D) is complby means of a waterfilling-like
algorithm, makes the asymptotic analysis of the distortete extremely involved. Alterna-
tively, we derive an absolute lower bound for any power atmmn strategy. To that aim, note
that distortion in (3.7) can be lower-bounded by considgrmnoiseless sensor observations,
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namelyos? = (0. By doing so, we have

N, -1
D> Dig = ( p—;cZ) . (3.25)
g,

i=1 W

It is straightforward to show that the optimal power allagatwhich minimizes this lower
bound (subject to a sum-power ConstraEﬁ’1 p; = Pr) is to allocate all the available power
Pr to the sensor with the highest channel gain, that;is; Pr if i = argmax¢;. Therefore,

the distortion for the optimal power allocation of [11] famas? > 0 can be lower-bounded by

p 1
Dwr-p = Dwr-p,1B = (J—QT mz&XCi) . (3.26)

w

On the other, for a large number of sensor nodes one can prave t

max ¢;
i P

1, (3.27)

lim
No—oo g [max ci]
(2

which follows from Tchebychev’s inequality. Besides, fr¢rd] we have that

and, further,
No

> it~ log(N,).

i=1

Hence, from (3.25) (3.26) and (3.27) one finally concluded the distortion for any power
allocation strategy and a large network size de@dynostat a rate given by

0.2

Dy ~ 3.28
WF-D,LB PT lOg(NO) ( )

OPA-D: asymptotic distortion rate

For an arbitrary number of sensors, thstortionattained by OPA-D with theptimalthreshold
7, necessarily lies between those of OPA-D with an approxirtfatesholdy;;, and WF-D.
This also holds true for networks with an asymptoticalljgamumber of sensors. In this
circumstances, expressions (3.24) and (3.28) revealethérate at which distortion decreases
in OPA-D can be upper- and lower-boundedB§,, p yg and Dy p g, respectively. From
[71], it is straightforward to show that

D®r p.is _ Wo(N,) _
D8pa_pyg  No—oo log(No)

(3.29)

40



3.5. OPA for the minimization of distortion (OPA-D)

namely, the rate at which the distortion for, on the one hahd,OPA-D scheme with the
approximate threshold and, on the other hand, WF-D scheemeake isdentical Conse-
quently, the distortion associated to OPA-D (with ty@imalthresholdy;,) also decreases at
the same rate that WF-D does when the number of sensors grilaautvbound. In other
words, there is no penalty (in terms of distortion ratespeisded to the use of OPA-D instead
of WF-D.

3.5.2 Imperfect channel state information: OPA-DR scheme

In realistic scenarios, only imperfect (e.g. noisy or del#}yCSI estimates are available at the
sensors. Under this assumption, we derive next the comespg reporting threshold.

To start with, leth; and ﬁi denote the actual channel response and its estimate;; amdi ¢,
denote their respective squared magnitudes. We can madethmnel estimate as [72, Ch. 8]:

hi=hi+e : i=1,...,N, (3.30)

wheree; is the estimation error which is i.i.d. over the sensors amtpendent oh;. Fur-
thermoreg; is modeled as a complex circular Gaussian random variablar@nces?. With
these assumptions, andh; turn out to be related through a Gaussian model and, heree, th
conditional random variabl/ez-|l%l- follows a Gaussian distribution, that is,

with
2
He 2 HeO;
= e ) 3.32
=t YT o (3.32)

Hereinafter, we attempt to minimize of distortion with suoiperfect channel estimates. The
expected distortion w.r.t. thectualchannel realizations (which determine the distortion & th
estimate), thestimate®f the channel gains (on the basis of which sensors decidthetihey
belong to the active subset) and the number of active sersas

N Pr -1
E E Y —— (3.33)
Novn | P il el Ny Proo2 1 52 -
i=1 N v w
N Pr -1
> E E > N
= Niten {eitily el N Proo2 1 52
i=1 N v w

= EN;'YH) ( z :Ecz CZ‘N Yth

P
Tcla2 + 02

Pr. ;2 2
~ Ci0y + 0,

) . (3.34)

= EN;’Ym (E :Eéi|N;’Yth [Eci@i
=1
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Again, the first inequality holds becauBgl/g(z)] > 1/E [¢(x)] as long agj(x) is a positive
and concave function [69, Ch. 3] w.rd. (notice that the argument in the expectation term does
not depend oi;). The last equality holds because the random varighkindependent of the
selection process given. From [73, Ch. 2], we have that

2
He
Eéi;%h [EC\@' [CH = e + (Iu T 0_2) Yth- (335)

From the above expressions and by repeatedly applyingdsmsequalities, a lower bound of
(3.34) the average distortion (3.33) reads

-1
2
He + (#) Vth

2
Pr He 2 2
+ o-+ o0
Me™ e (,uc <M0+03> %h) v

where the effect of the uncertainty in the channel estimbég®mes apparent. To be more
precise, the larger the uncertainty, €. — oo, the larger the lower bound of (3.36).

(3.36)

Finally, after some algebra, the approximate threskg|avith imperfectCSI can be expressed
in closed-form as follows:

+
Hc+Ug

1| No2 (et 02) e | pot o2
2,uc PTO'g He

Yoo = | (e +02) | 2Wo (3.37)

In the sequel, the opportunistic power allocation schemiglwbperates with such reporting
threshold will be referred to as Robust OPA-D (or OPA-DR).expected, with perfect CSI
(i.e. o2 — 0) the above threshold converges to that of OPA-D which isrgivg equation
(3.21). Conversely, in scenarios with very poor CSI quadith? — oo) the system mimics
the behavior of a UPA scheme, naméfy — 0 (see proof in Appendix 3.A.2). Indeed, when
no reliable selection of sensors can be carried out becdussaypoor CSI on sensor-to-FC
channel conditions, the best thing to do is to let all the senparticipate in the estimation

process.

3.5.3 Simulations and numerical results

In Figure 3.6, we depict the average distortion attainedhey@PA-D scheme as a function
of the network sizeJ,) for a given sum-power constraint. First of all, one obssrit the

proposed opportunistic power allocation scheme perfoensarkably better than its uniform
power allocation counterpart: in OPA-D curves the overasflattion is150 — 280% lower than

in UPA. As expected, saving the available power for thoses@enwhich experience better
channel conditions definitely pays-off. More importanthg performance of OPA-D is virtu-
ally identical to that of the WF-D (i.e. optimal) power alit®on scheme. To insist, the WF-D
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Figure 3.6: Average distortion vs. network sizér(= 50, 0> = 0.01, 02 = 0.1). The
performance of OPA-D was evaluated with the approximatestiwldy;;, in (3.21), whereas
markers on that curvex) show results with the true optimal thresholg that was computed
numerically.

scheme requires full and instantaneous CSI fadhthe sensors in the network, whereas in
OPA-D this is only needed for the subset of active nodes galith somestatisticalCSI. Be-
sides, OPA-D effectively exploits multi-user diversitys (@e proved in Section 3.5.1) whereas
UPA quickly saturates, as already pointed out in [11]. Fin&he performance loss resulting
from the use of the approximate optimal threshgidcomputed with the closed-form expres-
sion (3.21) instead of the actual one (which can only be cdathboumerically) is negligible
for the whole range of values @f, considered. That is, the inequalities that we resorted to in
the derivation of the lower bound are tight &y = 50, .. ., 650.

The gain of OPA with respect to UPA is better illustrated igufe 3.7. For a low transmit
power constraint, OPA-D and WF-D schemes exhibit a sulbistagdin with respect to UPA.
Conversely, this gain decreases for an increasing tramsmiér Pr. In that case, both WF-D
and OPA-D tend to activate the whole set of sensors.

In Figure 3.8, we depict the average number of active serfsorthe OPA-D and WF-D
schemes. Interestingly, the number of active sensors isiraveer for the OPA-D scheme.
However, the gain that the WF-D strategy attains with angased number of active sensors
was shown to be marginal. Consequently, it is preferablenitoumly allocate power to a
smaller subset of sensors with high channel gains (OPA-B)aasher than spread resources
thinner and allocate some power to sensors with low chareesgWF-D) that, ultimately,
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Figure 3.7: Distortion vs. sum-power constraiit (c2 = 1,02 = 0.1, N, = 100)

would have a very limited contribution to the reduction af thverall distortion in the estimate.
Such reduced number of active sensors translates into anelased requirement in terms of

1) the number of orthogonal FC-sensor channels neededi)aheé number of channel gains to
be estimated at the FC. In Figure 3.8, we also observe thatdh@ttegies tend to activate more
sensors as the transmit powef increases. As previously discussed, for very high values of
Pr the optimal solution is to uniformly allocate the power agadhe sensors (i.e. same as in
UPA).

In Figure 3.9, we plot the average distortion attained byQ@RA-DR scheme as a function of
the population size, and for different levels of CSI undetiaA, = 10 log(u./0?) for a given
network size {V, = 500 sensors). Interestingly, for all the OPA-DR curves, the &ttwhich
the distortion decreases mostly mimics that of the OPA-Dh(werfect CSI) and WF schemes.
Hence, OPA-DR is capable of exploiting multi-user divergitthe same way as such schemes
do even for high values ok, (e.g. A, = 0dB). Complementarily, in Fig. 3.10 we depict the
average distortion vs. the amount of CSI uncertaifity For A, = 15dB the performance
is virtually identical to the case of perfect CSI, and, mamportantly, withA, = 0dB it is
still significantly better than that of UPA. Indeed, the OPR-curve only approaches the UPA
bound (this meaning that no actual sensor selection isechouit) when the channel estimates
are of extremely poor qualityY, = —15dB).
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Figure 3.9: Average distortion of the robust OPA scheme eswork size for different values
of CSl uncertaintyA .( Pr = 50, 02 = 0.01, 02 = 0.1, approximate threshold).
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Figure 3.10: Average distortion vs. CSI uncertainty. Thigdsaurve depicts the performance
exhibited by the OPA-DR scheme’ = 0.01,02 = 0.1, N, = 500, P = 1, approximate
threshold).

3.6 OPA for the minimization of transmit power (OPA-P)

Energy efficiency is of paramount importance in wirelesseenetworks. Hence, we change
our design criterion and now we attempt to find a reportingghold which minimizes the total
transmitpowersubject to a given distortion constraint:

N
Yh = argmin E{Ci}ﬁilvNWth [Z pi] (3.38)

Yth
¢ i=1

st. D= Dr, (3.39)

whereD and D stand for the actual and target distortion, respectivaigni=(3.7) the overall
distortionD can be readily expressed in terms of the individual contidims D; of each active
sensor node, namely

Ny -1
DZ(ZE) . (3.40)

Note thatD; stands for the distortion if only sensortransmits its observation. Likewise,

for a givenV, (3.40) stands for the distortion when the subseiVo&ctive sensors transmit
their observations. Since onlgcal CSI can be assumed to be available at the sensor nodes,
we further impose their individual contributions to the miedistortion to be identical. To
guarantee that the constraint in (3.39) is met, wélet N D1 and force each sensor to adjust
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3.6. OPA for the minimization of transmit power (OPA-P)

—
:
g
2 ND, 2
E o=
Z z
- =
D, D, | Dy Dy, ; prle)| Paley) pa(es)
1 2 3 N N +1 NU 1 2 3 N N+1 NU

Figure 3.11: Graphical interpretation of the OPA-P strateg

locally its transmit power accordingly (see Figure 3.11). From)(3vé have that necessarily

1 2

pi =4 «(-whyot) t (3.42)
0 otherwise
fori =1,..., N,. Finally, the optimization problem can now be re-written as

N 1 0.2

* . ND w
Yen = argminEe v e Z L : (3.42)

Vth v —1 C; <1 1 0.2)
1= (3 NDT v

Again, the expression above is barely tractable. For tream, we derive a lower bound by
repeatedly applying Jensen’s inequality:

N 12 1 2

ND7%w Dy w
ENWth E{Ci}fvz1%7th Z - 1 - 2 EN;’Yth 7 1 9 (3.43)
i=1 Ci <1 - NDTUU> (:uc + %h) <1 - NDTUU>
1 2
> Pr v (3.44)

(MC + 'Vth) <]‘ - DTNoel_’Yth/“C Ug)

The argument of the first expression is clearly convex;inAs for (3.43), the argument is
convex inN as long asV > [02/Dr]. This means, in turn, that the target distortibp
can be actually met since otherwise the transmit pawewrould take negative values (see
equation (3.41)%) As itis shown in Appendix 3.A.3, for larg®,, the probability of the event
{N > [¢%/Dt]|} can be made arbitrarily close to 1 and, thus, the bound we exreirt is
almost surely valid.

Finally, we have to prove that the lower bound in (3.44) isvexnin +;;,. Note that the denom-
inator in (3.44) is concave and positive fof, € [0, u.log (DTN,/c?)). Sincef(z) = 1/z
is convex and non-increasing ine Rt by composition [69, Ch. 3] we conclude that (3.44)

8Actually, Nee, = [02/Dr] can be interpreted as the minimum number of observatiordeuka acentralized
scenario to attain a prescribed distortion lefal with noisy observations of varianeé.
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is convex invyy, € [0, uelog (DrN,/0?)) which, as detailed in Appendix 3.A.1, is the only
domain ofyy, in practice. Setting its derivative to zero yields

» DypN,e? *
5= [ucvvo( = )—m] | (3.45)

v

As in previous designs, the tighter the inequalities, tlset the approximate threshojg,
will be to its optimal valuey;,,.

3.7 OPA for the enhancement of network lifetime (OPA-LT)

As far as this section is concerned, we define network lifet{tT) as the time elapsed until
the first sensor runs out of energy [58]. When this occursteéheaining/V — 1 active sensors
scheduled in a timeslot are not capable of attaining thecphesd distortion level. Suchsti-
mation outageoccurs because power was allocated under the assumpti@vioghV active
sensors (see Eq. 3.41) whereas aNly- 1 conveyed their observations to the FC.

Clearly, any sensor scheduling scheme aimed at increastagrk LT should take into account
not only the channel propagation conditions (as done in tegipus sections) but also the
information on the residual energy in the nodes (REI). In gpgit of [7], we let sensoi
participate in the estimation process if and only if the prcicf its residual energy in time-slot
s, €;[s], and the channel gain is above a threshold, namelyic; > ~w[s]. In other words,
sensors experiencing favorable channel conditeordssufficient residual energy are scheduled
with probability

_ Jth [s]

Pr (eisles > qunls]) = e o (3.46)

This selection strategy is known to enhance the networkitiiewhile, as we will see later on,

it keeps the transmit power reasonably low [7]. Howeventitaduces individual thresholds for
eachsensor (instead of a single reporting threshold, as in ORBAdPOPA-D) which have to be
re-computed during network lifetime and not only in theialization phase. Note also that the
energy vectdre[s] = [e:[s],...,en,[s]] isS @ non-stationary stochastic process the individual
entries of which are locally updated as follows,

eils + 1] = ei[s] — pi[s]Ts  with g,[0] = &, (3.47)

wherep;[s| denotes the transmit power in skotT}, is the duration of the timeslot ang stands
for the initial energy. As for the power allocation rule, wgain force each active sensor to
evenly contribute to the overall distortion, that is, eaehsor adjusts locally its transmit power
according to (3.41).

%We assume that the energy budget is dominated by energyroptisn during wireless transmission
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In this context, the optimal threshold, [s] is the one which minimizes the total transmit power
under this REI-based selection rtflenamely

N 1 2

Uw
Yils] = argmin § Epogy veuietd |27 . : (3.48)
el i=1 Ci (1 ~ ND1 Ug)

This problem is barely tractable and, again, we must res@tower bound. First, though, we
need to introduce three inequalities that will be usefulif@ derivation of the bound. Without
loss of generality, let[s] be anorderedvector, namelye;[s] > e3[s] > ... > ep,[s]. By
resorting to Jensen’s inequality, the average number ofeasensors (which, on the basis of
equation (3.46), can be computed as the summation of thédidil activation probabilities of
N, different binomial random variables) can be lower-bounaebllows:

[s] 1 [8]
EN;’Yth[s]vs[s Z ei EZ‘:[h lue > N e ZtClNO ZZ ! EZ[ . (349)
i=1
Besides, for an ordered vector of energies and for sdine N, the average number of active
sensors can also be upper-bounded (see proof in Appendig)3omn

_ tnls]

'Yth [s] . 27 | [
e;[slue c &;
EN;’Yth[s] 75[5 Z € Lol < N e relNo g (350)
i=1

for 0 < yu[s] < 4/, with o/ being defined in equation (3.56) ahead. The interest imbgtti
N! > 1 (for N, = 1 the inequality is trivial for anyy[s]) lies in the fact that the highe¥,
the tighter the resulting upper bound. Still, 3¢ > 1 the bound is only valid for part of the
function domain and, hence, one should first identifiand then letV’ take the highest value
possible for which the inequality holds. We will go back tasttssue later in this section.

From equation (3.49), it is straightforward to obtain th&t laequality that we need:

%h[b‘]
Eeor slefs] [€] < pe + il 3.51
enls]els) €] < p el (3.51)

-1
with H(e[s])1.n, = N, <ZZ ° &ils]” 1) standing for the harmonic mean of the firgs ele-
ments of vectog|s.

Now, by repeatedly applying Jensen’s inequality along whgtse inequalities (as displayed in

10As discussed in the previous paragraphs, the optimal thiesty, [s], which depends on the vector of residual
energies, has to be re-computed on a timeslot-by-timeakisb
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the equations below), we can finally obtain the lower bountthefscore function (3.48):

N 1 2

NDr%w
Eviaislels) B malsels Z " 1 (3.52)
i=1 C; <1 — N—DTO'U>
1 2
(3.51) =00
> EN:yonls).els] ~nls] - T (3.53)
<’uc + H(s[sbl:No> (1 o N—DTUU>

Dr (3.54)

>
('uc T H(ZE;)][)?:Nc.) <1 - ,1%})[51 Ui)
>

N, ;
w0 e Heelsl Dy

(3.50) L2

Dr . (3.55)

Yenls] . 1 9
(W+H@““)G HME%>
DTNOC ¢ )

)1:N{,

The argument in the first expression is clearly convex;inAs for (3.54), the argument is
convex inN as long asV > [¢2/Dr|, as discussed in the previous section. The highest value
of v, [s] for which (3.55) is still a convex function occurs when thea®d term in parenthesis

in the denominator, which is a decreasing function,ifis|, tends to zero (for negative values,
the bound is not a convex function anymore). Hence, we have:

, N,D
vzmﬂwmnmm(ag) (3.56)
and, from this value, the FC can compute the highest valu€/dbr which inequality (3.50)
holds true. Finally, by setting its derivative respectjig(s| to zero, we obtain the threshold
vi[s] which minimizes the bound, that is,

Hels)) ),y +H (D1 N, +
) DTNO€ HelsDy, n1 H(€[3]>1:No + H<€[S])1:N{,
Vinls] = peH (€[s])1:n; | Wo o2 N H(els)) 1w
(3.57)

which can be shown to lie withifd, 7') (the analysis is similar to that in Appendix 3.A.1).
From the equation above, one notices that the thres}iplel depends on the residual energy
vectore[s] and thus, the FC needs REI for its computation. Howevergtieeno need for
sensors to send updates of their REI. Instead,can be locally updated at the FC as in (3.47),
since both the individual sensors that are scheduled toda&tacand their channel gainsare
known to it.

Finally, in the case of identical residual energigss| = ¢[s] ; ¢« = 1,..., N, equation (3.50)
holds with equality for up taV, = N,. Thus, we have? (e[s]),.n: = H(e[s])1.n, = €[s] and,
by replacing (3.57) into (3.46) we realize that actual sesstection rule is identical to that of
the OPA-P case which simply disregards REI information.
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3.7. OPA for the enhancement of network lifetime (OPA-LT)
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Figure 3.12: Average transmit power vs. network sizg (= 0.001, o2 = 0.01, o2 = 0.1).
The performance of OPA-P (dashed curve) was evaluated hetlapproximate threshofg;
in (3.45), whereas markers on that curvg §how results with the true optimal thresholg
that was computed numerically.

3.7.1 Simulations and numerical results

In Fig. 3.12, we compare the average transmit power as aifumof the network size for a
given distortion target. First, we observe that the pertoroe of OPA-P is close to that of the
WEF-P (i.e. optimal) power allocation scheme. Note, howgabeatt such a marginal gain of WF-
P entails a much larger amount of FC-sensor signalling andamge of information. Besides,
the increase in the transmit power associated with the uS#P8¢LT can also be regarded as
very moderate§ — 10%); this is despite of the fact that the sensor(s) experienttie best
channel conditions might not be scheduled in some situgtifmn instance, when some other
sensor is running out of batteries. It is worth noting thathie OPA-LT case, it is not possible
(within a reasonable time frame) to numerically computetthe optimal thresholds and, as
in the OPA-P case, to check the performance loss w.r.t. theapnate ones derived with the
bound. Still, such curve would necessarily lie in betweeaséof OPA-LT (upper bound, given
by the approximate threshold) and OPA-P (lower bound, gbsea threshold which actually
disregards REI) which, as commented above, are very closado other.

For completeness, Figure 3.13 depicts the average numhbetioé sensors for the OPA-P and
WEF-P schemes. Again, the number of active sensors is suiadtalower for the OPA scheme.
Besides, one can notice that, the higher the observati@enitie higher the number of active
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Figure 3.13: Average number of active sensors vs. netwagkfsr transmit power minimiza-
tion.

sensors for both strategies. Clearly, as longascreases more sensors must be activated in
order to meet the pre-defined distortion target.

In Fig. 3.14, we depict the average network lifetime vs. teevork size for a given distortion

target. First, one realizes that WF-P and OPA-P yield coatgarnetwork lifetimes. More

importantly, OPA-LT almost doubles the LT obtained with thteer two solutions thanks to
a sensible use of REI information. However, as long as thediding rule and the reporting
threshold do not minimize the energy consumption at eack-slot anymore, the average
transmit power of OPA-LT, is slightly higher now (see Figl3).

If one incorporates REI into the scheduling process, the@snwith higher residual energies

are more prone to participate in the estimation task. Rougpgaking, by properly combining

REI with CSI into the scheduling process, one has a meansoocerenergy to be uniformly

spent over sensors time-slot after time-slot. This ex®ilustrated in Figure 3.15, where we
Oels

plot the energy dispersion definedxas= ﬁ and with

No

1
,us[s] = ﬁ Z & [8]

i=1

and

No

1
O¢ls] = F Z (gi [S] - 'us[s})Q

© =1
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Figure 3.14: Average network lifetime vs. network siZer( = 0.001, 02 = 0.01, 02 =
0.1, = 10).

denoting the mean and the standard deviation of the vect@sadual energies. In Fig. 3.15,
one clearly observes that both strategies, OPA-P and ORA#ID similar energy dispersion
values inyoungnetworks. The explanation for this behavior is quite stifigyward: during
the first iterations all sensors have approximately the sasieual energies, i.e. the energy
dispersion is already low, and, hence, the scheduler fdr $mititions relies mostly on the CSI.
However, as time elapses the OPA-LT scheme effectivelyogtgpthe REI information and
appropriately balances the residual energy in the netwhbi¥, resulting into lower values of
x-. More formally, such balancing is carried out througthe introduction of the harmonic
mean of the energy vector into the threshold given by (3.&7Jji) the fact that the r.v. which
is checked against such threshold encompasses the prddit andlocal REI.

3.8 Power allocation strategies for hierarchical sensor ne
works

So far, we have considered a flat network topology where alktnsors transmit their obser-
vations to asinglecoordinator, i.e the FC. Notwithstanding, in situationsenéhthere exists a

strong path loss between the sensors and the FC, e.g. duangeadistance between the FC
and the sensor nodes, flat networks might not be appropfiatethis reason, in this section
we re-visit the problem of decentralized parameter estonab analyze what power allocation
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Figure 3.15: Energy dispersion vs. network adge (= 0.001,e, = 30,02 = 0.01,02 =
0.1, N, = 500).

strategies are more suitable for hierarchical sensor mksyo

Hierarchical topologies for Wireless Sensor Networks hlagen addressed in a number of
works (see [62] and references therein), where the purpodesiering is either to minimize
the number of hops to the FC or to consolidate the amount @ skait. In our context, a
hierarchical structure is mostly introduced in order tousglthe complexity of the system, in
terms of CSlI, and in some cases to increase the accuracy estingates.

3.8.1 Network Model

Again, our goal is to estimate a scalar, slowly-varying apdtislly-homogenous parameter
6. To this aim, we adopt a hierarchical structure which is cosagl of the following network
elements:

e Sensorswhich are energy-constrained devices mainly aimed at sagigiie unknown
parametep. The Ny sensors nodes in the WSN are grouped iNtaclusters of sizeV
(namely,Ny = NN,.).

e Cluster-heads The purpose of the cluster-head is two-fold: to coordinlagesensors in
the cluster in order to obtain a local estimat&/@nd, also, to transmit such an estimate
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Figure 3.16: Hierarchical organizations of sensors

to the FC. As detailed in Section 3.8.3, the sensors withah eduster take turns in
becoming cluster-heads.

e Fusion Center. Its main task is to coordinate thé. cluster-heads and, also, to provide
the final estimate of the parameteto the user.

Hence our hierarchical WSN is organized in two layers. Tl fire. lower) layer is composed
of the N, clusters and their corresponding sensor nodes. The secendper) layer encom-
passes thé/. cluster-heads and the fusion center. Again, we consideoganal transmissions
by which each sensor in the first layer uses an orthogonaheham convey its observation to
the cluster-head, this resulting into a maximumM\of- 1 orthogonal channels per cluster. The
cluster-head could just send again the entire vector ofrgagens to the FC but, clearly, this
would result into a waste of resources in layer 2. Insteadagapt a more scalabkstimate
andforward strategy by which each cluster-head re-transmits its lesaimate. As a result,
the maximum number of orthogonal channels required in laysrestricted taV,, regardless
of the network size{y >> N.).
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Figure 3.17: System model.

3.8.2 Distortion analysis
Layer 1

The observation at sensomn the j-th cluster can be expressed as
Tij = 0 —+ Vi, j- (358)

where the random variablg ; denotes AWGN noise of varianeg (i.e. n; ~ CN (0,02)).
Again, in each sensor the observation is scaled by a fagfgy before being transmitted to
the cluster-head (i.eamplify-andforward). In the sequel, we assume non-frequency selective
Rayleigh block-fading and, further, pair-wise synchraian betweem) each sensor node and
the cluster-head and, between each cluster-head and the FC. Hence, the sigrealedat

the j-th cluster-head (see Fig. 3.17) can be written as:

i = w/inj‘ /Ci,j (0 + Uz‘,j) + ww‘ (359)

wherew;, ; stands for i.i.d. AWGN (i.ew ~ CN (0,02)) andc; ; denotes the channel power
gain which is modeled as an exponentially-distributed camd/ariable with meam.. Fur-
thermore, we assume that such channel gains are i.i.d esgossrs and, there is no path-loss
within the clusters (i.ei. = 1). In each time-slotN’ < N sensors transmit their observations
to the cluster-head over a set of orthogonal channels (BA) and, thus, thé N' + 1) x 1
received signal vectaoyr; reads

y; =h,0 + z,, (3.60)

with by = [\/piscig, ..., /onvyenry, 1] andz; standing for AWGN with (diagonal) covari-
ance matrixC; given bydiag[C;] = [p1c102 + 02, ..., pnjenr o’ + 02,02 . The last
element inh; anddiag [C;] accounts for the effect of the local observation at the etusead
which is also capable of taking measurements. The BLUE [$8jmate at each cluster-head
can be computed as

6, = (hI'C;'hy) ' nIC;ly;. (3.61)
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with variance given by

1

Var(f;) = E {(9} - 9)2] — (h’C;'hy) (3.62)

Since matrixC; is diagonal, the equation above can be written in compant &g

-1

N/
2 _ Ay PijCij 1
The BLUE estimator is unbiased and, thus, the resultingnegé at thej-th cluster-head can
be modeled as,

0, =0+e¢, (3.64)

wheree; denotes AWGN noise with varianeg.

Layer 2

Each cluster-head re-transmits its local estimate scaledféctor/+,, over one of the orthog-
onal channels. Hence, the signal received at the FC fronitheluster-head reads

T’j = wkg; (0 + ej) + wj, (365)

wherew; stands for i.i.d. AWGN (i.e.w ~ CN (0,07)) andg; denotes the channel power
gain from the cluster-head to the FC. Again, we assume tleatlitannel gains are i.i.d across
cluster-heads but, unlike in the intra-cluster case, wedhice a path-loss model. Hengg,is
selected from a set df i.i.d exponentially-distributed random variables withang,, = d;g,

with § standing for the path-loss coefficient, aig- denoting the distance from the clusters
to the FC. It is worth noting thaf; will actually depend on the cluster-head selection method
(see Section 3.8.3). In each time-sid, < N. cluster-heads re-transmit their observations to
the FC over a set of orthogonal channels and, finally/the: 1 received signal vectarreads

r=bl+v, (3.66)

whereb is a N/ x 1 column vector defined ds= [/¢1g1,. . ., s /z/;NégNé]T and,v is AWGN

T
with (diagonal) covariance matrix given diag [C,] = [z/zlglaf T o0, YNNI TN T
The variance of the BLUE estimator at the FC, which we wileals a distortion measurey,
is given by:

N/

~ < w]g*
Dp = Var(fy) = S L a— 3.67
" (Or) o Vigio} 4 o2 ( )
with
Or = (b7C;'b) " bTC;r. (3.68)
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From (3.63) and (3.67), one concludes that the overall distois a function of the power
allocation inboth layers. Therefore, for a given sum-power constraint therst®a trade-
off between the fraction of power allocated to every clustelayer 1 (and their associated
estimation variances), and the power allocated to layertficfwalso impacts on the overall
distortion). In Section 3.8.4, we derive some strategiesediat carefully balancing the power
allocation between layers in such hierarchical orgaronasti

3.8.3 Selection of the cluster-head

Let g, ; denote the sensor-to-FC channel gain of #l sensor in clustej. At each time
instant, the sensor in each cluster experiencing the masttahle channel conditions becomes
the cluster-head, that'fs

g; =max{g;} 1<j< N (3.69)

Note thatg; is the first order statistic of an exponential parent distidn drawn from a popu-
lation of size/N. Hence, its pdf is given by

for(x) = NF () f(x), (3.70)

where F'(x) and f(z) stand for the CDF and pdf af, ;. This cluster-head selection method
has two advantages) the sensor experiencing the most favorable channel gondits the
one which actually conveys the information to the FC, th&uteng in a lower final distortion;
and,ii) the selection method is fair, since each sensor has the garbability of becoming a
cluster-head (i.e. the energy is uniformly spent over sex)so

This can be accomplished in a decentralized way (i.e. witpauticipation of the FC) by resorting to the
distributed back-off strategy proposed in [74]. Besides,agsume a TDD (Time Division Duplex) duplexing
scheme, thus, the uplink channel gains can be derived frematvnlink estimates obtained with the pilot symbols
broadcasted by the FC.
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3.8.4 Hierarchical power allocation strategies

Accordingly, the optimization problem can be posed as Vadlo

Ne " -1
. Zg]
E 3.71
min NN, < wl _'_0_2> ( )

UV1ye s NG PL, 1 yeees

Ne¢ N—-1
> (% +> pm) < Pr (3.72)
=1

N-1 pic 1 -1
2 i,5 Cij
e — T ) 3.73
The above problem is barely tractable since the optiminataviablesy),, ..., ¥y, ,
pi1,---,PN—1,N,, are coupled through the sum-power constraint (3.72).hiéamore, a solu-

tion to (3.71) would entail coordination and CSI exchangsvieen layers which can be costly
and/or impractical. Consequently, we introduce an adutiparametes. € [0, 1) which deter-
mines the percentage of transmit power allocated to eadn. |8y doing so, we can decouple
the sum-power constraint leading to the following simpifggoblem:

Nec 1/} * -1
. - i9;
_— 3.74
P1yeeny ’l,chyi:)rll,lllil...ypN—l,Nc <]Zl @Z)zgjcr? -+ O'i) ( )
s.t:
N¢
> ¥y <(1-a)Pr (3.75)
j=1
For 1<j57 <N,
N-1
Pr
< a— 3.76
= pic 1 o
2 _ Y 02 R N ' 3.77
Uj (; pici,jag —+ 0'3} + 0'2) ( )

Note that in the expression above we have introducedd@imidual power constraint foeach
cluster in layer 1. This reflects a situation where each efustiocates power independently
from the remaining ones. Furthermore, tNg individual constraints in (3.76) are identical
since so are clusters and, in addition, the number of semseesh cluster is high (i.e. clusters
arestatisticallyidentical). From all the above, we can decompose the miritioz problem in
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the following way [69]:

—1
Ne
. . . Z wigj
min min e min % 3. 9
Uiy Ng P15 PN=1,1 P1,Nes-sPN—1,Ne¢ = @Z)igjcrj + 07

s.t:
ij <(l1-a) (3.78)
For 1<j7< N,
Jj;_:pm < a;—TC (3.79)
a_ <NZ_1 PijCij i) 1_ (3.80)
J ~ pijcijo, + 05 0g
Sincea? exclusively depends op, ;, ..., pn-_1,, then it is straightforward to show that the

optimization problem can be decomposed iMo+ 1 parallel problems:
min Z Pi,j 2w -t
Pl,jssPN—1,5 i1 pi,jci,jgv + 0w o,

N-1

by
E i < a— 3.81
i=1 P = aNC ( :

s.t:

for1 < j < N, and, also,

s.t:

ij <(1-a) (3.82)

As commented above, plays an important role in the optimization problem. In onalgsis,
we will determine its optimum valuey*, on the basis of partial (i.e. statistical) CSI only,
namely,

Ne¢ w * -1
. i9;
min E . #
fe! {{ng}f\]:—ll ;\]:17{9;}?:01 <; wjg*o'2 + 0'5})
s.t:

N-1 -1
2 PiiCij 1
5J 2 y
0% = _ PG 1) . 1<ji<N
! ZZI pijcioy +og oy ) ‘

acl0,1).
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Figure 3.18: Actual distortion and lower bound for the UPAe&as a function oft (N =

40, N, = 4, Pr = 500, 0% = 0.001, 02 = 0.001).

From the expression above, one concludes that the optimedrsplit will depend on a number
of system parameters (such/&g NV, etc), the power allocation rule (i.e. uniform, waterfigjin
through its dependency gn; andw; and, also, on statistical CSI. As an example, the optimal
power splita* will attempt to compensate for the path-loss effects betvibe cluster-heads
and the FC by allocating more power to layer 2 (i.e. by forcirigo take smaller values).

In the following subsection, we compute the optimal powdit bptween layers for the uniform
power allocation (UPA) case and, next, we discuss hybridtgwmis featuring optimal (i.e.
waterfilling) power allocation scheme in at least one ouheftivo layers.

Uniform power allocation in both layers

In the absence of CSI at the cluster-headdthe FC, the best thing one can do is to uniformly
allocate the transmit power. Hence, each sensor transriﬂnspmvveraﬁ, and each
cluster-head with1 — a)%. The optimal fraction of powet* is the one which minimizes the

following expression,

Ne _ \Pr_x -1
min  E (Z 1~ o)5d; ) (3.83)

_ N\ Pr 52 2
=1 (1 a)Ncgjaj + oy
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s.t:

N-1 aPr . 1 -1
2 Z (N—1)N, i ' ‘
Uj - < Pr + ; ;1 S J S Nc

52 g2
=1 YN, GO0 T O

aec (0,1).

Unfortunately, the resulting optimization problem is bgreactable and, in general, does not
have a closed-form solution. Instead, we will compute a ldwaind for the cost function in
(3.83):

-1
) Yo (1-a)brg
{Heyia?t yil’{g;}ﬁzl ; (1-

Pr 2 2
a)Ncgjaj + 02

N, P -1
N (L= a)Fpg
= By (Z v

— o) 2 2
= |\ (1 — ) pg0; + o,

> (( (1 — a)PT:ug* >_ (3.84)

1- oz)%ug*ﬁ + 02,

with,

_ QR e )
D— (a A -5 (3.85)
( v

Nfl)Nc ,LLCO'?) _'_ 0-1211
and where the expectation of the first order statistic of groegntial parent distribution,-,
can be efficiently computed as [70, Chapter 3]

N
e =B{g;} =) % (3.86)
k=1

The first inequality follows from the fact tha@{g(x)~'] > 1/¢(E[z]) provided thaty(z) is a
positive and concave function in The second inequality is due to the fact that the argument in
the expectation is convex in the sequence of random vasaple Finally, one can prove that
(3.84) is convex iy and, hence, by setting its first derivative to zero we canioliioptimal
value as follows:

+
* (N—-1) (_ Vg 2 Pral — Neow/li(N = 1)\ /lig + pic (Npg: Proy + NN.oy, — Mg*))

o =
Prypcoy (N? (g — pe) + pig- (1 = 2N))

(3.87)
where[z]" = max{xz,0}.

In Figure 3.18, we depict the lower bound in (3.84) versuadtsial value as a function of the
power split. Clearly, the bound is tight for the whole randgexovalues and, as a result, only
marginal performance loss can be expected when approxightite true value* by the one
obtained with the lower bound.

62



3.8. Power allocation strategies for hierarchical senstwarks

Hybrid WF-UPA solutions

If we can assume that full CSl is locally available eithertat tluster-heads or at the FC (or
in both), then we can compute the optimal power allocatignsdiving equations (3.81) and
(3.82), respectively. According to Section 3.3.1 suchroptisolutions are given by:

CT2 C "
oW b 3.88
pl,j Ugci,j [ A.}kO_Z] ] ( )
o2 7 +
w:—W[ J —1] , 3.89
aigy LV Brol (3.89)

wheres* and A7 (j = 1...N.) stand for the optimal water-levels which must be computed
numerically asin [11]. For this very same reason, the optimt does not admit a closed-form
expression anymore and, thus, we must resort to numeridaloae

3.8.5 Simulations and numerical results

As far as computer simulations are concerned, we considetveork with N, = 4 clusters
and N = 40 sensors in each (i.eV, = 160 sensors in total). For the wireless links between
the cluster-heads and the FC, we assume a path-loss caogfficie 2. In Fig. 4, we depict

the overall distortion attained by the different combioas ofi) hierarchical and flat (i.e. non-
hierarchical) network models, anig power allocation schemes used in each layer. The cases
with a flat network model are used for benchmarking purposs o

To start with, one can clearly observe the huge gap betwesd®a/UPA (i.e. uniform power
allocation in both layers) and UPA (i.e. flat network struetand UPA scheme) curves for the
whole range of distances to the FC. The introduction of a agtwierarchy and the compu-
tation of the optimal power split turn out to be very usefuemsuring that the transmit power
is efficiently spent in obtaining accurate estimates in fdyelusters, rather than in forcing
every sensor to overcome the severe path-loss in the warkitgs to the FC (to recall, in the
hierarchical case this task is conducted by the clusterd)eady). Besides, the performance
exhibited by the UPA/UPA scheme is comparable to (or, in scases, even slightly better
than) that of a flat network scheme with WF power allocationcivhadditionally, would re-
quire full CSI at the FC. Indeed, some additional gain can l@ined by using WF in the
second layer (i.e. UPA/UPA vs. UPA/WF) curves. In the lighttee increased CSI require-
ments at the FC, though, such gain can be regarded as maigipalticular, fordr- < 120

m, namely, low-to-mid values. However, as we increase thstet-head-to-FC distance and,
consequently, decrease the SNR in layer 2, the use of WF isetend layer becomes more
and more necessary (asymptotically, a single cluster-iweadtd send data to the FC only).
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Figure 3.19: Overall distortion attained by the differenhemes. The curves labeled with
X/IY correspond to the cases with hierarchical structura#) W and Y denoting the power

allocation scheme (i.e. UPA or WF) in the first and secondrigyeespectively. The curves
labeled with only one power allocation scheme corresporiiédoenchmark cases with flat
network structure. ¥ = 40, N. = 4, Pr = 500, 02 = 1073, 02 = 1073).

Next, one can clearly observe that, irrespectively of thegraallocation strategy adopted in
layer 2, little or no improvement results from the use of WHawer 1. This is due to the
fact that the average SNR in layer 1 is potentially high, Hmthause of the low noise level
(02 = 107?) and the absence of path-loss effects.

Finally, it is worth noting that the UPA/WF (or WF/WF) and Wkrges converge for an in-
creasinglr¢. Certainly, when path-loss effects becomes more severeptimal power split
for the hierarchical schemes reserves virtually no powelaiger 1 ¢ — 0). In these circum-
stances, cluster-heads merely rely on their own paramstienate (to recall, cluster-head takes
measurements, as well) which is then conveyed to the FC. Ag & the WF scheme starts
activatingN,. or less sensors, both the hierarchical and flat solution®arelly identical. The
same effect can be observed when the measurement ngjgerfds to zero. When this occurs,
the additional power required to further decrease the asitom noise in the cluster-heads (see
equation (3.73)) is too high and, thus, power is better sippdiayer 2 (i.e.a* — 0 again).
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3.9 Chapter summary and conclusions

In this chapter, we have addressed the problem of poweraditotin a context of amplify-
and-forward WSNs for decentralized parameter estimatkirst, we have focused onftat
topology and we have proposed a class of opportunistic pal@ecation schemes. In such
OPA schemes, only sensors experiencing favorable condifice. above a threshold) partici-
pate in the estimation process by adjusting their transavitgp on the basis of local CSI (and,
in some cases, REI) information only. We have addressed d@uai classical problems of
interest such as the minimization of estimation distortibie minimization of transmit power
or the enhancement of network lifetime. To that extent, weehaarticularized the general
OPA framework to each problem of interest (OPA-D, OPA-P aRAQT, respectively) which
entails the derivation of an approximate but tight closewrf expression of the threshold along
with the corresponding power allocation rule. Furthermare have also addressed the case
with imperfect CSI to derive an improved version of the OPA&heme (OPA-DR) which is
robustto such imperfections. Computer simulation results retteatl with OPA-D the overall
distortion is150 — 280% lower than that of UPA and virtually identical to that of thptional
waterfilling (WF-D) scheme. More significantly, we have peduhat the rate at which distor-
tion decreases for the OPA-D and WF-D is identical when thalwer of sensor nodes grows
without bound. To stress, that the signaling and CSI requergs for all OPA schemes are
far more relaxed than those of WF approaches. We have alsowvaaisthat the robust version
performs close to systems operating with perfect CSI eveh mbderate values of CSI un-
certainty A, = 0dB). From the comparison of OPA-LT with OPA-P, we have conctutieat
OPA-LT leads to a two-fold extension of the network lifetiffieie to a more balanced energy
consumption over sensors) at the expense of a slight iremedlse transmit poweB(— 10%).
Finally, we have found that, when compared to WF approadfeswhole family of OPA
schemes tend to activate a lower number of sensors. Thisiefibel in terms of the number
of orthogonal channels needed and hence, the delay.

Finally, we have adopted a hierarchical network structnghich each cluster is governed by
a cluster-head which is the sensor experiencing the mostdhle channel conditions to the
FC. Cluster-heads gather the measurements in their respetisters and, then, forward the
cluster estimate to the FC. We have shown that by balancegadwer between both layers
in the hierarchy, the minimization problem can be decomgast® smaller sub-problems and,
furthermore, we have derived a closed-form expressionheraptimal power split between

layers for the UPA case. Computer simulation results retredla hierarchical network with

UPA schemes in both layers constitutes the best trade-tdfins of the performance (namely,
estimation accuracy) vs. CSI requirements for almost thelevrange of cluster-head-to-FC
distance values. For the scenario under consideration,awe &#lso shown that using WF in
the second layer pays-off whereas it renders no or little galayer 1.
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3.A Appendix

3.A.1 Derivation of %, 's domain

We want to identify in what circumstancg, < [0, . log (DrN,/02)), with 57, given by
(3.45). Since, by definitiony;;, takes only positive values, only the upper value of the range
has to be checked, namely

Dt N,e? DN,
MCWO( & 5 ‘ ) = 2p < uclog< TQ ) : (3.90)
UU UU
Bearing in mind tha2 = log (¢?), we can re-write the inequality above as:
Dy N, e? Dy N,e?
W, ( TUZ ) < log< TUQ ) . (3.91)

which holds true if and only if the argument in th&, andlog functions is greater thaa

or, equivalently,N, > gfe.However, in the process of deriving the lower bound we alyead
imposedN > [02/Dr]. SinceN, > N, the inequality above automatically holds true and,
thus, the interval0, p. log (DN, /0?)) is the only possible domain af;, .

3.A.2 Proof of the convergence of OPA-DR to UPA for poor quaty CSI

From equation (3.37), we have to show that the threshgld- 0 aso? — co. Consider first
the asymptotic expansion of the Lambert functidp(z) as given in [71]:

Wi (2) = logz — loglog z + v. (3.92)

Hereafter, we neglect the contribution of théerm since it vanishes far — oo (which holds
true foro? — oo). If we definez = c\/ze* with ¢ being a constant and positive value, we only
have to prove (see equation (3.37)) that

W, <c xex) . g <0 (3.93)

whenx grows without bound. By using the asymptotic expansiongrtesl above, we can
derive the following inequality:

Wy <c :Ee“”) — g = log <c :Ee“”) — loglog <c xel’> — log <\/e_l’>
= log (cv/z) — loglog (c :zcel“>
< log (cv/x) — log (logc + %x) . (3.94)

Clearly, the right hand of the last expression takes negatilues for sufficiently highr, which
concludes the proof.
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3.A.3 Proof of Pr{N > [¢?/Dr]} — 1 for large N,

Let « = Nen/N, be the ratio between the number of observations needed inteatized
scenarioN,,, = [02/Dr] and the total number of sensors in the netwdik We want to
show thatPr { N < N} o 0. That is, we decrease the distortion target as the popu-

0,Ncen—00

lation grows. Hence, by resorting to the Chernoff’'s boundafdinomial random variable, the
probability of the event of interest can be now upper bourated

Pr{N < Neey} < e 2ot (3.95)

wherep is the probability of activation and can be easily computgdding the optimal thresh-
old of (3.45). The bound of (3.95) is only validjif> « and, hence, we only need to satisfy

o2
p = aWy <—) >«
Q@

which holds true forv < e. Therefore, it is now straightforward to show that

Pr{N < New} < e 2V-* (3.96)

No,Ncen—00

3.A.4 Proof of inequality (3.50)

Here, we want to prove that, for a given cut-off valdethe following inequality holds true

No 'Vth[ _ Dth 5/] Z
EN g lels] [V Ze Slie < N,e w211 20, (3.97)

for some range of values &f’ and for ally,[s] € [0,7). Let f andg be functions defined as

;s [s] O _ Tth
F (inls]) = Noe 2T and g (s Ze it (3.98)

Clearly, f andg are continuous, convex and non-increasing functiong,fs|. Besides, we
have thatf (0) = ¢(0) and, also, that their respective derivatives fulfil{0) > ¢'(0). Hence,
f(v) does act as an upper bound;tf) for some positive range of valuespfround 0 (which,
ultimately, depends op,., N/ ande;[s]).

Next, it is straightforward to verify that the above ineqtyalways holds true forV) = 1.
Besides, from Jensen’s inequality, one concludes thatlibeeaexpression is strictly false for
N! = N,. Thus, for each)’ there exists somé&’! which turns to be the highest value of in
[1, N,) for which (3.97) holds true. Such value must be found with atioal methods.
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3.A.5 Convergence of the distortion for the OPA scheme for e N,

Recall the ratio of (3.23) agy. Therefore, we have to prove that

lim Pr(jgy —1[ =€) =0 (3.99)

No—o00

with € > 0. Hence, by substituting the definition @f in the argument of the limit we obtain

PrA 2
Pr(jgy — 1| >¢) =Pr <N < T”;h"v) (3.100)
o€
eW?2 v No .
Clearly, N is a binomial r.v. with mean given g [N] = N,e 7 = %, whereg is a

constant not depending avi or N,. The probability of (3.100) can be upper-bounded by using
Chernoff's bound as follows

L2\ 2
Priho
E[N]— T2th U>

P < 2 oE
Pr (N < ﬂ) <e T ENM (3.101)

o2e -
which holds trué? for E[N] > %ﬂ'ﬁ? After some algebra, one can easily prove that

E[N]74PT0'72th03 ) 2
lim e 2E[N] =0 (3.102)

No—o00

which concludes the proof of (3.23).

~ 2
Prywmoy,
2
O',UJE

12For largeN,, one can easily prove th&t[N] >
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Chapter 4

Encoding Schemes in
Bandwidth-constrained Wireless Sensor
Networks

In this chapter, we continue to focus on the problem of deeén¢dparameterestimation via
WSNSs. However, we go one step beyond the amplify-and-fahfiae. analog retransmission
strategies and assume that sensors are capable of endoeiingldservations fodigital trans-
mission. In particular, we consider two different encodstiategies, namely, Quantize-and-
Estimate (Q&E) and Compress-and-Estimate (C&E) and assusbéhat sensor observations
are conveyed to the Fusion Center (FC) over a numberthibgonalGaussian or Rayleigh-
fading channels. We constrain both poveed bandwidth to be constant irrespectively of the
network size and find approximate closed-form expressibtissooptimal number of sensors
for a number of cases of interest. Besides, we derive thenapencoding rate for the Q&E
scheme when, in the absence of Transmit Channel State lafamm(CSIT), sensors must en-
code their observations atammonandconstantrate. For the (successive) C&E strategy, we
also determine the encoding order that minimizes the riegullistortion in the FC estimates.
We complement the analysis by deriving an expression of senptotic distortion when the
number of sensors grows without bound, and the rate at whétbrdon decreases in the high-
SNR regime. Finally, we introduce contention-based cdmnaltiple-access protocols in the
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system model. In the context of hierarchical networks wdyaeethe impact of the packet col-
lisions that contention-based multiple-access protoailgil on the distortion in the estimates.

4.1 Introduction

As discussed in the previous chapter, in the context of MigtAccess channels (MAC) an
amplify-and-forward strategy is known to scale optimaltyterms of estimation distortion.
However for the case ofrthogonalchannels considered here, solutions based on separate
source and channel coding outperform A&F-based ones. #dbmtext, in [75] the source-
channel separation is shown to be optimal for the quadratiecs&an CEO problem.

As far as source coding is concerned, the work in [76] canstit a generalization to sen-
sor trees of Wyner and Ziv's pioneering study [37]. More Bely, the authors compare two
different coding schemes, namely Quantize-and-Estin@@&E() and Compress-and-Estimate
(C&E). The former is a particularization of Wyner-Ziv's filem to the case where no side in-
formation is available at the decoder; whereas the lateesigcessive\yner-Ziv-based coding
strategy capable of exploiting the correlation among seolsservations. Yet sub-optimal, the
performance of this successive encoding scheme is notdar fhat of other more complex
joint (over sensors) coding strategies. Besides, in [7ig shown to achieve any point of the
rate-distortion region of the quadratic Gaussian CEO gmblin both cases, it is assumed that
sensors experiend@aussian(or, more generallydeterministi¢ channels, this meaning that
the transmissions rates are known and, consequently,rabsgconvey their observatiores
liably. Going one step beyond, the authors in [78] derive the rettion region for the case
of erasure channels wherdiged andknownnumber of observations are reliably received.
Nevertheless, when the erasure pattern is unknown anaidona, joint coding techniques or
successive encoding techniques such as [76], exhibit pedonmance. This problem is ad-
dressed in [23], where a number of tradeoffs between réityabind efficiency are examined
for alosslessompression setting.

In scenarios with non-reciprocal (e.g. Frequency Dividbuplexing (FDD)) fading channels,

it is often assumed that onsatisticalCSl is available at the transmitter. Consequently, the en-
coding rate at the sensor nodes cannot be dynamically adjtsmatch instantaneous channel
conditions. In this context, the point-to-point communica of Gaussian sources over fading
channels has been recently investigated in [79] and [80] thig¢ ultimate purpose of minimiz-
ing the expected distortion at the FC. These works standesadminal work of [81], in which
the source is encoded in multiple layers (each one replieagemtifferent channel state) by ex-
ploiting the so-called successive refinement property. [82tordingly, the receiver adaptively
decodes the information according to the realization ottiennel state.

In addition, in [75] and [76], it is considered that each sgfte-FC communication occurs in
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a reserved orthogonal channel, i.e. sensors operate in aATEDMA fashion coordinated

by the FC. Nonetheless, in realistic WSN scenarios, whegentimber of nodes is poten-
tially very high, the centralized coordination that resgion-based multiple access schemes
entail is barely desirable. Alternatively, the design aedfgrmance analysis afontention-
basedmechanisms (e.g. ALOHA [50], Carrier-Sense Multiple-Assevith Collision Avoid-
ance CSMA/CA) in wirelesslata networks has been studied for years. For instance, in [52]
the authors designed a channel-aware version of the ALOHW®opol capable of exploiting
multi-user diversity in a distributed manner. In the sami@ van opportunistic variation of the
CSMA/CA scheme has been recently proposed in [83].

4.1.1 Contribution

In this chapter, we extend and carry out an in-depth anabfdise Q&E and C&E encoding
strategies presented in [76]. First, we focus on a scenatioakthogonalGaussian channels
where, as commented above, the source-channel codingaiepaheorem holds. We go one
step beyond [76] and further constrain not only power but BEndwidthto be constant irre-
spectively of the number of sensors in the network. Withehessumptions, we ask ourselves
whether increasing the population of sensors is alwayshadwing (in terms of estimation ac-
curacy) or if, alternatively, an optimal operating poinis#g. To answer this question, we derive
an approximate closed-form expression of the optimal nurabsensors in the network. Next,
we move onto the case of orthogomayleigh-fadingchannels. For benchmarking purposes,
we initially assume that sensors are capable of acquiris@maneous transmit CSI (CSIT).
Being C&E a successive encoding/decoding scheme, we a@alytdetermine the optimal
encoding order (over sensors) which minimizes the regutiistortion. We complement the
analysis by deriving the asymptotic distortion attaindifethe Q&E and C&E strategies for
both Gaussian and Rayleigh-fading channels.

Next, we realistically constrain the sensor nodes inrbevork (and, by doing so, we go
beyond thepoint-to-pointanalysis of [79] and [80]) to operate withaastantaneousransmit
CSI. Accordingly, the observations must be encodedairstantandcommon(i.e. identical
for all sensors) rate that we determine on the basgatifsticalCSI only. Such encoding rate
has an impact o) the number of quantization bits allocated to the encoderdii) the actual
number of observations reliably received at the FC due tothage probability experienced
in the sensor-to-FC fading channels. This is in stark cehtnath [78] and [23] where the
guantization process and the transmission problems aaedeg as decoupled. In other words,
we analytically find theoptimaltrade-off in terms of quantization bits (more finely-quaad
observations are beneficial in terms of the overall distajtvs. the number of observations
actually received at the FC (the higher the number obsemnstihe better the smoothing of the
observation noise). We solve the problem for two cases efést, namely, sensors with high
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Figure 4.1: System model.

and low observation noise. Finally, we determine the asgtigptate at which the distortion
decreases in the high-SNR regime of a large sensor network.

Finally, we go one step beyond [75] [76] [78] and explicithke into account realistic multiple-
access schemes in a contexhadrarchical WSNs. More precisely, we analyze the impact of
acontention-basethechanism (ALOHA), and the packet collisions that it estdinlike [52]
and [83], our goal is to minimize the distortion in the estigsarather than maximize network
throughput. Since the number of received observations res@rnes a random variable (due
to packet collisions) and for the sake of scalability, weatefirom successive/joint coding
schemes and, instead, adopt in the sensor nodes and CHs therg&ding strategy of [76].

The contents of this chapter have been partly publishedeneeces [84—-89].

The chapter is organized as follows. First, in Section 4.2,present the signal model. In
Sections 4.3 and 4.4 we present the distortion analysishiQ&E and the C&E encoding
strategies. Next, Section 4.5 is devoted to the analysit@faforementioned strategies for
Gaussian channels. Subsequently, in Section 4.6 we adtieesase of Rayleigh-fading chan-
nels with CSIT at the sensor nodes. Section 4.7 addresseasbaevhere sensors do not have
instantaneous CSIT. Next, the comparison of contentiaethand Reservation-based multiple
access schemes is addressed in Section 4.8. Finally, wetbleshapter by summarizing the
main findings in Section 4.9.
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4.2. Signal model

4.2 Signal model

Consider a WSN composed of one Fusion Center (FC)\aBdergy-constrained sensor nodes.
The sensors observecammorsource of interest which can be modeled as a lemgiith »
sufficiently large) vectox = [z, ..., 2(™]” of independent and identically-distributed (i.i.d)
complex circular Gaussian random variables, name(y,™", ..., z™) = [T p (z®), of
variances?. Our goal is to estimate from the sensor observations with the highest possible
accuracy. According to Fig. 5.12, the observation at sehgan be expressed as

Yie =X+ Vg (4.1)

wherev, denotes memoryless AWGN noise (measurement noise) ofnearigg and i.i.d.
over sensors. In order to convey the measurements to therF@&nter, each sensor en-
codes a block of: consecutive observationgs, = [y,(:), e ,y,i”)]T, wheren denotes the
temporal variable, into a (length)y codewordu,(s) € C. Next, the corresponding indexes
sp € {1,...,2"%}.k = 1...N are sent to the FC over the set &f orthogonalchannels.
At this point, we introducéV, as thetemporalsampling rate of the source and, hence, for a
reliable transmission to occur, the encoding r@temust satisfy:

W, Ry, < wylog, (1 + 2 ’”’“) b/s] (4.2)
wiNo
wherew, andp, stand for the transmit power and bandwidth allocated té&ttltesensor/channel,
andN, denotes the noise spectral density. For the ease of notatmwithout loss of general-
ity, in the sequel we considé¥;, = 1. The channel (squared) gaing; k¥ = 1,..., N, are sub-
sequently modeled as Gaussian channels (namety,1 Vk), or as independent exponentially-
distributed unit-mean random variables (i.e. Rayleigtiffg channels). Besides, we further
impose a total bandwidth constraint], and a sum-power constrain®, For simplicity, we
uniformly allocate poweand bandwidth to the set aV sensors, this yielding, = P/N and
wr = W/N. Hence, the transmission rate at the output offttle encoder reads

Ry < 5 Togy (14 SNR-74) b/ (4.3)

with SNR £ ;. Finally, the FC decodes the received signals and produtestimatex of
the source. Due to the measurement noise and the resousteatots, some distortion results
which, in the sequel, will be characterized by the followmgtric:

1 n
D= EZE (|2 — 2] - (4.4)
1=1

1As it will become apparent later, the codebabkonsists of, at mosg™/** codewords.
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4.3 Quantize-and-Estimate (Q&E): distortion analysis

In the Q&E scheme, each observation is encoded regardlesy @&lide information that could
be made available by the FC. From [35], the following ineguélolds for the rate at the output
of the k-th encoder (quantizer):

Ry > T(ykiur)  [b/sample (4.5)

with I (-; -) standing for the mutual information. The encoding procesaadeled through the
auxiliary variableu, = y; + zg, with z;, ~ N(O,agkl) and statistically independent ¢f..
From this, one concludes that «—— y, «—— = form a Markov chain and, hence, the mutual
information reads:

[(yksur) = H(ug) — H(ug|yr)

2 2
— log (1 4 &t U”) lb/samplé (4.6)
oz,
From (4.3), (4.5) and (4.61), we have that
2 2
% log (1 + SNRy,) > Ry > log (1 + %; "“) . (4.7)
2k

In the sequel, we further impose each sensor to encode igs\atti®n at the maximum rate
that can be reliably supported by the channel. By taking Hwa expressions with equality,
the variance of thguantizatiomoise yields:
2 2
o2 = QT (4.8)
(14+SNRy,)~ — 1

With the codewords sent by the set 8fsensors, the FC produces an MMSE estimatg of
with total distortion given by [18, Ch.10]:

A T
_ 2 _
DN,Q&E - Uz\ul ..... unN (0__% + ; 0'3 + U§k> : (49)
Finally, by replacing (4.8) into the expression above, #msulting distortion can be re-written
as )
N w -
1 14+ SNRy)™ —1
Dyqee= =5+ ( ) - . (4.10)
% =103 (14 SNRy) N + 03

4.4 Compress-and-Estimate (C&E): distortion analysis

Here, the encoders do exploit the statistical knowledgéefiecoder’s data as side informa-
tion. More precisely, we adopt the successive encodingselad [76] by which, in encoding
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data, thek-th sensor is aware of the distortion level attained with gheviousk — 1 trans-
missions. By doing so, the encoding process can be adjustaach a way that most of the
redundant information is removed before transmission his $ense, we refer to this second
approach a€ompress-and-Estima(€&E) coding.

Let 7 be a given ordering of thé/ sensors in the network. For an arbitrary senspits
encoding rateR?;, in the presence of side information (resulting from the,), ..., uru—1)
codewords transmitted by the previous fiest 1 sensors) verifies [76]:

Rty = 1 (Yn(h); Un(i[tinry, - - - Une—1))  [b/Samplé (4.11)

With Wrr) = X + Ve + Zrgy @aNdzzy ~ N(0,02 , T)). The above expression can be
re-written as follows:

Ry = 1 (yﬂ'(k); U (k)| Un(1)5 - - - 5 uﬂ(kfl))
= H (ungoltin(r), - - tne-1) = H (i) [Yro))
U§|u e (ke + 012)
= log (14—t [b/samplé (4.12)
2 (k)
where the first equality results from the fact thag,) «— v «— 1), - ., Ur@—1) NECES-
sarily form a Markov chain [76] and, thus,;, is conditionally independent @f. ), . . ., ur—1)

giveny..,. Besides, the conditional variancgum) _____ ey, 1S, Dy definition, the distortion at
the output of the MMSE estimator at the FC upon receptioh ef 1 measurements, namely,
D", cee (with DI = ¢2). By imposing again each sensor to encode its observatitreat
maximum rate that can be reliably supported by the chanmel/driance of the encoding noise
yields:
o2+ D™
02 = (4.13)
(1 4+SNRy)~ —1
Since the encoding processes themselves are statistivdéipendent, the distortion after re-
ceiving N observations reads:

R 1 o
(7
DN,)C&E = (F*’ZW)

k=1 Zr(k)

1
N
1+ SNRyp) ¥ — 1
. (+ SNRozqe) . (4.14)

2 w 7
o =102 (1+ SNRyze) ¥ + Dl(ng,C&E

2=

Alternatively, at each step of the decoding structure tistodiion can be computed in the
following recursive form:

W 71
. 1 1+ SNRy,) ™ — 1
Diee = P In0) . k=1,...,N.(4.15)

(7 w ™
ijl,C&E 02 (14 SNRyz) ¥ + D} )1,C&E
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It is worth noting that the additional computational conxitig associated to the C&E scheme
is restricted to the successive decoder needed at the F@efSety, the complexity of the
encoders in the sensor nodes is comparable in both cases.

4.5 Gaussian channels

In Gaussian channels, all sensors experience identicahehaonditions{, = 1 Vk in the
above expressions). Bearing this in mind, we derive somenaptoperating points and/or
asymptotic distortion limits for the Q&E and C&E schemes.

4.5.1 Quantize-and-Estimate: optimal network size and asyptotic
distortion

From (4.10), the distortion attained by the Q&E scheme isgivy,

. 1 N((+snRyy < 1)
— = =+ _ (4.16)
D que 9z 02(1+SNR)N + o2

First, we want to show that, for a given bandwidih, there exists an optimal network size
which minimizes the overall distortion. To show that, weaseN € Rt and prove in Appen-
dix 4.A.1 that (4.16) is guasiconvefunction in N and, therefore, there existsmgleoptimal
operating pointV*. The intuition behind this fact is the following: for an imasing number
of sensors, the FC is capable of better smoothing the olg@mvaise and, thus, the distortion
decreases (i.e. a more accurate estimate results). Howlegeavailable bandwidth has to be
shared among a higher number of sensors and, hence, thersmaasts undergo a rougher
guantization before transmission. As soon as this secdedtefominates, the distortion in-
creases again.

Unfortunately, a closed-form expression of the optimal banof sensorsiV*, cannot be ob-
tained for the general case. Instead, we consider the folpapproximationfor the second
summation term in (4.16)

w
o2(1+SNR)N + 02 02(1+SNR)™ + o2

2=

(4.17)

which is valid for% > 1. On the one hand, by setting the first derivative of (4.17)ei@zthe
following two possible solutions yield:

Win(1+SNR) Win(1+ SNR)

xT

N* & (4.18)
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with Wy (-) andW_,(-) standing for the two real branches of the Lambert functidj,[Where
dom{W_;(z)} = (—1/e,0) anddom{W;(z)} = (—1/e, 00). On the other, the approximation
(4.17) can be shown to be concave for

Wln (1 + SNR)
(3)

and convex otherwise. Now, notice thalt | (—z) < In(—z) < Wy(—x) forz € (0,1/e) and,
hence, from (4.19), the (approximate) solution belongothe concave domain of (4.17), that
is, for N* < Ny, can only be given by

N < Ny = (4.19)

W ln (1 + SNR)
1—W_, (_(ﬁ;) )
From this last expression and the aforementioned domaimed#/t , (x) function, the approx-
imate solution of (4.20) is feasible (that i8] € R™) if and only if 02 < o2/e2. For this
range of values, the solution of (4.20) gives a very accuapfoximation of the actual value

of N*, as shown in Fig. 4.2. Besides, one also observes that Bingethe overalbNR leads

to a higherN*: the higher thésNR the higher the number of observations that can be accom-
modated (which results into an improved estimation acggra€onversely, for each curve,

if the correlationp = Cov (yx,vi) /0,0, = 02/ (62 + o2) between observations increases,
i.e. o2 decreases, then the optimal number of sensors decreasethelmwords, one should
refrain from conveying many observations to the FC becatiigetr correlation and because
the bandwidth and powgrer observatiorwould be smaller.

N* (4.20)

Next, we compute the asymptotic distortion when the numbsensors grows without bound,

that is, :
1 Win(1+SNR) \
Dy = = . . 4.21
Q&E <0§ + 2+ o2 ) ( )
Interestingly, despite that power and bandwidth are sptf@ader and thinner, the asymptotic
distortion converges to a finite valu#,, q.e < o2. In other words, performance is never worse

than that of a wild guess on the parameter

4.5.2 Compress-and-Estimate: discussion

The distortion associated to the C&E strategy, L&y cqr, IS known to be a monotonically-
decreasing function iV, except fors? — 0 (i.e. p = 1, fully correlated observations). In this
case, the particularization of (4.15) fef = 0 yields

Dy.cgr =02 (1+SNR)™" (4.22)

which, clearly, is not a function aiV. In this particular case, the distortion attained by C&E
equals that of Q&E since, far? — 0, the optimal network size for the Q&E strategy can
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Figure 4.2: Optimal number of sensors vs. observation n@isances? (W = 100, 02 = 1).

be shown to beV* = 1. Likewise, for large values of?, i.e. uncorrelated observations, the
distortion for the C&E strategy is identical to that of Q&E @isen by (4.16) particularized
for N* — oo. For an arbitrary value of? and when the number of sensors increases without
bound, the asymptotic distortial, c¢r Of (4.14) fory, = 1 Vk is given by the (numerical)
solution to the following equation [76]:

2 2 2
Wln (1 4 SNR) = 22 ( 92 _ 1) tlog -2z (4.23)
Do car 0,C&E

xT

4.5.3 Simulations and numerical results

In Fig. 4.3, we depict the distortion associated with the Q&dieme as a function of the
network size (Gaussian channels). When the observatiee m®low ¢2 = 0.001), the distor-
tion function is sharp and, hence, optimizing on the numibeseasors pays off. Conversely,
by increasings? the curves become flatter and, consequently, there existe flexibility in

the number of sensors (performance degrades gracefulheimitinity of N*). For scenarios
with very noisy observationsgf = 0.5), distortion turns out to be a monotonically decreasing
convex function inN: increasing the number of sensors is worth doing since ainalifor a
better smoothing of the observation noise. Besides, tigeiddhe overalbNR the higher the
optimal number of sensors since, with additional transrower, a higher number of sensor
observations can be accommodated.
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Figure 4.3: Distortion for the Q&E strategy (Gaussian cla@sywvs. network sizéV (W = 100,

o2 =1).

In Figure 4.4, we depict the distortion attained by the Q&Eazhing strategy evaluated at the
true optimal pointN* (namely,Dqs.e n+) and the distortion attained by a large sensor network
(thatis,DqgE ). For scenarios with low observation noise (snad)), carefully designing the
network size pays off. On the contrary, @sincreases, one can simply deploy a high number
of sensors (in order to average out the observation noiséput incurring in a substantial
performance loss with respect to the asymptotic case.

4.6 Rayleigh-fading channels with transmit CSI

For Rayleigh-fading channels, each sensor in the netwagokréances different channel con-
ditions. As a result, the distortion in the estimates at tBedeépends on the specific setpf
values. This has diverse implications for the two strategansidered here. In Q&E encoding,
on the one handpcal channel state information is needed at the sensor nodeslén twrlo-
cally adjust the encoding rate. On the other hagidpal CSI is needed by the C&E strategy
since the encoding rate at the sensor nodes depends notromieio current local channel
gains but also on other sensor-to-FC channel gains. Thideviurther elaborated in the next
subsections.
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Distortion

Figure 4.4: Distortion for the Q&E strategy vs. observatimise variances> (W = 100,
o2 =1).

4.6.1 Quantize-and-Estimate: asymptotic distortion

In this section, we provide some asymptotic results on ttaéreible distortion when the num-
ber of sensor nodes grows without bound. To that end, we foouke second term in (4.14)
and then we define:

N N
1 02 (1 + SNR%)N + o2 - f

On the one hand, in Appendix 4.A.2 we prove thatfor— oo

N N (
Z 90y Z 7’_1’ 0 (4.25)

k:l

where—- denotes convergence in probability. Consequently, thehkaid side in (4.24) con-

verges (in probability) to the more manageable expres(g@g; Z],f:l 9(7k, V) in the case of
an asymptotically-large WSN. On the other hand, from AppeAdA.3 we know that

N
P 1 1

i=1
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4.6. Rayleigh-fading channels with transmit CSI

with I' (a, 2) = [ e~"t*~'dt. From all the above, the asymptotic distortion when the numbe
of sensors grows without bound yields

—1
1 WeswD (0, =i
Dec.que — (— | WeswT ( SNR)) . (4.27)

2 2 2
0% Oy + 0%

By comparing the expression above these lines with that efs&an channels in (4.21) and
noticing thate=T" (0,1) < In (1 + z) ¥ = > 0, one concludes that fading hasegativeimpact
in the (asymptotic) accuracy of the estimates.

4.6.2 Compress-and-Estimate: optimal sensor ordering andsymptotic
distortion

Being C&E a successive encoding strategy (as it follows f(drh4)) and due to the fact that
sensors experience different sensor-to-FC channel gaieasily concludes that the ordering
7 has an impact on the attainable distortion. For that reaserare interested in determining
the optimal and worst-case ordering of sensors and, on #s$,banalyze the corresponding
performance gap.

Optimal ordering

Consider two sensors with channel gais i = 1,2. Without loss of generality, assume
thaty,; > -, and, define the two possible orderings (decreasing/incrggaasm = (1,2)
andm = (2,1). In this section, for the ease of notation and without losgeaferality, we let
SNR = 1 and¥ = 1 and, further, we defing!™ £ D(,}) . Hence, equation (4.15) can be

i,C&E

conveniently re-written as follows,

ﬁfﬂ)%(z)
(m) 2 2 1
ﬁl (77‘(’(2)0’1} + Uv) +

(7) (7)

y =0+ (4.28)

where the ternB{™ = 1/52, which is needed to be computé”, does not depend on the par-
ticular ordering f;/7p). The goal is to determine which ordering attains the lowdéstortion
or, equivalently, the highest value g1, that is, whether

(mp) (m1) ﬁYTD)_ﬁYTI)

By By

2 2
(1)

>
— - 20, (4.29)
7 (o2t o)1 B (o2 +o2) + 1

After some tedious manipulations, we have that
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Figure 4.5: Distortion associated to the optimal and woaste scheduling order. Two-sensor
case p =009, P =1).

(mp)  alm) 1172 (2 +1) (1 +1) (1 = 2) (Booy +1) 0,83
52 - 52 - 2

[T (148505 + (v + 1) + Boon(vi + (7 + 2))
i=1,j#i

(4.30)

Under the initial assumption of; > -, expression (4.30) is always greater than (or equal to)
zero, this meaning that the observation of the sensor eqperng the most favorable channel
condition should be encoded first (i.e. decreasingorder of channel gainssp) in order to
increase the side information at the FC at the next step. @haligy in (4.29) holds in two
degraded cases only:for v; = v, i.e. identical channel gains and),~; = 0, for, at least, one
sensor. In Fig. 4.5, we plot the ratid™ / D(™») for several values of, and~, € [0,7,]. As
expected, fo% — {0, 1} both orderings exhibit a comparable performance (degradses).
However, there exists a range of values for whighclearly outperformsr;. Besides, the
higher~; (i.e. highSNR scenario), the more important using the optimal orderinglza(see
maxima on the curves).

Now, considem sensors with channel gaing ; « = 1,...,n. Without loss of generality,
assume that; > v, >,...,7,. By induction, the optimal ordering fanygroup ofn sensors

is given byr* = (1,2,...,n), this meaning that the sensors must be sorted and their data
encoded in @ecreasingrder of channel gains.

Next, we focus on the case with+ 1 sensors. First, we divide ti{e + 1)! possible orderings
into n + 1 groups, where each group is denoteddyy Groupg; is composed of all the!
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4.6. Rayleigh-fading channels with transmit CSI

orderings having as its first element, namely,
Tgk = (i,7G,); k=1,...nl and i=1,...n+1 (4.31)

wherer , denotes thé-th permutation of the remaining elements. With this arrangement,
we can start discarding some orderings.

Remark 1 For all the orderings within a group, the distortion afteratiirst iteration of the
decoder Dfrgi”")) is, by definition, identical. Therefore, it only remainsdetermine the best
ordering (i.e. the one that attains the lowest distortioteafi + 1 transmissions) for the last
elements. By induction, such ordering is given when sersersorted in a decreasing order
of channel gains.

As aresult of Remark 1, for each group we only need to retaiést ordering, which is given
by:

(1,2,...,n,n+1) =1
g =9 (6,2,....i—1i+1,...,n+1) ;i=2...n .
(n+1,1,2,...,n) i=n-+1

Remark 2 According to(4.15) ijfgl (namely, the distortion after the:.(+ 1)-th iteration) is
a monotonically increasing function iR .

It is worth noting that the first orderings, £;;.;i = 1...n), have their last element (i.e.+ 1)
in common. Hence, frorRemark 2 the ordering that minimizes the distortion after th¢h
iteration (D,(féi)), does minimize the distortion after the 4 1)-th iteration (D,(ff{) ), as well.
From all the above, one concludes that the best orderingfdbedirstn groups turns out to
be:

g = (L,2,...,n+1). (4.32)

Finally, it only remains to determine which ordering outgf andng attains the lowest
distortion. However, one of the previously-discarded ardgs within the first group, namely,

T ke = (1,2,...,n + 1,n) is known to have a smaller distortion thap ,,. This follows

) )

again fromRemark 2 from the fact thati) by induction,Dsrg"+1 > D,(fgi”“o ; andii) again,

. . (7§ ) TG, 5
mg, andmg, .. have their last element in common. As a resulﬂ,)nff“ > Dflf{”“) > Difll)
and, hencerg | can be discarded. From all the above, the optimal orderitigiwi- 1 sensors
turns out to be:

™ =m5 =(1,2,...,n+1). (4.33)

Interestingly, this ordering minimizes the distortioneatchiteration of the decoder in the re-
ceiver. Unfortunately, this does not hold true for the gahease, as it occurs when sensors
experience identical channel gains afiffierentobservation noise variances (see [85]).
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Worst-case ordering

In order to gain some insight on the performance of a padrcotdering (e.g. a pre-defined
ordering), we attempt to identify the sorting that leadshe highest distortion, that is, the
worst-case ordering™. This, along with the optimal ordering, can be used as uppet@aver
performance bounds, respectively.

By induction and on the basis of the results of previous se¢tihe worst-case ordering for
any group of n sensors is given by = (n,n — 1,...,1). Forn + 1 sensors, thén + 1)!
possible orderings can be divided inte- 1 groups, as done before. By resorting to Remark 1,
we can discard again all elements but one from each grougjvidgads to the following subset
of worst-case orderings:

(ILn+1,n,...,2) =1
g =4 (,n+1ln,...i+1i—-1,...,1) ;i=2...n
(n+1,n,...,1) i=n+ 1.

Now, fromRemark 2the worst-case ordering out of the= 2...n + 1 groups turns out to be
TG = (n+1,n,....1). (4.34)

Finally, it only remains to determine which ordering out=gf , andrg attains the highest
distortion level. However, one of the previously-discatdederings within thén+1)-th group
TGpko = (M +1,m,...,3,1,2) is known to have a higher distortion thafj . Therefore g,
can be discarded and, consequently, the worst-case ogdeitimn + 1 sensors yields

™=mg ., =Mm+1n...1). (4.35)

In conclusion, the performance of an arbitrary orderingan be upper- and lower-bounded by
those of the optimal and worst-case orderings, that is,

p") < pin < D). (4.36)

as defined in expressions (4.33) and (4.35), respectively.

Asymptotic distortion expressions

To close this section, we derive a lower bound of the asyngtiistortion for N — oo. By
settlnng 1.cee = 0 VE in (4.14), the following lower bound results

-1

1 L (14 SNR) ¥ — 1
+Z Vr(k)

D;ro,C&E = W
3 k=1 02 1+SNR% )
1 Wesl (0,1
SNR _—
P, <_2+ il ) (4.37)
0$ UU
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Figure 4.6: Distortion for Rayleigh-fading channels vs. twwk size ¢ = 1,W =
100, SNR = 10dB, 02 = 0.01).

which, interestingly, does not depend on the specific onderi From (4.10) and (4.14), it
follows tha\tD](@*C)&E < Dy sk for all N. Besides, in the higbNR regime both) the lower
bound of DY, ¢ given by (4.37); andi) D qee behave agsw (0, ) ~ Teng. From
this, one concludes that, necessarily, the actual diemﬂg%&E decreases ag<yz, as well.

4.6.3 Simulations and numerical results

In Figure 4.6, we illustrate the behavior of the Q&E and C&E@iing schemes with CSIT
for a varying number of sensors (Rayleigh-fading channdfey a small number of sensors
(N < 40), the performance of both encoding schemes is virtuallntidal. Although Q&E
cannot avoid sending redundant information, the bandwpéthsensor in this region is still
high, the observations can be accurately encoded and the-averaging effect (which is iden-
tical for both strategies) dominates. ASgrows, the messages undergo a rougher encoding
(quantization) process. This can be partly compensatedeo€&E scheme which, by succes-
sively encoding data, is able to remove the correlation éndbservations. Consequently, and
unlike in Q&E encoding, distortion continues to decreasesies, one also observes that the
distortion attained by the Q&E and C&E schemes converged@flymptotic limits derived in
the text and, interestingly, the asymptotic bound (4.38hiswn to be tight.
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Figure 4.7: Ratio of distortions associated to the optinmal @orst-case scheduling order.
Different channel gains{ = 25 sensors, ané% =1).

By plotting the ratio between the optimal and worst-caséodi®ns (O"*) /D)), we eval-
uate the impact of the encoding order on the C&E scheme (Fig). 4or a low correlation
coefficientp (i.e. noisy observations), the impact of the ordering Viagss the quality of the
observations is very poor and the impact of sorting the olasiens differently is marginal.
Forp — 1 (namely,c? — 0), the observations are identical and, likewise, it doesraally
matter in which order they are encoded. For intermediateegabfp, the ordering does play a
role, although the higher tH&\R (i.e. the available transmit power), the lesser the impé&ct o
the ordering. Still, for very low transmit powe$NR = —10 dB) the achievable rates over the
sensor-to-FC channels are small, the (roughly encode@)raditsons do not provide significant
gains when used as side information at the FC and, againrdatiags attain similar distortion
levels.

4.7 Rayleigh-fading channels without transmit CSI

In the absence of instantaneous transmit CSI, neither @enhoding rate be dynamically
adjusted to channel conditions, nor is suitable the C&E mefeHence, we focus on the Q&E
scheme and propose a modification by which each sensor altiseris encoded at@éommon

2Being C&E a successive encoding scheme, as soon as one g&imsautage and the observation cannot
be successfully decoded at the FC (see further details ahdhd text), the distortion in the estimate increases
dramatically.
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Figure 4.8: System model for no transmit CSI at the sensoesiod

andconstantrate given by

2 2
R = Ry = log, <1 n %;UU) V. (4.38)
Clearly, the goal now is to find the optimal value Bf as a function oftatistical CSI only,
which minimizes the distortion attained at the FC. To that,eme first compute the outage
probability, that is, the probability that the encodinger&t exceeds the instantaneous channel
rate, namely

ch +a§
N

Pout = Pr (log2 (1+ =

2 2 ﬂZ
(1) ¥ -
= [ z
K SNR

W
> —log,(1 + SNR - %))

(4.39)

whereF, (z) stands for the CDF ofy; £ = 1,..., N. According to (4.39), the variance of the
guantization noise can be expressed as a functigg,gfas
2 2
02 (pout) = e (4.40)
(L+SNR - F ! (pout)) ¥ — 1

with ! (-) standing for the inverse of the CDF of From theNy < N codewords reliably
decoded at the FC, an MMSE estimatexokith an overall distortion given by [18, Ch.10]

1 Ny !
D _ 2 _ _ Na 4.41
No.QUE = Tafus,...un, (U% - o+ 0?2 (p0ut)) @4
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can be obtained. Clearly, the expression above dependg; avhich is a random variable.
Due to the fact that sensors experience independent anticiadading conditions, it follows a
binomial distribution with probability of activation= 1 —p,... For Rayleigh-fading channels,
F1(-) turns out to be the inverse of the CDF of an exponentiallyrithisted random variable,

5
namely

1
-1
F" (Pout) = In (1 — pout) : (4.42)

By replacing (4.40) and (4.42) into (4.41) the expectedodisin yields

-1

1 Ne((1=SNR-In (1= poy))¥ 1)
_|_

Dqge = Ey, —
I\ 521 = SNR-1n(1 = pou)) ¥

2
+ o0z

Unfortunately, a closed form expression of the expectetbdien is extremely difficult to
obtain and, hence, it cannot be used as a score functionitainetV. However, the argument
in the expectation function is convex Ny and, thus, we can resort to the following lower
bound:

w —1
1 N (1 _pout) ((1 —SNR - In (1 —pout)) N _ 1)
— +
o2 02 (1 — SNR- 10 (1 — poue)) ¥ + 02

Dque > D = (4.43)

which follows from Jensen’s inequality. This bound can bevah to be tight asV grows
without bound (see Appendix 4.A.4) and, interestingly,|#oaperforms reasonably well for
practical values ofV as shown in Fig. 4.9. In this plot, we also observe that thisdas a
convex function inp,,: and, hence, there exists a single optimal operating pgintTherefore,
the subsequent analysis focuses on the bound given by @d&), due to its tightness, allows
us to find an accurate approximation of the optimal encodatey, 2*, along with the optimal
number of sensor nodes of the netwalk,. From (4.38) and (4.40); is, in turn, a function of
N andp,,: and, therefore, we equivalently minimize with respect &sthtwo variables. This
optimization problem can be re-written as follows [69]:

min D8 (N, powt) = min (min D8 (N, pout)) (4.44)
vaout Pout N
2 min D'B (Pout) (4.45)

Pout

with 0 < po.: < 1. In general, this problem is non-convex and, thus, diffitmkolve. How-
ever it can be efficiently solved in two cases of interest, elgnscenarios with high and low
observations noises. Complementarily, we analyze theatatdich the distortion decreases in
the highSNR regime.
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Figure 4.9: Distortion vs. outage probability,. for different network sizesiy’ = 200, 02 =
1,02 = 0.05,SNR = 10dB).

4.7.1 Scenario 1: high observation noise

Here, we consider that’ > o2, and, consequently, tiener minimization problem in (4.44)
can be approximated as follows

N (1= pows) (1= SNR I (1 poue)) ¥ — 1)
min D' (N, poe) = max - (4.46)

: : 7 (1= SNR - In (1 = poue)) ™ + 07
N (1 _pout) ((1 —SNR - In (1 _pout))w _ 1)

02 (1 — SNR - 1n (1 — pou)) ™

8

S

(4.47)

~ max
N

The resulting cost function turns out to be concave and nuomcally increasing inV and,
hence, the optimal number of sensoréVis — oo (that is, many sensors are needed in order to
smooth the observation noise). Bearing this in mind aier minimization problem yields:

<L W (1= pa)In (1= SNR-In(1 —Pout”)_l, (4.48)

min D'B (Pout) = min

Pout Pout g 0'12)

xT

which can be easily shown to be a convex problem. Setting sisderivative to zero yields

1

Pry = 1 — S Wl (4.49)
- - - - - _ P -
As far as distortion is concerned, increasing the avefddie = g N the sensor-to-FC

channels has two beneficial effects. On the one hafd,decreases and, hence, a higher
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percentage of observations can be successfully decodbd &Ct. On the other, observations
can be more finely quantized, as it follows from (4.40).

4.7.2 Scenario 2: low observation noise

Here, we consider thaf® < o2. Following the same steps as in the case of Gaussian channels
(Section 4.5), thenner minimization problem in (4.44) yields:

Win (1 —SNRIn (1 — pout))

N*(pout) ~ — — (4.50)
W_; <— Jv% ) —1
From (4.50) theouter optimization problem now reads,
min D'B (Pout) &~ max C' (1 — poye) In (1 — SNRIn (1 — pout)) (4.51)

Pout Pout

with C' standing for a positive constant. Surprisingly, the resglbptimization problem is
equivalent to that of (4.48) and, hence, the optif¥l, p: .} pair is given by

SNR
N* ~ Wi <W°(SNR)> (4.52)
W, (1 - ‘;—> ’
Do N 1= T oo, (4.53)
Finally, by subsequently substitutidg* andp;,, into (4.40) and (4.38), we have that
2
R ~W._, (-va) 1 (4.54)
0-2?

Interestingly, as long as? < o2 the encoding rate exclusively depends on the variance of the
observation noise. On the contrary, the optimal number n§@enodes is a function of the
available bandwidth and power (througNR = /), as well.

4.7.3 Asymptotic law in the highSNR regime

From Appendix 4.A.4, the average distortibiyg e converges in probability to its lower bound

1 1
Dgi e for large N. This holds true for any,,: and, in particular, fop;,, = 1 — ¢S W
which can be shown to be the optimal outage probabilitivas» oo. Hence, from this last
result and (4.43), we have

*
. DQ&E<pout> 1
lim —e———< = lim - - —
N—o0 DQ&E<pout> N—oo WeSNR ~ Wo(SNR) ln( SNR )
1 Wp (SNR)
ol +

— 1.

D, que (D) P (4.55)

02402

90



4.8. Contention-based vs. reservation-based multiptesacschemes

Besides, it is straightforward to prove that the denominatthis last equation satisfies

W In(SNR)
: 5+oz2
lim A =1. (4.56)
SNR—oo SNR ~ Wy (SNR) SNR
a, e O In (ot )
o2 o2+02

Finally, from the numerators in (4.55) and (4.56), we codelthat
O’i + 0'3

Win (SNR)"

In other words, for large sensor networks the (optimal)adigin in the high-SNR regime

decreases a In (SNR). Interestingly, this law is identical to that of (4.21) aitigh the latter

was derived in the (more favorable) case of Q&E encoduittp CSIT at the sensor nodes,
whereall the observations can be successfully decoded by the FC.

Dqge ~ (4.57)

4.7.4 Simulations and numerical results

Figure 4.10 illustrates the impact of CSIT on the behavidhefQ&E scheme (Rayleigh-fading
channels). As expected, the lack of CSIT translates intmareased distortion (Fig. 4.10a).
Notwithstanding, the gap between both strategies is velgtsmall andconstanfor the whole
range of (sensor-to-FGNR values. Complementarily, Figure 4.10b depicts the optimuah-
ber of sensor nodes with and without CSIT. First, we obsdraethe approximation for low
observation noise scenarios of (4.50) is very accuratééwthole range d3NRs. Second, the
optimal number of sensor nodes without CSIT is smaller théim @SIT (constant and variable
encoding rates, respectively). The intuition behind tkighe following: for a constant encod-
ing rate, some outage probability will unavoidably occudaim order to partly compensate
for that, one should increase the transmit pop&rsensoby allocating the available transmit
power to areducednumber of sensor nodes.

Next, Fig. 4.11 depicts the asymptotic distortion (for Ergtworks) as a function of ti#\R.
As discussed in the last paragraphs of sections 4.6 andhe#ate at which the distortion
decreases in the high-SNR regime is identical for the Q&E @&E&E with CSIT, and Q&E
without CSIT encoding strategies/(n(SNR)). In the high-SNR regime, the impact of CSIT
or the encoding scheme restricts to a scale factor in thmaliie distortion.

4.8 Contention-based vs. reservation-based multiple-aess
schemes

In previous sections, we have considered orthogonal chatmé¢he FC and, implicitly, the
adoption of a reservation-based multiple-access schegeRKBMA/TDMA). In realistic sce-
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Figure 4.10: a) Minimum distortion for Rayleigh-fading cimels vs. SNR and b) optimal
network size vsSSNR (W = 100, 02 = 0.01, 02 = 1).

narios, where the number of sensor nodes is potentially higty, the centralized coordina-
tion that reservation-based multiple access schemed enbairely desirable. Instead, letting
sensors seize the transmission medium via contentiordbraeehanisms (e.g. CSMA/CA or
ALOHA protocols), is far more attractive.

Therefore, to close this chapter we extend the previousysisalo encompass the effect of
contention-based multiple-access schemes. We focus temtiah on the (more challenging)
scenario ohierarchicalwireless sensor networks.

4.8.1 Signal and network model

Consider a hierarchical WSN where sensor nodes are gronfmedy, clusters with V sensors
each (see Fig. 4.12a). Each cluster is coordinated by aeZibgtad (CH) and, in turn, the set

of CHs is coordinated by the Fusion Center (FC). Within edakter, the (common) source

of interest is modeled as a lengthiwith » sufficiently large) vectok, = [x(l) e x(”)]T of

independent and identically-distributed zero mean Ganssindom variables of varianeg,
with joint pdf p (xf.l), . ,xﬁ”)> =T, p (3:5”) Thenoisyobservation at thé-th sensor in

3We assume a quasi-static network topology and, hence, wieateége impact of the signalling associated
with the clustering protocol.

92



4.8. Contention-based vs. reservation-based multiptesacschemes

10 T T T : :

Sl | —e— Q&E with CSIT ]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =—H8— C&E (lower bound) ]
Q&E without CSIT |-+ |

Distortion

107 i i i i i
0 5 10 15 20 25 30

SNR (dB)

Figure 4.11: Asymptotic distortions VSNR (W = 100, 62 = 1, 02 = 0.1).

cluster: reads
Yki = Xi + Vi (4.58)

wherev;, denotes memoryless AWGN noise (measurement noise) ofwadd and i.i.d. over
sensors and clusters. Next, each sensor encodes its dimema = [y\)....,y."]” into a
length» codeworduy, ;(s) € C and, finally, the corresponding indey ; is transmitted. As
shown in Fig.4.12b, data communication is organized in tivages within each timeslot (i.e.
half-duplex operation). In the first phase, of duration= «T,, sensors convey their encoded
data to the corresponding cluster-head. In the second pbéskiration7, = (1 — «a)7,
cluster-heads send the processed data to the Fusion CE@ferif all cases, we assume (for
mathematical tractability) that communications take plager Gaussian channels. From all
the above, the effective rates in bits per sample for eachgilager in the hierarchy are given

by
R, = aR) = aWlog, (1 +SNR;), (4.59)
Ry= (1—a)R, =(1—a)Wlog,(1+SNRy) (4.60)
whereSNR; andSNR, stand for the average signal-to-noise ratio in each layesidgs, we
assume that the sources of interest which are monitoredebgltisters are statistically inde-
pendent (e.g. a random field being sampledilsgantclusters of sensors). Consequently, the

quality of thek-th element in the vector of FC estimatas z,, . . ., 2y, (see Fig.4.12bgxclu-
sivelydepends on the data being received fromkkté cluster head. For that reason, in the
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Figure 4.12: Hierarchical wireless sensor network.

following we will focus our analysis on an arbitrary clusterthe network and, accordingly,
the cluster index will be dropped.

4.8.2 Reservation-based multiple access

Throughout this section, we assume that a reservatiordbasdtiple-access scheme (e.g.
TDMA or FDMA) is in place. Hence, the allocation of the ortlor@l channels to data pack-
ets is either static or, alternatively, it is organized byeatcalized scheduler. Consequently,
no packet collisions occur. This multiple-access scheniebei used as a benchmark for
contention-basednes, to be presented later.

With these assumptions, the available a¢e sensoin Layer 1 turns out to b% and, hence,
the codebookC consists of, at mosg™ codewordsu(s) with s € {1,2,.. .,2”%}. We
adopt the Q&E stratedywhere the encoding process is modeled through the auxilargible
u, = yi + 2z, With z, ~ N(0, 02T) and statistically independent gf. Consequentlyy; «—
yr < x form a Markov chain withn, = x + v, + z,. Bearing this in mind, the encoding
rate must satisfy:

R
Wl > T(ye;ur) = H(ug) — H(ug|yr)
2 2
= g, <1 L O +20') (4.61)
O-Z

4We adopt the Q&E strategy since the encoding process at tiseseis carried out independently. This will
be particularly important when, in the sequel, we considemtacket losses at the MAC layer.
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and, hence, the variance of the quantization noise for thedbpossible encoding rate reads

o, Ry (4.62)
28 —1
The distortion of the MMSE estimate afat the CH is given by [18]:
1 N \!
D = | =
e <a§ oy az)
Ry -1
N (2% 1)
= R ) 4.63
o i 032% + 02 ( )
Such CH estimate can now be modeled as
YcH = X + VcH (4.64)

wherevcy ~ CN (0,02 1) stands for thequivalentobservation noise at the CH with vari-
ance given by
, 1 1\ oW 402
O-UCH — - _2 — T. (4.65)
Deun o N (2w _ 1)

Next, the CH encodegcy into the auxiliary random variablecy with rateﬁ—i (to recall, N,
orthogonal channels are available in Layer 2). Again, tlieamrducy can be modeled as,

UcH = YcH + ZcH (4.66)

wherezcy ~ CN (0,02 TI) denotes the quantization noise at the CH, with variancendiye

Y ZC

05 + ai
ol = —m—=, (4.67)
N — 1

which is computed similarly to (4.62). From (4.65) and (4,6@fe distortion of the estimate of
x at the FC can be finally expressed as follows:

1 1 -1
Decn = (—2 + ﬁ) (4.68)
O UUCH + UZCH
1 o 1\
= <; + T, 2) . (4.69)
& 0y, 2N + 0y

4.8.3 Contention-based multiple access

In this section, we assume thatantention-basedultiple-access scheme is adoptedath
layers of the hierarchical network. For mathematical ahiity, we focus our analysis on the

5This follows from equation (4.63) faN = 1.
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results achieved with the ALOHA protoépivhich relieves sensor nodes/CHs from sensing the
medium before transmitting data. Besides, we further aesinait no packet collisions result
from simultaneous transmissionsdifferentclusters (i.e. distant clusters).

A quick overview of the ALOHA protocol

In the classical ALOHA protocol [50], the distribution ofdl{initial) transmission time of a

packet follows a uniform distribution if0, 7), whereT" stands for the duration of the corre-
sponding timesldt For a fully-loaded system, a packet duratiorfpeconds and by neglect-
ing the border effects, the probability that two packetdidelcan be computed as:

2T N—-1
Pecol = 1_< _Tp) . (470)

Now, we re-definél’ = NT, whereN is the number of terminals (sensors or CHs). From
(4.70), the probability of collision yields

9 N—-1
Pcol = 1 - (1 - N) . (471)

Next, we are interested in characterizing the pmf of the eamglariable/V,, namely, the num-
ber of successful packet transmissions in a given timeslth© < N, < N). Clearly, we
have that

Pe(v. =) = () s (4.72)

n
wherep,, stands for the probability that one particular subset sénsors (or CHs) successfully
transmit their data, angly_,, accounts for the probability that the packets from the remgi
N — n sensors (or CHs) collide. Unfortunately, this probabi(iyd pmf) turns out to be ex-
tremely complex to characterize. Instead, in Appendix8we show that one can approximate
the pmf of NV, for large N by that of abinomialrandom variabléV,, that is,

N

n

PI'(NS = n) ~ PI‘(Nb = TL) = ( ) (1 — pco|)np(]:\£|_n. (473)
In Figure 4.13, we plot the actual CDF o, and its binomial counterpart. Clearly, fof =
100, the binomial approximation is quite accurate. For low amublerate values olV (i.e.
N = 20, 50), the approximation continues to be acceptable.

SClearly, by using more sophisticated MAC protocols like C&KIA more realistic results would follow.

However, for an initial analysis like this, the ALOHA promlconstitutes a fairly simple and attractive alternative.
"Here,T plays the same role & andT5; in Section 4.8.1.
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Figure 4.13: Cumulative density functions: actual vs. bined approximation.
Distortion analysis

On the basis of the Bayes theorem, the average distortiamedt at the FC can be expressed
as:

Dec = peoi2E [Dec|cOl] 4+ (1 — peo2) E [Dec|no col]
pcol,Qai + (1 - pcol,Q) E [DFC,NS] (474)

with pe, 2 standing for the probability of collision in Layer 2 (whicblfows from replacingV
with N, in (4.71)). In the case of a packet collision (first term in saenmation), the FC simply
outputs the statistical mean of this resulting into a conditional distortion @f[ Dec|col.] =
o2. On the contrary, if the packet is successfully receivedt® EC (second term in the

summation), the distortion depends on the actual numbeadigis successfully received in
Layer 1 (V,), with expected value given B [Dec|no col] = Ey, [Dec w,], namely,

Ry -1
1 2N — 1
En,[Dec n,] = En, ( + ) . (4.75)

2 Rg
o 2 L g2
v 02 (Ng)2% + o2

In the expression above, variablg  (V,) stands for the variance of the equivalent observation
noise at the cluster-head observation, that is

Ry

1 1\ " 29N + o2
o2 (N,) = ( - —) _ TNt 0 (4.76)
N

UCH
Dcun, 02
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Unfortunately, a closed-form expression of the expectstbdion given by (4.75) is extremely
difficult to obtain. Instead and by realizing that the arguairia the expectation term of (4.75)
is a convex function inV,, one can resort to Jensen’s inequality and derive the fatiglower
bound:

Ro -1

1 2N — 1

ENS [DchNs] Z _2 + S Ro (4'77)
9: g2 (N) 2Ne + o2

VCH

where we have defined = E[N,]. According to Section 4.8.3, we can now replaéex
(1 — peoi1) N, namely, the mean of the binomial pmf approximation of (3. ¥8th p..; 1 given
by (4.71). Interestingly, this bound can be shown to be tightv — oc. Finally, by replacing
(4.77) into (4.74) a (tight) lower bound for the overall digion follows. As a remark, it is
worth noting that by particularizing (4.74) fpr, ; = 0 and (4.77) fop., 2 = 0, we obtain the
distortion associated to the reservation-based protagesimted in the previous section.

4.8.4 Resource allocation problem

Here, we attempt to minimize the expected distortion at thevith respect tax € [0, 1], which
determines the time devoted in each timeslot to sensot-t@@ CH-to-FC communications
(Ty = o1, andT, = (1 — a)T%, respectively). To that extent, we realize that the onlynter
(4.74) involved in the minimization w.r.to turns out to be (4.75). Therefore, byrecalling
from (4.59) and (4.60) thak, = aR| and R, = (1 — «) R}; andii) resorting to the lower
bound of (4.77), the minimization problem now reads

!
Ry

219252 (N) + o2
min — (V) + 2 . (4.78)
OIG[O,H 2(1—&)N—i . 1

RI
In the sequel, we assume tiat~ % > 1 or, in other words, that each CH-to-FC link in
Layer 2 is capable of conveying large amounts of inform&tioBearing this in mind, the
minimization problem above these lines can be approximagddllows:

2
min o2 (N) + —%—. 4.79
Juin oy, (V) Y (4.79)
In subsequent sections, we compute the optimddibr two cases of interest in Layer 1, namely,
i) high data rate per sensor amglow data rate per sensor.

8The underlying assumption here is that the number of ckistads is relatively low.
9Strictly speaking, the minimization of (4.79) yieldgjmasioptimal value ofx since (4.79) turns out to be an

approximation to the actual distortion.
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High data rate per sensor in Layer 1

First, we address the case whefe’ > 1 which holds when the cluster siZé is small com-
pared to the available channel rat&. In these conditions, the argument in the minimization
problem (4.79), re-defined g4« ), simplifies to:

1 o? o?

fl@) v ol = |+ — (4.80)
N (1 - pcol,l) 204% 2(1—04)2—?3

This problem is now convex in and, hence, a closed-form solutiah can be found by just

setting the first derivative of (4.80) to zero, namely

R, R,\ ' (R, R/ N,
L et R —= 41 ) 4.81
“ (N i Nc) Nc * Og2 R/2N2 (1_pco|,1> ( 8 )

From this expression, one concludes that the system teralfotmte more resources (time)
to the layer with the lowest channel rate. Af — oo (and R/, does not) them* — 0 which
prioritizes CH-to-FC transmissions. ConverselyRif — oo thena® — 1, this meaning that
sensor-to-CH transmissions become a priority. Besidespptimala is clearly an increasing
function in the probability of collision in Layer 1 (the highthe probability of collision, the
longer the time devoted to Layer 1 to partly compensate fsrefiect).

Low data rate per sensor in Layer 1

Here, we address the realistic case where the number ofrsandayer 1 is high and, hence,
R} i
2~ — 1. To start with, we compute

2 2
I 2 (N) = & - '
NLI%O Toen ( ) aly (1 - pcolvl) lIl(Q)

(4.82)

and, next, we substitute this into minimization problenY@}.which is now convex. As in the
previous section, a closed-form expression of the optimalating point can be easily found

and it reads
2N, 1 L (02 2 Rj In(2)
o c W, < \/ R2 (0'3;‘|‘0'v> e 22Nc ) (483)

- ln(2)R’2 0 5 NcRi (1 - pcol,l) U%

with W, (+) standing for the Lambert function [71]. Similar conclussda those of the high data
rate per sensor case can be drawn from this last expressimmevdr, the optimah depends
now on the quality of the observations at the sensor nodewels For noisy observations
(namely, high values of?), it is necessary to increasé in order not to introduce excessive
guantization noise in Layer 1.
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Figure 4.14: Distortion for reservation-based mechanisnisayer 1 and Layer 2. = 3,
SNR; = 20dB, SNR, = 10dB, W' = 20, 02 = 0.05, 2 = 1). Markers on the curves denote
the optimal operating points given by (4.81) and (4.83).

4.8.5 Simulations and numerical results

Figure 4.14 illustrates the accuracy of the approximatminhe optimization problem given
by (4.79) in both highand low data rate per sensor scenarios. In particular, we focus o
the case where a reservation-based multiple access mschanadopted in both layers (i.e.
Peoll = Dotz = 0). In scenarios with high data rate per sensyr+£ 10), the approximate
distortion given by (4.80) is quite tight and, hence, theropt value ofa can be accurately
computed with (4.81). On the contrary, in scenarios with tate rate per sensoN(= 200)

the approximation (4.80) turns out to be loose. Hence, osddeesort to (4.83) to determine
the optimal operating point*.

Next, in Fig. 4.15, we show the impact of reservation-baseblcantention-based mechanisms
on the overall performance. Clearly, adopting reservaltiased schemes in both layers (curve
labeled with 'TDMA Layer 1, TDMA Layer 2’) yields the lowestogsible distortion for the
whole range ofn. As expected, the introduction of contention-based meashan(and the
packet collisions that they entail) results into an inceelgistortion level. Contention-based
mechanisms are particulary harmful in Layer 2 since a paaiésion in a CH-to-FC link pre-
ventsall the data collected by that specific CH from being used to esértihe parameter. The
impact of contention-based mechanisms in Layer 1 is moelewdtien a packet is dropped, the
(noisy) observations sent by other sensors are still helpfuhe estimation of the parameter
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Figure 4.15: Impact of reservation-based and contentaseth mechanisms on distortion
(N. = 3, N = 40, SNR; = 20dB, SNR, = 10dB, W’ = 40, 02 = 0.05, 02 = 1). Mark-
ers on the curves denote the optimal operating points giygd.B1) and (4.83).

of interest. Besides, we observe that the lower bound thafowand by substituting (4.77) into
(4.74) is tight (dotted curve). This validates the optinedaurce allocations given by (4.81)
and (4.83). Finally, the presence of collisions in Layeradeto an increased value@f. This
effect is captured by the closed-form solutions given bg1f#and (4.83), as commented in
Section 4.8.4.

Finally, Fig. 4.16 depicts the expected distortion at theas@ function of the signal to noise
ratio experienced in Layer $NR; (for the optimalky, high number of sensors per cluster case).
Interestingly, theate at which the distortion decreases with reservation-basdatantention-
based isdenticalin both cases. In other words, when the number of sensordystecis high,
only a constant penalty in terms of distortion can be expmkcte

4.9 Chapter summary and conclusions

In this chapter, we have first conducted an in-depth anabysite Quantize-and-Estimate
(Q&E) and Compress-and-Estimate (C&E) encoding straseigi€orthogonal) Gaussian and
Rayleigh-fading channels under povwaerd bandwidth constraints. For the Q&E scheme, we
have proved that there exists an optimal number of sensa@swtiich minimizes the overall
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Figure 4.16: Impact c8NR; on distortion for a high number of sensors per cluster case(
3, SNRy = 10dB, W’ = 20, 02 = 0.05, 02 = 1).

distortion in the estimates. Conversely, in C&E encodimgyeasing the number of sensors
always pays off. For the Q&E scheme, we have derived an appeat& closed-form expression
of its optimal operating point (Gaussian channels and s@sescof interest in Rayleigh-fading
channels without CSIT) and concluded that optimizing omitneber of sensors is particularly
useful when the observation noise is low. For the C&E schevadiave analytically shown that
encoding the observations in a decreasing order of (s¢age€) channel gains minimizes the
resulting distortion. Computer simulation results reveak ordering is particularly important
in scenarios with moderate observation noise or transnwitepoWe have also derived, in a
context of Rayleigh-fading channels, closed-form expogssof the distortion attained by the
Q&E and C&E (lower bound) schemes for an asymptoticallyhmgmber of sensors. From
this, we conclude that, as expected, distortion is lowenénG&E case. Besides, in the absence
of CSIT, we have found the optimal value of thbemmonand constantencoding rate of the
Q&E scheme. In other words, we have identified the optimalaraff in terms of quantization
bits vs. the number of observations actually received aE@édue to outage effects). We have
approximately solved the problem for two cases of interestely, sensors with high and low
observation noise and found out that, interestingly, tok & CSIT translates into a moderate
increase of distortion for the whole range of SNR values.

Second, and unlike the previous analysis where each sem&@-communication occurs in
areservedorthogonal channel (e.g. TDMA/FDMA), we have addressed semealistic sce-
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nario, where sensors seize the channel via contentiordlbraséiple-access protocols. We
have adopted a hierarchical topology where sensors ar@egaato clusters and each cluster
is governed by a cluster-head, which is in charge of conabiid the cluster estimate and send
it to the FC. First, we have deriveccbosed-formexpression of the distortion attained at the FC
with a reservation-based protocol (e.g. TDMA) which hasbesed as a benchmark. Next, we
have extended the analysis to encompass the effect of pamlksions stemming from the use
of contention-based schemes. Specifically, we have fourapproximate (yet tight) expres-
sion of the distortion associated to the ALOHA protocol. @attbasis, we have identified the
optimal time split,a*, for sensor-to-CH (Layer 1) and CH-to-FC (Layer 2) commatans.
Furthermore, we have derived (approximate) closed-forpressions ofv* for two cases of
interest, namely, high data rate and low data rate per sei&orulation results reveal that
the adoption of contention-based mechanisms is partichlamful in Layer 2 whereas their
impact in Layer 1 is moderate. Besides, we have found (bo#thyacally and numerically)
that the presence of packet collisions in Layer 1 leads tmareased value af*. Finally, we
have also observed that thege at which the distortion decreases with 81¢R; is identicalfor
reservation-based and contention-based schemes.
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4.A Appendix

4.A.1 Quasiconvexity of the distortion function for Q&E encoding and
Gaussian channels

We want to prove that the distortion given by (4.16) is a q@srex function inV (we relax
N € R). Mathematically, the distortio® y ¢ IS @ quasiconvex function if its domain and all
its sublevel sets

S, = {N c R*]DN,Q&E < @} (4.84)

for a € R are convex (i.e. continuous) [69, Chapter 3]

The problem is equivalent to prove that the second term it6ds aquasiconcavéunction
or, mathematically, that its domain and all sisperlevekets (see definition below) are convex
(i.e. continuous). To that aim, we re-write the superleett ®f (4.84) as follows:

S, = {N c R*’DN,Q&E < a} (4.85)

- N((1+SNR)%—1)

> 48 =8p, (4.86)

2=

o2 (1 + SNR)

2
+ oz

with 5 = i — ULQ € R. After some manipulations, the above sets can be re-widiten
Ss={NeR" f(N)>o02+0.} (4.87)
with N
F(N) = <F - a;%) ((1+SNR)Y —1). (4.88)

Hence, the problem is equivalent to prove tfialv) is also a quasiconcave function/. On
the one hand, we have thAt/V) asymptotically converges to

lim F(N) = % In (1 + SNR). (4.89)

N—oo ﬁ

On the other, from the second derivative 6fN) w.r.t. N it easily follows that, fors <

W log(14+SNR)
202

. W log(1+SNR)o23
) concave if N < 8 im5e05 (4.90)
convexif N > W log(14+SNR)o23 '
W log(1+SNR)—20243
Wlog(1+SNR)

whereas fors > o , f(N) is concave for allvV > 0. According to this analysis along
with the asymptotic v?alue computed in (4.89),V) is necessarily a quasiconcave function.
Besides, it has (at most) one change of sign in its first devsxaFrom all this, one concludes
that S, are convex sets and, hence, distortion is a quasiconvexidanion N with a single
optimal valueN*.
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4.A.2 Convergence in probability ole ) f ) for large N
We want to prove that
N N
g(’ykv N) P 1
> e N) o2t or > 9w N) (4.91)
k=1 k=1
or, alternatively, that
N
9Oy N) ([ N) = (02 +02)\ P
2 Foe < o7+ o ’ (4.92)

for N — oco. Besides, from their respective definitions in (4.24), wewrhat f (v;, V) and
g (v, N) are related through

gy =1 (i, N) ;2(032 +ou) .93)
Replacing (4.93) into (4.92) yields

- (f('YkaN) - (O'Z—I—o'g))z

o2 f(y,N) (02 + 02) (4.94)
N 2

(f (: N) = (02 + 02)) ‘o
- ZZ 02 (02 + 02)’ (4.95)
= N e 0 - (05; ) (4.96)

o; (03 +07)
Inequality of (4.95) follows from the fact that(v;, N) > o2 + o2. Inequality (4.96), where
Ya:n) = max;—1 n{7:} denotes the first order statistic of a set/éfrandom variables, is a
straightforward upper bound on the summation term. From I8t expression, we want to
show that

lim Pr{ N (f (q0m) = (02 +02))" < e} =1. (4.97)

N—oo
For the sake of clarity and without loss of generality, in geguel we particularize the ex-
pressions for th6NR = 1 andW = 1 case and, hence, this last expression can be re-written

as:
. Ve "
]\}LI%OPT{V(lN < ( 2\/_—Fl) —1}. (4.98)

By using the CDF of the first order statistig..), which is defined ag’, , () = E¥(z) =
(1 —e )", one finally obtains

= lim (1—exp <— (Jg\\//gﬁ—kl)]\[—kl))]\[: 1,

which concludes the proof.
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4.A.3 Convergence in probability OfZ;L g (vi, N) for large N

z¥ In* (a)
k!

By resorting to the power serie$ = >,
mation term as follows:

[90, 1.211.2], we can factorize the sum-

N
1
Zg(%, N) =& > Win(1 +SNRy,)

i—1

N ')
Wk In® (1 + SNR~;
+ Z ( 7)'
=1 2

LV (4.99)
— .

The second term in (4.99) vanishesMs— oco. As for the first term, by the weak law of large
numbers, we have

N

1

NZWln(hLSNR%) S E, [Win (1 + SNRy)] (4.100)
i=1

where the expectation term can be easily computed as

1 1
E, [Wln (14 ~,SNR)] = WeswD (O, SI\I—R) (4.101)
with T'(a, z) standing for the incomplete Gamma function [90, 8.350.2].cénclusion, we
have that
1 WeswD (0,g=) )
Dooaue — | = + SNRJ (4.102)
’ o2 o2+ o2

which concludes the proof.

4.A.4 Proof of the tightness of bound4.43)

In this section, we prove that the bound derived in (4.43%8@totically tight for largeV or,

S +Xy
9T

in other words, that the probabilityr { B el 1| > ¢ » can be made arbitrarily small for

o

anyé > 0, whereXy is a random variabie with an arbitrary distribution of mean > 0 and
variances?;. For anys > 0, we have

1
_+XN X —
Pr 01%7—1 >4 = Pr M >4
oz THN oz TN
1 o2
< 5 R (4.103)
<,U/N+o__2>
2 2
< 2N (4.104)
252,MN
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where inequality (4.103) follows from Tchebychev’s bouBthce, in our case,

2=

. N, ((1 +SNR - F (pout)) ¥ — 1)

02 (14 SNR-F: 1 (powy)) ¥ + 02

turns out to be a binomial random variable, it is straightfard to computer?, and iy to
2
realize that the rati% — 0 as N grows without bound. Therefore, from (4.104) we have tha

1

=+ Xy
lim 22—~ 2 (4.105)
N=oo 25+ lN

whereZ denotes convergence in probability. Since the point-wisét | lim — + uy =
N

—>0on

1 .
— *+ 1o, 1.€. CONVerges to a constant value, we have that
o

xT

1 1
lim — + Xy = 5+ oo (4.106)

N—oo 0'%

This fact means that the bound derived in (4.43) is asyngalhyitight in V, which concludes
the proof.

4.A.5 Binomial approximation of IV

By neglecting the border effects, the valuepgffor the random variablé/, reads

n—1 2 N—i—1
pn = H (1 - N_Z,) . (4.107)

By considering that for largéV the probability thain sensors packets are received without
collisions, whem is close toN, is negligible then, for a fixed and relatively smaland large
N we have that

= lim (1 —pe)" =e 2" (4.108)

Now, by substituting (4.108) into (4.72) and due to the faet the sum of probabilities of the
approximate pmf must be 1, one concludes that, ~ limy_., p, " = (1 — e 2)" ",
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Chapter 5

Estimation of Random Fields with
Wireless Sensor Networks

In this chapter, we study the problem of random field estiomatiith wireless sensor networks.
We consider two encoding strategies, namely Compresd=atichate (C&E) and Quantize-
and-Estimate (Q&E), which operate with and without sid@infation at the decoder, respec-
tively. We focus our attention on two scenarios of intereflay-constrainedetworks, in
which the observations collected in a particular timeslostrbe immediately encoded and
conveyed to the Fusion Center (FC); ateday-toleran{DT) networks, where the time horizon
is enlarged to a number of consecutive timeslots. For bahatos and encoding strategies,
we extensively analyze the distortion in the reconstrucéediom field. In DT scenarios, we
find closed-form expressions of the optimal number of sasijgdoe encoded in each timeslot
(Q&E and C&E cases). Besides, we identify buffer stabiliypditions and a number of inter-
esting distortion vs. buffer occupancy trade-offs. Lajeissues in the reconstruction of the
random field are addressed as well. Finally, we address seigavhich the system operates
without instantaneous transmit CSI at the sensor nodes (@@ ay-constrained scenario). As
in the previous chapter, we consider that the sensors adophanonand constantencoding
rate. The constant encoding rate along with the networkasszeptimized in order to minimize
the attainable distortion in the reconstruction of the igphaandom field.
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5.1 Introduction

In many cases, the physical phenomena observed by sens@rkeie.g. environmental pa-

rameters, crop conditions) can be modelled as a spatiabrari@éld. The set of observations

captured by different sensor nodes are, thus, correlatgpbice. Therefore, the goal now is the
reconstruction of the spatial random fieldeditthe spatial points (see e.g. [21, 25,91, 92)).

In a context of random fieléstimationwith WSNs, the pioneering work of [93] introduced
the so-called "bit-conservation principle”. The authorsye that, for spatiallybandlimited
processes, the bit budget per Nyquist-period can be atbjtra-allocated along the quantiza-
tion precision and/or the space (by adding more sensor hades, while retaining the same
decay profile of the reconstruction error. In [94] and, agén bandlimited processes with
arbitrary statistical distributions, the authors propose a mathealdtamework to study the
impact of the random sampling effect (arising from the astopdf contention-based multiple-
access schemes) on the resulting estimation accuracGdumsiarobservations, [26] presents
a feedback-assisted Bayesian framework for adaptive gadioin at the sensor nodes.

From a different perspective but still in the context of ramdfield estimation, [25] proposes
a novel MAC protocol which minimizes the number of attempigransmit correlated data.
By doing so, not only energy but also bandwidth is preserv@esides, in [24] the authors
investigate the impact sandomsampling, as opposed to deterministic sampling (i.e. égual
spaced sensors) which is difficult to achieve in practicéh@reconstruction of the field. The
main conclusion is that, whereas deterministic sampliryg jodf in the high-SNR regime, both
schemes exhibit comparable performances in the low-SNiReeg

In scenarios with non-reciprocal (e.g. FDD systems) fadingnnels, it is often assumed that
only statistical CSl is available at the transmitter. Caopsntly, the encoding rate at the sen-
sor nodes cannot be dynamically adjusted to match instaatenchannel conditions. In this
context, the estimation of a spatially homogeneous paméthout instantaneous CSI has
been considered in the previous Chapter (see also [79,860lke previous works, for spatial
random fields the outage events experienced in the sen$-tmks modifies the sampling
pattern and, hence, needs to be investigated.

5.1.1 Contribution

In this chapter, we go one step beyond Chapters 3 and 4 andszdtire problem of (non-
necessarily bandlimited) random field estimation via veissl sensor networks. To that aim,
we adopt the Q&E and C&E encoding schemes of [76] and anahgaie performance in two
scenarios of interestdelay-constrainedDC) anddelay-tolerant(DT) sensor networks. In
DC scenarios, the observations collected in a particutaegiot must be immediately encoded
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and conveyed to the FC. In DT networks, on the contrary, thne thorizon is enlarged to
L consecutive timeslots. Clearly, this entails the use oéllduiffers but, in exchange, the
distortion in the reconstructed random field is lower. Toitzdjze on this, we derive closed-
form expressions of the distortion attainable in DT scarsafuinlike in [24,25,94], we explicitly
take into account quantization effects) and, from this, weednine the optimal number of
samples to be encoded in each of théimeslots as a function of the channel conditions of
that particular timeslot. Along with that, we identify umdehich circumstances the buffers are
stable (i.e. buffer occupancy does not grow without boumdi, #esides, we study a number
of distortion vs. buffer occupancy trade-offs. Complenaeity, we analyze the latency in the
reconstruction ofi consecutive realizations (i.e. those collected in oneglotgof the random
field.

Finally and unlike in previous works, we address the caseevbensors operate in the absence
of transmit CSI (for delay-constrained applications). Seouently, we propose @nstant-
rate encoding strategy which unavoidably entails some outageatnility in Rayleigh-fading
scenarios. This effect, along with the spatial samplingess and the power and bandwidth
constraints that we impose, results into some distortiatmie attempt to minimize by carefully
selecting the optimal number of sensor nodes to be deplaygdhe corresponding encoding
rate.

The contents of this chapter have been partly publishedarq9].

The chapter is organized as follows. First, in Section 5.2,present the signal model, the

communication model and the distortion analysis respelgtiNext, Section 5.3 focuses on the

strategies for delay-constrained WSNs. In Sections 5.458hdwe study the compress-and-

estimate and quantize-and-estimate strategies for delasant WSNs. Subsequently, Section
5.6 addresses the latency analysis for the delay-consttainategies. Next, in Section 5.7, in

the context of delay-constrained applications, we comditke case where sensors operate in
the absence of instantaneous transmit CSI. Finally, weedlos chapter by summarizing the

main findings in Section 5.8.

5.2 Signal model and distortion analysis

LetY(s) be a one-dimensional random field defined in the rangg0, d], with s denoting the
spatial variable. As in [23—-25], we adopt a stationary hoemsgpus Gaussian Markov Ornstein-
Uhlenbeck (GMOU) model [100] to characterize the dynamia$ spatial correlation of (s).
GMOU random fields obey the following linear stochasticeli#ntial equation:

dY (s) =0Y (s)ds+ oW (s) (5.1)
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Figure 5.1: System model.

where, by definitionY (s) ~ N (0,02) with o2 = Z, IW(s) denotes Brownian Motion with
unit variance parameter, ard o are constants reflecting the (spatial) variability of thédfie
and itsnoisybehaviour, respectively. According to this model, the aatecelation function is
given by Ry (s, s2) = 056—9‘52—51| and, hence, the process is not (spatially) bandlimited.

The random field is uniformly sampled by sensor nodes, with inter-sensor distance given
by d/(N — 1) ~ d/N (see Fig. 5.1). The spatial samples can thus be readily esgueas
follows [22]:

d
yk:Y(kN) :e_eﬁyk_l—knk k=1,...,N (5.2)

wheren;, ~ N (O, o) (1 — 6—9%».

5.2.1 Communication Model

As shown in Fig. 5.2, each time slot is composed of two distre@hasest) thesensingphase
and,ii) thetransmissiorphase. In the former, each sensor collects and stores imBdoffer a
large block ofn independent and consecutive observatipns- [y,gl), o ,y,ﬁ”)]T. Next, in the
transmission phase, the lengthsector of observations;,, is block-encoded into a length-
codeworduy(v,) € C at a rate ofR;, bits per sample. The encoding (quantization) process
is modeled through the auxiliary random variakble = y; + z;, with z, ~ N(0, agkl) and
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Figure 5.2: Sensing and transmission phases.

statistically independent of,. The corresponding indéx,, € {1,...,2"%}:k =1...Nis
then conveyetito the FC, in a total ofi; channel uses, over one of theorthogonalchannels
available. For a reliable transmission to occur, the emgpthteR;, must satisfy:

nRy, < % log, (1 + SNRv;,)  [b/s] (5.3)

whereSNR stands for the average signal-to-noise ratio experiencéuei sensor-to-FC chan-
nels. Besidesy,, ..., vy denote the channel (squared) gains that, in the sequel, welras
independent and exponentially-distributed unit-meadoamvariables (Rayleigh-fading chan-
nels). We further assume that the channel gains are independer time slots (block fading
assumption).

From thesetof decoded codewords, the FC reconstructs the randontfigldfor all s € [0, d].
As a result of the spatial sampling process and the chanmeldth constraint, the recon-
structed fieldy (s) is subject to some distortion which will be characterizedtisy following
metric:

D(s) = E UY(S) —Y{(s) 2} Vs € [0, d]. (5.4)

5.2.2 Distortion analysis: a general framework

For the distortion metric given by (5.4), the optimal estianaurns out to be the posterior mean
given all the codewordsu, = [uy, . .. ,uN]T, that is, the MMSE estimator [18, Ch. 10]:

Y(s)=E[Y(s)|u,] :Vse]l0,d. (5.5)

For mathematical tractability, however, only ttveo closestlecoded codewords, namely
anduy, will be used to reconstrudt (s) for all the corresponding intermediate spatial points

1As it will become apparent later, the codebabkonsists of, at mosg™/** codewords.
2In the case of random binning, instead of sending the indéxeo€odeword, the sensor sends the index of the

bin where the codeword,, is contained. In this case, one can re-defidg, as the number of bins and, hence,
the actual bits per sample needed to sapdlt is worth noting that random binning is assumed in the CEED@

CEDT strategies ahead. For further details, the readefasregl to Section 2.3.3.
Swithout loss of generality, we focus on the per-sample diito.
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(see Fig. 5.1), i.e.

. d d
Y(s) =E[Y(s)|ug_1,ux); Vse |(k—1)—=,k—=|, k=2,...,N. (5.6)
N N
For the ease of notation and without loss of generality, estiquel we will assunfe= 1 and,
hence, the interval between observations becomgsﬁto, %} . The distortion associated to the
estimator (5.6) reads [18, Ch. 10]
Cov? (Y (s), ug|ugp—1)
Di(8) = 0% (s = % () up, — 3 (5.7)

ug|ug—1

where

Yy Zk—1

-1
1 6795
2 _
Oy (s)lup—1 — <§ + (1 _ 6—95)05 + o2 ) : (5.8)

After some algebra, we obtain
Cov (Y(s),uglug—1) = E [(Y(s) —E [Y(s)‘uk_l} }uk_1> <uk —E [uk}uk_l} }uk_lﬂ (5.9)
= Ve F )0 s, (5.10)

and

2
ug[ug—1

o - 6_9(%_S>052’(5)\Uk—1 + (1 - 6_6(%_8)> UZ + ng'

It is worth noting that the variance of the quantization eei$ _ ando? are determined by
the encoding strategy in use at the sensor nodes.

5.3 Delay-constrained WSNs

In delay-constrained applications, theamples collected in the sensing phase of a given times-
lot must be necessarily encoded and transmitted to the F@ sLibsequent transmission phase.
The goal of this section is to particularize the analysisaft®dn 5.2.2 and compute the average
distortion for the cases of Delay-Constrained Quantiz&-astimate (QEDC) and Compress-
and-Estimate (CEDC) encoding strategies.

5.3.1 Quantize-and-Estimate: average distortion

In this approach, each sensor encodes its observatiordtegsiof any side information that
could be made available by the FC. From [35], the followingguality should hold for the rate
at the output of thé-th encoder (quantizer):

Ry = 1(yk;ur)  [b/sample (5.11)
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with I(+;-) standing for the mutual information. As discussed befdne,dncoding (quanti-
zation) process is modeled (see e.qg. [76, 78] for furtheaild@tthrough the auxiliary variable
w, = yi + 2z, With z,, ~ N(0, 02 I) and statistically independent gf.. From this, the mini-

mum rate per sample can be expressed as follows:

2

I(yg;ugp) = H(ug) — H(uglyx) = log (1 + :g ) [b/samplé. (5.12)

2k

From (5.3), (5.11) and (5.12) we have that, necessarily

m o;
N log, (1 4+ SNR - %) > nlog, (1 + —y) . (5.13)

2
2k
By letting equality hold in (5.13), the minimum variance béguantizatiomoise yields

2 Jy
o2 = . k=1,...,N (5.14)
(1 + SNRy)

with W = ™ standing for the channel uses-to-samples ratio. By sukistf(5.14) into (5.7),
the distortion in an arbitrary spatial poinin the k-th segment reads

w -1

| e G (14 SNRag () ¥ — 1)

DFPC(s) = | = + L - (5.15)
TY ()lur— ((1 + SNRyy, (i)~ — 1) (1 - e—ﬁ(w—s)> o2 + 02
with
—1
) | e ((1+SNRy, (i) ¥ — 1)

Oy s — | 2T —w . (5.16)

a; ((1 + SNR, (i)~ — 1) (1—e )02 + o2

The average distortion (over the spatial variaklan the £ — ¢th network segment can be
computed as

T/ D (s)ds, (5.17)

—~QEDC

D (5.18)

5.3.2 Compress-and-Estimate: average distortion

In this approach, we allow each sensor (encoder) to use dieeirsiormation provided by its
neighbors. For simplicity, we let each sensor to encodeuiteeat observatiom,, based only
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on the adjacent sensor (encoded) observatign,. Accordingly, we have that the minimum
rate per sample can be expressed as follows:

Ry > 1(yg; uur—1) = H(uglug—1) — Hug |y, ug—1)
= H(yr + 2i|ur—1) — H (yx + 2i|ur)
ol
= log, <1 - %) [b/sample]. (5.19)

2k

where the second equality is due to the fact that— y, < wu,_; form a Markov chain.
Bearing this in mind, for a reliable transmission we musiséat

2
m 0 Up
N log, (1 + SNR - ) > nlog, (1 + %) . (5.20)
2k
By taking equality in (5.20), we can compute the minimum aace of thejuantizatiomoise

2
ol as
2

g
or = sl . k=1,...,N, (5.21)
(1 +SNRy,) ™ —1
wheres? |, can be easily computed as follows:
U§k|uk—1 = 6_9(%_5)052’(5)\1% + <1 - 6_9(%_8)> U;- (522)

From (5.7), the distortion at an arbitrary spatial peimeads:

0 =—s _w
CEDC 05032/(5)|ka1 <€ (N ) B 1) Ué(s)‘uk_l (1 + SNR’yk) N
D) = =0 ; T2 5 (5.23)
Ty (6 A 1) TV @ Ty (6 Y 1) T OV ()i
with
w -1
) 1 e 05 <(1 + SNR”)/k (’L)) N — 1)
oY (s)lup—1 — o2 + NN o o 5 (5.24)
; ((1 + SNRy, (i)~ — 1) (1—e0)o2 o2
The average distortion for each network segment can be ceahas follows:
d
_ N [~
D= / " peenc ) (5.25)
0

and, finally, the average distortion (over the channel zatibns and network segments) yields:

N-1
—CEDC 1 Z —CEDC
D = ]E,Yl ..... ’YN [m Dk,_"_l ] . (5.26)
k=1

4Alternatively, we could usall the sensor observations but due to the (spatial) Markovgstgpf the random
field model, this would not decrease significantly the encgdate.
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5.4 Delay-tolerant WSNs with Quantize-and-Estimate
encoding

Here, we only impose lng-termdelay constraint: thén samples collected ih consecutive
timeslots must be conveyed to the FC in silidimeslots. In other words, sensors have now the
flexibility to encode and transmit a variable number of sasph each time slot. This provide
additional degrees of freedom to adjust the (per-sampledaing rate to the actual channel
conditions and, by doing so, attain a lower distortion.

Let ny(i) = au(i)n be the number of samples encodedriiN channel uses by sensbrin
time-sloti. As in the previous section, we need

2

% log, (1 +SNR - v, (7)) > ag(i)nlog, (1 + g—zy) ; k=1,...,N. (5.27)
o

2k

By replacings? from (5.27) into (5.7), the distortion per timeslot yields

e_6<%_8) S % (7 NL% — -
pRET () L ((1+ NR;, (1)) 1)

ai(t 528)
bt Votuer (14 SNRag ()% = 1) (1= (7)) 02 4 2

The ultimate goal is to minimize theeveragedistortion overL timeslots at an arbitrary spatial
point s (the average distortion over the entire random field will benputed in Section 5.4.1
ahead). Hence, the optimization problem can be posed asvisi|

L
1
L D} e 5.29
ag(1),...,ax (L) L;a’f(l) k,ak(z)(s) ( )
L

where the constraint in (5.30) is introduced to ensure tailgly of the system. Unfortunately,
a closed form solution cannot be obtained for the genera. cAfternatively, we consider a
suboptimal encoding strategy: sengowill assume that the FC does not explojt_; (the
codeword sent by the adjacent sensor) but aplin order to reconstruct the random fiélds)
ins e [(k—1)4,k<].° The new cost function can be readily expressed as follows:

b I
DRani(8) = 0% (g, = 0y (1= e7) +oye™® (1 + SNRyy (i) ¥4

SImplicitly, we are assuming that the (k-1)-sensor encodes at a constant rate over timeslots. This evill b

verified later on in this section.
8still, the FC continues to use both anduy,_; to reconstruct the random field. Yet suboptimal, this soluti

still outperforms those obtained in delay-constrainedades (see computer simulations section).
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T

Clearly, only the second term in the summation of the costtfan DRE° 1

the optimization problem, which can be re-written as

(s) is relevant to

ak(l) 7777 ak(L)

L
1 _
min 17 g ag (1) (1 + SNR, (1)) Moo
i=1

1 L
s.t. - ;ak(i) =1 (5.31)

It is straightforward to show that this is a convex problenenkle, one can construct the La-
grangian function as follows:

L ar(D), ... an(L) = % > o) (1+ SR (1))~ ¥k

+ A <% Z (i) — 1) (5.32)

where \ is the Lagrange multiplier. Therefore, by setting the firstieative of (5.32) w.r.t.
ax(7) to zero we obtain

e Win(1+SNRy (7))

O‘k@) _N 1-W._, (A)

e

(5.33)

with W_; (-) denoting the negative real branch of the Lambert functid). [Apparently, the
future channel gainsy(i + 1),...,7x(L)) would also be needed in order to compute
However, ad. — oo this non-casuality requirement vanishes: by the law ofdargmbers, we
have that

L
o1 ein  WE,[In(14SNRvy)]
M 7200 = ¥ WL

e

(5.34)

where~ a exponential distributed random variable. Henkecan be readily obtained by
replacing into the constraint of (5.31), namely

* W_ ~¥RIn
A= —0> <NR111(2) + 1) e~ i) (5.35)
where we have defined
R = E, [log, (1 +SNR~)]. (5.36)

Finally, replacing\* into (5.33) yields

_logy (14+SNRy())  i=1,...,L

; : (5.37)
R k=1,...,N

ap (i)

and, by substituting; (¢) into (5.43), the quantization noise for theh sensor node reads:

; o di=1,...,L

g,
g : _ 5.38
oNE 1 k=1,...,N (5.38)
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5.4.1 Average distortion in the reconstructed random field

By insertingaj (¢) into theoriginal cost function of (5.28), the distortion for an arbitrary ipioi
in the k-th network segment reads:

4 o —1
. o 0(#—s) <2%R — 1)
DXEPT(s) = DIPT(s) = L= 559)
k() - Wt (288 -1) (1= 7)) o3 4 o3

2|~

Interestingly, distortion is not a function of the channairgexperienced by thee-th sensor in
timesloti (i.e. distortion does not depend af)(:)). As a result and unlike in QEDC encoding,
the distortion experienced in every timeslot 1,..., L is identical. This can be useful in
applications where a constant distortion level is needed.

After some tedious manipulations, the average distortiothé whole reconstructed random
field can be expressed as:

N-1 d

— 1 N (W~
DYt — & E/N DIEPT(5)ds (5.40)
0

k+1
k=1

(02 +0%)" e 4 01) 4 — 207 (02 4 02) (¥ 1)
_ — . (5.41)
((aeraZ) enN —ay> N

5.4.2 Buffer stability considerations

In order to derive a closed-form solution of the optimal nembf samples to be encoded in
each time slotd; (7)), in (5.34) we let the number of timeslofsgrow to infinity. Clearly,

this might lead to a situation were buffer occupancy growsheuit bound, that is, to buffer
unstability. To avoid that, we will encode and transmit agfsily) higher number of samples

per timeslot, namely
_ log, (1 + SNR, (7))

R—§
with 0 < § < R. By doing so, one can prove (see Appendix 5.A.1) that bufieesstable. Un-
surprisingly, this come at the expense of an increasedrdmton the estimates (see computer
simulation results in Section 5.4.3).

ay(i)n n > ag(i)n (5.42)

5.4.3 Simulations and numerical results

Figure 5.3 depicts the (per-timeslot) distortion in theorestructed random field for both the
QEDC and QEDT encoding strategies and different SNR valbesthe QEDC strategy, we
show the average value along with the confidence interval (to recall that, unlike in the
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Figure 5.3: Average distortion vs. network sixe(WW = 150, 6d = 10).

QEDT case, the distortion in QEDC encoding varies from tiote® timeslot). Several con-
clusions can be drawn. First, for each curve there existpimal operating point, that is, a
network size for which distortion can be minimized. The ititun behind this fact is that, de-
spite that spatial variations of the random field are betiptured by a denser grid of sensors,
for a total bandwidth constraint the available rate per gepsogressively diminishes, this re-
sulting in a more rougher quantization of the observatidhsis, the optimal trade-off between
these two effects needs to be identified. Second, the dmtasssociated to delay-tolerant
strategies is, as expected, lower than for the delay-cainstl ones. Moreover, the lower the
average SNR in the sensor-to-FC channels (namely, sengbréower transmit power), the
higher the gain (up to 3 dB for SNR=0 dB). Third, guaranteindfdr stability in the QEDT
scheme only results into a marginal penalty in distortiaslaown in the curves labeled with
0 = 0andj = 0.1. Complementarily, in Fig. 5.4, we depict buffer occuparmydeveral values
of 0. Foro = 0, the system is clearly unstable. Conversely, by letiigke positive values,
e.g. ford = 0.1 as in Fig.5.3, the average buffer occupancy can be kept waderol (with a
relatively small average buffer occupancy3afsamples, in this case). Clearly, increasirttas

a two-fold effect: the average buffer occupancy diminishats simultaneously, the resulting
distortion increases.

Finally, the rate at which the distortion decreases for t&®Q and QEDT schemes (evaluated
at their respective optimal operating points) for an insmeg SNR is shown in Figure 5.5.
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Figure 5.4: Average buffer size vs. timesI6NR = 0 dB).

For intermediate distortion values, the gap is approxiigatedB. That is, for a prescribed
distortion level, the energy consumption in delay-consaa networks is 2.5 times higher.

5.5 Delay-tolerant WSNs with Compress-and-Estimate
encoding

As in the previous section, let,(i) = «(i)n be the number of samples encodedriniN
channel uses (i.e. one timeslot). For reliable decoding@fC, the rate at the output of the
C&E encoder must satisfy:

o2
% logy (1 4+ SNR - 7, (2)) > ag(i)nlog, <1 + %) . (5.43)
2k

To stress that expression (5.43) differs from (5.27) in thatC&E encoder assumes that the FC
will use u,,_; to decodeu, and, hencquk has been replaced bzkhl«kfl' Therefore, from (5.7)
and the definition O&i\um in (5.22), we have that for the current block«f(i)n samples the
distortion reads

121



Chapter 5. Estimation of Random Fields with Wireless SehR&tworks

_8 T T T
p —— QEDC
-9r ' AAAREARERARERE SRR IRERRY QEDT (3=0.1)"
QEDT (3=0)

Distortion (dB)

0 5 10 15 20
SNR (dB)

Figure 5.5: Average distortion vSNR (W = 150, 6d = 10).

2 2 (4 —s . m
CEDT Ty (o) ks <e Nl 1) Ué’(s)luk,l (14 SNRy) (i) =0r
o2 (e N8 — 1) + 032/(5)‘%_ o2 (e NTS) 1) + 052/(5)‘%_1
and by averaging ovel timeslots, the following problem results:
- )DRE T ( 5.45
Lmin Zak bt () (5.45)
s.t. Z ax(i)n = Ln. (5.46)

Solving this problem leads to a closed-form solution thadéntical to that of the QEDT case,
namely,

(5 _ o (1 SRy (i)

(i — (5.47)
Finally, by replacingy; (i) into (5.43) yields
o2 1 I
2 Yie|ur—1 ? Yty
T T oWR _ | k=1,...,N (548)

As in the QEDT case, this last expression reveals that atierencode their observations at a

constant rate. This was implicitly assumed in the scoretfan¢5.46). To remark, the stability
analysis of Section 5.4.2 also applies here.

122



5.5. Delay-tolerant WSNs with Compress-and-Estimate @ingo

5.5.1 Average distortion in the reconstructed random field

By insertinga; (7) into the original cost function of (5.46), the distortiorr fan arbitrary point
in the k-th segment reads

(L —s o
T30V (5) (e (#) - 1) oy 2w "

Y (s)|ug—1
AT,

DREYl (s) (i
gg <e (N S) — 1) +U)2/(s)

(5.49)

|wg—1 [ug—1

As in the QEDT case, distortion is not a function of the chamyaen experienced by the-

th sensor in timeslot. Hence, the distortion experienced in every timeslet 1,...,L is
identical. Therefore, the average distortion for each netwsegment can be computed as
follows:

d
—ceot N [V
D == /0 DEEPT(s) (5.50)

2 2 2 2 0d 4\ 6d o 4 2 2 2 0d
(3402 ) (3 +02) ¥ +op) % —20) (203 + 02 02, ) (e

_ 1)
= ; ; ; ; ” N o (5.51)
((Uy + UZk—l) (Uy + Uzk) eN — Uy) N

Finally, the average distortion in thvéholereconstructed random field can be expressed as:

_ 1 _
DT = — N (5.52)

Interestingly, the average distortion has a simple cldseakexpression, this being in a stark
contrast with the CEDC strategy where, in general, a cldsgd-expression for the average
distortion (over different channel realizations) cannefdund.

5.5.2 Simulations and numerical results

Figure 5.6 illustrates the average distortion in the retiooged random field for the CEDC
and CEDT encoding strategies. As in quantize-and-estisrateding, there exists an optimal
number of sensors nodes. Finding su¢his particularly useful for random fields with low
SNR per sensor, since the curve is sharper in this case. The gapdrethe minimum distortion
attainable by the CEDC and CEDT schemes (which results fromdequate exploitation of
channel fluctuation in the delay-tolerant approach) is@axiprately 2-3 dB. Concerning buffer
occupancy-distortion trade-offs, the same comments &giquantize-and-estimate case apply.

Finally, in Fig. 5.7, we compare the distortion attained dy[@J/CEDT encoding strategies
for random fields with low and high spatial variabilitiegi(= 1, 6d = 10, respectively). Due
to the fact that CEDT is capable of exploiting spatial catiehn, it always outperforms QEDT.
Moreover, the higher the spatial correlatiéi & 1), the larger the gap between the curves.
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5.6 Latency analysis

As discussed in the previous sections, in delay-toleratwaoris the number of samples en-
coded in each timeslot is not constant. Unavoidably, tfi®duces some delay in the recon-
struction of the random field for each blockm@fconsecutive samples (whereas in the case of
DC scenarios, the consecutive realizations of the random field can be immelgiaecon-
structed).

In the sequel, we analytically assess the latency at the F@donstructing the entire random
field. To that end, first we propose a model, which accountgHerlatency in receiving.
consecutive samples froameparticular sensor node. Next, we derive the latency of thBQE
and CEDT encoding strategies, respectively.

5.6.1 Latency analysis for a single sensor node

Let n;(i) = [ag(i)n] the number of samples encodedfnchannel uses in timeslot The
probability that = 0, ..., n—1 samples are encoded in an arbitrary timest@n be expressed
as

m = Pr(ng(i) =1) (5.53)
1
= Pr(ig(x};(i)<i) ; 1=0,...,n—1 (5.54)
n n
Besides, we define
pn = Pr(ng(i) >n) (5.55)
= Pr(ag(i) >1). (5.56)

On that basis, we model our system as an absorbing Markown ¢h@i, Chapter 8] witm
transientstates &, . . ., S,,_1) and oneabsorbingstate §,,) defined as follows:

S _ [ samples have been transmitted in previous timeslots{ = 0,...,n — 1
"\ normore samples have been transmitted in previous timestotsl = n

(5.57)
The transition matri¥ of an absorbing Markov chain has the following canonicafrf¢t01,
Chapter 8:
Q r
P = , 5.58
B 559

whereQ denotes thén + 1) x (n + 1) transient matrixy is a(n + 1) x 1 non-zero vector
(otherwise the absorbing state could never be reached frermmansient states). The entries of
the matrixQ can be computed as follows:

0 <l
G, = { et (5.59)
pj—i Otherwise
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Figure 5.8: An absorbing Markov chain.

and, the entries of thex + 1) x 1 r vector, which denote the probability of absorbtion from
each transient states, are given by

n—1
lel—qu ;0 1=0,....,n—1. (5.60)
=0

Our goal is to characterize the time elapsed until the alisgritate is reached or, in other
words, the time needed to transmitonsecutive samples of the local observation of the random
field at sensok (i.e. the latency). For an absorbing Markov chain definedha®.i58), the
random variable, standing for the time to absorbtion, obeys the so-calledi@te PHase-type
(DPH) distribution. From [102], the probability mass andmuative distribution functions can
be expressed as:
frt)=Pr(r=t)=7"Q"'r ; t=1,...,00 (5.61)
F(t)=Pr(r<t)=1-7"Q"1 ; t=1,...,00 (5.62)

where in the expressions above the+ 1) x 1 vectors denotes the initial conditions. Since
we assume that in the beginning no samples have been tréednitiyields

al =1[1,0,...,0]".

The average time to absorbtion reads:

E(r] = tf(t). (5.63)
t=1
Alternatively, from [101, Chapter 8], one can compute
u=1-Q;) "1 (5.64)

126



5.6. Latency analysis

with the first element ofi denoting the average time to absorbtion, i.e.

Finally, the only missing point is to find a closed-form exg@®n for the set of probabilities
{po, p1,- -, pn} defined in (5.54) and (5.56). From (5.37), we have that

_ log, (1 + SNRy(2))

() = (5.65)
with R = E, [log, (1 + vSNR)] and, hence,
p = Pr (i < (i) < H—l) (5.66)
n n
[ — ) I +1—
= Pr ER <log, (1 4+ SNRy4(7)) < TR (5.67)

2R 1 WR_1
= 5 (st) -5 (st) (5.68)

foril =0,...,n—1andp, =1-F, (%) For Rayleigh-fading channels, the CDF of the

channel gainis given by, (z) =1 —e™".

5.6.2 Latency analysis for QEDT encoding

At this point, the interest lies in characterizing the tintegosed untilV sensors in the network
encode and transmit their correspondiniiyst samples of the random field. That is, we attempt
to characterize the latency in reconstructing the firgonsecutive realizations of thvehole
random field. Let’ be a random variable which models such latency, namely

U = max T, (5.69)
N

wherer;,, stands for the latency associated to the individual sehsardefined in the previous
section. Since, on the one hand, sensors are assumed teeexpdri.d fading channels to the
FC and, on the other, the FC decodes the samples receiveceiomsensor independently,
71, ...,7y turn out to be i.i.d. DPH random variables with marginal pré&hd CDFs given by
(5.61) and (5.62), respectively. From all the above, the ©DtRe latency associated to QEDT
encoding reads

Fy(t) = Pr(¥<t)=Pr (ml?m < t) (5.70)
= Pr(n<t,n<t,...,7y <t) (5.71)
— FV@t)=(1-7TQ1)" t=1,... (5.72)
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From (5.72), it follows that the probability mass functi@ads

fu(t) = Pr(¥=t) (5.73)
= Fy(t)—Fg(t—1) (5.74)
= (1—7TTQt1)N— (1—7TTQt*11)N t=1,...,00.

Finally, the average latency yields:

o0

E[W] = tfu(t). (5.75)
t=1
It is worth noting that the average latency of the systemiwdiease with the number of sensor
nodesN, since for a large network size the higher the time to absmlior the slowest sensor
node.

5.6.3 Latency analysis for CEDT encoding

Due to the successive encoding of the observations that @&tegies entail, the latency analy-
sis here is far more involved and, in general, does not altoviife derivation of closed-form
expressions. To circumvent that, we will resort to an apjpnaxe (yet accurate) approximation.

In order for the FC to successfully decode the codeword veddrom sensok, the codeword
sent by the adjacent sensor- 1 must have been decoded first. Clearly, this means that the
codeword received from sensorf will be the last one to be decoded. Due to the fact that
sensors experience i.i.d. fading conditions (and, thus,nilhmber of observations received
from different sensors are not time-aligned), when the firsamples sent by sensor are
ready to be decoded, a total of+ c,n (instead of onlyn) samples from sensa¥ — 1 have
already been decoded on average. Accordingly, a totakof N — 1) c,n samples from sensor
#1 have already been decoded too (see Fig. 5.9). Hence, ghe fealizations of theentire
random field can be reconstructed if, equivalently; (N — 1) ¢c,n samples sent by the first
sensor have already been decoded by the FC. Since the eggudoess for the first sensor is
identical in C&E and Q&E encoding, in order to compute thertety for the reconstruction of
therandom field it suffices to compute the time to absorbtion foriagividual sensor (sensor
#1). The only change with respect to the model given in (5i68)at the Markov chain has
now atotal ofn + (N — 1) ¢,n states (instead of) and, hence, the size and elements of matrix
Q and vectorsr andr in (5.61) and (5.62) must be adjusted accordingly.

As for parameter, (which exclusively depends on the pdf of the sensor-to-F&hakl gains),
it can only be determined empirically (see next Section).
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Figure 5.9: Approximate CEDT decoding for the analysis efldtency.

5.6.4 Simulations and numerical results

In Figures 5.10 and 5.11 we depict the average latency faQEBT and CEDT strategies, re-
spectively. Interestingly, there exists a trade-off imisiof the attainable distortion vs. latency.
Whereas in CEDT encoding latency exhibitéireear increase in the number of sensors, in
QEDT encoding latency growsgarithmically (i.e. more slowly). However, CEDT schemes
attain lower distortions than QEDT ones. Besides, in FiglO5t is also worth noting the
perfect match between the simulations and the numericaltsesnd, unsurprisingly, that the
higher the averag8NR, the lower the latency. Also, Figure 5.11 reveals that bygisin ap-
propriate value of, (i.e. ¢, = 0.6), the latency associated to the approximate model destribe
in Section 5.6.3 matches the actual one.

5.7 Random field estimation without transmit CSI

In the absence of (instantaneous) transmit CSlI, neithetheaencoding rate be dynamically ad-
justed to channel conditions, nor is the successive C&E dingastrategy applicable Hence,
we focus on the Q&E scheme and propose a modification by wigich sensor observation is
independentlgncoded at aommorandconstantrate given by

2
R =Ry —log, <1 + %) . k. (5.76)

z

The outage probability, namely, the probability that theazhng rateR exceeds the instanta-
neous channel rate (and, hence, the codeword cannot bessfidyedecoded at the FC), can

’See discussion in Section 4.6.
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be expressed as

Pr (1og2 <1 +
1
B (SNR (H -

Pout

2
z

(5.77)

where F,(z) stands for the CDF of the channel gaips From (5.77), the variance of the

guantization noise reads

2
gy

Uz(Napout) -
(1 + SNR - F;l (pout))

—Pout

whereF;1 (Pout) = log (1

(5.78)

)

-1

2=

! ) . Interestingly, the actual (spatial) sampling patternas d

fined by two system parametend:the number of sensorsV() and,ii) the outage probability
experienced in the sensor-to-FC linkg(). The former determines the inter-sensor distance,
whereas the latter introduces a random sampling effecthwmmodifies the spatial sampling

pattern (see Fig. 5.12).

As far as the distortion analysis is concerned, it is sintibathat of Section 5.2.2. For each
network segment, the random field is estimated based on thelosessuccessfully-decoded

codewords, namely;, andu y, , that is,

d
E Y (s)|uk, uksn,]; Vs € [k

Y(s) =

N?
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where N, is a geometrically-distributed random variable with prioibty of success given by
p = 1 — pout. Accordingly, the distortion associated to the estimaftdbr9) is given by

Cov? (Y (8)|ug, uryn,)
2 2 y U4 N
DNh(S) = OV (s)lursunsn, = OV(s)up — 2 " (5.80)
Uk Ny, | Uk
where .
1 6793 -
2
Oy (e = | = + ; 5.81
Y (s)|uk (UZ (1 —e0s) 05 + 03) ( )
_ d_g
Cov? (Y (8), upin, |ug) = e 0(Nn )crf‘,(s)‘uh, (5.82)
2 . —0(N,L—s) 2
+ (1 - e—e(Nh%—S)) 02 + o2, (5.83)

5.7.1 Optimization problem: optimal network design and enoding rate

Here, we are interested in a min-max design by which we attéonminimize the maximum
value of distortion in each segment. For each network segmamelys € [0, Nh%}, the
highest distortion is attained at the middle point (see)[d4. s = %Nh%, and reads

—ON), % 2
1—e N + 0,

y N, & :
1+ e 9Nn3w + o2

Dy, (s) < max Dy, (s)=Dy* =0
SE[O,N}IV%] )

For networks with a sufficiently-high number of sensors apaéglecting border effects, this
yields an average value of

1— —ON}, % 2
pmax — pmax (N, pout> _ UjENh (& 2: + g (584)
1+ e N3N + o2
s p1 — ¢ T 4 o2
< D" (N, pour) = 02 : (5.85)

g 2’
1 —|— (& 2N (1—pout) —'— O'Z

where again the upper bound follows from the applicatioreofsén’s inequality.

Our goal is, thus, to find the optimal number of sensor nades the network and the corre-
sponding encoding rat®8 which minimizes the cost function (5.85). From (5.76) and &),
Ris, in turn, a function ofV andp,,. and, therefore, we equivalently minimize with respect to
these two variables. This optimization problem can be sbinéwo steps [69]:

min DY (N, Pout) = min <min Dub (N, pout)) (5.86)
N,pout Pout N
= min D" (pout) - (5.87)

Pout

Hence, in the next subsections, we first solve for the optii(al,.) in the inner minimization
problem of (5.86), and then we solve (5.87) for the optimgl.
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Figure 5.13: Optimal network size vs. outage probabilitylio = 100 andSNR = 20dB (left)
and optimal outage probability VSNR (right).

5.7.2 Optimal network size for arbitrary outage probability
According to (5.86), we have
N* (pout> = arg mj\ianUb (N7 pout) . (588)

By relaxing N € R, the objective function becomes convexihand a closed-form expres-
sion of N can be readily obtained from its first derivative:

W R (pou
N () = T (5.9
(1 = pout) log, <1 + TOU)
with R (pout) given by
R (pout) = (1 — pour) logs (1 — SNR1In (1 — pout)) - (5.90)

As shown in Fig. 5.13a]V*(pout) iS @ monotonically increasing function .. For high
encoding rates, we have thaj,, — 1 and, hence, the number of sensors must be increased
to partly compensate for such lost codewords. Converdedgnsors encode at low data rates
thenp,,: — 0, a more uniform sampling of the random field results and themmamum of

N* — 16d sensors suffices.
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5.7.3 Optimal outage probability, network size and encodig rate

Now, replacing the optimal number of sensor nodes of (5189)(5.86) yields:

) 1= (1+ CR (pow)) oo + ol
Dub (pout) = 0., : Cltpon) (5.91)

1
"1+ (14 CR (pour)) " 7o) + T

with C' = 222 and R (po,:) given by (5.90). On the other, the objective function of (5.9
can be shown to be monotonically decreasin®ifp..:) and, hence, the original optimization

problem of (5.87) is equivalent to

min Dy, = max R (Pout) - (5.92)

Pout Pout

The cost functiom? (p...) IS concave irp,,: and the optimal value gof,,; can be readily shown
to be

1 1

Pour = 1 — e5WF Wolsi®) (5.93)

whereW, (-) stands for the positive real branch of the Lambert functitii.[ As depicted in
Fig. 5.13b, the optimal outage probability is a monotorycdécreasing function in thENR
and, from (5.93), it converges to a constant value in the3b\R regime, namely

1

lim poyt = —. (5.94)
(&

From (5.89) and (5.93), the optimal network size is given by

SNR
W log, <W0(SNR)>

N* = - - (5.95)
log, (1 + W SR W) (%))
and, finally, from (5.76) and (5.78) the optimal encoding nasults:
2W 1 1 SNR
=1 14+ ——eSR WoSNR) I | —————— | ] . 5.96
i Og?( T n(WO(SNR))) (5.96)

5.7.4 Simulations and numerical results

In Fig. 5.14, we plot the optimal number of nod&$ and the optimal encoding rafé& given

in (5.95) and (5.96), respectively. First, we can obsenra foth parameters are increasing
functions in the overalbNR = WLNO: the higher the available transmit power, the higher the
number of nodes that can be accommodated and the higherhlevagdle rates. Second, for
random fields with low spatial variability, i.efd = 10, the optimal encoding rate is higher
and the network size lower, this meaning that it is betterptrsely sense the field with high
resolution observations. On the contrary, for random figldk high spatial variability, this
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Figure 5.14: Optimal network size (left) and encoding raighf) vs.SNR. (W=100).
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effect must be captured by increasing the number of senstesnand, due to the bandwidth
and power constraints, decrease the number of bits perrsec=ardingly.

Next, in Fig. 5.15, we depict thenin-maxdistortion evaluated ak*(/N') (computed numeri-
cally) along with the corresponding upper bound. For cotepless, we also show theerage
distortion in the reconstruction of the random field which,expected, constitutes a lower
bound of the min-max distortion. In all cases, an optimalrapeg point N* exists, which is
illustrated through the markers on the curves. Finding sutlfalong with R*) reveals partic-
ularly useful for random fields with low spatial variabili§d = 10) since the curve is sharper
in this case. More importantly, the upper bound of the diginrgiven by (5.85) is tight for the
whole range ofV. Consequently, the solutions of (5.95) and (5.96) turn oug accurate ap-
proximations of the true optimal paly* — R* that minimizes the resulting distortion. Finally,
one can also observe that, indeed, the higher the vanabflihe random field, the higher the
distortion for all V.

5.8 Chapter summary and conclusions

In this chapter, we have extensively analyzed the problemawdiom field estimation with
wireless sensor networks. In order to characterize thedigsaand spatial correlation of
the random field, we have adopted a stationary homogeneoussfaa Markov Ornstein-
Uhlenbeck model. We have considered two scenarios of sttedelay-constrained (DC) and
delay-tolerant (DT) networks. For each scenario, we haedyaad two encoding schemes,
namely, quantize-and-estimate (Q&E) and compress-atitiage (C&E). In all cases (QEDC,
QEDT, CEDC and CEDT), we have carried out an extensive aisatyshe average distortion
experienced in the reconstructed random field. Moreoveth® QEDT and CEDT strategies
we have derived closed-form expressionsg)dhe average distortion in the estimates, and
the optimal number of samples of the random field to be encodedch timeslot (under some
simplifying assumptions). Interestingly, the resultiregqimeslot distortion in DT scenarios is
deterministic and constant whereas, in DC scenarios,imately depends on the fading con-
ditions experienced in each timeslot. Next, we have focusethe latency associated to the
QEDT and CEDT strategies. We have modeled our system as arbaigs Markov chain and,
on that basis, we have fully characterized the pdf, CDF, hadverage latency for the QEDT
case. For CEDT encoding, we have identified an approximateisymodel suitable for the
computation of the average latency. Simulation resultsakthat, under a total bandwidth con-
straint, there exists an optimal number of sensors for wthetdistortion in the reconstructed
random field can be minimized (QEDC, QEDT, CEDC and CEDT qgaSdss constitutes the
best trade-off in terms of, on the one hand, the ability tatwagpthe spatial variations of the
random field and, on the other, the per-sensor channel bdttdawailable to encode observa-
tions. Besides, the distortion associated to delay-totestiategies is, as expected, lower than
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for delay-constrained ones: some 2-3 dB for both the QE andri€&ding schemes. Moreover,
buffer occupancy can be kept at very moderate levels (3 tot®with a marginal penalty in
terms of distortion (less than 0.3 dB). We also observe tlas€hemes effectively exploit the
spatial correlation and, by doing so, attain a lower digtarthan their QE counterparts (DC
and DT scenarios). As far as latency is concerned, we havérieally shown that CEDT
exhibits alinear increase in the number of sensors whereas in QEDT encod&rgclagrows
logarithmically (i.e. more slowly). However, CEDT schemes attain a lowetodi®n than
QEDT ones. Besides, for the QEDT case, there is a perfectrbateveen simulations and the
theoretical model and, for the CEDT case, latency can beaataty represented by adequately
parameterizing the aforementioned approximate systenemod

Finally, we have addressed scenarios where sensor nodege@pathout transmit CSI. We
have proposed a constant-rate encoding strategy whicloidadly entails some outage prob-
ability in Rayleigh-fading scenarios. This effect, alonghathe spatial sampling process and
the power and bandwidth constraints that we impose, resugtame distortion that we attempt
to minimize by carefully selecting the optimal number of s@mnodes to be deployed and the
corresponding encoding rate. On the basis of a (tight) uppand on the maximum distor-
tion in each network segment, we have derived closed-forpnessions of the corresponding
optimal values. Computer simulations reveal that randoiddiwvith low spatial variability
should be sparsely sampled with high resolution obsemsticContrarily, in scenarios with
high spatial variability, the random field is better represd (i.e. the distortion is lower) if the
number of sensors is increased despite that the encodmgiuadt be necessarily lower due to
the bandwidth and power constraints. Finding an optimalatpey pair N*-R* reveals par-
ticularly useful for random fields with low spatial variabjldue to the fact that the distortion
curve is sharper in this case.
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5.A  Appendix

5.A.1 Stability analysis

We want to prove that buffers are stable (i.e. their occupasdounded) for largd.. Let
bi(7) denote the number of samples in the buffer of kil sensor in time slot, with initial
conditions given by, (0) = Lon. After L timeslots, the increase in the number of samples
stored in the buffer can be expressed as

be(L) — by, (0) = Ln — Z o (i)n (5.97)

whereLn accounts for the number of samples generated in thaseeslots, aLn(EiL:1 a(i)n
with 1 1 4+ SNR~, (4

ol (i) = 1282 %_ ; ) S i) (5.98)
stands for the actual number of samples encoded and traedrit thek-th sensor node. The
probability of experiencing an increase greater tham the number of samples stored reads

Pr(by (L) — by (0) > en) = Pr (Ln — Za;(z)n > en) (5.99)

= Pr (Z ol (i) < L — e) . (5.100)

for anye > 0. Replacing (5.98) into this last expression yields:

Pr (by, (L) — by, (0) > en) (5.101)
L .
=pr (Y logy (1 +SNRw (i) _ (5.102)
i=1 R—9
L
=Pr Zlogg (14+SNRy,(i)) = LR < (e —L)§ — eﬁ) (5.103)
=1
L —_ —_
log, (1 +SNR,(i)) — R _ (e—L)d —€R
=Pr < 5.104
Z.Zl /LVar (R) ~ y/LVar(R) ( )
where we have defined
Var (R) 2 E, [(mg2 (1+ SNRy(i)) — §)2] .
For largeL, we can resort to the central limit theorem by which
L . -
1 1 NR —
7=y 00T NRUD) =R gy, (5.105)
P LVar (R)
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Hence, as long astakes strictly positive values (> 0), we have that

lim Pr(by (L) — b, (0) > €en) = lim Pr (Z < (e-L1)d— €R> =0. (5.106)
L—o0 L—o0 LVar (R)
This result states that, as long as we encode a slightly higlraber of samples per timeslot
(which depends on paramet®rthe probability that the increase in buffer occupancy erse
en samples (for dinite value ofe) can be made arbitrary small for large L. That is, buffers are
stable. Conversely, = 0 yields

lim Pr (be (L) — be (0) > en) °=° & (5.107)

L—oo 2’

this meaning that, even for arbitrarily large values othe probability that buffer occupancy
increases beyondn is unavoidablyl /2 (i.e. unstable buffers).

In addition to this main result, the probability for buffetics drain after timeslots can be
expressed as

Pdrain = Pr (bk(L) - O) (5108)
L
= Pr (Z ap(i)n > (L + Lo) n) (5.109)
i=1
L .
logy (1 4+ SNRy(2))
= P — >L+ Ly . 5.110
r (; T_o = 0 ( )
By resorting again to the central limit theorem, we have tbaany positive value o
lim perain = lim Pr | Z > Lofi = (L+Lo)d) _, (5.111)
L—o0 L—o0 LVar (R)

and, thus, buffers will drain with probability one after dfguently large number of timeslots.

5.A.2 Decoding structure

In this appendix, we provide a decoding structure that mpkssible the decoding of the data
when sensors adopt the CEDT strategy. Without loss of ghtyensider two sensor nodes
k € {1,2}, where sensok = 1 will be referred as thenastersensor node and, sensor node
k = 2, as theslavesensor node, respectively.

Encoding and decoding master sensor’s data

At the sensor node:The sensor constructs a codebook consistirgyof# () codewords and
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sends the index of the codew8nd, (i), that isv, (i) € 1,...,2m @0,
At the FC: Sincen,(i)R1(i) < mR.(71(i)) where
Re(7) = log, (1 4+ SNRy),

the indexv, (i) is successfully decoded and g, which contains:; (i) samples.

Next, u, () is stored into a local buffer for a future use. Thereforegraff timeslots we have
L'—1

uy = [u?(i),...,ul(i + L')]" containing a total ofi;, = > " nu(i + 1) quantized samples.
=0

Encoding and decoding slave sensor’s data

At the sensor node:In each timeslot, the sensor construct a codebook corgistizr>() ()
codewords. Then, the codebook is partitioned 2itd” () bins as in [35, Theorem 14.9.1].
The sensor sends the index of the bifi) € 1, ...2"2)%20) where the codeword, (i) belongs
to.

Atthe FC: Sincensy (i) Ra(i) < mR.(72(7)) the indexv,(7) is successfully decoded. Therefore,
the FC has located the bin where the true codewnfd) is. For a reliable decoding, the FC
has to be available to distinguish the true codewey@) within bin v,(z). To that extent, we
first assume the set of samplag at the decoding buffer of the master sensor is of length
nr > no(i). In this case, the minimum number of bins, iZ:2®%2() or, equivalently, the
minimum rate per sample, (i) R (i) must satisfy:

na(1)Ro(i) > 1(y2(i);ua(d)ur) (5.112)
na (%)
= D L(a(i); ua(@)Ju:(0)) (5.113)

where the second equality is due to the memoryless propétheaourcey and, due to ca-
suality, the set of samples containediipy which aretemporally correlatedvith u,(7) are the
first ny(i) samples. Note that if the master sensor encodes its blockangbles according to
(5.37) then, it is straightforward to show that the encodetg per sample is the same in each
block. Namely, we have that;, = y; + z; wherez; ~ CN (0,02 I) whereo? is defined as

in (5.48). Consequently, from (5.113) we can drop the sammglex and obtain

na (%)

na(D)Ra(i) > Y T(ya(n);ua(n)lup(n)) (5.114)
= no(9)] (yo; usluy) (5.115)
— (i) log, <1+U(y7—2'> (5.116)

8To recall,i stands for the timeslot index
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.. master . slave
(1) sensor uy(7) sensor
decode
n;,
nl (1) ‘ Wait next
L NO —> time slot

Yes

\/

decode

Delete the oldest
npi—ny (i)

Figure 5.16: Decoding structure for the CEDT encoding siyat

wheres? , doesnotdepend on the timeslot indéxando?, is a function only ofocal sensor
parameters. In particular, the valueddf is setlocally according to (5.48) and, hence, we can
decodeu,(7) reliably. Next, the block of decoded samples are deletenh fiee buffers at the

FC.

Contrarily, if the set of samples;, at the decoding buffer of the master sensor is of length
np < no(i), the FC will store the indexy(:) and wait untiln;, > ns(i). The decoding
structure is summarized in Figure 5.16.

Generalization to an arbitrary number of sensor nodes

The strategy above can be easily generalized to an arbittanper of sensor nodésg. In par-
ticular, a slave sensor will act as a master sensor for thieseesor node in the encoding chain.
Interestingly, this strategy can be implemented at theaemsdes by usingpcal information
only, whereas in the CEDC strategy the encoding rate usdxkahaster node must be known
in advance at the slave sensor node for a reliable decodihg &C.
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Chapter 6

Conclusions and Future Work

In this PhD dissertation, we have focused on the design ardealized estimation schemes for
wireless sensor networks. Essentially, we have addreksgmroblem from a signal processing
and information theoretical perspective. Still, we hawwoatonsidered the impact of some
selected functionalities at the link layer of the OSI pratiostack (e.g. scheduling protocols)
or network topologies (flat/hierarchical). First, in ChexpB, we have addressed the power
allocation problem in amplify-and-forward WSNs, where s@nobservations are scaled by
an amplifying factor and transmitted to the FC (i.analogtransmissions). Conversely, in
Chapters 4 and 5, we have focused on the case where sensode ¢heir observations into
a number of bits (i.e.digital transmissions) before sending them to the FC. Regarding the
estimation problem, in Chapters 3 and 4 we have addressquidhkem of the estimation of a
spatially-homogeneous parameter, whereas, in Chaptex Bawe focused on the more realistic
case of the estimation of spatial random fields. In the segqueesummarize the main findings
of each chapter of this dissertation.
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6.1 Conclusions

Chapter 3

In this chapter, we have addressed the problem of poweragitocin a context of amplify-
and-forward WSNs for decentralized parameter estimatkarst, we have focused on a flat
topology and we have proposed a class of opportunistic pailleration schemes. Such OPA
schemes have one feature in common: only sensors exp@geceitain local conditions (i.e.
channel gain and/or residual energy above a threshold)llaneea to participate in the es-
timation process. We have addressed a number of classmaleprs of interest such as the
minimization of estimation distortion (OPA-D), the minipaition of transmit power (OPA-P)
or the enhancement of network lifetime (OPA-LT). In all csse have derived a closed-form
expression of an approximate but tight closed-form expoassf the threshold along with the
corresponding power allocation rule. Furthermore, we tese addressed the case with im-
perfect CSI to derive an improved version of the OPA-D sché@fA-DR) which is robust to
such imperfections.

Interestingly, computer simulation results have revedhad the performance of the OPA-D
and OPA-P schemes are virtually identical to that of thermatischemes (WF-D and WF-P,
respectively). More significantly, we have proved that #ite at which distortion decreases for
the OPA-D and WF-D is identical when the number of sensor saagreases without bound.
We have also observed that the robust version (OPA-DR) padgalose to systems operating
with perfect CSI even with moderate values of CSI unceryaiatom the comparison of OPA-
LT with OPA-P, we have concluded that a sensible use of REiltes a two-fold extension
of network lifetime.

Finally, we have adopted a hierarchical network structunectvis suitable for scenarios with
severe path loss in the sensor-to-FC channels. In this soemge have addressed the power
allocation problem for the minimization of the attainablstdrtion at the FC. We have shown
that the minimization problem can be decomposed into smallb-problems and, further-
more, we have derived a closed-form expression for the @btpower split between layers
for the UPA case. Computer simulation results have shownatmerarchical network with
UPA schemes in both layers constitutes the best trade-da#frms of performance (namely,
estimation accuracy) vs. CSI requirements.

Chapter 4

In Chapter 4, we have focused again on the problem of dedieetigparameter estimation with
WSNSs. Unlike in previous chapter, we have considered thagae are capable of encoding
their observations for digital transmission.

First, we have conducted an in-depth analysis of the Quavatiwl-Estimate (Q&E) and Compress-
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and-Estimate (C&E) encoding strategies in (orthogonal)ssen and Rayleigh-fading chan-
nels under poweand bandwidth constraints. For the Q&E scheme, we have showirihibee
exists an optimal network size which minimizes the overatattion in the estimates. Addi-
tionally, we have derived an approximate closed-form esgion of its optimal operating point
(Gaussian channels and some cases of interest in Raykaigigfchannels without CSIT). For
the C&E scheme, we have analytically shown that encodingliservations in @ecreasing
order of (sensor-to-FC) channel gains minimizes the riegutlistortion. Computer simula-
tion results reveal that ordering is particularly impottanscenarios with moderate observa-
tion noise or transmit power. We have also derived, in a camteRayleigh-fading channels,
closed-form expressions of the distortion attained by tR&@nd C&E (lower bound) schemes
when the number of sensor nodes increases without bound, Wexhave constrained sensor
nodes to operate without instantaneous transmit CSI. $rctimtext, we have proposed to adopt
a constant and common rate for all sensors. Next, we havedpptely computed the op-
timal encoding rate for two cases of interest, namely, ssnsdh high and low observation
noise and found out that, interestingly, the lack of CSI'hstates into a moderate increase of
distortion for the whole range of SNR values.

Finally, we have explicitly taken into account realistic ltijple-access schemes in a context of
hierarchical WSNs. More precisely, we have analyzed the impact of a ctintehhased mech-
anism (ALOHA), and the packet collisions that it entailstsEiwe have derived @dosed-form
expression of the distortion attained at the FC with a redem-based protocol (e.g. TDMA)
which has been used as a benchmark. Next, we have extendedhdhesis to encompass
the effect of packet collisions stemming from the use of entibn-based schemes. Specifi-
cally, we have found an approximate (yet tight) expressiotihe distortion associated to the
ALOHA protocol. On that basis, we have identified the optittirale split, for sensor-to-CH
(Layer 1) and CH-to-FC (Layer 2) communications. Furtheemave have derived (approxi-
mate) closed-form expressions of the optimal time splitfay cases of interest, namely, high
data rate and low data rate per sensor. By means of compuotelagions, we have shown that
the adoption of contention-based mechanisms is partichlamful in Layer 2 whereas their
impact in Layer 1 is moderate.

Chapter 5

In Chapter 5, we have extensively analyzed the problem afaanfield estimation with wire-
less sensor networks. In order to characterize the dynaanspatial correlation of the ran-
dom field, we have adopted a stationary homogeneous Gaudaikov Ornstein-Uhlenbeck
model.

First, we have considered two scenarios of interest: detagtrained (DC) and delay-tolerant
(DT) networks. For each scenario, we have analyzed two emgsdhemes, namely, Quantize-
and-Estimate (Q&E) and Compress-and-Estimate (C&E). llnades (QEDC, QEDT, CEDC

and CEDT), we have carried out an extensive analysis of theage distortion experienced in
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the reconstructed random field. For delay-tolerant case$iave derived closed-form expres-
sions ofi) the average distortion in the estimates, apthe optimal number of samples of the
random field to be encoded in each timeslot. Interestingg/yésulting per-timeslot distortion
in DT scenarios is deterministic and constant whereas, irs€gbarios, it ultimately depends
on the fading conditions experienced in each timeslot. &tman results reveal that, under a
total bandwidth constraint, there exists an optimal nunabfesensors for which the distortion
in the reconstructed random field can be minimized (QEDC, QEIEDC and CEDT cases).
This constitutes the best trade-off in terms of, on the omelhtne ability to capture the spatial
variations of the random field and, on the other, the peraertsannel bandwidth available to
encode observations. Besides, the distortion associatddlay-tolerant strategies is, as ex-
pected, lower than for delay-constrained ones. Moreowdieboccupancy can be kept at very
moderate levels with a marginal penalty in terms of distortiWe have also observed that CE
schemes effectively exploit the spatial correlation anddbing so, attain a lower distortion
than their QE counterparts (DC and DT scenarios). As fartesdy is concerned, we have
shown that CEDT exhibits near increase in the number of sensors whereas in QEDT encod-
ing latency growsogarithmically(i.e. more slowly). However, CEDT schemes attain a lower
distortion than QEDT ones.

Finally, we have closed the chapter by addressing the casevsknsors operate without CSIT.
We have proposed a constant-rate encoding strategy wheoidably entails some outage
probability in Rayleigh fading scenarios. On the basis ofigh{) upper bound of the max-

imum distortion in each network segment, we have derivededeform expressions of the
corresponding optimal values. Results have revealed hieabptimal operating point is par-

ticularly useful for random fields with low spatial variabjldue to the fact that the distortion

curve is sharper in this case.

6.2 Future work

In this section, we discuss a number of research areas atddebpics for further work in the
field of decentralized parameter estimation via wirelesssenetworks.

e Opportunistic power allocation schemes with different sesor observation qualities
The OPA framework could be extended by considering diffieobservations qualities at
the sensor nodes (namely, different observation noiseshid case, the sensor selection
algorithm should consider not only the uplink channel gyadf each sensor node but
also the quality of the sensor observations.

e Joint source-channel coding with non-synchronized sensser Amplify-and-forward
schemes are known to be asymptotically optimal where sdrsasmissions are fully
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synchronized. However, distributed synchronization efgansor signals can be difficult
to achieve in practice. An interesting extension would thiesederation of synchroniza-
tion errors and their impact on the rate at which distortieardases.

e Encoding strategies and signal processing techniques fordrarchical network topolo-
gies An important open issue is how data is processed at theeclbstds. Various
options are possible’) consolidation of the cluster information into a clustetireate
and re-transmission to the F{C), re-transmission of all the sensors measurements to the
FC or,iii) hybrid strategies. In all cases, a number of interestiaderoffs (reliability,
accuracy, etc) turn up. Besides, it would be interestingtiadysis of different encoding
strategies (e.g. amplify-and-forward, quantize-andyeste and compress-and-estimate)
on such hierarchical WSN topology.

e Successive refinement techniques with random access meclsans. By adopting suc-
cessive refinement techniques along with superpositiomgaechniques, sensors can
adaptively encode their observation by considering slewedsof side information at the
FC. Motivated by this fact, it would be interesting the desigd analysis of such succes-
sive refinement techniques in the context of contentioretbasultiple access channels,
where sensors are not aware of the current side informavaiaale at the FC.

e Opportunistic random field estimation. Future work on random field estimation also
encompasses the extension of the analysis carried out pt€taby addressing the case
where only those sensors experiencing favorable channelitaans actually sample the
field.

¢ Uniform/nonuniform sampling of spatial random fields. Here, the focus would be on
assessing the impact aindom(vs. deterministic) deployment of the sensor nodes in the
reconstruction of the random field.
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