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Abstract

Applications typically access storage devices using read/write system calls. Additionally,

they use a storage cache to reduce expensive accesses to the devices. Fast storage de-

vices provide high sequential throughput and low access latency. Consequently, the cost

of cache lookups and system calls in the I/O path becomes significant at high I/O rates.

In this dissertation, we propose the use of memory-mapped I/O to manage storage

caches and remove software overheads in the case of hits. With memory-mapped I/O (i.e.

mmap), a user can map a file in the process virtual address space and access its data us-

ing processor load/store instructions. In this case, the operating system is responsible for

moving data between DRAM and the storage devices, creating/destroying memory map-

pings, and handling page evictions/writebacks. Hits in memory-mapped I/O are handled

entirely in hardware through the virtual memory mappings.

First, we design and implement a persistent key-value store that uses memory-mapped

I/O to interact with storage devices, and we show the advantages of memory-mapped I/O

for hits compared to explicit lookups in the storage cache. Then we show that the Linux

memory-mapped I/O path suffers from several issues in the case of data-intensive appli-

cations over fast storage devices when the dataset does not fit in memory. These include:

(1) the lack of user control for evictions of I/Os, especially in the case of writes, (2) scala-

bility issues with increasing the number of threads, and (3) the high cost of page faults that

happen in the common path for misses.

Next, we propose techniques to deal with these shortcomings. We propose a mech-

anism that handles evictions in memory-mapped I/O based on application needs. To

show the applicability of this mechanism, we build an efficient memory-mapped I/O per-

sistent key-value store that uses this mechanism. Subsequently, we remove all central-

ized contention points and provide scalable performance with increasing I/O concurrency
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and number of threads. Finally, we separate protection and common operations in the

memory-mapped I/O path. We leverage CPU virtualization extensions to reduce the over-

head of page faults and maintain the protection semantics of the OS.

We evaluate the proposed extensions using mainly persistent key-value stores that are

a central component for many analytics processing frameworks and data serving systems.

We show significant benefits in terms of CPU consumption, performance (throughput and

average latency), and predictability (tail latency).

Keywords: Memory-Mapped I/O, Fast Storage, Key-Value Store, mmap

Supervisor: Angelos Bilas
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University of Crete



Περίληψη

Οι εφαρμογές συνήθως προσπελαύνουν τις συσκευές αποθήκευσης χρησιμοποιώντας κλήσεις

συστήματος (system calls) για ανάγνωση και εγγραφή. Επιπλέον, χρησιμοποιούν μια κρυφή

μνήμη για να μειώσουν τις ακριβές προσπελάσεις στις συσκευές αποθήκευσης. Ωστόσο, συσκευές

αποθήκευσης υψηλής ταχύτητας, παρέχουν πλέον πρόσβαση στα δεδομένα σε χαμηλό χρόνο.

Κατά συνέπεια, το κόστος των αναζητήσεων στην κρυφή μνήμη (που γίνετε σε λογισμικό) αλλά

και των κλήσεων συστήματος γίνεται σημαντικό υπό αυτές τις συνθήκες.

Σε αυτή τη διατριβή, προτείνουμε την διαχείριση της κρυφής μνήμης που χρησιμοποιείται για

είσοδο/έξοδο (Ε/Ε) μέσω απεικόνισης των συσκευών στη μνήμη (memory mapped I/O), με

στόχο την εξάλειψη του κόστους στις περιπτώσεις ευστοχίας (hits) στην κρυφή μνήμη. Με

την απεικόνιση των συσκευών αποθήκευσης στη μνήμη (Linux mmap), ο χρήστης μπορεί να

απεικονίσει ένα αρχείο στον χώρο των εικονικών διευθύνσεων μιας διεργασίας και να αποκτήσει

πρόσβαση στα δεδομένα του χρησιμοποιώντας τις εντολές φόρτωσης και εγγραφής (load/store)

του επεξεργαστή. Σε αυτήν την περίπτωση, το λειτουργικό σύστημα είναι υπεύθυνο για τη

μεταφορά δεδομένων μεταξύ της κυρίας μνήμης και των συσκευών αποθήκευσης, τη δημιουρ-

γία/καταστροφή αντιστοιχίσεων εικονικής με φυσική μνήμη και τον χειρισμό της απόρριψης και

εγγραφής σελίδων της κρυφής μνήμης στις συσκευές αποθήκευσης. Επομένως η διαχείριση των

προσβάσεων στην κρυφή μνήμη που είναι εύστοχες (hits) γίνεται εξ ολοκλήρου από το υλικό

μέσω του μηχανισμού για την μετάφραση εικονικών διευθύνσεων.

Αρχικά, σχεδιάζουμε και υλοποιούμε ένα σύστημα αποθήκευσης ζευγαριών κλειδιού-τιμής

που χρησιμοποιεί την απεικόνιση στη μνήμη για την διαχείριση της κρυφής μνήμης ΕΕ και για να

αλληλεπιδρά με τις συσκευές αποθήκευσης. Στην συνέχεια, παρουσιάζουμε τα πλεονεκτήματα

του σε σύγκριση με τις αναζητήσεις στην κρυφή μνήμη που είναι υλοποιημένη σε λογισμικό.

Δείχνουμε ότι το μονοπάτι στο λειτουργικό σύστημα Linux για την απεικόνιση στη μνήμη των

συσκευές αποθήκευσης έχει πολλά προβλήματα στην περίπτωση εφαρμογών με μεγάλες ανάγκες
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σε πρόσβαση δεδομένων πάνω από συσκευές γρήγορης αποθήκευσης, όταν το σύνολο των δεδο-

μένων τους δεν χωρά στη κύρια μνήμη. Σε αυτά περιλαμβάνονται: (1) η έλλειψη ελέγχου για την

απόρριψη σελίδων, ειδικά κατά την περίπτωση των εγγράφων, (2) η μη επαρκής κλιμάκωση σε

συνάρτηση με την αύξηση του αριθμού των νημάτων και (3) το υψηλό κόστος των σφαλμάτων

σελίδας που συμβαίνουν κατά την διάρκεια των αστοχιών στην κρυφή μνήμη.

Κατόπιν, προτείνουμε τεχνικές για την αντιμετώπιση αυτών των μειονεκτημάτων. Προτε-

ίνουμε έναν μηχανισμό που χειρίζεται την απόρριψη και αντικατάσταση σελίδων μνήμης με βάση

τις ανάγκες της εφαρμογής. Για να δείξουμε τη δυνατότητα εφαρμογής του, σχεδιάζουμε και

υλοποιούμε ένα σύστημα αποθήκευσης ζευγαριών κλειδιού-τιμής που χρησιμοποιεί αυτόν τον μη-

χανισμό. Στη συνέχεια, καταργούμε όλα τα κεντρικά σημεία συνωστισμού κατά τον συγχρονισμό

στο μονοπάτι της πραγματοποίησης Ε/Ε μέσω απεικόνισης στη μνήμη. Ο σχεδιασμός μας παρέχει

κλιμακώσιμη απόδοση με τις συσκευές αποθήκευσης καθώς αυξάνεται ο αριθμός των πυρήνων

και νημάτων στους εξυπηρετητές. Τέλος, διαχωρίζουμε την προστασία και τις κοινές λειτουργίες

στο μονοπάτι κατά την πρόσβαση σε γρήγορες συσκευές αποθήκευσης μέσω απεικόνισης στη

μνήμη. Αξιοποιούμε επεκτάσεις εικονικοποίησης (virtualization extensions) του επεξεργαστή

για να μειώσουμε το κόστος των σφάλματων σελίδας (page faults) και να διατηρήσουμε την

ισχυρή προστασία μεταξύ χρηστών που παρέχει το λειτουργικό σύστημα.

Αξιολογούμε τις προτεινόμενες επεκτάσεις χρησιμοποιώντας κυρίως συστήματα αποθήκευσης

ζευγαριών κλειδιού-τιμής που αποτελούν σημαντικό κομμάτι για πολλά συστήματα επεξεργασίας

και εξυπηρέτησης δεδομένων και δείχνουμε σημαντικά οφέλη όσον αφορά την κατανάλωση σε

κύκλους του επεξεργαστή, την απόδοση και την προβλεψιμότητα.

Λέξεις κλειδία: Απεικόνιση συσκευών στη μνήμη, Συσκευές αποθήκευσης υψηλής ταχύτητας,
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Chapter 1

Introduction

Flash-based storage devices provide high sequential throughput, high random IOPS, and

low access latency. As a result, they introduce new opportunities by narrowing the gap

between random and sequential throughput, especially at higher queue depths (number

of concurrent I/Os). Despite these technology trends, modern data-intensive applications

do not see the full potential of fast storage devices. Consequently, as datasets grow, the I/O

path is becoming a significant bottleneck in terms of overhead (CPU cycles) and scalability

with the number of cores. Ideally, modern and future servers should consume precious

CPU cycles for performing application processing and not I/O to and from devices. Today,

we are far from this ideal situation.

Given the performance gap between memory and storage, the I/O path uses a storage

cache to leverage locality and reduce the number of accesses to devices. A data access

results in a lookup and potential updates in the cache eviction metadata. Even in the

case of hits, cache lookups result in high CPU overhead spend for cache management.

Authors in [58] claim that about one-third of the total CPU cycles of a database system

running OLTP workloads is spent in managing the user-space cache when the dataset fits

in memory. In the case of misses, cache replacements move data between memory and

the storage devices. Typically these operations use synchronous or asynchronous read

and write system calls.

In this dissertation, we propose the use of memory-mapped I/O to manage storage

caches and remove software overheads in the case of hits. Hits in memory-mapped I/O

1
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are handled via virtual memory mappings and do not incur any software overhead.

In memory-mapped I/O (i.e. mmap), the application maps a storage device (or a file)

in the process virtual address space and the user can access it using processor load and

store instructions. In the case of a hit, a valid mapping in the page table already exists.

The virtual to physical translation is handled entirely in hardware. In the case of a miss,

a page fault happens, which is responsible for adding a new translation in the page table.

In this case, the kernel is responsible for reading data from the devices and evicting dirty

data when the memory is not enough, when a specific (configurable) amount of time has

passed, or when an application explicitly asks for synchronization between memory and

the devices. In memory-mapped I/O, the data transfer unit between the devices and mem-

ory depends on the hardware-defined page size. Given that the regular page size is 4KB,

performing 4KB I/Os in the case of HDDs result in drammatic reduction in the peak de-

vice throughput. Fast storage devices address this concern for small I/Os that occur during

page faults. However, even in this case, memory-mapped I/O has several shortcomings.

This dissertation addresses limitations of memory-mapped I/O for data-intensive ap-

plications over fast storage devices. We show that the use of memory-mapped I/O provides

significant improvements compared to read/write system calls and user-space caching.

First, we examine the potential benefit of our approach in persistent key-value stores.

Persistent key-value stores are a central component for analytics processing frameworks

and data serving systems [41, 5, 30, 49, 54, 36]. We design and implement a persistent

key-value store that uses memory-mapped I/O to interact with storage devices. We ap-

ply specific optimizations to show the benefits of memory-mapped I/O. Our evaluation

shows that hits, which are handled entirely in hardware, provide significant performance

improvements compared to a traditional user-space cache and read/write system calls.

On the other hand, we also identify several issues of memory-mapped I/O in Linux where

the dataset does not fit in memory and, more importantly, in the case of writes, where the

user cannot control the timing of I/Os, resulting in high tail latencies.

To overcome the lack of application control in the case where the dataset does not

fit in memory, we design and implement a custom memory-mapped I/O path in Linux

that handles evictions based on application needs. Our approach uses a priority-based
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FIFO replacement policy, and during memory pressure, a page with a higher priority is

preferred for eviction. To show the applicability of our approach, we use our mechanism

in a persistent key-value store designed to take advantage of memory-mapped I/O.

Next, we show that Linux memory-mapped I/O does not scale beyond eight threads.

This is a significant limitation for modern multicore servers. To overcome this limitation,

we (a) separate clean and dirty-trees to avoid all centralized contention points, (b) use

full reverse mappings instead of Linux object-based reverse mappings to reduce CPU pro-

cessing, and (c) introduce a scalable DRAM cache with per-core data structures to reduce

latency variability. Our design achieves both higher scalability and higher I/O concurrency

by (1) avoiding all centralized contention points that limit scalability, (2) reducing the

amount of CPU processing in the common path, and (3) using dedicated data-structures

to minimize interference among processes, thus improving tail latency.

Finally, we tackle miss overheads in memory-mapped I/O managed caches. Memory-

mapped I/O introduces page faults instead of system calls in the case of misses. However,

page faults incur high overhead. We observe that the main operations of memory-mapped

I/O occur at different frequencies: virtual memory management and device access are

common path operations. On the other hand, dynamic cache resizing and virtual address

range management are uncommon path operations. Based on this observation, we design

and implement an efficient library operating system for storage applications that places

the application in a virtual machine context. This approach eliminates the cost of protec-

tion domain crossings required during page faults. We leverage hardware virtualization

extensions to provide full protection semantics while providing the full memory-mapped

I/O functionality.

Our approach results in significant performance improvements in terms of perfor-

mance (throughput and latency), predictability (tail latency), and CPU consumption.

Thesis statement: We propose the use of memory-mapped I/O to manage storage

caching and remove software overheads in the case of hits. Also, we provide

techniques to overcome issues in misses and make memory-mapped I/O practical.
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1.1 Leveraging Memory-mapped I/O

This dissertation contributes on optimizing the memory-mapped I/O path. To take ad-

vantage of our contributions, applications should be re-designed to use memory-mapped

I/O instead of a user-space cache and system calls. Our work on persistent key-value

stores provides general principles to build an efficient system using memory-mapped I/O.

These include: (i) a common data layout for in-memory and persistent representation, (ii)

a common allocator for memory and storage, and (iii) the use of Copy-on-Write (CoW) for

persistence.

A fundamental design decision on applications that require persistence is the data lay-

out both in memory and device. Today, it is common to have different data representation

for memory and devices and translate between them using serialization and deserializa-

tion. With memory-mapped I/O an application can map directly parts of the file/device to

the user’s virtual addresses. This enables data addressing with simple pointer arithmetic

operations. Based on this, applications can use the same data layout for both in-memory

and persistent representation. Furthermore, applications commonly use different mem-

ory and storage allocators due to the different data representation. For the latter, users

generally rely on file systems. Our persistent key-value stores, use a common allocator

for both memory and persistent data. Both of these techniques reduce by a large factor

the number of memory copies, and this results in more CPU cycles and higher memory

bandwidth available for user processing. Finally, our work on persistent key-value stores,

show that CoW fits well with memory-mapped I/O and it also reduces I/O amplification

in the common path. In the next chapters, we provide more details and reasoning about

these general principles to design a system that leverages memory-mapped I/O for storage

cache management.

1.2 Contributions

The specific contributions of this dissertation are:

1. We apply specific optimizations in a memory-mapped key-value store to show the
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benefits and deal with the drawbacks of memory-mapped I/O. We show that hits,

which are handled entirely in hardware, provide significant performance improve-

ments compared to a traditional user-space cache and read/write system calls. On

the other hand, we identify the issues of memory-mapped I/O in Linux, especially

when the dataset does not fit in memory.

2. We provide a mechanism that handles evictions in memory-mapped I/O based on

application needs. We use a priority-based FIFO replacement policy, and during

memory pressure, a page with a higher priority is preferred for eviction. We show the

applicability of this mechanism on a persistent key-value store that uses memory-

mapped I/O to interact with storage devices.

3. We show that Linux memory-mapped I/O path fails to scale with increasing the

number of concurrent I/Os and application threads. To overcome this issue, we (a)

separate clean and dirty-trees to avoid all centralized contention points, (b) use full

reverse mappings instead of Linux object-based reverse mappings to reduce CPU

processing, and (c) introduce a scalable DRAM cache with per-core data structures

to reduce latency variability. Our approach provides scalable performance with large

numbers of threads and a large number of concurrent I/Os to the devices, which is

essential to achieve peak device throughput.

4. We show that a page fault has higher overhead than a system call for the same I/O

size. The increased cost can lead to performance degradation in the case of misses.

We propose running the application in a privileged domain to reduce page fault cost,

similar to where the guest OS runs in virtual machines. We provide full protection se-

mantics by leveraging hardware virtualization extensions. This approach eliminates

the cost of protection domain crossings required during page faults. A privileged do-

main provides direct access to virtual memory hardware, including the page table

and TLB that are necessary to handle page faults. Our approach also provides the

full memory-mapped I/O functionality.
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1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents a memory-mapped

I/O use case, in the context of a persistent write-optimized key-value named Tucana.

Chapter 3 presents a mechanism for user applications to define hot and cold data and

affect the eviction policy. We use the Kreon key-value store to evaluate our approach.

Chapter 4 presents a scalable memory-mapped I/O path inside the Linux kernel named

FastMap. Chapter 5 presents a design, Aquila, to reduce page fault cost in the common

path. Chapter 6 reviews related work. Finally, Chapter 7 presents directions for future

work and Chapter 8 concludes this thesis.



Chapter 2

An Efficient Memory-Mapped I/O Key-

Value Store

Our goal in this chapter is to draw a different balance between device and CPU efficiency.

We start from a Bε–tree [22] approach to maintain the desired asymptotic properties for

inserts, which is important for write-intensive workloads. Bε–trees achieve this amortiza-

tion by buffering writes at each level of the tree. In our case, we assume that the largest

part of the tree (but not the data items) fit in memory and we only perform buffering and

batching at the lowest part of the tree. Then, we develop a design that manages variable

size keys and values, deals with persistence, and stores data directly on raw devices.

Although we still use the buffering technique of Bε–trees to amortize I/Os, we take a

different stance with respect to randomness of I/Os. Unlike LSM-trees [102], we do not

make an effort to generate large I/Os. LSM-trees produce large I/Os by maintaining large

sorted containers of data items in memory, which can then be read or written as a whole.

These large sorted containers are maintained via a compaction technique that relies on

sorting and merging smaller pieces. Although this approach has proven extremely effec-

tive for HDDs, it results in high CPU overheads and I/O amplification, as we show in our

evaluation for LSM-trees.

We design a full featured key-value store, Tucana, that achieves lower host CPU over-

head per operation than other state-of-the-art systems. Tucana provides persistence and

recovery from failures, arbitrary dataset sizes, variable key and value sizes, concurrency,

7
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multithreading, and versioning. We use copy-on-write (CoW) to achieve recovery without

the use of a log, we directly map the storage device to memory to reduce space (mem-

ory and device) allocation overhead, and we organize internal and leaf nodes similar to

traditional approaches [29] to reduce CPU overhead for lookup operations.

To evaluate our approach, we first compare with RocksDB, a state-of-the-art key-value

store. Our results show that Tucana is up to 9.2× better in terms of cycles/op and be-

tween 1.1 × to 7× in terms of ops/s, across all workloads. This validates our hypothesis

that randomness is less important for SSD devices, when there is an adequate degree of

concurrency and relatively small I/O requests.

To examine the impact of our approach in the context of real systems, we use Tucana to

improve the throughput and efficiency of HBase [5], a popular scale-out NoSQL store. We

replace the LSM-based storage engine of HBase with Tucana. Data lookup, insert, delete,

scan, and key-range split and merge operations are served from Tucana, while maintain-

ing the HBase mapping of tables to key-value pairs, client API, client-server protocol, and

management operations (failure handling and load balancing). The resulting system, H-

Tucana, remains compatible with other components of the Hadoop ecosystem. We com-

pare H-Tucana to HBase and Cassandra using YCSB and we find that, compared to HBase,

H-Tucana achieves between 2 − 8× better CPU cycles/op and 2 − 10× higher operation

rates across all workloads. Compared to Cassandra, H-Tucana achieves even higher im-

provements.

Our specific contributions in this work are:

• The design and implementation of a key-value data store that draws a different bal-

ance between device behavior and host overheads.

• Practical Bε–tree extensions that leverage mmap-based allocation, copy-on-write,

and append-only logs to reduce allocation overheads.

• An evaluation of existing, state-of-the-art, persistent key-value stores and a compar-

ison with Tucana, as well as an improved implementation of HBase.

The rest of this chapter is organized as follows: Section 2.1 provides an overview of per-

sistent data structures. Section 2.2 describes our design. Section 2.3 presents our evalua-
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tion methodology and our experimental analysis. Finally, Section 2.4 concludes the chap-

ter.

2.1 Background

In this work, we use as a basis a variant of B-trees, broadly called Bε–trees [22]. Bε–trees are

B-trees with an additional per-node buffer. By using these buffers, they are able to batch

insert operations to amortize their cost. In Bε–trees the total size of each node is Band ε is

a design-time constant between [0,1]. ε is the ratio of B that is used for buffering, whereas

the rest of the space in each node (1-ε) is used for storing pivots.

Buffers contain messages that describe operations that modify the index (insert, up-

date, delete). Each such operation is initially added to the tree’s root node buffer. When

the root node buffer becomes full, the structure uses the root pivots to propagate a subset

of the buffered operations to the buffers of the appropriate nodes at the next level. This

procedure is repeated until operations reach a leaf node, where the key-value pair is simply

added to the leaf. Leaf nodes are similar to B-Trees and they do not contain an additional

buffer, beyond the space required to store the key-value pairs. The cost of an insertion in

terms of I/Os is O( logBNεB1−ε ), where a regular B-Tree has O(logBN) [22, 67].

A get operation is similar to the B-Tree data structure. It traverses the path from the

root to the corresponding leaf. This results in similar complexity to B-trees, regarding I/O

operations. The main difference is that in a Bε–tree we also need to search the buffers of

the internal nodes along the path. A range scan is similar to a get, except that messages

for the entire range of keys must be checked and applied as the appropriate subtree is

traversed. Therefore, buffers are frequently modified and searched. For this reason, they

are typically implemented with tree indexes rather than sorted containers.

Next, we present the design of Tucana, a key-value store that aims to significantly im-

prove the efficiency of data access.
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Figure 2.1: The top-level design of Tucana. The left part (a) of the figure shows the tree
index. The right part (b) shows the volume layout.

2.2 Design

Figure 2.1 shows an overview of Tucana. More specifically, Figure 2.1a shows the index

organization, which uses Bε–trees as a starting point (Section 2.2.1). In Figure 2.1b we de-

pict Tucana’s approach for allocation and persistence, which we discuss in Sections 2.2.2

and 2.2.3, respectively.

2.2.1 Tree Index

Figure 2.2 shows the differences between Tucana and a Bε–tree. On the left side of the

figure we show a Bε–tree, which we explain in Section 2.1. On the right side of the figure

we show Tucana, where we distinguish nodes that fit in main memory from those that

do not. To improve host-level efficiency (in terms of cycles/op), Tucana limits buffering

and batching to the lowest part of the tree. In many cases today, the largest part of the

index structure (but not the actual data) fits in main memory (DRAM today and byte-

addressable NVM in the future) and therefore, we do not buffer inserts in intermediate

nodes. Tucana design provides desirable asymptotic properties for random inserts, where

a single I/O is amortized over multiple insert operations.

Figure 2.1a shows the index organization in Tucana. The index consists of internal
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Figure 2.2: Comparison of Bε–tree (left) and Tucana (right). In Tucana we distinguish the
part of the tree that fits in memory above the dashed line and the rest that does not. PH
stands for Prefix-Hash.

nodes with pointers to next level nodes and pointers to variable size keys (pivots). We use

a separate space per internal node to store the variable size keys themselves. Pointers to

keys are sorted based on the key, whereas keys are appended to the buffer. The leaf nodes

contain sorted pointers to the key-value pairs. We use a single append-only log to store

both the key and values. The design of the log is similar to the internal buffers of Bε–trees.

Insert operations traverse the index in a top down fashion. At each index node, we per-

form a binary search over the pivots to find the next level node to visit. When we reach the

leaf, we append the key-value pair to the log and we insert the pointer in the leaf, keeping

pointers sorted by the corresponding key. Then, we complete the operation. Compared

to Bε–trees we avoid the buffering at intermediate nodes. If a leaf is full, we trigger a split

operation prior to insert. Split operations, in index or leaf nodes, produce two new nodes

each containing half of the keys and they update the index in a bottom-up fashion. Delete

operations place a tombstone for the respective keys, which are removed later. Deletes

will eventually cause rebalancing and merging [13].

Point queries traverse the index similar to inserts to locate the appropriate leaf. At

the leaf, we perform a binary search to locate the pointer to the key-value pair. Since

there are no intermediate buffers as in Bε–trees, we do not need to perform searches in the
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intermediate levels. Finally, range queries locate the starting key similar to point queries

and subsequently use the index to iterate over the key range. It is important to notice that

in contrast to Bε–trees we do not need to flush all the intermediate buffers prior to a scan

operation.

We note that binary search in the leaf nodes and index nodes is a dominant function

used by all operations. To reduce memory footprint for metadata, Tucana does not store

keys in leaves. This means that keys during binary search need to be retrieved from the

device. To avoid this, Tucana uses two optimizations, prefixes and hashes.

We store as metadata, a fixed-size prefix for each key in the leaf block. Binary search

is performed using these prefixes, except when they result in ambiguity, in which case the

entire key is fetched from the log. Prefixes improve performance of inserts, point queries,

and range queries. In our tuning of prefixes we find that for different types of keys, prefixes

eliminate 65%–75% of I/Os during binary search in leaves.

Additionally, a hash value for each key is stored in the leaf nodes. Hashes help with

point queries. For a point query we first do a binary search over prefixes. If this results in

a tie, then we linearly examine the corresponding (so not all) hashes. We use Jenkins hash

function (one-at-a-time) [69] to produce 4-byte hashes. Then the key is read to ensure

there is no collision. In our experiments we find that hashes identify the correct key-value

pair in more that the 98% of the cases.

Complexity analysis on the memory footprint and dataset to DRAM ratio are out of the

scope of this dissertation and more detail can be found at [105].

2.2.2 Device layout and access

Figure 2.1b depicts the data layout in Tucana. Tucana manages a set of contiguous seg-

ments of space to store data. Each segment can be a range of blocks on a physical, logical,

virtual block device, or a file. To reduce overhead, segments should be allocated directly

on virtual block devices, without the use of a file system. Our measurements show that

using XFS as the file system results in a 5-10% reduction in throughput compared to using

a virtual block device directly without any file system.
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Each segment is composed of a metadata portion and a data portion. The metadata

portion contains the superblock, the free log, and the segment allocator metadata (bitmap).

The superblock contains a reference to a descriptor of the latest persistent and consistent

state for a segment. Modifying the superblock commits the new state for the segment.

Each segment has a single allocator common for all databases (key ranges) in a segment.

The data portion contains multiple databases. Each database is contained within a single

segment and uses its own separate indexing structure.

The allocator keeps persistent state about allocated blocks of a configurable size, typi-

cally set to 4 KB, and multiples of it. For this purpose, it uses bitmaps because in key-value

stores allocations can be in the order of KBs, as opposed to filesystems that typically do

larger allocations. Moreover, allocator bitmaps are accessed directly via an offset and at

low overhead, while for searches there are efficient bit parallel techniques [23]. It also

maintains state about free operations and performs them lazily in a log structure named

Free log.

In all persistent key-value stores, including Tucana, the index includes pointers to data

items in the storage address space. During system operation, part of the index and data

are cached in memory. When traversing the index to serve an operation, there is a need

to translate storage pointers to pointers in memory. This leads to frequent cache lookups

that cannot be avoided easily. Essentially, the cache serves as a mechanism to translate

pointers from the storage to the memory address space. Previous work [58] indicates that

when all data and metadata fit in memory, managing this cache requires about one-third

of the index CPU cycles.

Most key-value stores today follow this caching approach [54, 49, 5, 82, 101]. This al-

lows the key-value store to also control the size and timing of I/O operations between the

memory cache and the storage devices, as well as the cache policy.

Instead, Tucana uses an alternative approach based on mmap. mmap uses a single ad-

dress space for both memory and storage and virtual memory protection to determine

the location (memory or storage) of an item. This eliminates the need for pointer trans-

lation at the expense of page faults. We note that pointer translation occurs during index

operations regardless of whether items are in memory or not, whereas page faults occur
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only when items are not in memory. The use of mmap also allows Tucana to use a single

allocator for memory and device space management. Additionally, mmap eliminates data

copies between kernel and user space.

The use of mmap has three drawbacks. First, each write operation of variable size is con-

verted to a read-modify-write operation, increasing the amount of I/O. In our design, due

to the copy-on-write persistence (see Section 2.2.3), all writes modify eventually the full

page and there can be no reads to unwritten parts of a page. Therefore, we use a sim-

ple filter block device in the kernel, which filters read-before-write operations and merely

returns a page of zeros. Write and read-after-write operations are not filtered and are for-

warded to the actual device. The filter module uses a simple, in-memory bitmap and is

initialized and updated by Tucana via a set of ioctls. The size of the in-memory bitmap is

proportional to the block device size (for 1 TB of storage we need 32 MB of memory).

Second, mmap results in the loss of control over the size and timing of I/O operations.

mmap generates page-sized I/Os (4 KB). To mitigate the impact of small I/Os we use madvise

to instruct mmap to generate larger I/Os. To control their timing we use msync for specific

items and memory ranges during commit operation.

Third, mmap introduces page faults for fetching data. The number of page faults de-

pends on mmap kernel page eviction policy. Tucana would benefit from custom eviction

policies that keep the index and the tail of the append log in memory. In this work, we do

not make an attempt to control these policies. However, future work should examine this

issue in more detail.

2.2.3 Copy-on-write persistence

Tucana uses a Copy-on-Write (CoW) approach for persistence instead of a Write-Ahead-

Log (WAL). WAL produces sequential write I/Os at the expense of doubling the amount of

writes (in the log and later in place). CoW performs only the necessary writes, however, it

generates a more random I/O pattern. Therefore, although a WAL is more appropriate for

HDDs, CoW has more potential for fast devices. The use of CoW is also motivated by three

additional reasons; (a) It is amenable to supporting versioning. (b) It allows instantaneous
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recovery, without the need to redo or undo a log. (c) It helps increase concurrency by

avoiding lock synchronization for different versions of each data item [93], as we discuss

in the next subsection.

The state of a segment consists of the allocator, tree metadata, and buffers. CoW is used

to maintain the consistency of both allocator and tree metadata. The bitmap in each seg-

ment is organized in buddy pairs, as shown in Figure 2.1b. Each buddy pair consists of two

4 KB blocks that contain information about allocated space. Each buddy is marked with a

global per segment increasing counter named epoch. The epoch field is incremented after

a successful commit operation and denotes the latest epoch in which the buddy was mod-

ified. At any given point only one buddy of the pair is active for write operations, whereas

the other buddy is immutable for recovery. Commits persist and update modified buddy

pairs.

The allocator defers free operations with the use of the free log [20]. Directly applying a

free operation that could be rolled back in the presence of failures is more complicated as

it can corrupt persistent state. We log free operations using their epoch id, and we perform

them later after their epoch becomes persistent.

To maintain the consistency of the tree structure during updates, each internal index

and leaf node uses epochs to distinguish its latest persistent state. During an update, the

node’s epoch indicates whether a node is immutable, in which case a CoW operation takes

place. After a CoW operation for inserting a key, the parent of the node is updated with the

new node location in a bottom-up fashion. The resulting node belongs to epoch+1 and

will be persisted during the next commit. Subsequent updates to the same node before

the next commit are batched by applying them in place. Since we store keys and values in

buffers in an append-only fashion, we need to only perform CoW on the header of each

internal node.

Tucana’s persistence relies on the atomic transition between consistent states for each

segment. Metadata and data in Tucana are written asynchronously to the devices. How-

ever, transitions from state to state occur atomically via synchronous updates to the seg-

ment’s superblock with msync (commits). Each commit creates a new persistent state for

the segment, identified by a unique epoch id. The epoch of the latest persistent state of a
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segment is stored in a descriptor to which the superblock keeps a reference.

Commits can take place in parallel with read and write operations. To achieve this, a

commit is performed in two steps: (1) Initially, it marks the current state as persistent by

increasing the epoch of the system. This state includes the bitmap and the tree indexes

for this segment. (2) It flushes the state of the segment to the device. In case of a failure

during a commit, the segment simply rolls back to the latest persistent state by ignoring

any writes that have reached the device but were not committed via the metadata epoch

states.

During a commit operation, the bitmap cannot be modified by new allocations (a sub-

set of the write operations) because this may change the state on the device (mmap may

propagate any write from memory to the device asynchronously). In case the current

commit fails, then both buddy pairs will be inconsistent. To avoid this, allocations dur-

ing a commit are buffered in a temporary location in memory and are applied at the end

of the commit.

2.2.4 Concurrency in Tucana

Concurrency in key-value stores is important for scaling up as server density increases in

terms of CPU, storage, and network throughput. Key-value stores typically operate under

high degrees of concurrency, due to the large numbers of client requests.

Similar to most key-value stores, Tucana partitions datasets in multiple databases (key

ranges). Requests in different ranges can be served without any synchronization. The only

exception in Tucana is insert operations in different regions that are stored in the same

segment. In this case the existence of a single segment allocator requires synchronization

across ranges during allocation operations. To reduce the impact of such synchroniza-

tion, the allocator operates in a batched mode, where a request reserves more space than

required for the current operation. Subsequent inserts to the same database do not need

to request space from the allocator.

Within each range, Tucana allows any number of concurrent reads and a single write

without synchronization. To achieve this, Tucana uses the versions of the segment cre-
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ated through commits, similar to read-copy-update synchronization [95]. In particular,

we serve read operations from the latest persistent version of the segment, which is im-

mutable. Writes on the other hand are served from the modified root which contains all

modifications.

Updates applied by an application are visible to readers after a commit. Tucana’s API

offers additional fence operations to allow higher layers to control when updates become

visible.

Finally, in the current state of the prototype, Tucana does not allow multiple concur-

rent writes in the same range. Although there are possible optimizations, especially to

allow non-conflicting writes via copy-on-write, or dynamic partitioning of the key-space,

we leave these for future work.

2.2.5 H-Tucana

HBase [5] is a scale-out columnar store which supports a small and volatile schema. HBase

offers a table abstraction over the data, where each table keeps a set of key-value pairs.

Each table is further decomposed into regions, where each region stores a contiguous seg-

ment of the key space. Each region is physically organized as a set of files per column, as

shown in Figure 2.3.

At its core HBase uses an LSM-tree to store data [102]. We use Tucana to replace this

storage engine, while maintaining the HBase metadata architecture, node fault tolerance,

data distribution and load balancing mechanisms. The resulting system, H-Tucana, maps

HBase regions to segments (Figure 2.3), while each column maps to a separate tree in the
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segment. In our work, and to eliminate the need for using HDFS under HBase, we modify

HBase so that a new node handles a segment after a failure. We assume that segments

are allocated over a reliable shared block device, such as a storage area network (SAN)

or virtual SAN [97, 132] and are visible to all nodes in the system. In this model, the only

function that HDFS offers is space allocation. Tucana is designed to manage space directly

on top of raw devices, therefore, it does not require a file system. H-Tucana assumes the

responsibility of elastic data indexing, while the shared storage system provides a reliable

(replicated) block-based storage pool.

2.3 Experimental Analysis

In this section we evaluate Tucana against RocksDB [49] and H-Tucana to HBase [5] and

Cassandra [82]. Our goal is to examine the following aspects of Tucana:

1. How does Tucana compares to RocksDB in terms of efficiency and absolute perfor-

mance and where does these improvements come from?

2. What is the impact of Tucana in NoSQL stores?

Tucana and RocksDB support similar features including persistence and recovery, ar-

bitrary size keys and values and versions. In the same category there are other popular

key-value stores, such as LevelDB, KyotoDB, BerkeleyDB, and PerconaFT (based on Frac-

tal Index Trees). In our experiments we find that RocksDB outperforms all of them [52, 55]

and therefore, we present only the comparison between Tucana and RocksDB. HBase and

Cassandra are NoSQL databases that are widely used as a back-end for high throughput

systems. HBase and Cassandra use LSM-trees [102].

2.3.1 Methodology

Our experimental platform consists of two systems (client and server) each with two quad-

core Intel(R) Xeon(R) E5520 CPUs running at 2.7 GHz. The server is equipped with 48 GB

DDR-III DRAM, and the client with 12 GB. Both nodes are connected with a 10 Gbits/s
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Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

Table 2.1: Workloads evaluated with YCSB. All workloads use a query popularity that fol-
lows a Zipf distribution except for D that follows a latest distribution.

network link. As storage devices, the server uses four Intel X25-E SSDs (32 GB) and we

make a RAID-0 with them using the standard md Linux driver. Tucana is implemented

in C and can be accessed from applications as a shared library. H-Tucana is cross-linked

between the Java code of HBase and the C code of Tucana.

We use the open-source Yahoo Cloud Serving Benchmark (YCSB) [37] to generate syn-

thetic workloads. The default YCSB implementation executes gets as range queries and

therefore, exercises only scan operations. For this reason, we modify YCSB to use point

queries for get operations. Range queries are still exercised in Workload E, which uses

scan operations.

When comparing RocksDB and Tucana we use a low-overhead C++ version of YCSB-

C [37, 114]. The original Java YCSB benchmark requires JNI to run with RocksDB and Tu-

cana, which are written in C++ and C respectively, incurring high overheads.

In all cases, we run the standard workloads proposed by YCSB with the default values.

Table 2.1 summarizes these workloads. We run the following sequence proposed by the

YCSB author: Load the database using workload A’s configuration file, run workloads A,

B, C, F, and D in a row, delete the whole database, reload the database with workload E’s

configuration file, and run workload E.

When comparing Tucana to RocksDB we use 256 YCSB threads and 64 databases (un-

less noted otherwise) and we choose the appropriate database by hashing the keys. When

comparing H-Tucana to HBase and Cassandra we use 128 YCSB threads and 8 regions for

HBase and H-Tucana. Cassandra is hash-based and does not support the notion of region,

so we use a single table.
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We use a small dataset that fits in memory and a large dataset that does not. The small

dataset is composed of 60M or 100M records when using Tucana and H-Tucana, respec-

tively. The large dataset has 300M or 500M records when using Tucana and H-Tucana,

respectively.

In all the cases, the load phase creates the whole dataset and the run phases issue 5

million operations, bounded also by time (one hour max). With Tucana, even in the case

of the large dataset the index nodes fit in memory as per our assumptions.

We measure efficiency as cycles/op, which shows the cycles needed to complete an

operation on average. We calculate efficiency as:

cycles/ op =
CPU utilization

100 ×
cycles
s × cores

average ops
s

, (2.1)

where CPU utilization is the global average of CPU utilization among all processors,

excluding idle and I/O time, as given by mpstat. As cycles/s we use the per-core clock

frequency. average ops/ s is the throughput reported by YCSB and cores is the number of

cores including hyperthreads.

2.3.2 Experimental Results

Tucana compared to RocksDB

Figure 2.4 shows the improvement over RocksDB in efficiency. In workloads Load A and

Load E that are insert intensive, Tucana is similar to RocksDB for both small and large

datasets, since both use write-optimized data structures. In all other workloads Tucana

outperforms RocksDB by 0.75× to 7.01× for the small dataset and by 1.07× to 9.24× for

the large dataset.

We note that increased efficiency can also be achieved with low absolute performance,

which is not desirable. Figure 2.5 shows ops/s for the two systems. We see that for the small

dataset Tucana outperforms RocksDB by 2× to 7× and by 4.47× on average in absolute

performance (throughput) as well. For the large dataset, where both systems are limited

by device performance, Tucana outperforms RocksDB by 1.1× to 2.1× and by 1.35× on
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Figure 2.4: Tucana improvement compared to RocksDB in cycles per operation.
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Figure 2.5: Performance of TucanaDB and RocksDB in ops/s.

average. Average SSD utilization for all workloads is 93% for Tucana and 78% for RocksDB.

Tucana has on average smaller request size, 86 KB compared to 415 KB for RocksDB. As

next generation SSDs close the gap between sequential and random performance, we ex-

pect even larger performance improvements over RocksDB and similar stores.

Next, we examine I/O amplification and randomness. We run an insert-only bench-

mark (random distribution) using a single database of size 36.3 GB. RocksDB writes 435 GB

while Tucana writes 123 GB, thus 3.5× less than RocksDB. Due to compaction operations,

RocksDB also reads 2.3× the amount of data read by Tucana, 69 GB vs. 29 GB. Table 2.2
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SSD (2010) SSD (2015)
Inserts Write (GB) rq sz time (s) time (s)
Tucana 123 18K 133 31

RocksDB 435 884K 623 100
Speedup 4.68 3.22

SSD (2010) SSD (2015)
Inserts Read (GB) rq sz time (s) time (s)
Tucana 26 4K 256 140

RocksDB 29 6K 229 171
Speedup 0.89 1.22

Table 2.2: Performance for the traffic pattern induced by Tucana and RocksDB as modeled
with FIO to isolate device behavior.

shows the performance difference between these two patterns on two different SSD gen-

erations, using FIO (Flexible I/O) [6] to generate each pattern. For inserts, Tucana’s I/O

pattern is 4.68× faster on the older SSD (2010) and 3.22× faster on the newer SSD (2015),

compared to RocksDB’s I/O pattern and volume. For gets, the difference in volume size

and request size is lower and performance differences are smaller. The I/O pattern of

RocksDB is better by 11% for the older SSD, whereas the I/O pattern of Tucana is better

by 22% for the newer SSD.

Figure 2.6 shows read and write amplification using 64 databases. Although Tucana

incurs less I/O on average for both read and write, the difference with RocksDB in this

case is smaller. On average RocksDB writes 3.33× and reads 1.25×more data.

Next, we examine the absolute number of cycles/op for each workload (Figure 2.7(a)).

Each operation is a composite operation over a row with ten qualifiers and therefore a get

operation performs ten lookup operations. For this reason, we also present numbers for

the same workloads, with one qualifier per row in Figure 2.7(b). In addition, in the case of

Workload E the default average length of a range query is fifty. In Figure 2.7(b) we change

the scan length to five. On average, an insert operation takes about 26K cycles (Load A &

Load E), a point query (get) 4K cycles (Run C) and a range query (scan), including initial-

ization and five rows of one qualifier about 18K cycles (Run E). The other workloads are

mixes of these operations. If we examine a breakdown of cycles, we see that on average
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Figure 2.6: Total amount of data read and written during each YCSB workload.
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Figure 2.7: Number of cycles needed for YCSB workloads.

15% is used by YCSB, 43% by Tucana, 38% by the OS kernel, and 4% by other server pro-

cesses. More specifically, for an insert-only benchmark 35% is used by Tucana and 60% by

OS kernel. On the other hand for a get-only benchmark 66% is used by Tucana and 26% by

kernel. System time is due to mmap that handles page faults, mappings, and the swapper

that evicts dirty pages to devices.

Finally, Figure 2.8 shows scalability of Tucana and RocksDB with the number of server

cores. We use the small dataset that fits in memory, partitioned in 64 databases, and we

increase the load by increasing the number of YCSB threads that issue requests. For gets,

Tucana is able to scale and it saturates the full server at 16 YCSB threads. Tucana pro-
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Figure 2.8: Scalability of RocksDB and TucanaDB with increasing threads, using the small
dataset.

vides lock-less gets and therefore uses all available cores. After warm-up, where data is

brought in memory, system utilization is about 100% at 16 YCSB threads. On the other

hand, RocksDB, even after warm up, still has about 25% idle CPU time at 8 or more YCSB

threads, indicating synchronization bottlenecks.

For inserts, Tucana saturates the server at about 8 YCSB threads, where CPU is utilized

at 90-95%. RocksDB scales up to 8 threads also, where it saturates the server. Due to its

more random I/O pattern, Tucana incurs higher device utilization, about 50% vs. 20% for

RocksDB. Generally, scaling for puts in both systems is related to the number of databases.

In this work, we do not explore this dimension further.

Impact on NoSQL store performance

In this section, we analyze the efficiency and performance of H-Tucana, compared to

HBase [5] and Cassandra [82].

Figure 2.9 depicts the speedup in efficiency (cycles/op) achieved by H-Tucana over

HBase and Cassandra. We see that H-Tucana significantly outperforms both HBase and

Cassandra. Compared to HBase, H-Tucana uses fewer cycles/op by up to 2.9×, 8.4×, and

5.6× for write-intensive, read intensive, and mixed workloads. Compared to Cassandra,

the improvement depends on the size of the dataset. With the small dataset H-Tucana

outperforms Cassandra by up to 5.8×, 16.1×, and 13.5× for the write, read intensive, and
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Figure 2.9: Improvement in efficiency (cycles/op) achieved by H-Tucana over HBase and
Cassandra.
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Figure 2.10: Throughput (ops/s) achieved by H-Tucana, HBase and Cassandra.

mix workloads, respectively. With the large dataset, H-Tucana improves cycles/op over

Cassandra by up 3.9×, 61.4×, and 37.2× write, read-intensive and mixed workloads re-

spectively.

Next, we examine throughput in terms of ops/s. Figure 2.10 shows performance in kilo-

operations per second whereas Figure 2.11 depicts the amount of data read and written by

each workload.

For the small dataset, H-Tucana has up to 5.4× higher throughput compared to HBase,

and up to 10.7× compared to Cassandra. In addition, H-Tucana does not perform any

reads during the run phases. Cassandra does not read any data either, whereas HBase
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Figure 2.11: Amount of data, in GB, read/written by H-Tucana, HBase, and Cassandra.

reads 5.1 GB and 5.2 GB when running workloads A and E, respectively. The amount of

data written to the device is significantly reduced by H-Tucana by 38% and 17% compared

to HBase and Cassandra.

For the large dataset, during the run phase, H-Tucana outperforms HBase and Cas-

sandra by up to 10.7× and 153.3×, respectively. This improvement is reflected in a signifi-

cant reduction of the amount of data read from the storage device, by up to 16× and 6.9×

compared to HBase and Cassandra, respectively. For read-intensive and mixed workloads,

H-Tucana is more lightweight not only in CPU utilization but also in the amount of data

read. Our modified Bε–tree performs faster lookups than the LSM-trees used by HBase

and Cassandra, obtaining significant improvement in throughput.

During the load phase (write intensive workloads) for the large dataset H-Tucana ex-

hibits up 2.5× and 3.7× worse throughput than HBase and Cassandra, as shown in Fig-
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ure 2.10b. Figure 2.11 shows that during the load phase, H-Tucana writes 264 GB and

reads 69 GB, although the size of the dataset including metadata is 77.2 GB. This is not

inherent to the design of Tucana, as shown by the results in Section 2.3.2, but rather due

to mmap, as follows.

With mmapmodified disk blocks are written to the device not only during Tucana’s com-

mit operations, but also periodically, by the flush kernel threads when they are older than

a threshold or when free memory shrinks below a threshold, using an LRU policy and

madvise hints. We believe that due to the increased memory pressure in H-Tucana com-

pared to Tucana due to the Java HBase front-end, mmap evicts not only log pages, but also

leaf pages. This reduces the amount of I/Os that can be amortized for inserts due to the

limited buffering in our Bε–tree. To solve this problem, we need to (a) control better which

pages are evicted by mmap, which will be effective up to roughly the 10-15% ratio of memory

to SSD capacity (see Section 2.2.1), and (b) add buffering one level higher in the Bε–tree.

In the same figure, we notice that in run D phase, using the small dataset, we write more

data than the other systems. This is because workload D inserts new key-value pairs and

then searches for them. YCSB always searches for keys that exist in the database. In Tu-

cana newly inserted keys appear in searches only after a commit operation. If a key is not

found, we issue a commit operation to read it. These commit operations cause increased

traffic to/from the device. However the other systems retrieve the new values directly from

memory. In the large dataset case all systems write them to devices and all of them write

about the same amount of data.

Figure 2.12 shows the cycles/op in H-Tucana to execute all the workloads with ten (de-

fault configuration) and with one qualifier. With ten qualifiers, write intensive workloads

require on average 172K cycles/op and read intensive and mix workloads require on aver-

age 115K cycles/op. Workload E that performs scans uses more than 2.3M cycles/op (for

retrieving 50 key-value pairs). Figure 2.12b shows that with a single key, all write-intensive,

read-intensive, and mixed workloads require on average 27K cycles/op, whereas workload

E requires 900K cycles/op. In more detail, we see that on average 40% of the time is used by

the HBase component in H-Tucana, 23% by Tucana, 33% by the system, and 5% by other

processes.
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Figure 2.12: Number of cycles needed by H-Tucana for YCSB workloads.
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Figure 2.13 shows the scalability for H-Tucana and HBase when increasing the number

of YCSB threads at the client. We have not measured the scalability for Cassandra because

it is not as competitive. We use the small dataset to avoid accesses to the storage device.

For gets, both systems scale up to 16 YCSB threads. At this point CPU utilization for

H-Tucana on the server side is 52% and for HBase is 79%, while H-Tucana achieves higher

throughput. In both cases there is a single thread that reaches 100% CPU utilization. We

find that this server thread performs HBase network processing. For inserts, H-Tucana

scales up to 16 YCSB threads and HBase scales up to 8 YCSB threads. In H-Tucana, server

CPU utilization is 53%, whereas in HBase 63%. Similar to gets, a single server thread in the

HBase front-end limits further scalability.
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2.4 Summary

In this chapter we present Tucana, a key-value store that is designed for fast storage de-

vices, such as SSDs, that reduces the gap between sequential and random I/O perfor-

mance, especially under high degree of concurrency and relatively large I/Os (a few tens of

KB). Unlike most key-value stores that use LSM-trees to optimize writes over slow HDDs,

Tucana starts from a Bε–tree approach to maintain the desired asymptotic properties for

inserts. It is a full-feature key-value store that supports variable size keys and values, ver-

sions, arbitrary data set sizes, and persistence. The design of Tucana centers around three

techniques to reduce overheads: copy-on-write, private allocation, and direct device man-

agement.

Our results show that Tucana is up to 9.2× more efficient in terms of CPU cycles/op

for in-memory workloads and up to 7× for workloads that do not fit in memory. In addi-

tion, Tucana outperforms RocksDB for in memory workloads up to 7×, whereas for work-

loads that do not fit in memory both systems are limited by device I/O throughput. Also,

H-Tucana is able to improve up to 8× the efficiency of HBase and on average 22× the effi-

ciency of Cassandra.

This chapter shows the potential and drawbacks of memory-mapped I/O as a way to

manage storage caching and therefore access storage devices. We choose to use a per-

sistent key-value store, which is a significant building block for larger systems. Tucana

shows that hits, which are handled entirely in hardware, provide significant performance

improvements compared to a traditional user-space cache and read/write system calls.

On the other hand, we also identify several issues of memory-mapped I/O in Linux where

the dataset does not fit in memory and, more importantly, in the case of writes, where the

user cannot control the size and timing of I/Os.
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Chapter 3

Optimizing Writes With User Policies

With current technology limitations and trends, the issues of high CPU utilization and

I/O amplification are becoming a significant bottleneck for keeping up with data growth.

Server CPU is the main bottleneck in scaling today’s infrastructure due to power and en-

ergy limitations [90, 81, 116]. Therefore, it is important to increase the amount of data

each CPU can serve, rather than rely on increasing the number of CPUs in the datacenter.

In this context, flash-based storage, such as solid state drives (SSDs), introduces new op-

portunities by narrowing the gap between random and sequential throughput, especially

at higher queue depths (number of concurrent I/Os). Figure 3.1 shows the throughput of

an SSD and two NVMe devices with random I/Os and increasing request size. At a queue

depth of 32, an I/O request size of 32 KB for SSDs and 8 KB for NVMe achieve almost the

maximum device throughput. Therefore, increased traffic due to I/O amplification is be-

coming a more significant bottleneck than I/O randomness. This trend will be even more

pronounced with emerging storage devices that aim to achieve sub-μs latencies.

In this chapter we present Kreon, a key-value store that aims to reduce CPU overhead

and I/O traffic by trading I/O randomness. Kreon combines ideas from LSM [102] (multi-

level structure), bLSM [118] (B-Tree index), and Tucana/WiscKey [105, 91] (separate value

log). Additionally, it uses a fine-grain spill mechanism which partially reorganizes levels to

provide high insertion rates and reduce CPU overhead and I/O traffic. Kreon uses a write

optimized data structure that is organized in N levels, similar to LSM-Tree, where each

level i acts as a buffer for the next level i+1. To reduce I/O amplification, Kreon does not

31
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Figure 3.1: Throughput vs. block size (using iodepth 32) for Samsung SSD 850 Pro 256 GB,
Samsung 950 Pro NVMe 256 GB, and Intel Optane P4800X NVMe 375 GB devices, mea-
sured with FIO [6].

operate on sorted buffers, but instead it maintains a B-tree index within each level. As

a result, it generates smaller I/O requests in favor of reduced I/O amplification and CPU

overhead. Kreon still requires and uses multiple levels to buffer requests and amortize I/O

operations.

Furthermore, Kreon uses memory-mapped I/O to perform all I/O between memory and

(raw) devices. Memory-mapped I/O essentially replaces cache lookups with valid memory

mappings, eliminating the overhead for data items that are in memory. Misses incur a

page fault and require an I/O operation that happens directly from memory without copy-

ing data between user and kernel space. However, the asynchronous nature of memory-

mapped I/O means that I/O happens at page granularity, resulting in excessive and small

I/Os, especially for read operations. In addition, memory-mapped I/O does not provide

any type of consistency and recoverability nor the ability to tune page evictions for spe-

cific needs. To overcome these limitations, we implement a custom memory-mapped I/O

path, kmmap, as a Linux kernel module. kmmap provides all the benefits of memory-

mapped storage, such as, it removes the need to use DRAM caching both in kernel and

user space, eliminates data copies between kernel and user space, and removes the need
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for pointer translation.

We implement Kreon and evaluate its performance by using YCSB and large datasets

of up to 6 billion keys. We compare Kreon with RocksDB [49], a state-of-the-art, LSM-Tree

based, persistent key-value store which has lately been optimized for SSDs [42]. Our re-

sults show that using both datasets that stress I/O and datasets that fit in memory, Kreon

reduces the amount of cycles/op by up to 8.3x. Additionally, Kreon reduces I/O amplifi-

cation for insert-intensive workloads by up to 4.6x and increases ops/sec by up to 5.3x.

Finally, our analysis of CPU overheads shows that a saturated Kreon server can achieve up

to 2.4M insert requests/s.

Overall, the contributions of this chapter are:

1. The combination of multilevel data organization with full indexes at each level and a

fine-grain spill mechanism that all together reduce CPU overhead and I/O traffic at

the expense of increased I/O randomness.

2. The design and implementation of kmmap a custom memory-mapped I/O path to

reduce the overhead of explicit I/O and address shortcomings of the native mmap

path in Linux for modern key-value stores.

3. The implementation and detailed evaluation of a full key-value store compared to a

state-of-the-art key-value store in terms of absolute performance, efficiency, execu-

tion time breakdown, tail latencies and device behavior.

The rest of this chapter is organized as follows: Section 3.1 provides an overview of

persistent data structures. Section 3.2 presents our design. Section 3.3 presents our eval-

uation methodology and experimental results. Section 3.4 concludes this chapter.

3.1 Background

B-trees [13] are asymptotically optimal in the number of block transfers required for point

and range queries. However, their main issue is that write performance degrades as the

index grows [78]. The increasing interest for systems that are able to absorb bursty writes

has led to the emergence and broad use of write-optimized data structures, which aim to
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improve writes while keeping read performance close to B-trees. A popular data structure

in this group is LSM-Tree [102]. LSM-Tree organizes its index in multiple hierarchical levels

to amortize write operations. O’Neil et al. [102] do not provide specific information on how

each level is organized and two alternatives exist: (a) use sorted arrays per-level or (b) use

a full index per-level. HDDs favor the use of the first alternative.

Inserts to LSM-Tree are served from memory and data is gradually moved to lower

levels, as the current level fills up. To move data between levels, LSM-Tree uses an impor-

tant operation, called compaction. Compaction moves data from Li to Li+1 by reading and

sorting large buffers in memory and subsequently writing them to storage at Li+1. Com-

pactions have the advantage that they generate only large I/O requests because they read

full tables, which makes LSM-Tree preferable to other index structures for hard disk drives

(HDDs). On the other hand compactions result both in I/O amplification and CPU over-

heads due to moving data from one level to another. Kreon uses a different approach and

introduces a full index per-level rather than sorted arrays, in order to reduce I/O amplifi-

cation and CPU overheads.

3.2 Design

Kreon, similar to Tucana [105] and Wisckey [91], stores key-value pairs in a log to avoid

data movement during reorganization from level to level. It organizes its index in multiple

levels of increasing size and transfers data between levels in batches to amortize I/O costs,

similar to LSM-Tree. Unlike LSM-Tree, within each level, it organizes keys in a B-tree with

leaves of page granularity similar to bLSM [118]. However, unlike bLSM, Kreon transfers

data between levels via a spill operation, rather than full reorganization of the data in the

next level. Spills are a form of batched data compaction that merge keys of two consecutive

levels [Li, Li + 1]. However, spills do not read the entire Li+1 during merging with Li and do

not reorganize data and keys on a sequential part of the device [118]. Instead, Kreon spills

read/write level Li+1 partially using the full B-tree index of each level.

The trade-off is that during batched spills, Kreon generates random read I/O requests

at large queue depth (high I/O concurrency) to significantly reduce I/O traffic and CPU
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overhead. On the other hand write requests for writing updated parts of Li+1 index pro-

duce relative large write I/O requests. This is because Kreon B-tree uses Copy-on-Write

for persistence [56] and a custom segment allocator so updated leaves are written close

on the device. We believe that trading I/O randomness for I/O traffic and CPU utilization

is the right tradeoff, given current technology trends for power limitations in datacenters

and storage device technology with SSDs and NVM.

Furthermore, Kreon uses memory mapped I/O to eliminate redundant copies between

kernel and user space and constant pointer translation. Kreon’s memory-mapped I/O path

is designed to provide efficient support for managing I/O memory addressing shortcom-

ings of the default mmap path in the Linux kernel. These shortcomings are: (a) It does

not provide explicit control over data eviction, as with an application-specific cache, (b)

it results in an I/O even for pages that include garbage, and (c) it employs eager evictions

to free memory, which results in excessive I/O, in order to avoid starving other system

components.

Figure 3.2 depicts the architecture of Kreon showing two levels of indexes, the key-value

log, and the device layout. Next, we discuss our design for the system index and memory-

mapped I/O in detail.

3.2.1 Index Organization

Kreon offers a dictionary API (insert, delete, update, get, scan) of arbitrary sized keys and

values. Kreon stores keys in groups named regions. Each region can map either to a table

or shards of the same table. For each region it stores key-value pairs in a single append-

only key-value log [105, 91] and keeps a multilevel index. The index in each level is a

B-tree [13], which consists of two types of nodes: internal and leaf nodes. Internal nodes

keep a small log where they store pivots, whereas leaf nodes store key entries. Each key

entry consists of a tuple with a pointer to the key-value log and a fixed-size key prefix.

Prefixes are the first M bytes of the key used for key comparisons inside a leaf. They reduce

significantly I/Os to the log since leaves constitute the vast majority of tree nodes. If the

effectiveness of prefixes is reduced due to low entropy of the keys, existing techniques
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discuss how they can be recomputed [18].

During inserts, Kreon appends the key-value pair to the key-value log, then it performs

a top-down traversal in its L0 B-tree, from the root to the corresponding leaf, and adds a

key entry to the leaf. Get operations examine hierarchically levels fromL0 toLN, and return

the first match. Since inserts propagate with the same order as get operations, the version

of the retrieved key is the most recent. Delete operations mark keys with a tombstone and

defer the actual delete operation. During system operation we use the marked key entries

for subsequent inserts that reuse the index entry and mark as free the deleted (old) key-

value pair in the log. Marked and unused entries in the index are reclaimed during spills.

Marked space in the log is reclaimed asynchronously, as discussed in Section 3.2.1. Update

operations are similar to a combined insert and delete. Scan operations create a scanner

per-level and use the index to fetch keys in sorted order. They combine the results of each

level to provide a global sorted view of the returned keys.

Each region supports a single-writer/multiple-readers concurrency model. Readers

operate concurrently with writers using Lamport counters [83] per tree node for synchro-

nization. Scans, similar to other systems [49], access all data inserted to the system up to

the scanner creation time and they operate on an immutable version of each tree which is

facilitated by the Copy-On-Write approach used by Kreon (Section 3.2.3).

Similar to LSM-Tree, L0 always resides entirely in memory. Portions of levels ≥ 1 are

brought in memory on demand. Kreon enforces memory placement rules for different

levels by using kmmap and explicit priorities (Section 3.2.2). Spill operations, data reor-

ganization in scans and number of levels are outside of the scope of this dissertation and

more details on them can be found in [106].

Device Layout and Access

Kreon manages storage space as a set of segments. Each segment is a contiguous range of

blocks on a device or a file. To further reduce overhead we access devices directly rather

than use a file system in between. Our measurements show that files result in a 5-10%

reduction in throughput due to file system overhead. Each segment hosts multiple regions

and it has its own allocator to manage free space.
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Figure 3.2: The main structures of Kreon showing two levels of indexes, the key-value log,
and the device layout. Dashed rectangles include portions of the data structures that are
kept in memory via kmmap.

Kreon’s allocator stores its metadata at the beginning of each segment, which consists

of a superblock and a bitmap. The superblock keeps pointers to the latest consistent state

of the segment and its regions. The bitmap contains information about the allocation

status (free or reserved) of each 4 KB block. The bitmap is accessed directly via an offset

and at low overhead, while for searches we use efficient bit parallel techniques [23].

Kreon allocates space eagerly for regions, at large units, currently 2 MB, consuming

them incrementally in smaller units. This approach avoids frequent calls to the allocator

that is shared across regions in each segment. It also improves average write I/O size by

letting each region grow in a contiguous part of the device.

Similarly, the key-value log in Kreon is organized in large chunks, currently 2 MB. At

the start of each chunk we keep metadata about the garbage bytes as done in other sys-

tems [101]. Delete operations update the deleted bytes counter of the corresponding

chunk. When this counter reaches a threshold the valid key-value pairs are moved to the

end of the log. We locate these keys in the index via normal lookups and we update the

leaf pointers accordingly. Finally we release the chunk to be available for next allocations.
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3.2.2 Memory-Mapped I/O

Most key-value stores and other systems that handle data use explicit I/O to access storage

devices or files with read/write system calls. In many cases, they also employ a user-space

cache as part of the application to minimize accesses to storage devices and user-kernel

crossings for performance purposes. The use of a user-space cache is important to avoid

frequent system calls for lookup operations that need to occur for every data item, regard-

less if it eventually hits or misses. However, even the use of an application user-level cache

incurs significant overhead in the common path [58, 61, 105].

The use of memory-mapped I/O in Kreon reduces CPU overhead related to the I/O

cache in three ways: (a) It eliminates cache lookups for hits by using valid virtual page

mappings. Memory-mapped I/O does not require cache lookups because virtual mem-

ory mappings distinguish data that are present in memory from data that are only located

on the device. All device data are mapped to the application address space but only data

that are present in memory have valid virtual memory mappings. Accesses to data that

are not present in memory result in page faults that are then handled by mmap. Given

that many operations in key-value stores, such as get operations with a Zipf distribution,

complete from memory, Kreon avoids all related cache lookup overheads. (b) There is

no need to copy data between user and kernel space when performing I/O. Pages used

for data in memory are used directly to perform I/O to and from the storage devices. (c)

There is no need to serialize/deserialize data between memory and the storage devices.

Finally, memory-mapped I/O uses a single address space for both memory and storage,

which eliminates the need for pointer translation between memory and storage address

spaces and therefore, the need to serialize and deserialize data when transferring between

the two address spaces.

Kreon’s memory-mapped I/O

Kreon provides its own custom memory-mapped I/O path to address the shortcomings of

mmap in Linux.

First, in mmap there is no explicit control over data eviction, as with an application-
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specific cache. Linux uses an LRU-based policy, which may evict useful pages, for in-

stance, pages of L0 instead of L1 pages. We assume, by our design, that L0 always resides

in main memory in order to amortize write I/O operations. Linux kernel mmap does not

provide a mechanism to achieve this. A possible solution to this problem is to lock im-

portant pages with mlock. However, Linux does not allow a large number of pages to be

locked by a single process because this affects other parts of the system.

Second, each write operation in an empty page is effectively translated to a read-modify-

write because mmap does not have any information about the status (allocated or free) of

the underlying disk page and the intended use. This results in excessive device I/O. In-

stead, if applications can inform mmap whether a page contains garbage and will be writ-

ten entirely, mmap can map this page without reading it first from the device, eliminating

unnecessary read traffic.

Third, mmap employs aggressive evictions based on memory usage and time elapsed

since pages marked as dirty to free memory and avoid starving other system components.

Mapping large portions of the application virtual address space creates pressure to the

virtual memory subsystem and results in unpredictable use of memory and bursty I/O.

Furthermore, eager and uncoordinated evictions do not facilitate the creation of large I/Os

through merging. Empirically, we have often observed large intervals (of several 10s of

seconds) where the system freezes while it performs I/O with mmap and applications do

not make progress. Furthermore we observed similar behaviour with msync call. This

unpredictability and large periods of inactivity are an important problem for key-value

stores that serve data to online, user-facing applications.

To overcome these limitations, we implement a custom mmap, as a Linux kernel mod-

ule, called kmmap. Figure 3.3 shows the overall design and data structures of kmmap.

Kmmap bypasses the Linux page cache and uses a priority-based FIFO replacement

policy. As priority we define a small, per-page number (0 to 255). During memory pres-

sure, a page with a higher priority is preferred for eviction. Priorities are kept only in mem-

ory and are set explicitly by Kreon with ioctl calls. Priorities are set as follows: Kreon assigns

priority 0 to index nodes of L0, 1 to index nodes of L1, 2 to leaf nodes of L1, and 3 to the log.

L0 fits in memory and it will not be evicted. Generally if we have more than two levels L0
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Figure 3.3: The main structures of kmmap.

always uses priority 0 and the log maximum priority. We calculate the priority of level LN
as (2 ∗N− 1) for index nodes and (2 ∗N) for leaves.

To increase parallelism, kmmap organizes memory in independent banks, similar to

DI-MMAP [48]. Pages are mapped to banks by hashing the page fault address. To place

consecutive pages in the same bank, the page fault address is first shifted. Unlike DI-

MMAP, kmmap uses fine-grain locking inside banks, which results in higher parallelism

and eliminates periods of inactivity (long freezes).

When Kreon accesses a page (for read or write), that does not reside in main memory,

a page fault occurs. On a page fault, kmmap retrieves a free page from an in-memory

list (Free Page Pool), it reads the data from the device if required, and finally enqueues

the page to the Primary Queue based on its priority. kmmap keeps a separate FIFO per

priority inside the Primary Queue. In the case where the Primary Queue is full of pages, it

dequeues a fixed number of entries for batching purposes, with preference to entries with

higher priority. Then it unmaps them from the process address space and moves them

into the Eviction Queue. The Eviction Queue is organized as an in-memory red-black tree

structure, keeping keys sorted based on page offset at the device. For evictions, it traverses

the Eviction Queue and merges consecutive pages to generate as large I/Os as possible. It

keeps dirty pages that belong to the Primary Queue or the Eviction Queue in another in-

memory red-black tree structure (Dirty Tree) sorted by their device offset. The Dirty Tree

is used by msync, to avoid scanning unnecessary (clean) pages.

Kmmap compared to mmap keeps pages in memory for a longer period of time and



3.2. Design 41

does not evict them, unless there is a need to do so. This allows Kreon to generate larger

I/Os during spill operations by merging more requests. When a spill is completed, Kreon

sets the priority of pages from the previously spilled L0 to 255 (smallest priority) so they

get evicted as soon as possible.

To avoid unnecessary reads that occur when a new page is written in Kreon, kmmap

detects and filters these read-before-write operations, whereas write and read-after-write

operations are forwarded to the actual device. To achieve this, it uses an in-memory

bitmap, which is initialized and updated by Kreon via a set of ioctl calls. The bitmap uses

a bit per device block, so a 1 TB SSD requires 32 MB of memory for the bitmap.

Kmmap provides a non-blocking msync call that allows the system to continue oper-

ation while pages are written asynchronously to the devices. For this purpose we keep a

timestamp for each page that indicates when it became dirty. To write dirty pages, we iter-

ate the Dirty Tree and write only pages with timestamp older than the timestamp of msync.

We use fine grain locking in Dirty Tree and we allow to add new dirty pages into it during

msync. However, there can be pages that are already dirty and changed after msync, which

should not be written. Kreon uses Copy-On-Write to ensure that after a commit dirty pages

will not change again as we need to allocate new pages.

Finally, Kreon significantly reduces unpredictability with respect to memory manage-

ment during system operation by limiting the maximum amount of memory it occupies

throughout its operation. It uses a configuration parameter to calculate the size of L0 in

memory and based on this it preallocates all memory-mapped I/O structures.

3.2.3 Persistence

Kreon uses Copy-On-Write (CoW) [115] to maintain its state consistent and recoverable

after failures. Kreon’s state includes the data section of each segment (metadata and data

of the tree) and the allocator metadata. To persist a consistent version of its state Kreon

provides a commit operation. This operation first writes the dirty (in-memory) data into

the device and then switches atomically from the old state to the new state. More specif-

ically, Kreon stores a pointer to the latest persistent state in the superblock. At the end
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of a commit operation, Kreon updates this pointer to the newly created persistent state

which becomes immutable. In case of a failure, the new state that is not committed will

be discarded during startup, resulting in a rollback to the last valid state.

In Kreon we use CoW for different purposes at L0 and the rest of the levels. The index of

all levels except L0 is kept on the device and only brought to memory on demand. There-

fore, typically, only a small part of these indexes is in memory. For these indexes, Kreon

uses CoW to ensure consistency of the index on the device during failures. These levels

are only written to the device during spills. Therefore, the only time when commits occur

(besides L0), is at the end of each spill operation.

L0 is different and can always be recovered by replaying a subset of the key-value log.

This subset is always the latest portion of the log and is easy to identify via markers placed

in the log during the spill operation from L0 to L1. Therefore, after a failure, L0 can be

reconstructed. However, L0 can grow significantly due to the large amount of memory

available in modern servers. Kreon uses CoW to checkpoint L0 to the device and to reduce

recovery time. Therefore, Kreon’s commits of L0 are not critical for recovery. L0 check-

points do not have to be very frequent. Infrequent L0 commits do not lead to data loss

because the L0 index can be reconstructed through the replay of the key-value log. The log

is written to the device more frequently, when a log segment (2 MB) becomes full.

Essentially, Kreon uses L0 commits at a coarse granularity to improve recovery time,

without however, a negative impact on the recovery point. The tradeoff introduced is that

commits incur overhead during failure free operation. Overall, we expect that Kreon L0
commits will be issued periodically at a time scale of minutes, which has a low impact on

performance. Section 3.3.2 evaluates commit overhead in Kreon.

3.3 Experimental Analysis

In this section we evaluate Kreon against RocksDB [49, 52]. Our goal is to examine the

following aspects of Kreon:

1. What is the efficiency in cycles/op achieved by Kreon compared to LSM-based key-

value stores? Does higher efficiency come at the cost of worse absolute throughput
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Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write
G 100% scans

Table 3.1: Workloads evaluated with YCSB. All workloads use a query popularity that fol-
lows a Zipf distribution except for D that follows a latest distribution.

or latency?

2. How much does the new index design and memory-mapped I/O contribute to reduc-

ing overheads?

3. How does Kreon improve I/O amplification? How much does it increase I/O ran-

domness?

4. How do the growth factor across levels and L0 checkpoint interval affect perfor-

mance?

Next, we discuss our methodology and each aspect of Kreon in detail.

3.3.1 Methodology

Our testbed consists of a single server which runs the key-value store and the YCSB client.

The server is equipped with two Intel(R) Xeon(R) CPU E5-2630 v3 CPUs running at 2.4 GHz,

with 8 physical cores and 16 hyper-threads, for a total of 32 hyper-threads and with 256 GB

DDR4 at 2400 MHz. It runs CentOS 7.3 with Linux kernel 4.4.44. During our evaluation we

scale-down DRAM as required by different experiments. The server has six Samsung 850

PRO 256 GB SSDs, organized in a RAID-0 using Linux md and 1 MB chunk size.

We use RocksDB1 v5.6.1, atop of XFS with disabled compression and jemalloc [68], as

recommended. We configure RocksDB to use direct I/O because we evaluate experimen-

tally that in our testbed results in better performance. Furthermore, we use RocksDB’s

1Options file: https://goo.gl/NJNLNr.

https://goo.gl/NJNLNr
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user-space LRU cache, with 16 or 192 GB depending on the experiment. We use a C++ ver-

sion of YCSB [114] with the standard workloads proposed by YCSB [37, 35]. Table 3.1 sum-

marizes these workloads. To further enrich our analysis, we add a new workload named G

which is similar to E but consists only of scans. In all cases we use 128 YCSB threads for

each client and 32 regions.

We use two datasets, a small dataset that fits in memory and a large dataset that does

not. Both datasets consist of 100M records and require about 120 GB of storage. YCSB

by default generates 10 columns for each key. We keep these 10 columns inside a single

value. We use a 100M keys (recordcount and operationcount equals to 100M) * 10 columns

which results in 1 billion columns. In the small dataset we boot the server with 194 GB of

memory, 192 GB for key-value store and 2 GB for the OS. For the large dataset, and to

further stress I/O we boot the server with 18 GB of memory, 16 GB for key-value store and

2 GB for the OS.

In the small dataset, both the key-value log and the indexes fit in memory, so I/O is

generated by commit operations. In the large dataset, neither the key-value log nor the

indexes fit in memory and only L0 is guaranteed to reside in memory. Therefore, the

small dataset demonstrates more clearly overheads related to memory accesses whereas

the large dataset stresses the I/O path.

We calculate efficiency in cycles/op as follows:

cycles/ op =
CPU utilization

100 ×
cycles
s × cores

average ops
s

,

where CPU utilization is the average of CPU utilization among all processors, excluding

idle and I/O wait time, as given by mpstat. As cycles/ s we use the per-core clock frequency.

average ops/ s is the throughput reported by YCSB and cores is the number of system cores

including hyperthreads.
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Figure 3.4: Efficiency of Kreon and RocksDB in cycles/op.

3.3.2 Experimental Results

CPU Efficiency and Performance

We evaluate the efficiency of Kreon in terms of cycles/op required to complete each opera-

tion, excluding YCSB overhead. To exclude the overhead of the YCSB client, we profile the

average cycles/op required by YCSB and we subtract this overhead from the overall value

for both RocksDB and Kreon.

Figure 3.4 shows efficiency results for Kreon and RockDB. For the small dataset Kreon

requires 8.3x, 1.56x, and 1.4x fewer cycles/op for Load A, Run C, and Run G, respectively.

For the large dataset Kreon requires 5.82x, 1.2x, and 1.18x fewer cycles/op for Load A, Run

C, and Run G, respectively. In addition, for the small dataset and Load A we compare

Kreon when using kmmap and when using vanilla mmap. Although we do not show these

results for space purposes, using kmmap, Kreon achieves 1.47x fewer cycles/op compared

to vanilla mmap, indicating the importance of proper and customized memory-mapped

I/O for key value stores.

In terms of absolute numbers, we see that Kreon requires 21, 35, and 241 kcycles/op

for each of Load A, Run C, and Run G for the small dataset and 25, 64, and 354 kcycles/op

for each of Load A, Run C, and Run G for the large dataset.
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Figure 3.5: Efficiency and throughput improvement of Kreon compared to RocksDB for all
YCSB workloads.

YCSB Workloads

We now show results from a complete run for all YCSB workloads. We run the workloads in

the recommended sequence [35]: Load the database using the configuration file of work-

load A, run workloads A, B, C, F, and D in a row, delete the whole database, reload the

database with the configuration file of workload E and then run workload E.

For both the small and large dataset, Figure 3.5(a) shows the improvement in efficiency

compared to RocksDB, whereas Figure 3.5(b) shows the improvement in throughput. Re-

garding efficiency, Kreon improves RocksDB efficiency, on average, by 3.4x and 2.68x, for

the small and large dataset, respectively. Regarding throughput, the improvement in Kreon

compared to RocksDB is, on average, 4.72x and 2.85x for the small and large datasets, re-

spectively.

Latency analysis

First, we examine the average latency per operation for the small dataset. For Load A,

RocksDB achieves 1162 μs/op, Kreon with vanilla mmap achieves 346 μs/op, and Kreon

with kmmap achieves 72 μs/op. This shows that kmmap provides significant reduction in

latencies compared to vanilla mmap. For Run C, RocksDB achieves 174 μs/op, Kreon with

vanilla mmap achieves 119 μs/op, and Kreon with kmmap achieves 109 μs/op. Generally,

Kreon with kmmap achieves 16.1x and 1.5x lower latency on average for Load A and Run C



3.3. Experimental Analysis 47

 0.01

 0.1

 1

 10

 100

 1000

50 70 90 99
99

.9

99
.9

9

L
a

te
n

c
y
 (

m
s
)

Load A

50 70 90 99
99

.9

99
.9

9

Run C

RocksDB

Kreon-mmap

Kreon-kmmap

Figure 3.6: Tail latency for Load A and Run C for RocksDB, Kreon with vanilla mmap, and
Kreon with kmmap.

compared to RocksDB.

Figure 3.6 shows the tail latency for Kreon using both kmmap and vanilla mmap and

RocksDB. For Load A, for 99.99% of requests, Kreon with kmmap achieves 393x lower la-

tency compared to RocksDB. Furthermore, kmmap results in 99x lower latency compared

to vanilla mmap. In our design we remove blocking for inserts during msync and dur-

ing spilling of L0. Unlike Kreon, RocksDB blocks inserts during compaction operations

for longer periods. For Run C, Kreon results in almost the same latency with and with-

out kmmap and about 2x better than RocksDB. This is because in a read-only workload

most overheads comes from the data structure, as we use a dataset that fits in mem-

ory and removes the need for I/O. In the case of RocksDB this overhead includes also a

cache lookup while in Kreon it only accesses already mapped memory. The use of mmap

and kmmap results in almost the same performance as this experiment does not stress

memory-mapped I/O path.

Very large dataset

To examine Kreon’s behavior with a very large dataset we run Load A using 6 billion keys

with one column per key (key size of 30 bytes and value size of 100 bytes). For this exper-

iment we use 192 GB of DRAM for both Kreon and RocksDB. Kreon reduces cycles/op by

8.75x, increases ops/s by 12.11x, and reduces write volume by 4.25x and read volume by
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Figure 3.7: Throughput for Kreon and RocksDB in ops/s.

3.14x.

Absolute operation throughput

Next, we examine if Kreon’s increased efficiency in cycles/op comes at the expense of re-

duced absolute performance. This is important for understanding if Kreon trades device

and host CPU efficiency in the right manner. For Kreon and RocksDB, Figure 3.7 shows the

throughput (ops/s), achieved by YCSB. For the small dataset, Kreon achieves 14.35x, 1.24x,

and 1.25x more ops/s for Load A, Run C, and Run G, respectively.

For the large dataset, Kreon achieves 5.33x and 1.05x more ops/s for Load A and Run

C, respectively, than RocksDB. However, Kreon is 2% worse for Run G. In this case, both

RocksDB and Kreon are limited by device throughput and this is the reason that both sys-

tems are comparable. On the other hand, Kreon results in much lower CPU utilization: on

average Kreon has a utilization of 13.8% while RocksDB has a utilization of 39.5%. There-

fore, Kreon is able to support more clients given an adequate number of storage devices.

For the small dataset and Load A, we compare Kreon with kmmap and with vanilla

mmap. We see that kmmap improves throughput by 4.34x compared to vanilla mmap.

Execution Time Breakdown

In this section we examine the main components that contribute to overhead in Kreon and

RocksDB. Our purpose is to identify what are the main sources of improvement in Kreon
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kcycles/ Load A (16GB) Load A (192GB)
operation RocksDB Kreon RocksDB Kreon

YCSB 26.67 25.34 22.79 21.37
index 24.15 13.46 26.76 13.1
cache 0.33 0.56 0.82 0.45
I/O pfault 2.92 5.84 1.66 2.61
I/O syswrite 12.20 0 11.91 0
compaction/spill 63.41 0.78 60.87 0.64

Table 3.2: Breakdown of cycles per operation for workload Load A (write only). Numbers
are in kcycles.

compared to RocksDB and what are the remaining sources of overhead.

We examine two workloads a write-intensive (Load A) and a read-intensive (Run C) us-

ing both the small and large datasets. We profile Load A and Run C workloads and we use

stack traces from perf and Flamegraph [57] to identify where cycles are spent. We divide

overhead in the following components: index operations (updates/traversals for put/get

operations), caching, I/O, and compaction/spill. I/O refers to explicit I/O operations in

RocksDB and memory-mapped I/O in Kreon. Caching refers to the cycles needed for cache

lookups, fetching new data for misses and page evictions when the cache becomes full.

RocksDB uses a user-space LRU cache whereas in Kreon cache resides in kernel-space as

part of kmmap.

Table 3.2 shows the breakdown for the write-intensive Load A workload. The number

of cycles used by the YCSB client is roughly the same in all cases. In the small workload,

index manipulation incurs about 44% lower overhead in Kreon (∼13K cycles/op in Kreon

vs. 24K cycles/op in RocksDB). Caching overhead is low in all cases for the write-intensive

workload. For I/O Kreon requires 52% fewer cycles. For compaction/spill Kreon dramati-

cally reduces the cycles required per operation from 63.41K to 0.78K. In the large workload,

index manipulation requires 51% fewer cycles in Kreon (from 26K to 13K) and for I/O 78%

fewer cycles. Similarly to the small dataset, Kreon significantly reduces the number of cy-

cles per operation for compaction/spill from 60.87K to 0.64K.

Table 3.3 shows the breakdown for the read-intensive workload (Run C benchmark).

In the small dataset, index manipulation incurs 12% fewer cycles (from 4.87K in RocksDB
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kcycles/ Run C (16GB) Run C (192GB)
operation RocksDB Kreon RocksDB Kreon

YCSB 13.9 12.11 54.04 53.11
index 4.87 4.28 25.59 10.29
cache 8.61 0.41 9.79 0.74
I/O pfault 0.12 3.16 0.54 5.9
I/O sysread 2.86 0 7.21 0

Table 3.3: Breakdown of cycles per operation for workload Run C (read only). Numbers are
in kcycles.

to 4.28K in Kreon). Caching overhead is reduced by 95% (from 8.61K cycles/op in RocksDB

to 0.41K cycles/op in Kreon) whereas I/O requires 9% more cycles in Kreon. In the large

dataset, index manipulation overhead is reduced by 59% in Kreon, caching overhead by

92%, and I/O by 18%.

Overall, we see that Kreon’s design significantly reduces overheads for index manipu-

lation, spills, and I/O. We also see that all proposed mechanisms for indexing, spills that

involve only metadata, and memory-mapped I/O-based caching, have important contri-

butions. Finally, we see that in Kreon the largest number of cycles is consumed by index

manipulation (up to 13K cycles/op) both for both datasets in both workloads and secon-

darily by page faults (up to 5.9K cycles/op).

I/O Amplification and Randomness

In this section we evaluate how Kreon reduces amplification at the expense of reduced I/O

size and increased I/O randomness and what is the overall impact on performance.

Table 3.4 shows the total amount of traffic to the device using the large dataset. We see

that for Load A Kreon reduces both read traffic by 5.9x and write traffic by 3.9x, while the

total traffic reduction is 4.6x. Kreon reads 1.08x less data for Run C. On the other hand,

Kreon reads 4.1x more data for Run G, due to data re-organization. However, this cost

comes only during scans and for leaves that are not re-organized. On the other hand, in

RocksDB data reorganization takes place in every compaction.

To reduce amplification, Kreon generates by design smaller and more random I/Os
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Load A Run C Run G
RocksDB-Read 669 138 296
Kreon-Read 112 127 1237
RocksDB-Write 869 0 8
Kreon-Write 221 0 139

Table 3.4: Total I/O volume (in GB) for all benchmarks using the large dataset.

compared to RocksDB and traditional LSM trees. We measure the average request size

for Load A using the large dataset. For writes, Kreon has an average request size of 94 KB

compared to 333.2 KB for RocksDB. However, even at 94 KB, most SSDs exhibit high through-

put with a large queue depth (Figure 3.1). For reads, Kreon produces 4 KB I/Os, compared

to 126 KB for RocksDB. Because of compactions, RocksDB reads large chunks of data in

order to merge them. This enables RocksDB to have large request size but it also results in

high read amplification (4.8x more data compared to Kreon).

To examine randomness, we implement a lightweight I/O tracer as a stackable block

device in the Linux kernel that keeps the device offset and size for bios issued to the under-

lying device. The tracer stores this information to a ramdisk to reduce overhead and avoid

interfering with the key-value store I/O pattern. Tracing reduces average throughput of

YCSB by about 10%. We analyze traces after each experiment and calculate a metric for

I/O randomness based on the distance and size of successive bios, as follows:

R =

nb−1∑
i=0
|bs[i + 1].of f − (bs[i].of f + bs[i].size)| + bs[i].size

device size in pages ∗
nb−1∑
i=0

bs[i].size
,

where bs is the array that contains bio information and nb its length. R is the randomness

metric and takes values between [0,1]. The larger R is, the more random the I/O pattern.

Finally, we compute three versions of R, one for all bios (Rt), one for reads (Rr), and one for

writes (Rw).

Table 3.5 shows our results for Kreon and RocksDB. For calibration purposes, we run fio

with queue depth of 1 and block size of 4 KB: a sequential pattern is 0 and a random

pattern is close to 0.33. Kreon produces overall about 5.53x more random I/O patterns
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Rt Rr Rw
RocksDB 0.001780 0.003878 0.000112
Kreon 0.009851 0.033648 0.000325

Table 3.5: I/O randomness using the large dataset and Load A. The higher the value of R,
the more random the I/O pattern.

than RocksDB. Reads exhibit a larger difference in randomness, about 10x, because Kreon

moves data between levels at smaller granularity than RocksDB. For writes, Kreon exhibits

a 3x more random pattern.

Overall, during inserts, Kreon reduces write traffic by 2.8x and read traffic by 4.8x. In

both cases, queue depth is about 30 on average. Figure 3.1 shows that, at this queue depth,

commodity SSDs achieve their maximum throughput with at 32 KB requests, so Kreon’s

94 KB write requests result in little or no loss of device efficiency, while there is a 2.8x gain

from reduced write traffic. For read traffic, Kreon’s 4K requests result in a small percentage

drop of SSD throughput at a queue depth of 32, but at a 4.8x gain in traffic. Therefore,

Kreon properly trades randomness and request size for amplification. The calculation is

somewhat different for our NVMe devices, but still favorable to Kreon.

Finally, Kreon achieves an average read throughput of 123 MB/s and an average write

throughput of 743 MB/s at an average queue depth of 21.2. On the other hand RocksDB

achieves 707 MB/s for reads and 889 MB/s for writes at an average queue size of 26.2.

In both cases queue depth is large enough for devices to operate at high throughput, al-

though Kreon exhibits lower throughput for reads due to the smaller request sizes it gener-

ates. This loss of device efficiency is compensated by the reduced amplification (by 4.6x)

and the reduced CPU overhead, eventually resulting in higher performance and data serv-

ing density.

Growth Factor and Commit Interval

An important parameter for key value stores that use multi-level indexes is the ratio of the

size between two successive levels (growth factor). The growth factor in Kreon represents

the amount of buffering that happens for inserts in one level before keys are spilled to
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Figure 3.8: Results with varying growth factor from 1.25% to 10% (x-axis) using the large
dataset.

the next level. This affects how effectively I/Os are amortized across several inserts and

reduces write amplification.

Figure 3.8 shows Load A with varying growth factor using the large dataset. A growth

factor of 0.1 means that L1 is 10x larger than L0 and therefore L0 can buffer about 10% of

the keys inL1. Figure 3.8(b) shows that a growth factor between 0.05 and 0.1 is appropriate,

meaning that each level should buffer between 5-10% of the next level. A smaller growth

factor results in significant increase in traffic and reduces device efficiency. Increasing the

growth factor beyond 0.1 reduces traffic further, however, this also requires more memory

for L0. Figure 3.8(a) (right y-axis) shows that average request size increases as buffering

increases and combined with the reduced traffic, results in increasing throughput (ops/s),

as shown in Figure 3.8(a) (left y-axis).

Figure 3.9 shows how the commit interval for L0 affects ops/s, read volume, and write

volume in Kreon. For Run C the commit interval does not affect any of the metrics, there-

fore, we examine only Load A with the large dataset.

Increasing the commit interval decreases the total amount of data read and written to

the device. This is due to Copy-on-Write. For each commit we create a read-only version

of our tree, thus an insert has to allocate new nodes and copy data from the immutable

copy. Additionally, we see that commit intervals longer than 120s have a small impact for

read and write volume.

For throughput, a small commit interval results in larger read and write volume which
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Figure 3.9: Results with varying the commit interval (x-axis) for Load A and the large
dataset.

reduces performance. Interestingly, a value larger than 240 seconds reduces throughput

significantly as well. This is due to the behavior of msync. In kmmap, msync is optimized

to generate many large and asynchronous I/Os from all dirty pages, which means that it is

more efficient compared to the eviction path mmap where we evict less amount of data.

Overall, we see that a good value for the commit interval is about 2 minutes, which we use

in all our other experiments.

3.4 Summary

We design Kreon, a persistent key-value store based on LSM trees that uses an index within

each level to eliminate the need for sorting large segments and uses a custom memory-

mapped I/O path to reduce the cost of I/O. Kreon reduces CPU overhead by up to 8.3x, I/O

amplification by up to 4.6x at the expense of increasing randomness of I/Os. Both index

organization and memory-mapped I/O contribute significantly to the reduction of CPU

overhead, while index manipulation and page faults emerge as the main components of

per operation cost in Kreon.

This chapter provides a way for user applications to define custom eviction and write-

back operations over memory-mapped I/O. Our approach uses a priority-based FIFO re-

placement policy, and during memory pressure, a page with a higher priority is preferred
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for eviction or writeback. To show the applicability of this approach, we use a multi-level

persistent key-value store. The upper levels of our data structure have low priorities (i.e.

hot data during insertions), whereas the lower levels have higher priorities (i.e. cold data

during insertions). This approach shows significant improvements in terms of predictabil-

ity, especially during writes. On the other hand, we observe substantial scalability issues in

the memory-mapped I/O path of Linux. This limits performance, especially in multi-core

servers that are common today in modern datacenters.
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Chapter 4

Increasing Page Fault Concurrency

A major reason for the limited use of memory-mapped I/O, despite its advantages, has been

that mmap may generate small and random I/Os. With modern storage devices, such as

NVMe and persistent memory, this is becoming less of a concern. However, Figure 4.1

shows that the default memory-mapped I/O path (mmap backed by a device) for random

page faults does not scale well with the number of cores. In this experiment (details in

Section 4.4), we use null blk, a Linux driver that emulates a block device but does not

issue I/Os to a real device (we use 4TB dataset and 192GB of DRAM cache). Using null blk

allows us to stress the Linux kernel software stack while emulating a low-latency, next-

generation storage device. Linux mmap scales up to only 8 cores, achieving 7.6 GB/s (2M

random IOPS), which is about 5× less compared to a state-of-the-art device [65]; servers

with multiple storage devices need to cope with significantly higher rates. We observe that

from Linux kernel 4.14 to 5.4 the performance and the scalability of the memory-mapped

I/O path has not improved significantly. Limited scalability also results in low device queue

depth. Using the same micro-benchmark for random read page faults with 32 threads on

an Intel Optane SSD DC P4800X, we see that the device queue depth is 27.6 on average. A

large device queue depth is essential for fast storage devices to provide their peak device

throughput.

In this chapter, we propose FastMap, a novel design for the memory-mapped I/O path

that overcomes these two limitations of mmap for data intensive applications on multi-

core servers with fast storage devices. FastMap (a) separates clean and dirty-trees to avoid

57
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all centralized contention points, (b) uses full reverse mappings instead of Linux object-

based reverse mappings to reduce CPU processing, and (c) introduces a scalable DRAM

cache with per-core data structures to reduce latency variability. FastMap achieves both

higher scalability and higher I/O concurrency by (1) avoiding all centralized contention

points that limit scalability, (2) reducing the amount of CPU processing in the common

path, and (3) using dedicated data-structures to minimize interference among processes,

thus improving tail latency. As a further extension to mmap, we introduce a user-defined

read-ahead parameter to proactively map pages in an application’s address space and re-

duce the overhead of page faults for large sequential I/Os.

We evaluate FastMap using both micro-benchmarks and real workloads. We show that

FastMap scales up to 80 cores and provides up to 11.8×more random IOPS compared to

Linux mmap using null blk. FastMap achieves 2× higher throughput on average for all

YCSB workloads over Kreon [106], a persistent key-value store designed to use memory-

mapped I/O. Moreover, we use FastMap to extend the virtual address space of memory

intensive applications beyond the physical memory size over a fast storage device. In this

case we achieve up to 75× lower average latency for TPC-C over Silo [128] and 5.27× better
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performance when using the Ligra graph processing framework [120]. Finally, we achieve

6.06% higher throughput on average for all TPC-H queries over MonetDB [19] that mostly

issues sequential I/Os.

In summary, our work optimizes the memory-mapped I/O path in the Linux kernel and

makes the following three specific contributions:

1. We identify severe performance bottlenecks of Linux memory-mapped I/O in multi-

core servers with fast storage devices.

2. We propose FastMap, a new design for the memory-mapped I/O path.

3. We provide an experimental evaluation and analysis of FastMap compared to Linux

memory-mapped I/O using both micro-benchmarks and real workloads.

The rest of the chapter is organized as follows. Section 4.1 provides the motivation be-

hind FastMap. Section 4.2 presents the design of FastMap along with our design decisions.

Sections 4.4 and 4.4.2 present our experimental methodology and results, respectively. Fi-

nally, Section 4.5 concludes this chapter.

4.1 Motivation

With storage devices that exhibit low performance for random I/Os, such as hard disk

drives (HDDs), mmap results in small (4KB) random I/Os because of the small page size

used in most systems today. In addition, mmap does not provide a way for users to manage

page writebacks in the case of high memory pressure, which leads to unpredictable tail la-

tencies [106]. Therefore, historically the main use of mmap has been to load binaries and

shared libraries into the process address space; this use-case does not require frequent

I/O, uses read-mostly mappings, and exhibits a large number of shared mappings across

processes, e.g. libc is shared by almost all processes of the system. Reverse mappings pro-

vide all page table translations for a specific page and they are required in order to unmap

a page during evictions. Therefore, Linux mmap uses object-based reverse mappings [94]

to reduce memory consumption and enable fast fork system calls, as they do not require

copying full reverse mappings.

With the introduction of fast storage devices, where the throughput gap between ran-
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Figure 4.2: Linux (left) and FastMap (right) high-level architecture for memory-mapped
files (acronyms: PFD=Per-File-Data, PVE=Per-Vma-Entry, PPR=Per-Pve-Rmap).

dom and sequential I/O is small, memory-mapped I/O has the potential to reduce I/O path

overhead in the kernel, which is becoming the main bottleneck for data-intensive appli-

cations. However, data intensive applications, such as databases or key-value stores, have

different requirements compared to loading binaries: they can be write-intensive, do not

require large amount of sharing, and do not use fork system calls frequently. These prop-

erties make the use of full reverse mappings a preferred approach. In addition, data inten-

sive applications use datasets that do not fit in main memory and thus, the path of reading

and writing a page from the device becomes the common case. Most of these applications

are also heavily multithreaded and modern servers have a large number of cores.

These trends and characteristics make the design of FastMap appropriate for data-

intensive applications in multi-core servers with fast storage devices, as discussed next.
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4.2 Design

The Linux kernel provides the mmap and munmap system calls to create and destroy

memory mappings. Linux distinguishes memory mappings in shared vs. private. Map-

pings can also be anonymous, i.e. not backed by a file or device. Anonymous mappings

are used for memory allocation. In this chapter we examine I/O over persistent storage, an

inherently shared resource. Therefore, we consider only shared memory mappings backed

by a file or block device, as also required by Linux memory-mapped I/O.

Figure 4.2(a) shows the high-level architecture of shared memory mappings in the

Linux kernel. Each virtual memory region is represented by a struct vm area struct (VMA).

Each VMA points to a struct file (file) that represents the backing file or device and the

starting offset of the memory mapping to it. Each file points to (a shared between pro-

cesses) struct address space (address space) which contains information about mapped

pages and the backing file or device.

Figure 4.2(b) illustrates the high-level design of FastMap. The most important compo-

nents in our design are per file data (PFD) and per vma entry (PVE). Combined, these two

components provide equivalent functionality as the Linux kernel address space structure.

Each file points to a PFD and each VMA points to a PVE. The role of a PFD is to keep meta-

data about device blocks that are in the FastMap cache and metadata about dirty pages.

PVE provides full reverse mappings.

4.2.1 Separate Clean and Dirty Trees in PFD

In Linux, one of the most important parts of address space is page tree, a radix tree that

keeps track of all pages of a cacheable and mappable file or device, both clean and dirty.

This data structure provides an effective way to check if a device block is already in mem-

ory when a page fault occurs. Lookups are lock-free (RCU ) but inserts and deletes require

a spinlock (named tree lock). Linux kernel radix trees also provide user-defined tags per

entry. A tag is an integer, where multiple values can be stored using bitwise operations.

In this case tags are used to mark pages as dirty. Marking a previously read-only page as

writable requires holding the tree lock to update the tag.
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Using the experiments of Figure 4.1 and lockstat we see that tree lock is by far the most

contended lock: Using the same multithreaded benchmark as in Figure 4.1, over a single

memory mapped region, tree lock has 126×more contended lock acquisitions, which in-

volve cross-cpu data, and 155× more time waiting to acquire the lock, compared to the

second most contended lock. The second more contended lock is a spinlock that protects

concurrent modifications in PTEs (4th level entries in the page table). This design has re-

mained essentially unchanged from Linux kernel 2.6 up to 5.4 (latest stable version at the

time of this writing).

To remove the bottleneck in tree lock, FastMap uses a new structure for per-file data,

PFD. The most important aspects of PFD are: (i) a per-core radix tree (page tree) that keeps

all (clean and dirty) pages and (ii) a per-core red-black tree (dirty tree) that keeps only dirty

pages. Each of these data structures is protected by a separate (per core) spinlock, different

for the radix and red-black trees. We assign pages to cores in a round-robin manner and

we use the page offset to identify the per-core structure that holds each page.

We use page tree to provide lock-free lookups (RCU), similar to the Linux kernel. We

use per-core data structures to reduce contention in the case we need to add or remove a

page from it. On the other hand, we do not use tags to mark pages as dirty but we use the

dirty tree for this purpose. In the case where we have to mark a previously read-only page

as read-write, we only acquire the appropriate lock of dirty tree without performing any

additional operations to the page tree. Furthermore, having all dirty pages in a sorted data

structure (red-black tree) enables efficient I/O merging for the cases of writebacks and the

msync system call.

4.2.2 Full Reverse Mappings in PVE

Reverse (inverted) mappings are also an important part of mmap. They are used in the

case of evictions and writebacks and they provide a mechanism to find all existing virtual

memory mappings of a physical page. File-backed memory mappings in Linux use object-

based reverse mappings [94]. The main data structure for this purpose is a red-black tree,

i mmap. It contains all VMAs that map at least one page of this address space. A read-write
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semaphore, i mmap rwsem, protects concurrent accesses to the i mmap red-black tree.

The main function that removes memory mappings for a specific page is try to unmap.

Each page has two fields for this purpose: (i) a pointer to the address space that belongs to

and (ii) an atomic counter ( mapcount) that keeps the number of active page mappings.

Using the pointer to address space, try to unmap gets access to i mmap and then iterates

over all VMAs that belong to this mapping. Through each VMA, it has access to mm struct

which contains the root of the process page table (pgd). It calculates the virtual address

of the mapping based on the VMA and the page, which is required for traversing the page

table. Then it has to check all active VMAs of i mmap if the specific page is mapped, which

results in many useless page table traversals. This is the purpose of mapcount, which

limits the number of traversals. This strategy is insufficient in some cases but it requires

a very small amount of memory for the reverse mappings. More specifically, in the case

where mapcount is greater than zero, we may traverse the page table for a VMA where

the requested page is not mapped. This can happen in the case where a page is mapped

in several different VMAs in the same process, i.e. with multiple mmap calls, or mapped

in the address space of multiple different processes. In such a case, we have unnecessary

page table traversals that introduce overheads and consume CPU cycles. Furthermore,

during this procedure, i mmap rwsem is held as a read lock and as a write lock only during

mmap and munmap system calls. Previous research shows that even a read lock can limit

scalability in multicore servers [32].

The current object-based reverse mappings in Linux have two disadvantages: (1) with

high likelihood they result in unnecessary page table traversals, originating from i mmap,

and (2) they require a coarse grain read lock to iterate i mmap. Other works have shown

that in multi-core servers locks can be expensive, even for read-write locks when acquired

as read locks [32]. These overheads are more pronounced in servers with a NUMA memory

organization [24].

To overcome these issues FastMap provides finer grained locking, as follows: FastMap

uses a structure with an entry for each VMA, PVE. Each PVE keeps a per-core list of all

pages that belong to this VMA. A separate (per core) spinlock protects each of these lists.

The lists are append-only as unmapping a page from a different page table does not re-
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quire any ordering. We choose the appropriate list based on the core that runs the append

operation (smp processor id()). These lists contain per pve rmap (PPR) entries. Each PPR

contains a tuple (VMA, virtual address). These metadata are sufficient to allow iterating

over all mapped pages of a specific memory mapping in the case of an munmap oper-

ation. Furthermore, each page contains an append-only list of active PPRs, which are

shared both for PVEs and pages. This list is used when we need to evict a page that is

already mapped in one or more address spaces, in the event of memory pressure.

4.2.3 Dedicated DRAM Cache

An mmap address space contains information about the backing file or device and the

required functions to interact with the device in case of page reads and writes. To write

back a set of pages of a memory mapping, Linux iterates page tree in a lock-free manner

with RCU and writes only the pages that have the dirty tag enabled. Linux also keeps a per-

core LRU to find out which pages to evict. In the case of evictions, Linux tries to remove

clean pages in order not to wait for dirty pages to do the writeback [94].

The Linux page-cache is tightly coupled with the swapper. For the memory-mapped

I/O path, this dependency results in unpredictable evictions and bursty I/O to the storage

devices [106]. Therefore, FastMap implements its own DRAM cache, managing evictions

via an approximation of LRU. FastMap has two types of LRU lists: one containing only

clean pages (clean queue) and one containing only dirty pages (dirty queue). FastMap

maintains per-core clean queues to reduce lock contention. We identify the appropriate

clean queue as clean queue id = page offset % num cores.

When there are no free pages during a page fault, FastMap evicts only clean pages, sim-

ilar to the Linux kernel [94], from the corresponding clean queue. We evict a batch (with a

configurable size, currently set to 512) of clean pages to amortize the cost of page table ma-

nipulation and TLB invalidations. Each page eviction requires a TLB invalidation with the

flush tlb function, if the page mapping is cached. flush tlb sends an IPI (Inter-Processor-

Interrupt) to all cores, incurring significant overheads and limiting scalability [3, 4]. We

implement a mechanism to reduce the number of calls to flush tlb function, using batch-
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ing, as follows.

A TLB invalidation requires a pointer to the page table and the page offset. FastMap

keeps a pointer to the page table and a range of page offsets. Then, we invoke flush tlb

for the whole range. This approach may invalidate more pages, but reduces the number

of flush tlb calls by a factor of the batch-size of page evictions (currently 512). As the file

mappings are usually contiguous in the address space in data intensive applications, in the

common case false TLB invalidations are infrequent. Thus, FastMap manages to maintain

a high number of concurrent I/Os to devices and increase device throughput.

FastMap uses multiple threads to write dirty pages to the underlying storage device

(writeback). Each of these manages its own dirty queue. This design removes the need

of synchronization when we remove dirty pages from a dirty queue. During writebacks,

FastMap merges consecutive I/O requests to generate large I/O operations to the under-

lying device. To achieve this, we use dirty trees that keep dirty pages sorted based on the

device offset. As we have multiple dirty trees, we initialize an iterator for each tree and

we combine the iterator results using a min-max heap. When a writeback occurs, we also

move the page to the appropriate clean queue to make it available for eviction. As page

writeback also requires a TLB invalidation, we use the same mechanism as in the eviction

path to reduce the number of calls to the kernel flush tlb function. Each writeback thread

checks the amount of dirty pages compared to clean pages and starts the writeback when

the percentage of dirty pages is more that 75% of the total cache pages. The cache in

FastMap currently uses a static memory buffer, allocated upon module initialization and

does not create any further memory pressure to the Linux page cache. We also provide a

way to grow and shrink this cache at runtime, but we have not yet evaluated alternative

sizing policies.

To keep track of free pages FastMap uses a per-core free list with a dedicated spinlock.

During a major page fault i.e., when the page does not reside in the cache, the faulting

thread first tries to get a page from its local free list. If this fails, it tries to steal a page from

another core’s free list (randomly selected). After num cores unsuccessful tries, FastMap

forces page evictions to cleanup some pages. To maintain all free lists balanced, each

evicted page is added to the free list from which we originally obtained the page.



66 Chapter 4. Increasing Page Fault Concurrency

Overall, FastMap with per-core data structures requires more memory compared to

the native Linux mmap. FastMap requires a single PFD per file for all memory mappings.

A single PVE is about 512 bytes and a single PPR is 24 bytes. We require a single PVE

for each mmap call, i.e. 1 : 1 with the Linux VMA struct. FastMap requires a single PPR

entry per PVE for each mapped page, independently of how many threads access the same

page. In the setups we target, there is little sharing of files across processes and we can

therefore, assume that we only need one PPR entry for each page in our DRAM cache.

FastMap targets storage servers with large memory spaces and can be applied selectively

for the specific mount points that hold the files of data-intensive applications. While it

is, in principle, possible to allow more fine-grain uses of FastMap in Linux, we leave this

possibility for future work.

Finally, the Linux kernel also provides private, file-backed memory mappings. These

are Copy-On-Write mappings and writes to them do not reach the underlying file/device.

Such mappings are outside the scope of this chapter, but they share the same path in the

Linux kernel to a large extent. Our proposed techniques also apply to private file-backed

mappings. However, these mappings are commonly used in Linux kernel to load bina-

ries and shared libraries, resulting in a large degree of sharing. We believe that it is not

beneficial to use the increased amount of memory required by FastMap to optimize this

relatively uncommon path.

4.3 Implementation

Figure 4.3 shows the I/O path in the Linux kernel and indicates where FastMap is placed.

FastMap is above VFS and thus is independent of the underlying file system. This means

that common file systems such as XFS, EXT4, and BTRFS 1 can benefit from our work.

FastMap provides a user interface for accessing both a block device but also a file sys-

tem through a user-defined mount point. For the block device case, we implement a vir-

tual block device that uses our custom mmap function. All other block device requests

(e.g. read/write) are forwarded to the underlying device. Requests for fetching or evicting

1FastMap has been successfully tested with all of these file systems.
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pages from FastMap are issued directly to the underlying device.

For the file system implementation we use WrapFS [142], a stackable file system that

intercepts all mmap calls to a specific mount point so that FastMap is used instead of the

native Linux mmap implementation. For fetching or evicting pages from within FastMap

we use direct I/O to the underlying file system, bypassing the Linux page cache. All other

file system calls are forwarded to the underlying file system.

4.4 Experimental Analysis

In this section, we present the experimental methodology we use to answer the following

questions:

1. How does FastMap perform compared to Linux mmap?

2. How much does FastMap improve storage I/O?

3. How sensitive is FastMap to (a) file system choice and (b) false TLB invalidations?

4.4.1 Methodology

Our main testbed consists of a dual-socket server that is equipped with two Intel(R) Xeon(R)

CPU E5-2630 v3 CPUs running at 2.4 GHz, each with 8 physical cores and 16 hyper-threads

for a total of 32 hyper-threads. The primary storage device of the server is a PCIe-attached



68 Chapter 4. Increasing Page Fault Concurrency

Intel Optane SSD DC P4800X series [63] with 375 GB capacity. For the purposes of evaluat-

ing scalability, we use an additional four-socket server. This four-socket server is equipped

with four Intel(R) Xeon(R) CPU E5-4610 v3 CPUs running at 1.7 GHz, each with 10 physical

cores and 20 hyper-threads for a total of 80 hyper-threads. Both servers are equipped with

256 GB of DDR4 DRAM at 2400 MHz and run CentOS v7.3, with Linux kernel 4.14.72.

During our evaluation we limit the available capacity of DRAM (using a kernel boot pa-

rameter) as required by different experiments. In our evaluation we use datasets that both

fit and do not fit in main memory. This allows us to provide a more targeted evaluation

and separate the costs of the page-fault path and the eviction path. To reduce variability

in our experiments, we disable swap and Transparent Huge Pages (THP), and we set the

CPU scaling governor to ”performance”. In experiments where we want to stress the soft-

ware path of the Linux kernel we also use the null blk [100] and pmem [111] block devices.

null blk emulates a block device but ignores the I/O requests issued to it. For null blk

we use the bio-based configuration. pmem emulates a fast block device that is backed by

DRAM.

In our evaluation we first use a custom multithreaded microbenchmark. It uses a con-

figurable number of threads that issue load/store instructions at randomly generated off-

sets within the memory mapped region. We ensure that each load/store results in a page

fault.

Second, we use a persistent key-value store. We choose Kreon [106], a state-of-the-art

persistent key-value store that is designed to work with memory-mapped I/O. The design

of Kreon is similar to the LSM-tree, but it maintains a separate B-Tree index per-level to

reduce I/O amplification. Kreon uses a log to keep user data. It uses memory-mapped

I/O to perform all I/O between memory and (raw) devices. Furthermore, it uses Copy-

On-Write (COW) for persistence, instead of Write-Ahead-Logging. Kreon follows a single-

writer, multiple-reader concurrency model. Readers operate concurrently with writers

using Lamport counters [83] per node for synchronization to ensure correctness. For in-

serts and updates, it uses a single lock per database; however, by using multiple databases

Kreon can support concurrent updates.

To improve single-database scalability in Kreon and make it more suitable for evalu-
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Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

Table 4.1: Standard YCSB Workloads.

ating FastMap, we implement the second protocol that Bayer et al. propose [12]. This

protocol requires a read-write lock per node. It acquires the lock as a read lock in every

traversal from the root node to a leaf. In the case of inserts or rebalance operations it ac-

quires the corresponding lock as a write lock. As every operation has to acquire the root

node read lock, this limits scalability [32]. To overcome this limitation, we replace the

read/write lock of the root node with a Lamport counter and a lock. Every operation that

modifies the root node acquires the lock, changes the Lamport counter, performs a COW

operation, and then writes the update in the COW node.

For Kreon we use the YCSB [37] workloads and more specifically a C++ implementa-

tion [114] to remove overheads caused by the JNI framework, as Kreon is highly efficient

and is designed to take advantage of fast storage devices. Table 4.1 summarizes the YCSB

workloads we use. These are the proposed workloads, and we execute them in the au-

thor’s proposed sequence [37], as follows: LoadA, RunA, RunB, RunC, RunF, RunD, clear

the database, and then LoadE, RunE.

Furthermore, we use Silo [128], an in-memory database that also provides scalable

transactions for modern multicore machines. In this case, we use TPC-C [126], a transac-

tional benchmark, which models a retail operation and is a common benchmark for OLTP

workloads. We also use Ligra [120], a lightweight graph processing framework for shared

memory with OpenMP-based parallelization. Specifically, we use the Breadth First Search

(BFS) algorithm. We use Silo and Ligra to evaluate FastMap’s effectiveness in extending

the virtual address space of an application beyond physical memory over fast storage de-

vices. For this reason we convert all malloc/free calls of Ligra and Silo to allocate space

over a memory-mapped file on a fast storage device. We use the libvmmalloc library from



70 Chapter 4. Increasing Page Fault Concurrency

the Persistent Memory Development Kit (PMDK) [109]. libvmmalloc transparently con-

verts all dynamic memory allocations to persistent memory allocations. This allows the

use of persistent memory as volatile memory without modifying the target application.

The memory allocator of libvmmalloc is based on jemalloc [68].

Finally, we evaluate FastMap using MonetDB-11.31.7 [19, 99], a column-oriented DBMS

that is designed to use mmap to access files instead of using the read/write API. We use

the TPC-H [127] benchmark, a warehouse read-mostly workload.

We run all experiments three times and we report the averages. In all cases the varia-

tion observed across runs is small.

4.4.2 Experimental Results

How does FastMap perform compared to Linux mmap?

Microbenchmarks: Figure 4.1 shows that Linux mmap fails to scale beyond eight threads

on our 32-core server. FastMap provides 3.7× and6.6×more random read and write IOPS,

respectively, with 32 threads compared to Linux mmap. Furthermore, both versions 4.14

and 5.4 of the Linux kernel achieve similar performance. To further stress FastMap, we use

our 80-core server and the null blk device. Figure 4.4 shows that with 80 threads, FastMap

provides 4.7× and 7× higher random read and write IOPS respectively, compared to Linux

mmap. Furthermore, in both cases FastMap performs up to 38% better even in the case

where there is little or no concurrency, when using a single thread.

Figure 4.4 shows that not only FastMap scales better compared to Linux mmap, but

also that FastMap sustains more page faults per second. On the other hand FastMap

does not achieve perfect scalability. For this reason, we profile FastMap using the ran-

dom read page faults microbenchmark. We find that the bottleneck is the read-write lock

(mmap sem) that protects the red-black tree of active VMAs. This is the problem that Bon-

sai [32] tackles. Specifically, with 10 cores the cost of read lock and read unlock is 7.6%

of the total execution time, with 20 cores it becomes 25.4%, with 40 cores 32%, and with

80 cores 37.4%. To confirm this intuition, we apply Speculative Page Faults (SPF) [44], an

attempt to use SRCU (Sleepable RCU) instead of the read-write lock to protect the red-
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black tree of active VMAs, an approach similar to Bonsai. We use the Linux kernel patches

from [43] as at the time of this writing it has not been merged in the Linux mainline. As

SPF works only for anonymous mappings, we modify it to use FastMap for block-device

backed memory-mappings. Figure 4.4 shows that FastMap with SPF provides even better

scalability: 2.51× and 11.89× higher read IOPS compared to FastMap without SPF and to

Linux kernel, respectively. We do not provide an evaluation of SPF without FastMap as it

(1) works only for anonymous mappings and (2) it could use the same Linux kernel path

that has scalability bottlenecks, as we show in Section 4.2.1.

Figure 4.5 shows the breakdown of the execution time for both random reads and

writes. We profile these runs using perf at 999Hz and plot the number of samples (y

axis) that perf reports. First, we see that for random reads Linux mmap spends almost

80% of the time in manipulating the address space structure, specifically in the contented

tree lock that protects the radix tree which keeps all the pages of the mapping (see Sec-

tion 4.2). In FastMap we do not observe a single high source of overhead. In the case

of writes the overhead of this lock is even more pronounced in Linux mmap. For each

page that is converted from read-only to read-write, Linux has to acquire this lock again
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to set the tag. FastMap removes this contention point as we keep metadata about dirty

pages only in the per-core red-black trees (Section 4.2.3). Therefore, we do not modify the

radix tree upon the conversion of a read-only page to a read-write page.

Figure 4.6 shows how each optimization in FastMap affects I/O performance. Vanilla

is the Linux mmap and basic is FastMap with all the optimizations disabled, except the

per-core red-black tree. The per-core radix-tree optimization is important, because with

increasing core counts on modern servers (Section 4.2.1) the single radix tree lock is by

far the most contended lock. Furthermore, per-core cleanQ enables the per-core LRU list

for clean pages. The per-core freelists optimization allows for scalable page allocation, re-

sulting in significant performance gains. Finally, the main purpose of per-core dirtyQ is to

enable higher concurrency when we convert a page from read-only to read-write and al-

low for multiple eviction threads with minimal synchronization. This optimization mainly

improves the write path, as is shown in Figure 4.6.

In-memory Graph Processing: We evaluate FastMap as a mechanism to extend the vir-

tual address space of an application beyond the physical memory and over fast storage
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Figure 4.6: Performance gains from different optimizations in FastMap, as compared to
”vanilla” Linux using null blk and 32 cores.

devices. Using mmap (and FastMap) a user can easily map a file over fast storage and

provide an extended address space, limited only by device capacity. We use Ligra [120],

a graph processing framework, a demanding workload in terms of memory accesses and

commonly operating on large datasets. Ligra assumes that the dataset (and metadata) fit

in main memory. For our evaluation we generate a R-Mat [26] graph of 100M vertices,

with the number of directed edges is set to 10× the number of vertices. We run BFS on the

resulting 18GB graph, thus generating a read-mostly random I/O pattern. Ligra requires

about 64GB of DRAM throughout execution. To evaluate FastMap and Linux mmap, we

limit the main memory of our 32-core server to 8 GB and we use the Optane SSD device.

Figure 4.7 shows that BFS completes in 6.42s with FastMap compared to 21.3s with

default mmap and achieves a 3.31× improvement. FastMap requires less than half the

system time (10.3% for FastMap vs. 27.38% for Linux) and stresses more the underlying

storage device as seen in iowait time (19.31% for FastMap vs. 9.5% for Linux). This leaves

2.11×more user-time available for the Ligra workload execution. Using a pmem device the

benefits of FastMap are even higher. Linux mmap requires 21.9s for BFS, while FastMap

requires only 4.15s, i.e. a 5.27× improvement. Overall, Ligra induces a highly concurrent
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Figure 4.7: Execution time for Ligra running BFS with 32 threads and using an Optane SSD
and a pmem device.

I/O pattern that stresses the default mmap, resulting in lock contention as described in

Section 4.2.1 and as evidenced by the increased system time. The default mmap results

in a substantial slowdown, even with a pmem device that has throughput comparable to

DRAM.

How much does FastMap improve storage I/O?

Kreon Persistent Key-value Store: In this section we evaluate FastMap using Kreon, a

persistent key-value store that uses memory-mapped I/O and a dataset of 80M records. The

keys are 30 bytes long, with 1000 byte values. This results in a total footprint of about 76GB.

We issue 80M operations for each of the YCSB workloads. For the in-memory experiment,

we use the entire DRAM space (256GB) of the testbed, whereas for the out-of-memory

experiment we limit available memory to 16GB. In all cases we use the Optane SSD device.

Figure 4.8(a) illustrates the scalability of Kreon, using FastMap, Linux mmap, and mmap-

filter, with a dataset that fits in main memory. The mmap-filter configuration is the default

Linux mmap implementation augmented with a custom kernel module we have created to



4.4. Experimental Analysis 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t 
(M

o
p
s
/s

e
c
)

#threads

Load A

1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

 6

T
h
ro

u
g
h
p
u
t 
(M

o
p
s
/s

e
c
)

#threads

Run C

FastMap
mmap-filter

mmap

(a) In-memory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 4 8 16 32

#threads

Load A

1 2 4 8 16 32
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

T
h
ro

u
g
h
p
u
t 
(M

o
p
s
/s

e
c
)

#threads

Run C

FastMap
mmap

(b) Out-of-memory

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32

q
u

e
u

e
 s

iz
e

#threads

Avg. Queue Size 

1 2 4 8 16 32
 0

 50

 100

 150

 200

 250

s
e

c
to

rs

#threads

Avg. Request Size

FastMap-LoadA
FastMap-RunC

mmap-LoadA
mmap-RunC

(c) Average queue & request size

Figure 4.8: Kreon scalability with increasing the number of threads ((a) and (b)). Average
queue size and average request size for an out-of-memory experiment (c). In all cases we
use the Optane SSD.

remove the unnecessary read I/O from the block device for newly allocated pages. Using

32 threads (on the 32-core server), FastMap achieves 1.55× and 2.77× higher throughput

compared to mmap-filter and mmap respectively, using the LoadA (insert only) workload.

Using the RunC (read only) workload, FastMap achieves 9% and 28% higher throughput

compared to mmap-filter and mmap respectively. As we see mmap-filter performs always

better, therefore, for the rest of the Kreon evaluation we use this configuration as our base-

line.

Figure 4.8(b) shows the scalability of Kreon with FastMap and mmap-filter (denoted as
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mmap) using a dataset that does not fit in main memory. Using 32 threads (on the 32-core

server) FastMap achieves 3.08× higher throughput compared to mmap using LoadA (in-

sert only) workload. Using the RunC (read only) workload, FastMap achieves 1.65× higher

throughput compared to mmap. We see that even for the lower core counts, FastMap out-

performs mmap significantly. Next, we provide an analysis on what affects scalability in

mmap and how FastMap behaves with an increasing number of cores.

Figure 4.9 shows the execution time breakdown for the out-of-memory experiment

with an increasing number of threads for LoadA. kworker denotes the time spent in the

eviction threads both for Linux mmap and FastMap. pthread refers to pthread locks, both

mutexes and read-write locks as described in Section 4.4. First, we observe here that in the

case of Linux mmap both iowait and idle time increases. For iowait time, the small queue

depth that mmap generates (discussed in detail later) leads to sub-optimal utilization of

the storage device. Furthermore, the idle time comes from sleeping in mutexes in the

Linux kernel. We also observe that the pgfault time is lower in FastMap and this is more

pronounced with 32 threads. In summary, the optimized page-fault path results in 2.64×
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Figure 4.10: Kreon breakdown using FastMap and Linux mmap for an out-of-memory
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lower pgfault time and 12.3× lower iowait time due to higher concurrency and larger av-

erage request size. In addition, the optimized page-fault path results in 3.39× lower idle

time due to spinning instead of sleeping in the common path. This is made possible as we

apply per-core locks to protect our data structures, which are less contended in the com-

mon case. Similar to the previous figure, Figure 4.10 shows the same metrics for RunC.

In this case the breakdown is similar both for FastMap and Linux mmap. With 32 threads

the notable differences are in pgfault and iowait. Linux mmap spends 2.88× and 1.41×

more time for pgfault and iowait, respectively. The difference in pgfault comes from our

scalable design for the memory-mapped I/O path. As in this case both systems always is-

sue 4KB requests (page size) the difference in iowait comes from the higher queue depth

achieved on average by FastMap.

Figure 4.8(c) shows the average queue depth and average request size for both FastMap

and Linux mmap. Using 32 threads, FastMap produces higher queue depths for both

LoadA and RunC, which is an essential aspect for high throughput with fast storage de-

vices. With 32 threads in LoadA FastMap results in an average queue size of 39.2, while



78 Chapter 4. Increasing Page Fault Concurrency

Linux mmap results in an average queue size of 17.5. Furthermore, FastMap also achieves

a larger request size of 100.2 sectors (51.2KB) compared to 51.8 sectors (26.5KB) for Linux

mmap. For RunC, the average request size is 8 sectors (4KB) for both FastMap and Linux

mmap. However, FastMap achieves (with 32 threads) an average queue size of 13 com-

pared to 3 for Linux mmap.

For all YCSB workloads, Kreon using FastMap outperforms Linux mmap between 1.25−

3.65× and 2.48× on average.

MonetDB: In this section we use TPC-H over MonetDB, a column oriented DBMS that

uses memory-mapped I/O instead of read/write system calls. We focus on out-of-memory

workloads, using a TPC-H dataset with a scale factor SF = 50 (around 50GB in size). We

limit available server memory to 16GB and we use the Optane SSD device. In all 22 queries

of TPC-H, system-time is below 10%. The use of FastMap decreases further the system

time (between 5.4% and 48.6%) leaving more CPU cycles for user-space processing. In

all queries, the improvement on average is 6.06% (between −7.2% and 45.7%). There are

4 queries where we have a small decrease in performance. Using profiling we see that this

comes from the map pages function that is responsible for the fault-around page map-

pings, and which is not as optimized in the current prototype. In some cases we see greater

performance improvements compared to the reduction in system time. This comes from

higher concurrency to the devices (I/O depth) which also results in higher read through-

put. Overall, our experiments with MonetDB show that a complex real-life memory-based

DBMS can benefit from FastMap. The queries produce a sequential access pattern to the

underlying files which shows the effectiveness of FastMap also for this case.

How sensitive is FastMap to (a) file system choice and (b) false TLB invalidations?

In this section we show how underlying file system affects FastMap performance. Further-

more, we also evaluate the impact of batched TLB invalidations. For these purposes we

use Silo [128], an in-memory key-value store that provides scalable transactions for multi-

cores. We modify Silo to use a memory-mapped heap over both mmap and FastMap.
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Table 4.2: Throughput in kilo-operations per second and average latency in msec for TPC-
C.

xput latency
mmap-EXT4-Optane SSD 4.3 7.43

mmap-EXT4-pmem 4.2 7.62
FastMap-EXT4-Optane SSD 226 0.141

FastMap-EXT4-pmem 319 0.101
FastMap-NOVA-pmem 344 0.009

File system choice: Table 4.2 shows the throughput and average latency of TPC-C over

Silo. We use both EXT4 and NOVA. We also use XFS and BTRFS but we do not include

these as they exhibit lower performance. We see that FastMap with EXT4 provides 52.5×

and 75.9× higher throughput using an NVMe and a pmem device respectively, compared

to mmap. We also see similar improvement in the average latency of TPC-C queries. With

NOVA and a pmem device, FastMap achieves 1.07× higher throughput compared to EXT4.

In all cases we do not use DAX mmap, as we have to provide DRAM caching over the per-

sistent device. Therefore, FastMap improves performance of memory-mapped files over

all file systems, although the choice of a specific file system does affect performance. In

this case we see even larger performance improvements compared to Ligra and Kreon.

Silo requires more page faults and it accesses a smaller portion of each page. Therefore,

Silo is closer to a scenario with a single large file/device and a large number of threads

generating page faults at random offsets. Consequently, it exhibits more of the issues we

identify with Linux mmap compared to the other benchmarks: Kreon performs mostly

sequential I/O for writes and a large part of a page is indeed needed when we do reads.

From our evaluation we see that Ligra has better spatial locality compared to Silo and this

explains the larger improvements we observe in Silo.

Figure 4.11 shows the breakdown of execution time for the previous experiments. In

the case of Linux mmap with EXT4, most of the system time goes to buffer management:

allocation of pages, LRUs, evictions, etc. In FastMap, this percentage is reduced from

74.2% to 10.3%, for both NOVA and EXT4. This results in more user-time available to

TPC-C and increased performance. Finally, NOVA reduces system time compared to EXT4

and results in the best performance for TPC-C over Silo.
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and the pmem device.

False TLB invalidations: FastMap uses batched TLB invalidations to provide better scal-

ability and thus increased performance. Our approach reduces the number of calls to

flush tlb mm range(). This function uses Interprocessor Interrupts (IPI) to invalidate TLB

entries in all cores and can result in scalability bottlenecks [33, 3, 4]. Batching of TLB

invalidations can potentially result in increased TLB misses. In TPC-C over Silo, batch-

ing for TLB invalidations results in 25.5% more TLB misses (22.6% more load and 50.5%

more store TLB misses). On the other hand, we have 24% higher throughput (ops/s) and

23.8% lower latency (ms). Using profiling, we see that without batching of TLB invalida-

tions the system time spent in flush tlb mm range() increases from 0.1% to 20.3%. We

choose to increase the number of TLB misses in order to provide better scalability and

performance. Other works [33, 3, 4] present alternative techniques to provide scalable

TLB shootdown without increasing the number of TLB invalidations and can be poten-

tially applied in FastMap for further performance improvements.
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4.5 Summary

In this chapter we propose FastMap, an optimized memory-mapped I/O path in the Linux

kernel that provides a low-overhead and scalable way to access fast storage devices in

multi-core servers. Our design enables high device concurrency, which is essential for

achieving high throughput in modern servers. We show that FastMap scales up to 80 cores

and provides up to 11.8× more random IOPS compared to mmap. Overall, FastMap ad-

dresses important limitations of Linux mmap and makes it appropriate for data-intensive

applications in multi-core servers over fast storage devices.

We show that the lack of scalability in the Linux memory-mapped I/O path results in

performance issues and non-optimal pattern to the devices. Fast storage devices require a

high concurrency of I/Os to achieve peak device throughput, especially with small request

sizes. Our work overcomes all of these limitations and provides significant performance

gains in multithreaded applications. On the other hand, single-thread performance re-

mains about the same. There are cases where the single-thread performance matters, es-

pecially with low-latency devices where the software overhead is comparable to the device

access latency.
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Chapter 5

Reducing Protection Costs

In this chapter, we propose a way to reduce the page fault cost in the memory-mapped I/O

path. In order to achieve that, first we quantify the overhead of page faults and the associ-

ated mechanisms, such as trap, TLB misses, I/O, handler, etc, in memory-mapped I/O. We

instrument the memory-mapped I/O path in Linux and we run FIO [6] using random reads

with one outstanding I/O over a 100GBfile. All reads result in a page cache miss that trans-

lates to an I/O to the device. We use a pmem[111] device (backed by DRAM) to emulate a

next-generation fast storage device (NVM). In this experiment, a 4KBread system call has

18.5% lower latency on average compared to a page fault. Moreover, page faults can only

be done using predefined page sizes. Therefore, an I/O may require multiple page faults,

while a single system call suffices for explicit I/O. To make memory-mapped I/O practical,

we need to reduce as much as possible the overhead of page faults.

Figure 5.1 shows the average overhead breakdown for a page fault from the previous

experiment. On average a page fault over a memory-mapped file costs 5380 cycles. Two

major components of this overhead are: (1) 49% is due to device I/O overhead (2) 24% is

due to the cost of protection domain crossing (trap). Even if we exclude device I/O, e.g.

when the page exists in the page cache, the cost of a page fault (2724 cycles or 1.13μs)

is comparable to accessing an NVMe device and about 4× higher compared to accessing

an NVM device. We note that memory-mapped I/O needs to change protection domains

and to move data efficiently and transparently between DRAM and storage devices. These

are fundamental operations for memory-mapped I/O, given that device capacity is signifi-
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Figure 5.1: Page fault latency breakdown for Linux and Aquila, using a pmem device
(backed by DRAM).

cantly higher than available DRAM.

In this work we observe that memory-mapped I/O performs generally the following op-

erations, initiated from page faults:

1 Modify virtual to physical page mappings.

2 Device I/O to block devices or files.

3 DRAM cache lookups and updates.

4 Virtual memory region lookups and updates.

5 DRAM allocation and deallocation.

We observe that in memory-mapped I/O the most common operations are mainly 1 ,

2 , and 3 . They are performed when we need to bring in new data or when we need

to writeback dirty pages, if the dataset does not fit in memory, which we assume is the

common case for many data-intensive applications. Virtual memory region lookups are

common path operations, however updates are not in the common path. Finally, alloca-

tion and deallocation of DRAM, mainly used to resize the DRAM cache, typically occur at

coarser grain. Based on this observation we design a system that optimizes the first three

operations as follows.
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In this work we propose running the application in a privileged domain, over a hyper-

visor similar to where the guest OS runs in virtual machines. We design and implement

Aquila, a library OS for high-performance storage applications. Aquila utilizes hardware

virtualization extensions [129] and: 1 Eliminates the cost of protection domain crossings

required during page faults, maintaining full protection [129, 14]. A privileged domain

provides direct access to virtual memory hardware, including the page table and TLB. 2

Reduce the cost of I/O in the expensive kernel I/O path under memory-mapped I/O by

allowing direct access to devices. Typically, direct device access is performed with frame-

works such as SPDK [124] for block-addressable devices and DAX [87] for byte-addressable

devices. 3 Provides better scalability in the DRAM cache, compared to Linux mmap. The

DRAM cache of Linux mmap is frequently accessed by multiple paths of memory-mapped

I/O and currently does not scale with the number of cores [107]. Aquila properly addresses

4 , virtual memory range lookups in the common path, while it performs virtual memory

range updates. Finally, it supports dynamic 5 DRAM allocation in synergy with the host

OS, in the uncommon path, along with all other system calls, e.g. networking.

We implement Aquila in Linux and evaluate its efficiency with micro-benchmarks and

real-life applications. Aquila reduces the average page-fault latency by 1.83× compared

to Linux memory-mapped I/O. We show that our optimized memory-mapped I/O path is

more efficient compared to the explicit I/O path for accessing fast storage devices. We

also show that Aquila achieves both low average and tail latency, while maintaining high

device throughput. Using RocksDB [49], we show that Aquila achieves up to 1.65× higher

throughput, compared to user-space caching and read/write system calls. Finally, we use

Kreon [106] and we show that Aquila achieves up to 1.22× higher throughput and up

to 13.72× lower tail latency for all YCSB workloads over an optimized domain-specific

memory-mapped I/O path.

The specific contributions of this chapter are:

1. We redesign memory-mapped I/O to separate common from uncommon path oper-

ations.

2. We use hardware virtualization to remove protection domain switches for page faults

and enable direct device access in the common path by leveraging hardware virtual-
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ization.

3. We show the effectiveness of our approach using real applications, including RocksDB,

which is broadly used today for data storage and access.

The rest of the chapter is organized as follows. Section 5.1 presents an overview of

Linux memory-mapped I/O and x86 64 virtualization extensions. Section 5.2 presents the

design and implementation of Aquila. Section 5.4 presents our experimental results. Fi-

nally, Section 5.5 concludes this chapter.

5.1 Background

In this section we provide a brief summary of Linux memory-mapped I/O [94] and Intel

VT-x [129] virtualization extensions.

5.1.1 Linux mmap

The Linux kernel mmap system call creates new virtual memory mappings to physical

memory for a specific process. Mappings can be either anonymous or backed by files.

Anonymous mappings are private to each process and are mainly used for user heap-

based memory allocation, i.e. malloc. Therefore, anonymous mappings are not bound

to a storage device and cannot be recovered after a failure.

File-backed mappings can be either private to each process or shared among pro-

cesses. Private file mappings are used to load executables and shared libraries. These

are typically mapped with read-execute permissions in the text segment and include por-

tions mapped with read-write permissions in the data segment. Any modification to the

data segment does not reach the underlying file. For this reason, these are Copy-On-Write

mappings.

On the other hand, shared file mappings are persistent and exist after a process exits

or a failure occurs. These characteristics make them appropriate for storage purposes and

in this chapter we target only file-backed shared mappings.
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5.1.2 VT-x CPU Virtualization

Intel VT-x [129] is a set of processor hardware extensions to accelerate the operation of

virtual memory machines (VMMs). The CPU has two major operating modes, VMX root

and VMX non-root. VMX root is similar to non-virtualized CPU operation: The intention

is to run the hypervisor and the host OS in this mode. VMX non-root runs the guest op-

erating system. In this mode, CPUs have protection limitations, e.g. for accessing directly

hardware resources. Instead, they need to go through the hypervisor, which will perform

the required access with the help of the host OS.

CPUs provide instructions to change their mode. Executing vmlaunch or vmresume

from VMX root, changes the mode to VMX non-root and starts or continues to execute

guest OS code. This transition is named vmentry. The opposite transition is needed when

a privileged instruction should be handled by the hypervisor and is named vmexit. vmexits

occur upon events predefined by the hypervisor. These events and several other configu-

ration options are stored in the per-CPU VM Control Structure (VMCS) memory buffer. Ex-

cept from the predefined events (privileged instructions) the guest can generate a vmexit

explicitly by issuing a vmcall instruction. For both vmentry and vmexit events, processor

hardware handles the steps for saving and restoring architectural state. This state infor-

mation is stored in VMCS.

Each of the two modes, VMX root and VMX non-root, supports a separate set of protec-

tion rings, where ring-0 is the most privileged and ring-3 is the least privileged. Commonly

the operating system (host and guest) runs in ring-0 and user applications run in ring-3.

Ring-1 and ring-2 are not used in modern operating systems.

An important aspect of VT-x is the use of Extended Page Tables (EPTs) that accelerate

address translation, as follows. When the guest is executing, there are two levels of address

translations. First, from Guest Virtual Address (GVA) to Guest Physical Address (GPA). This

is done using regular page tables and does not require a vmexit. Second, from Guest Phys-

ical Address (GPA) to Host Physical Address (HPA). EPTs accelerate this second step under

the control of the hypervisor. During the access of a GPA, if the translation does not exist,

an EPT-fault occurs and the hypervisor handles the fault in a way similar to regular page
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Figure 5.2: Aquila high-level design.

faults.

5.2 Design

Today, memory-mapped I/O is based on the legacy separation of kernel and user space re-

sponsibilities, which dictates that all privileged operations should happen inside the OS.

In this chapter, first we present our observation that memory-mapped I/O performs gen-

erally five operations. Based on these observations, in this chapter, we redesign memory-

mapped I/O to optimize for the most common operations 1 , 2 , and 3 . We also provide

efficient mechanisms for 4 and 5 as they are necessary, however, they occur at coarser

granularity.

We design and implement Aquila, a library operating system that optimizes memory-

mapped I/O for storage applications that utilize fast storage devices. Figure 5.2, shows

the high-level design of Aquila, which handles all virtual memory related operations. It

also provides direct access to fast storage devices, bypassing the host operating system in

the common path of memory-mapped I/O. In Aquila, the uncommon path uses the host

operating system to handle initialization of Aquila, to perform runtime management op-
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erations, e.g. for resizing the available DRAM for memory-mapped I/O, networking, and

handling other system calls.

5.2.1 Virtual to Physical Mappings

Aquila proposes the use of memory-mapped I/O to eliminate cache lookup overheads,

which requires costly page faults and virtual to physical mappings. Aquila reduces this

cost as follows.

Protection domain crossings: Figure 5.1 shows that page fault handling incurs signifi-

cant cost for switching protection from ring-3 to ring-0 as follows. For user applications,

page fault exceptions occur in ring-3. The page fault initiates a protection domain cross-

ing to ring-0, changes the stack, and stores state information about the process exception

in the kernel stack. Then, execution branches to the appropriate fault handler. Upon page

fault completion, control returns to the user-space code in ring-3 with the iret instruction.

We measure this protection domain switch cost (excluding the handler itself) to be

1287 cycles (536ns). In this measurement, if we exclude I/O cost, then switching rings is

1287 out of 2724 cycles, so 52.7% of the page fault cost. Reducing the protection domain

crossing overhead will affect all page faults that happen in the common path.

Aquila eliminates the overhead to switch protection domains (rings) by placing the

application in VMX non-root ring-0 and executing page faults in the same ring. The im-

portant observation is that page faults can be handled entirely in VMX non-root ring-0, if

they only require manipulating virtual memory mappings over already allocated physical

memory. We measure the trap cost in VMX non-root ring-0 to be 552 cycles (230ns), which

is 2.33× lower compared to exceptions from ring-3.

Stack management: Using the same stack for both user data and exception handling in

Aquila (non-root ring-0) can cause corruption due to the red zone compiler optimization.

The red zone is a fixed-size area in each function stack frame, beyond the current stack

pointer. A function may use the red zone to store local variables without the additional

overhead of modifying the stack pointer. The x86-64 ABI uses a 128-byte red zone, starting
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Figure 5.3: Page tables, device I/O, DRAM cache, and DRAM allocation in Aquila.

directly under the stack pointer.

Corruption may occur when an interrupt/exception is triggered and the user code is

using the red zone: The handler will overwrite the red zone and will corrupt user data. For

this reason, operating systems are compiled with the red zone feature disabled to avoid

this type of data corruption.

A simple but impractical way to address this problem would be to require all user ap-

plications to be compiled without the red zone optimization. This approach would make it

necessary to also compile in the same manner all third-party libraries, including the stan-

dard C library libc. This is not practical, as we want to run as much as possible unmodified

applications.

To overcome this limitation we use a x86 64 feature which provides the ability to change

the stack in hardware when an interrupt/exception occurs. In x86 64 there can be up to 7

alternative stacks. The Linux kernel currently uses 4 of these for Double Fault Exceptions,

non-maskable interrupts, hardware debug interrupts, and Machine Check Exceptions.

Aquila provides two handlers: one for page faults and one for Inter-Processor Inter-

rupts (IPIs), each with its own stack. In both page faults and IPIs, we start by disabling

interrupts and then the exception frame uses an alternative stack. We take care of the red

zone and copy the exception frame back to the currently running function stack before
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re-enabling interrupts. We cannot keep interrupts disabled during page faults, because

in memory-mapped I/O a page fault can lead to an I/O operation, which can take several

thousands of cycles to complete. Delaying IPIs during a prolonged interval would nega-

tively affect performance of other threads.

Page table updates & TLB shootdown: Similar to modern OSes, we use a shared page

table for all threads of each process. Figure 5.3 shows that Aquila’s page table resides in

non-root ring-0 and translates application virtual addresses (GVAs) to DRAM cache pages

(GPAs). To add a new mapping, we traverse the page table from its root and add the ap-

propriate page translation in the last level (PTE). To deal with concurrent accesses, we use

atomic operations to update and add new levels similar to Linux [94].

Besides adding new translations in the page table during page faults, another impor-

tant operation is to modify or remove mappings. It is required in the case of page evictions

or when updating protection flags in existing mappings (i.e. mprotect). These operations

require a TLB invalidation. In x86 64, each CPU can only invalidate its local TLB. x86 64

provides Inter-Processor Interrupts (IPIs) so the OS can notify other cores to invalidate

their TLB (aka TLB shootdown). Other work [4, 3] has shown that for anonymous map-

pings this can limit scalability with high core counts. Handling TLB shootdowns in VMX

non-root ring-0 introduces challenges for both correctness and performance.

To reduce this cost Aquila uses a batched TLB shootdown approach. We remove the

mappings for multiple pages (512 in our evaluation) and send a single TLB invalidation for

all pages. We use posted IPIs as provided by hardware virtualization extensions, together

with a mechanism similar to Shinjuku [71]. Shinjuku sends and receives IPIs without the

need of a vmexit. To remove vmexit in the send path, it maps the APIC directly to the user.

An additional problem to address in Aquila, as it target unmodified user applications,

is the case where a malicious process performs a denial-of-service attack by issuing a large

number of interrupts to a specific core. To address this, we choose to use a vmexit in the

send path by writing to an MSR register. Requiring a vmexit on the send path results in

increasing the cost from 298 to 2081 cycles [71]. However, due to batching this cost is

amortized for the whole batch and we show in our evaluation that this is negligible com-
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pared to other costs (Figure 5.4). Finally, similar to Shinjuku, Aquila uses the vmexit-less

receive path.

5.2.2 Device I/O

Device I/O typically requires kernel involvement and incurs high overhead. To reduce

overhead, user-space frameworks, such as SPDK [124] and DAX [87] allow direct access to

certain types of dedicated devices, typically NVMe and NVM respectively. Aquila allows

memory-mapped I/O to use such frameworks in non-root ring-0. Figure 5.3(a) shows the

I/O path in Aquila and how it provides direct access to block-addressable NVMe and byte-

addressable NVM devices.

Direct access to NVMe: First, Aquila can bypass the host OS and issue I/O operations

directly to devices. Figure 5.3(a – right) shows this path. Direct access requires that the de-

vices are not shared with other processes and also that they are visible directly from Aquila

at non-root ring-0. This is the case, e.g. with modern modern NVMe devices attached to

PCIe, because device configuration registers the user can be mapped directly to the user

space.

In order to provide the user applications with a file abstraction, we leverage SPDK [124]

and Blobstore [123]. Blobstore provides a flat namespace of blobs, where each blob is iden-

tified by a unique number and can be created/resized/deleted at runtime while it also sup-

ports extended attributes. Aquila also supports the translation from files to blobs trans-

parently. In order to do this we intercept open and mmap calls in non-root ring-0. On

the other hand, this does not provide POSIX semantics but it is enough for data intensive

applications (we have successfully run RocksDB without modifications using this path).

Aquila uses the direct I/O path of Blobstore, which does not buffer access, as opposed to

BlobFS [122], which buffers data in its local DRAM cache.

Direct device access requires dedicated devices for protection purposes. This can also

take the form of dedicated device partitions. Today, such an approach is common for

systems, such as key-value stores and data processing frameworks, that entirely manage
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their storage and data.

Direct access to NVM: Second, Aquila allows direct access to byte-addressable storage

as a backing device for DRAM. Figure 5.3(a – left) shows this path. NVM devices [62]

provide performance closer to DRAM than block-addressable storage devices, such as

NVMe and SSDs. However, they provide higher latency and lower throughput compared to

DRAM [65]. Therefore, NVM devices can still benefit from DRAM caching in cases where

the working set fits in cache.

NVM is typically accessed via a Direct Access (DAX) file system. DAX maps the NVM

device directly to the user address space, as physical memory, next to the available DRAM.

Data accesses can occur with load/store operations, similar to DRAM. Metadata opera-

tions to DAX files still go through the host operating system but they are not in the com-

mon path.

Aquila ensures protected sharing of NVM between different processes. We use DAX

to map the NVM device to process memory in non-root ring-0. For I/O we use memory

copy between DAX-mmaped files and our DRAM cache. Finally, we forward all metadata

operations to the host OS.

Aquila uses 4KBmemory copies (memcpy) for reads, equal to the page size. An impor-

tant difference between memcpy in Linux and Aquila is the following. The Linux kernel

cannot use SIMD instructions for memcpy because this requires a full FPU state save and

restore, which is extremely costly. For SSE it has to save 512 bytes and for AVX 832 bytes.

We measure the cost to save and restore AVX state using the XSAVEOPT and FXRSTOR in-

structions to be around 300 cycles. Furthermore, we measure the cost of a 4KBmemcpy,

without using SIMD instructions to be about about 2400 cycles. Instead, an optimized

memcpy of 4KBusing AVX2 streaming (i.e. cache bypass) instructions requires about 900

cycles. With the cost of save and restore FPU state this increases to 1200 cycles, i.e. 2×

faster than non-SIMD memcpy. For these reasons Aquila uses an AVX2 optimized mem-

cpy and pays the cost of saving and restoring FPU state.

Finally, Aquila can use other approaches for I/O as well. These include the common

synchronous read/write calls and asynchronous approaches, such as libaio or io uring [70]
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(Figure 5.3(a)). All strike a different balance between protection and performance. We

leave the evaluation of different configurations for future work.

5.2.3 DRAM Cache

A DRAM cache is necessary for hosting data fetched from I/O devices. Previous work [107]

has shown that the kernel buffer cache used by Linux mmap does not scale well with the

number of threads. Therefore, Aquila aims to reduce contention and improve cache scal-

ability. The main observation is that, unlike the Linux kernel, dirty pages needs to be

maintained in a separate structure from the clean pages. Aquila uses the following struc-

tures and operations that target specifically the caching functionality required by memory-

mapped I/O.

DRAM cache lookup: Cache lookups are an important component of the memory-mapped

I/O path. Page faults eliminate the software cost for cache lookups in the case where a page

resides in the cache. In the case of a page fault, the handler first checks if the requested

page is in the DRAM cache. Although this is a page fault, it may still happen that at the time

of the page fault check the page has been brought in the cache. For this reason, the handler

uses a lock-free hash table to perform a fast lookup, similar to [38]. If the requested page

resides in the DRAM cache, Aquila simply creates a mapping to the page table between

the faulting VM address and the physical page. If the page is not present in the cache, it (1)

allocate new cache pages from the freelist, (2) evict pages from the cache, (3) clean dirty

pages, and (4) issues write and read I/O to the underlying device, as follows.

Freelist & Evictions: Aquila uses a hierarchical 2-level freelist to manage DRAM cache

pages, as follows. The first level consists of a queue per NUMA node while the second

level of a queue per core. When a page is required, the core checks in order, its local (core)

queue, the local NUMA node queue, and the remote NUMA node queues. All of these

queues contain free pages. In the case where all of these queues are empty, Aquila tries to

evict a batch of pages (512) synchronously. We choose which pages to evict via an approx-

imation of LRU. When a page is evicted from the cache, it is placed in the local core queue.
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If the number of pages in the local core queue exceeds a threshold, they are moved to the

appropriate NUMA queue. All page movement between first and second level queues are

performed in batches (4096 pages in our evaluation). Freelist queues are lock free and

using our two level allocator and the movements in batches between levels, we do not

observe high contention.

Dirty page write-back: Aquila maintains dirty pages in a separate from the hash table

data structure to accelerate writeback and msync operations. Dirty pages need to be sorted

by device offset and this is not facilitated by our hash table. For this reason, and to reduce

contention to a single lock, we use a per-core red-black tree. We write pages back based

on their page offset, when a page is selected for replacement. Having multiple sorted red-

black trees allows easy merging of pages in larger I/Os for writebacks similar to Linux ker-

nel [94]. For reads, we require synchronous I/Os and we cannot apply any batching. Based

on the madvise arguments we also perform read-ahead to improve sequential reads.

5.2.4 Virtual Memory Lookups and Updates

Virtual address range update operations, such as mmap, munmap, and mremap are used

to create, destroy, expand, or shrink mappings to files or devices. In memory-mapped

I/O virtual address range lookups are common path operations because every page fault

checks if the faulting address refers to a valid, properly mapped, virtual address. On the

other hand, update operations happen at a coarse grain. Therefore, the challenge in Aquila

is supporting efficient virtual memory range lookups.

Linux, uses a red-black tree to keep all active Virtual Memory Areas (VMA), protected

by a read-write lock. Operations that modify address ranges, (mmap, munmap, and mremap)

need to acquire this as a write lock, while page faults acquire it as read lock. Other work

[32, 21, 33] has shown that this lock can limit scalability in servers with a large number of

cores, even in case where it is acquired as a read lock.

For this reason, Aquila uses a radix tree, similar to RadixVM [33], instead of a balanced

tree to avoid contention and provide scalable manipulation and access of virtual address
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ranges. In the case of page faults, the radix tree is used for two purposes: (1) check if the

page fault occurred in a valid address and (2) lock the specific entry to avoid concurrent

modifications for the same page.

RadixVM uses per-core page tables in order to keep metadata about which TLB con-

tain specific mappings and enable targeted TLB invalidations. RadixVM targets anony-

mous mappings where the design tradeoffs are different. We choose to have a single page

table shared for all cores similar to what common OSes do. This approach reduces the

number of total page faults and as we use a batched TLB shootdown approach it does not

negatively affect the performance.

Finally, we also do not use RadixVM refcache mechanism for page reference counting.

We provide explicit page management as described in the previous section. In the cases

where reference counting is required (i.e. radix tree metadata), we use a single shared

reference count but this does not incurs and performance bottlenecks as it is not in the

common path.

5.2.5 DRAM Allocation

DRAM allocation and deallocation occurs less frequently, compared to other operations

of memory-mapped I/O. Therefore, its cost is of secondary importance. Furthermore, to

reduce the frequency of DRAM allocations, and given the nature of memory-mapped I/O,

we use huge pages. Aquila supports both 2MBand 1GBpages; in our evaluation we only

use 1GBpages. However, Aquila needs to cooperate with the host OS to allow for dynamic

DRAM allocation, as follows.

Figure 5.3(b) shows the DRAM allocation path. Aquila allocates pages using (anony-

mous mapping) mmap calls to the host operating system. Aquila can also ask the host

operating system to deallocate memory with munmap operations.

The host operating system is responsible to allocate additional DRAM to Aquila and

reclaim it, when needed. Aquila’s page table is responsible for translating GVAs to GPAs.

The host operating system then translates GPAs to HPAs, via the EPT. In Aquila, similar to

common OSes, all threads of a process share the same page table and for this reason we
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use a single EPT per process. Aquila uses Dune [14] for EPT management and we modify

it to replace its one EPT per thread with one EPT per process.

Accesses to a GPA where an EPT mapping does not exist result in an EPT fault in the

host OS. This is similar to common page faults but has higher cost due to the required

vmexit. Similar to Dune [14], during an EPT fault it checks the normal page table if the

access is valid and then it adds the translation to the EPT. munmap calls end up removing

the corresponding mappings from the host EPT.

5.3 Implementation

Dune[14] uses hardware virtualization extensions and provides direct but safe access to

hardware features, such as ring protection, page tables, and tagged TLBs. Aquila uses

Dune to access and configure Intel VT-x virtualization extensions.

Similar to Dune, Aquila implements a subset of the system calls and redirects the rest

to the host operating system, using vmcall. This requires a custom handler for system

calls in the MSR LSTAR address. We modify Dune to also enable system call interception

in ring-0. Then, we intercept all virtual memory related system calls, specifically mmap,

munmap, mremap, madvise, mprotect and msync. These calls are handled in Aquila and

do not result in a vmcall. Therefore, they incur the overhead of a regular function call, as

they do not trigger a protection domain crossing.

Aquila consists of about 20K lines of code of both C and C++ source code exclud-

ing third-party libraries. This code handles virtual address ranges management, DRAM

caching, including the dedicated page allocator, dirty page management, the LRU evic-

tion policy, and I/O to/from the devices. It also handles page faults and intercepts system

calls. We are able to run user applications, such as RocksDB, with minimal changes. Sim-

ilar to Dune, we have to initialize Aquila during the application startup. Additionally we

have to call a single function for every new thread to make it enter in the Aquila mode.

Dependent on architecture and OS: Aquila leverages hardware virtualization support

to provide fast and protected access to virtual memory hardware. Aquila is not tightly
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coupled with specific CPU architecture, OS, or hypervisor, as follows. We use x86 64 to

make our case, however, other architectures, such as ARM [130], Intel Itanium [64], and

IBM Power [60] provide hardware-assisted virtualization. In addition, memory-mapped

I/O is supported in most commonly used OSes. OSes based on Linux and BSD support

mmap system calls, while Windows provide similar functionality with the MapViewOfFile

system call. Finally, Aquila can also leverage nested virtualization [16] that modern hyper-

visors [138, 88, 131, 98] provide to run within a virtual machine.

Security implications: Aquila provides a similar security model to a guest virtual ma-

chine running on a host operating system. This assumption is also valid for Dune [14],

which we use in our implementation.

5.4 Experimental Analysis

In this section, we evaluate Aquila experimentally to answer how does Aquila:

1. Reduce overheads compared to Linux mmap?

2. Scale with the number of threads compared to mmap?

3. Perform compared to explicit read/write I/O calls for real applications?

4. Perform compared to Linux mmap for real applications?

Next, we discuss our experimental evaluation methodology.

5.4.1 Methodology

Our testbed consists of a dual-socket server that is equipped with two Intel(R) Xeon(R)

E5-2630 v3 CPUs running at 2.4 GHz, each with 8 physical cores and 16 hyperthreads, for

a total of 32 hyperthreads. The storage device used in our experiments is a PCIe-attached

Intel Optane SSD DC P4800X series [63] with a capacity of 375 GBs. The server is equipped

with 256 GB of DDR4 DRAM at 2400 MHz and runs CentOS v7.3, with Linux kernel 4.14.72.



5.4. Experimental Analysis 99

During our evaluation we limit available capacity of DRAM (using cgroups [74]) as re-

quired by different experiments. To reduce variability in our experiments, we disable swap

and Transparent Huge Pages (THP), and we set the CPU scaling governor to performance.

In experiments where we want to stress the software path of the Linux kernel we also use

a pmem [111] block device. This emulates a fast byte-addressable (NVM) block device

backed by DRAM.

In our evaluation we first use a custom multithreaded microbenchmark. It uses a con-

figurable number of threads that issue load/store instructions at randomly generated off-

sets within the memory mapped region. We ensure that each load/store results in a page

fault.

Second, we use RocksDB [49](v6.8.0), a persistent key-value store developed by Face-

book and widely used in production systems. It is based on LSM-trees [102] with each level

organized in fixed sized files (64MBby default). These files, named Static-Sorted-Tables

(SST s), and are placed in the mount point specified by the user and organized in a flat

namespace. RocksDB provides different ways to read/write data from files: include direct

I/O with a user-space cache, buffered read/write in the Linux kernel, and mmap. The rec-

ommended mode of operation is to use direct I/O explicit read/write calls combined with

a user-space cache [25].

Finally, we use Kreon [106], a persistent key-value store designed from the ground-up

to use memory-mapped I/O in the common path. Kreon is also based on LSM-trees [102]

but instead of SST s it uses a log to store all keys and values and a B-Tree index per level for

indexing. This approach increases random accesses to devices but reduces I/O amplifica-

tion and CPU cycles in the common path. Kreon provides a custom memory-mapped I/O

path in the Linux kernel, named kmmap, and organizes its data in a single large file/device,

using a custom allocator for space management.

We port RocksDB and Kreon to Aquila with small changes to their initialization code.

We use the original YCSB workloads [37] with a C++ implementation of YCSB [114] to elim-

inate high JNI overheads. We run all experiments three times and report averages across

runs. In our experiments the variation we observe across runs is negligible.
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Figure 5.4: Aquila execution time breakdown (in cycles) for reads, with a dataset that does
not fit in memory and 1 thread.

5.4.2 Experimental Results

In the next sections we provide our experimental results addressing the questions listed

above.

How does Aquila reduce overheads compared to Linux mmap?

Figure 5.1 shows the average overhead breakdown for a memory-mapped file over a pmem

device. In this case we use a 100GB dataset with a 100GB DRAM cache. Therefore, no

page evictions are required. Aquila achieves 1.83× lower overhead compared to Linux

mmap. Aquila reduces (1) the protection domain crossing cost by 2.33× and (2) data

access by 3.22×. These are the main parts that Aquila improves in the common path.

Furthermore, we see that the software cost of the handler is similar in both Aquila and

Linux. Finally, Aquila does not change the DRAM accesses and TLB miss cost as they are

handled in hardware.

Figure 5.4 shows the average overhead breakdown for the case where the dataset does

not fit in main memory and evictions happen in the common path. In this case we use

8GB for the DRAM cache and a 100GB dataset. Aquila achieves 2.06× lower overhead
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Figure 5.5: Aquila execution time breakdown (in cycles) using different approaches for
I/O.

compared to Linux mmap. We observe that in this case the major sources of overhead are

protection domain switching and I/O to the underlying device. Finally, we observe that

in Aquila, no single source of overhead dominates in the common path, even in the case

where evictions occur in the common path: Each component of the Aquila mmap path

accounts for less than 10% of overhead.

We omit the presentation of results for writes as we observe similar behavior and per-

formance to reads.

Figure 5.5 shows how the I/O path affects the performance in Aquila. Cache-Hit is

the case where no I/O required and the total cost in this case is 2179 cycles. DAX-PMEM

uses our optimized path for byte-addressable devices and HOST-PMEM uses direct I/O

system calls to the host OS. In this case, Aquila achieves 7.77× lower latency. This happens

because we remove system calls, and use a SIMD-optimized memcpy. SPDK-NVMe uses

SPDK and bypasses the host OS for PCIe attached devices. HOST-NVMe uses direct I/O,

similar to HOST-PMEM. In the case of Aquila, bypassing the host OS reduces the latency

by 1.53×. In all cases, the remaining cost, excluding the I/O, remains the same. This shows

that the way we choose to access storage devices in Aquila affects the total performance.

Removing the interaction with host OS reduces the overheads by up to 7.77×.



102 Chapter 5. Reducing Protection Costs

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 16 32

K
��
�
��
�
�
��
��
�
	



 �
�
�  



�
s
�
	
�

#������

Linux (1 f���

Linux (N f����

Aquila (1 f���

Aquila (N f����

Figure 5.6: Linux vs. Aquila throughput (in ops/sec) using random reads for both a shared
and a private file per thread with a dataset that fits in memory.
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Figure 5.7: Linux vs. Aquila throughput (in ops/sec) using random reads for both a shared
and a private file per thread with a dataset that does not fit in memory.

How does Aquila scale with the number of threads compared to Linux mmap?

Next, we examine how Aquila scales with an increasing number of cores. We distinguish

two cases for accessing files with memory-mapped I/O: when all threads access a single
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shared file and when each thread accesses a different file.

Figures 5.6 and 5.7 shows our results for a dataset (100GB) in two cases, one where it fits

in memory (100GBDRAM) and one where it does not fit in memory (8GBDRAM). In both

cases, as we increase the number of threads Aquila scales as follows: For a single shared

file that fits in memory, Aquila achieves 1.81× higher throughput with 1 thread and 8.37×

with 32 threads. In the case where the dataset does not fit in memory, the improvement is

even more pronounced compared to Linux mmap. Aquila performs better by 2.17× at 1

thread and by 12.92× at 32 threads.

We use profiling to identify the reason for the large improvement over Linux mmap for

a single shared file. We find that in Linux, a single lock that protects the radix tree of the

cached pages is highly contented. In order to remove this bottleneck in Aquila, we remove

this single lock with a lock-free hash table that keeps all cached pages. We see similar

behaviour also for writes in Linux as this lock is also required to mark a page dirty. Aquila

uses per-cpu red-black trees to store dirty pages and this also overcomes this limitation.

Using a separate, private, file per thread, we see lower, but still significant improve-

ments: Aquila achieves higher throughput between 1.82× (1 thread) and 1.99× (32 threads)

using the in-memory dataset and between 2.21× (1 thread) and 2.84× (32 threads) for the

out-of-memory dataset.

In all these experiments, Aquila also provides better latency, both median and tail.

Using a single thread and the dataset that does not fit in main memory, Aquila achieves

2.07× lower median latency. Furthermore, Aquila has 13.6× (p99) and 2.1× (p99.9) lower

tail latency.

Using 32 threads the improvements of Aquila in terms of latency are even higher. Using

a shared file, Aquila achieves 8.52× (median), 177× (p99), and 213× (p99.9) lower latency.

For a separate file per thread Aquila achieves lower latency by 1.64× (median), 42.64×

(p99), and 53.2× (p99.9). Eliminating the shared contended lock in the case of the shared

file provide huge improvements in tail latency for Aquila.

We see similar behaviour in writes compared to reads. For this reason, we omit the

presentation of these results.
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Figure 5.8: mmap vs. read/write vs. Aquila for RocksDB and a dataset that fits in memory.
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Figure 5.9: mmap vs. read/write vs. Aquila for RocksDB and a dataset that does not fit in
memory.

How does Aquila perform compared to explicit read/write I/O calls for real applica-

tions?

In this section we examine how Aquila’s memory-mapped I/O compares to Linux explicit

I/O for real applications.
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RocksDB has been designed for explicit I/O. However, it provides an option to use

memory-mapped I/O as well, to read data from SSTs. The developers of RocksDB state [51]

that using mmap for an in-memory database with a read-intensive workload increases per-

formance. However, they also state [50] that mmap sometimes causes problems when

data does not fit in memory and is managed by a file system over a block device. In this

section we show that Aquila outperforms direct I/O even in the case where the dataset is

larger that the available DRAM cache.

We compare RocksDB with explicit I/O (direct I/O and an LRU cache of 8GB), RocksDB

with Linux mmap (8GBpage cache limited with cgroups), and RocksDB with Aquila (8GB

DRAM cache). For this evaluation we use YCSB with workload C (100% random reads).

The value size is 1KBand the key size is about 30B. Finally, we use two datasets, one of 8M

records (8GB) that fits in the cache and a second dataset of 32M records (32GB) that is 4×

larger than the cache size.

Figure 5.8, shows this experiment using both NVMe and PMEM device and the dataset

that fits in cache. We see that similar to what developers of RocksDB say, mmap is faster

than read/write calls. Additionally, in this case Aquila is up to 1.15× faster compared to

Linux mmap.

Figure 5.9 shows our results for the dataset that does not fit in the cache, both for NVMe

and PMEM. We see that Linux mmap performs poorly compared to other approaches. The

main reason is that mmap prefetches 128KB for 1KBreads.

The PMEM device shows the potential of Aquila as storage devices become faster. In

this case, Aquila results in higher RocksDB throughput by 1.18× for 1 thread and by 1.65×

for 32 threads. With the NVMe device, Aquila and direct I/O have similar performance

(between 0.96× up to 1.06×) because throughput is limited by the device itself. Therefore,

Aquila is able to improve upon explicit I/O performance, even for large reads, a case where

explicit I/O performs best.

In all previous cases Aquila provides better median and tail latency. Using the dataset

that fits in cache, Aquila achieves from 1.28× to 1.39× lower median latency compared

to direct I/O and from 1.09× to 1.27× compared to mmap with the NVMe device. With

PMEM, improvements are between 1.06× and 1.21× for medial latency and and between
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1.01× and 1.15× for tail latency.

Using the dataset that does not fit in the cache, we compare Aquila memory-mapped

I/O with Linux direct I/O, excluding Linux mmap as it performs poorly. For the NVMe

device, medial latency improves similar to the in-memory dataset, between 0.98× and

1.12×. However, for the PMEM, Aquila achieves even lower medial latency compared to

the out-of-memory dataset, between 1.24× and 1.28×.

We see larger improvements in all cases for tail (p99.9) latency. For in-memory datasets

Aquila achieves 3.88× lower tail latency on average compared to Linux explicit I/O. For

out-of-memory datasets, Aquila achieves 1.26× lower tail latency on average.

Finally, we do not provide an evaluation of write operations in RocksDB, generated by

compactions. Compactions (and writes) in RocksDB take place in background threads and

they are optimized to issue large (1-2MB) I/O requests. In this case the only bottleneck is

the device itself, rather than the software stack.

How does Aquila perform compared to Linux mmap for real applications?

In this section, we use Aquila for Kreon, a persistent key-value store designed to use memory-

mapped I/O in the common path. Kreon provides a custom memory-mapped I/O path,

named kmmap, which improves several aspects of Linux mmap. We compare Kreon and

kmmap with Aquila. We run all YCSB workloads using a single thread to show how over-

head reduces in the single-thread path. We use a dataset of 16M records (16GB) with a

8GBcache.

Figure 5.10 shows our results. Using NVMe, Aquila achieves on average 1.02× higher

throughput for all YCSB workloads. In this case the bottleneck is the NVMe device itself

given the request size (4KB) and a single outstanding I/O. Latency improves significantly:

Aquila achieves 1.29× lower median latency and 3.78× tail (p99.9) latency compared to

kmmap.

With PMEM, where device throughput is not the dominating bottleneck, Aquila achieves

on average 1.22× higher throughput. We also see significant improvements in terms of la-

tency: Aquila achieves 1.43× lower median latency and 13.72× lower tail (p99.9) latency.

Finally, we run all YCSB workloads over Kreon using 16 threads and the PMEM device
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Figure 5.11: Linux kmmap vs. Aquila for a dataset that fits in memory, a PMEM device and
16 threads.

to show the scalability of Aquila over an already optimized memory-mapped I/O path. Fig-

ure 5.11 shows our results. Aquila achieves 1.08× higher throughput, 1.05× lower median

latency, and 1.22× lower tail (p99.9) latency, on average for all YCSB workloads. We have

to note here that Kreon memory-mapped I/O [106] is optimized for this specific case and
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outperforms Linux mmap for all cases, both in terms of throughput and latency.

5.5 Summary

This chapter discusses how memory-mapped I/O can address overhead concerns as fast

storage devices start to dominate I/O in modern servers. Memory-mapped I/O has impor-

tant advantages: it can remove system call overheads, eliminate cache lookups even for

user space caches and hit operations, and offer synchronous I/O capabilities. We observe

that the main operations of mmap occur at different frequencies: virtual memory man-

agement, page table accesses, and device access are the common path operations. We

propose a design that moves the common path operations of memory-mapped I/O to the

processor mode normally used for the OS of VM guests (non-root ring-0), thus avoiding

significant overheads. Aquila still allows all functionality and flexibility of mmap by using

the host OS (running in root ring-0 mode) for the operations outside of the common path.

We implement Aquila using Dune, and we evaluate it with micro-benchmarks and two

persistent key-value stores and we observe significant performance gains both in terms of

throughput and latency.

This chapter shows that the single-thread performance of storage cache management

with memory-mapped I/O is higher than a user-space cache and read/write system calls.

In the case of next-generation fast storage devices, the overhead of memory-mapped I/O

can be comparable to the device access latency itself. We take a holistic approach to re-

move protection domain switches in the common path and significantly improve perfor-

mance. On the other hand, our approach requires application modifications, and system

calls have higher overheads than Linux. We target data center-oriented applications where

common path operations commonly do not require any system calls.



Chapter 6

Related Work

The related work of this dissertation falls in two different research areas. These are: (a)

memory-mapped I/O and (b) persistent key-value stores. Next, we provide more details for

both areas.

6.1 Memory-Mapped I/O

We categorize related work of memory-mapped I/O in four areas: (a) replacing read/write

system calls with mmap for persistence, (b) providing scalable address spaces, (c) extend-

ing virtual address spaces beyond physical memory limits, and (d) dataplane operating

systems.

6.1.1 Using memory-mapped I/O in data-intensive applications

Both MonetDB [19] and MongoDB [30] (with MMAP v1 storage engine) are popular data-

bases that use mmap to access data. When data fits in memory, mmap performs very well.

It allows the application to access data at memory speed and removes the need for user-

space cache lookups. Facebook’s RocksDB [49], a persistent key-value store, provides both

read/write and mmap APIs to access files. The developers of RocksDB state [51] that using

mmap for an in-memory database with a read-intensive workload increases performance.

However, they also state [50] that mmap sometimes causes problems when data does not

fit in memory and is managed by a file system over a block device.

109
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Tucana [105] and Kreon [106] are write-optimized persistent key-value stores that are

designed to use memory-mapped I/O for persistence. In Tucana we show that for a write-

intensive workload the memory-mapped I/O results in excessive and unpredictable traffic

to the devices, which results in freezes and increases tail-latency. Kreon [106] provides a

custom memory-mapped I/O path inside the Linux kernel that improves write-intensive

workloads and reduces the latency variability of Linux mmap. In this work, we address

scalability issues and also present results for memory-mapped I/O with workloads beyond

key-value stores.

DI-MMAP [48, 47], removes the swapper from the critical path and implements a cus-

tom (FIFO based) eviction policy using a fixed-size memory buffer for all mmap calls. This

approach provides significant improvement compared to the default Linux mmap for HPC

applications. We evaluate FastMap using more data-intensive applications, representative

of data analytics and data serving workloads. In particular, our work assumes higher levels

of I/O concurrency, and addresses scalability concerns with higher core counts. Addition-

ally, in Aquila, we take a more fundamental approach, by placing the application non-root

ring-0 to further reduce protection costs.

FlashMap [59] combines memory (page tables), storage (file system), and device-level

(FTL) indirections and checks in a single layer. FastMap and Aquila provide specific op-

timizations only for the memory level and results in significant improvements in a file

system and device agnostic manner.

2B-SSD [8] leverages SSD internal DRAM and the byte addressability of the PCIe inter-

connect to provide a dual, byte and block-addressable SSD device. It provides optimized

write-ahead logging (WAL) over 2B-SSD for popular databases and results in significant

improvements. FlatFlash [1] moves this approach further and provides a unified memory-

storage hierarchy that results in even larger performance improvements. Both of these

works move a large part of their design inside the device. Both FastMap and Aquila work

in a device-agnostic manner and provides specific optimizations in the operating system

layer.

UMap [108] is a user-space memory-mapped I/O framework which adapts different

policies to application characteristics and storage features. Handling page faults in user-
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space (using userfaultfd [75]) introduces additional overheads that are not acceptable in

the case of fast storage devices. On the other hand, techniques proposed by FastMap can

also be used in user-space memory-mapped I/O frameworks and provide better scalability

in the page-fault path.

Similar to [31], FastMap introduces a read-ahead mechanism to amortize the cost of

pre-faulting and improve sequential I/O accesses. However, our main focus is to reduce

synchronization overheads in the common memory-mapped I/O path and enhance scala-

bility on multicore servers. A scalable I/O path enables us to maintain high device queue

depth, an essential property for efficient use of fast storage devices.

Byte-addressable persistent memory DIMMs, attached in memory slots, can be ac-

cessed similarly to DRAM with the processor load/store instructions. Linux provides Di-

rect Access (DAX), a mechanism that supports direct mapping of persistent memory to

user address space. File systems that provide a DAX mmap [139, 140, 45, 34, 136] by-

pass I/O caching in DRAM. On the other hand, other works [65] have shown that DRAM

caching benefits applications when the working set fits in DRAM and can hide higher per-

sistent memory latency compared to DRAM (by up to ∼ 3×). Accordingly, FastMap uses

DRAM caching and supports both block-based flash storage and byte-addressable persis-

tent memory. FastMap will benefit all DAX mmap file systems that need to provide DRAM

caching for memory-mapped I/O, as FastMap is file system agnostic. Additionally, Aquila

can leverage DAX file systems to provide strict POSIX semantics to user applications and

optimize the memory-mapped I/O path through the separation of protection and common

path operations.

6.1.2 Providing a scalable virtual address space

Bonsai [32] shows that anonymous memory mappings, i.e. not backed by a file or de-

vice, suffer from scalability issues. This type of memory mapping is mainly used for user

memory allocations, e.g. malloc. The scalability bottleneck in this case is due to a con-

tended read-write lock, named mmap sem, that protects access to a red-black tree that

keeps VMAs (valid virtual address spaces ranges). In the case of page faults, this lock is
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acquired as read lock. In the case of mmap/munmap this lock is acquired as write lock.

Even in the read lock case, NUMA traffic in multicores limits scalability. Bonsai proposes

the use of RCU -based binary tree to provide lock-free lookups, resulting in a system scal-

ing up to 80 cores. Bonsai removes the bottleneck from concurrent page faults, but still

serializes mmap/munmap operations even in non-overlapping address ranges.

In Linux, shared mappings backed by a file or device have a different path in the ker-

nel, thus requiring a different design to achieve scalability. There are other locks (see Sec-

tion 4.2.1) that cause scalability issues and mmap sem does not result in any performance

degradation. As we see from our evaluation of FastMap, using 80 cores the time spent in

mmap sem is 37.4% of the total execution time; therefore, Bonsai is complementary to

our work and will also benefit our approach.

Furthermore, authors in [77] propose an alternative approach to provide scalable ad-

dress space operations, by introducing scalable range locks to accelerate non-conflicting

virtual address space operations in Linux.

RadixVM [33] addresses the problem of serialization of mmap/munmap in non over-

lapping address space ranges. This work is done in the SV6 kernel and can also benefit

from FastMap in a similar way to Bonsai. In Aquila we use the radix tree from RadixVM to

provide scalable virtual address range management.

The authors in [21] propose techniques to scale Linux for a set of kernel-intensive ap-

plications, but do not tackle the scalability limitations of memory-mapped I/O. In pedsort

authors modify the application to use one process per core for concurrency and avoid the

contention over the shared address space. In this chapter we solve this issue at the kernel

level, thus providing benefits to all user applications.

6.1.3 Extending the virtual address space over storage

The authors in [121] claim that by using mmap a user can effectively extend the main

memory with fast storage devices. They propose an optimized page reclamation proce-

dure with a new page recycling method to reduce context switches. This makes it possible

to use extended vector I/O – a parallel page I/O method. In our work, we implement a
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custom per-core mechanism for managing free pages. We also preallocate a memory pool

that removes the performance bottlenecks identified in [121]. Additionally, we address

scalability issues with memory-mapped I/O, whereas the work in [121] examines setups

with up to eight cores, where the Linux kernel scales well.

FlashVM [117] uses a dedicated flash device for swapping virtual memory pages and

provides flash-specific optimizations for this purpose. SSDAlloc [7] implements a hybrid

DRAM/flash memory manager and a runtime library that allows applications to use flash

for memory allocations in a transparent manner. SSDAlloc proposes the use of 16 − 32×

more flash than DRAM compared to FlashVM and to handle this increase they introduce

a log-structured object store. Instead, FastMap and Aquila target the storage I/O path and

reduces the overhead of memory-mapped I/O. Therefore, our work is not a replacement

for swap nor does it provide specific optimizations to extend the process memory address

space over SSDs.

NVMalloc [133] enables client applications in supercomputers to allocate and manip-

ulate memory regions from a distributed block-addressable SSD store (over FUSE [89]).

It exploits the memory-mapped I/O interface to access local or remote NVM resources in

a seamless fashion for volatile memory allocations. NVMalloc uses Linux mmap. Conse-

quently, it can also benefit from FastMap at large thread counts combined with fast storage

devices.

SSD-Assisted Hybrid Memory [103] augments DRAM with SSD storage as an efficient

cache (in object granularity) for Memcached [135]. Authors claim that managing a cache

in a page granularity incurs additional overheads. As we provide an application agnostic

approach, we stick to managing memory at page granularity and we optimize scalability

in the common path.

6.1.4 Dataplane operating systems

Exokernel [46] proposes to separate the OS dataplane and the OS control plane to pro-

vide higher throughput and lower latency with specialized library OSes. Systems, such

as IX [15], ZygOS [112], Shinjuku [71], MICA [86], and Chronos [73] optimize the network
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path, while Aquila targets the storage path. Although storage and networking share sim-

ilarities, they also require to address different challenges, e.g. related to virtual memory

management.

Arrakis [110], in addition to networking targets storage I/O. Arrakis uses SR-IOV [79]

to provide multiple virtual PCIe devices and handle protection and multiplexing in the

I/O controller. Aquila takes a more holistic approach that includes the user-space storage

cache and improves virtual memory management and device access in memory-mapped

I/O.

Similar to IX [15], ZygOS [112], and Shinjuku [71] Aquila uses Dune [14] to have ac-

cess to privileged hardware features. All of these systems target networking while Aquila

provides a way to access fast storage devices with the minimum required overhead. Fi-

nally, ReFlex [76] provides an optimized way to access remove flash storage. It uses Dune

to closely integrate networking and storage processing and achieves low latency and high

throughput in the storage server. In Aquila we assume that the server has access to fast

local storage devices. Approaches similar to ReFlex can be used to extend our work for fast

remote storage.

6.2 Persistent Key-Value Stores

6.2.1 LSM-Tree based key-value stores taxonomy and optimizations

We identify the following three dimensions in the design space of LSM-Tree key-value

stores that affect I/O amplification and CPU efficiency: (1) size and placement of SSTs,

(2) logical level organization, and (3) value location. In Table 6.1, we present a taxonomy

of existing systems based on these dimensions. These systems, to some extend, have tried

to take advantage of device properties and improve performance.

Size and placement of SSTs: In an LSM-Tree key-value store levels are physically organized

on the device in units named Sorted String Tables (SSTs). Their size is typically large (or-

der of MBs) because large SSTs guarantee maximum device throughput, eliminating the

effects of the I/O pattern (sequential or random) and metadata I/Os, as metadata are small
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and fit in memory. Equivalent, small and sequentially placed SSTs on the device [118] can

achieve the same properties of maximum device throughput. This results in high I/O am-

plification but improves read performance at the expense of maintaining more metadata.

Emerging device technologies allow using small SSTs with random placement which intro-

duces randomness but has the potential to reduce I/O amplification [106]. This approach

is suitable for devices where random I/O throughput degrades gracefully compared to se-

quential I/O throughput.

Logical level organization: Keys in each level are logically organized either fully or par-

tially. Full organization keeps the key space in fully sorted, non-overlapping SSTs. Full or-

ganization is usually done with leveling compaction [102, 49, 134, 9, 40, 141, 53, 81, 91, 27].

However, B-tree indexes have also been used to either optimize reads and scans [118] or re-

duce amplification [106]. Partial organization introduced in [66] maintains the key space

in overlapping units, e.g. in the form of tiering compaction [137, 39, 113, 96, 72] which

reduces merge amplification at the cost of reduced read and scan performance.

Value location: Finally, values can be placed either in-place with keys or in a separate value

log. Typically, values are stored in-place because this results in optimal scan behavior at

the expense of increasing amplification due to value movement during merge operations.

Previous work has proposed techniques [27, 81, 91, 105, 106] that store values in a log, re-

ducing amplification significantly, relying on modern devices to alleviate the impact on

scan performance.

In addition to the basic three dimensions, key-value stores employ a set of various tech-

niques to optimize for different aspects of system operation. These include tail latency or

targeted optimizations for specific workloads (e.g updates). Next, we present a set of rep-

resentative techniques.

bLSM [118], that targets HDDs, uses a B-tree index per level and bloom filters to enable

efficient look-up operations. Kreon shares the idea of a B-tree index per level but keeps an

index only for the metadata and it does not fully rewrite levels during spills trading I/O ran-

domness for CPU efficiency. bLSM also introduces gear scheduling to bound write latency.
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key-value Stores
SST size,

Organization
Value

placement placement

LSM[102], RocksDB[49],Locs[134],
Large Full In-placeDostoevsky[40], Triad[9], Mutant[141],

bLSM[118], Silk[10], cLSM[53], VT-tree [119]

Atlas[81], WiscKey[91], HashKV[27] Large Full Log

Jungle[2] Large Partial Log

LSM-trie[137], Monkey[39], SifrDB[96],
Large Partial In-place

Novelsm[72], PebblesDB[113]

Kreon[106] Small Full Log

Bε–Tree[17] Small Full In-place

Table 6.1: Taxonomy of the main approaches to design key-value stores in three dimen-
sions.

Gear scheduling is a progress-based compaction scheduler that throttles compactions in

the lower levels of the LSM-Tree. This scheduler is able to prioritize compactions taking

place in the higher levels of the LSM-Tree, close to the in memory component improving

tail latency of client applications. Silk [10] similar to bLSM tackles the same problem by

introducing progress based compaction. In addition to bLSM, Silk performs compactions

during off peak periods to reduce the probability of heavy compactions during bursty

client activity. With this approach it trades increased I/O amplification, since it does not

merge adjacent levels that necessarily grow by a constant factor f [11, 102], for bound-

ing tail latency. FD-tree [85] is an LSM-Tree for flash devices, that replaces bloom filters,

saving their corresponding memory budget, with fractional cascading [28] to speed up

look up operations. VT-tree [119] tries to reduce I/O amplification merging only the actual

overlapping parts between SSTs. In particular, instead of blindly performing a merge sort

operation between a set of SSTs of Li and Li+1 it identifies which parts are non-overlapping

and it performs merge sort only for the overlapping parts. These techniques are orthogo-

nal to Kreon and it can benefit from them.

LSM-trie [137] identifies as the main source of I/O amplification during the compaction

process between two levels Li and Li+1 the amount of data read and written from Li+1. This

is because Li+1 is f times larger than Li and the compaction process always needs to read

and write Li to merge it with Li+1. To reduce the data read and written from Li+1 it divides it
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into sub-levels and place keys in SSTs according to their key hash. Then it uses bits of the

hash to select a part of the sublevel of Li+1 that it merge sorts with the SST of Li. This op-

timization trades range queries in favor of reduced amplification. Kreon shares the same

goal of reducing I/O amplification by using a value log and small SSTs but also supports

range queries.

Atlas [81] is a key-value store that aims to improve data-serving density and data replica

space efficiency. To achieve these, Atlas employs a LSM–based approach and separates

keys from values to avoid moving values during compactions. Similarly, WiscKey [91] pro-

poses the separation of keys and values to reduce write amplification. It stores values in

a data log and keeps a LSM index for the keys. Furthermore, it implements a prefetching

mechanism for speeding up range queries because values are written randomly on the de-

vice. Jungle [2] is an LSM-Tree key-value store optimized for updates. It uses a value log

and organizes its levels using tiering. In particular, each level is organized as a forest of

B-trees with overlapping key ranges. This organization reduces I/O amplification [11] but

hurts look up performance. This is because each look up should check in the worst case all

B-trees within a level. However, this trade off is a good fit for Jungle since it targets update

heavy workloads, where the number of distinct keys grow slow.

PebblesDB [113] identifies as the main problem of write amplification in the LSM-Tree

the repeated merges of files at each level during compaction. To fix this, it keeps overlap-

ping sorted files at each level instead of non-overlapping. However, this approach adds

overhead in the read path since multiple files need to be checked instead of a single. To

improve this, PebblesDB introduces guards which act as a coarse grain index per level in-

spired by skip lists. Kreon shares the idea of using an index per level with the difference

that in Kreon case is full. Furthermore, it uses memory-mapped I/O, keeps both keys and

values on a separate log, and executes spill operations only on pointers to keys and values.

6.2.2 Other write optimized data structures

TokuDB [125] implements at its core a Bε–Tree structure. It keeps a global B-tree index in

which it associates a small buffer per B-tree node. Buffers are relatively small so it keeps
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them unsorted and scans them during look-up queries. When a buffer fills it is spilled

to its N children, where N is the fan out of the B-tree. Tucana [105] uses a Bε–Tree which

buffers keys only at the last level of the tree and relies on a ratio of memory/data to operate

efficiently. Kreon keeps a buffer per level in order to achieve better batching and is able to

server larger datasets with smaller memory/data ratio.

KVell [84] is an efficient log structured key-value store designed for fast storage devices.

It uses a value log and a single level B-tree index in which it stores metadata (pointers)

to the actual key-value pairs. Furthermore, it uses asynchronous IO (io uring [70]) and

batching to perform efficient I/O with the devices. Kreon shares the same efficiency goals

for fast storage devices with KVell but it uses memory-mapped I/O. This eliminates the

need to constantly perform look-up operations about the position of a device block in

DRAM even in the case of hits. This can save up to 30% [58] CPU overhead when the

dataset fits in memory. Furthermore, Kreon uses an LSM-Tree structure which allows its

index to grow efficiently beyond DRAM limits without the known performance issues of a

B-tree index structure [56].
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Future Work

This dissertation provides solutions to the main pathologies of memory-mapped I/O for

data-intensive applications over fast storage devices. Next, we describe some directions

for future work.

7.1 Huge Pages in Memory-Mapped I/O

In this dissertation, we use regular (4KB) pages. Other works [80, 104] proposed mech-

anisms that use huge pages (2MB) for anonymous mappings. These include a dynamic

mechanism to use both regular and huge pages. The main advantage of using huge pages

in anonymous mappings is that it reduces page faults by a large factor. Additionally, it

reduces TLB pressure, as TLBs have a relatively small number of entries compared to the

number of regular page mappings in a modern server with 100s of GB of DRAM.

Furthermore, huge pages can produce large (2MB) I/Os to devices. With sequential ac-

cess patterns, this can further improve the performance combined with the lower number

of page faults and less TLB misses. An initial exploration shows [92] that the use of huge

pages in memory-mapped I/O for sequential accesses results in significant performance

benefits with lower CPU consumption. On the other hand, using huge pages for random

accesses can increase I/O amplification and reduce performance. This leads to the need

for dynamic approaches (i.e. to use both regular and huge pages) in memory-mapped I/O,

based on access patterns.
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7.2 Memory-Mapped I/O and Persistent Memory

Byte-addressable NVM devices (i.e. persistent memory – PMEM) attached to memory

DIMMs provide even lower access latency and higher throughput than block-addressable

flash-based storage devices [65]. Additionally, the user can access PMEM using proces-

sor load and store instructions rather than DMA. Therefore, the user can map PMEM di-

rectly to its address space, bypassing DRAM. DAX [87] is a mechanism that allows using

PMEM for storage. DAX does not require page faults and eviction operations in the com-

mon path. Only the first access to each page results in a page fault because it does not

use DRAM as a storage I/O cache. At the same time, PMEM has higher access latency and

lower throughput than DRAM [65]. In the case where the workload exhibits high spatial lo-

cality, there can be benefits from DRAM caching. Understanding these tradeoffs and their

implications for data transfer appears to be a fairly complex and very intresting direction

for future work.

7.3 Physical Memory Extension

In this dissertation, we use persistent key-value stores for the evaluation of our proposed

mechanisms. In Chapter 4, we also evaluate memory-mapped I/O in terms of increas-

ing the virtual address space for user processes over fast storage devices. We translate

all volatile memory allocations (i.e. malloc/free) over a memory-mapped file or device.

This approach makes the available virtual memory size of a process relative to the device

size and not the physical DRAM size. This dissertation shows that Linux memory-mapped

I/O is not suitable for this purpose as it introduces significant slowdown. Future work

should consider further techniques and tradeoffs with respect to locality and memory use

of heaps in modern data-intensive applications.

7.4 Beyond Persistent Key-Value Stores

In this dissertation, we focus on persistent key-value stores. The intuition behind this is

that they are an important building block for a wide range of applications. On the other
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hand, there is a large number of applications that use different ways to persist their data.

These include databases (i.e. SQL and NoSQL), graph procecssing, and various persistent

data structures. Today, it is common to design such systems with a user-space cache and

system calls to access persistent data. We propose the use of memory-mapped I/O to

manage storage caching, and this approach removes the software cost entirely in the case

of hits.

However, using memory-mapped I/O requires to redesign certain aspects of the appli-

cation I/O path. Our contributions can still provide benefits to these systems, similar to

persistent key-value stores. Priorities (Chapter 3) can affect the eviction/writeback path

based on user needs. Our scalable memory-mapped I/O path (Chapter 4) can provide sig-

nificant performance gains in multi-threaded applications that are typical today. Finally,

removing protection domain switches in the case of misses (Chapter 5) can increase the

single-thread performance, and these benefits are more pronounced in low latency stor-

age devices.

7.5 Dependence on Storage Devices

In this dissertation, we use local flash-based storage devices either connected to SATA or

PCIe bus. We use the Linux I/O path to issue I/Os and check for their completion. In the

last part of our work (Chapter 5), we also emulate byte-addressable storage devices with

DRAM and access them with memory copies. This approach results in minimal overheads

but spends precious CPU cycles for data movement.

Our contributions are applicable to different types of storage devices and ways to move

data. Future work includes the evaluation of different mechanisms to access byte-addressable

storage devices. These include memory copies from the processor, DMAs between differ-

ent memory areas, and custom hardware mechanisms. Furthermore, the use of disaggre-

gated NVM accessible over fast networks (i.e. RDMA) can be also considered. The general

principle from our contributions is that the faster the underlying storage is, the more pro-

nounced the benefits from our work are.
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Conclusions

In this dissertation, we propose the use of memory-mapped I/O to manage storage caches

and remove software overheads for hits. We show that the use of memory-mapped I/O

to access data over fast storage devices provides significant improvements compared to

read/write system calls and user-space caching that is typical today.

Memory-mapped I/O removes the need for cache lookups in the common path as they

are handled by hardware through the virtual memory mappings. On the other hand, Linux

memory-mapped I/O has significant issues for data-intensive applications. These issues

include: (1) the lack of control for evictions, which results in unpredictable performance

under heavy I/O, (2) scalability issues with increasing the number of application threads,

and (3) the high page fault cost that happen during misses.

We address these issues as follows. First, we design a persistent key-value store that

uses memory-mapped I/O to access storage devices. We demonstrate the advantages

and drawbacks of memory-mapped I/O. Second, we propose a priority-based mecha-

nism that handles evictions in memory-mapped I/O, based on application needs. To show

the applicability of this mechanism, we build an efficient memory-mapped I/O persistent

key-value store that makes use of page priorities and shows significant improvements in

both throughput and tail latency. Third, we remove all centralized contention points in

memory-mapped I/O path and provide a scalable path for fast storage devices. Finally, we

separate protection and common path operations in memory-mapped I/O to reduce pro-

tection costs. We leverage CPU virtualization extensions to reduce the overhead of page
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faults and maintain the protection semantics of the OS.

Overall, applications designed to use memory-mapped I/O to access storage devices

can benefit from our techniques with minimal modifications. Our results show that using

memory-mapped I/O provides significant performance improvements with lower CPU

consumption.
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