
Explainable Fact Checking with Probabilistic Answer Set Programming

Naser Ahmadi∗, Joohyung Lee#, Paolo Papotti∗, Mohammed Saeed∗
∗EURECOM, France - #Arizona State University, USA

{name.surname}@eurecom.fr, joolee@asu.edu

Abstract

One challenge in fact checking is the ability to
improve the transparency of the decision. We
present a fact checking method that uses refer-
ence information in knowledge graphs (KGs)
to assess claims and explain its decisions. KGs
contain a formal representation of knowledge
with semantic descriptions of entities and their
relationships. We exploit such rich seman-
tics to produce interpretable explanations for
the fact checking output. As information in a
KG is inevitably incomplete, we rely on logi-
cal rule discovery and on Web text mining to
gather the evidence to assess a given claim.
Uncertain rules and facts are turned into log-
ical programs, and the checking task is mod-
eled as an inference problem in a probabilis-
tic extension of answer set programs. Experi-
ments show that the probabilistic inference en-
ables the efficient labeling of claims with in-
terpretable explanations, and the quality of the
results is higher than state-of-the-art baselines.

1 Introduction

Due to the increase of sources spreading false in-
formation, computational fact checking has been
proposed to support journalists and social me-
dia platforms with automatic verification of tex-
tual content (Babakar and Moy, 2016). We fo-
cus on claims that contain factual statements, such
as “William Durant was the founder of Chevro-
let,” and their verification against reference data,
i.e., Knowledge Graphs (KGs). Assuming entities
and relations involved in “worth-checking” claims
have been identified (Hassan et al., 2017; Jaradat
et al., 2018), KGs are exploited to compute the ve-
racity of claims expressed as structured data.

A KG is a structured representation of informa-
tion which stores real-world entities as nodes, and
relationships between them as edges. Entities and
relations have semantic descriptions in the form of

types and properties associated with them. KGs
store large amounts of factual information and
several of them are publicly available (Suchanek
et al., 2007). For example, the English version of
DBpedia stores 6M entities and 9B relation triples.

Given a KG K and a claim f , several approaches
have been developed to estimate if f is a valid
claim in K. In some of these methods, facts in
the KG are leveraged to create features, such as
paths (Shi and Weninger, 2016; Ciampaglia et al.,
2015) or embeddings (Bordes et al., 2013; Socher
et al., 2013), which are then used by classifiers
to label as true or false a given test claim. Other
methods rely on searching for occurrences of the
given claim on Web pages (Dong et al., 2014;
Popat et al., 2018). However, such models are
based on Machine Learning (ML) classifiers that
in the best case can report the source of evidence
for a decision but lack the ability to provide com-
prehensible descriptions of how a decision has
been taken for a given claim.

To address this problem and effectively support
transparent content moderation, we use existing
KGs as sources of evidence, together with logical
reasoning to make fact checking decisions. The
key idea is to assess as true or false a given claim
and to provide human-interpretable explanations
for such decision in the form of supporting and
contradicting evidence. Declarative Horn rules de-
fined over the KG, such as those in Table 1, guide
the decision process and provide semantic argu-
ments for the conclusion. For example, “William
Durant was the founder of Chevrolet” is marked as
true and justified by the facts that Durant is a key
person for Chevrolet and he founded another car
company. This explanation comes from the first
rule in the table1. On the other hand, “Elon Musk
was the founder of Chevrolet” is marked as false

1Product models the pairs (company c, product p of c).

0 . 7 5 : foundedBy (a , b) ← keyPe r son (a , b) , foundedBy (c , b) , p r o d u c t (c , d) , p r o d u c t (a , d) .
0 . 7 6 : foundedBy (a , b) ← d i s t r i b u t o r (c , b) , d i s t r i b u t o r (c , d) , foundedBy (a , d) .
0 . 9 7 : negfoundedBy (a , b) ← f o u n d i n g Y e a r (a , c) , b i r t h Y e a r (b , d) , >(d , c) .
0 . 5 6 : negfoundedBy (a , b) ← foundedBy (a , c) , r e l a t i v e (d , c) , o c c u p a t i o n (d , b) .
0 . 6 7 : negfoundedBy (a , b) ← parentCompany (b , c) , s u b s i d i a r y (c , d) , parentCompany (d , a) .

Table 1: Example of discovered rules with their support for predicate foundedBy in DBpedia.

with the explanation that Musk was born after the
company foundation year (third rule in the table).

Unfortunately, two issues make the generation
of such explanations hard. First, in general, KGs
do not come with the rich rules we need in our
task. To address this issue, we exploit rule mining
approaches (Galárraga et al., 2015; Ortona et al.,
2018), which automatically learn logical rules for
a given KG (e.g., Table 1). Second, KGs have
data quality issues due to the automatic methods
that are used to build them at scale. Informa-
tion stored in KGs is inevitably incomplete (Open
World Assumption - OWA) and noisy, because of
errors coming from the sources and the automatic
extractors (Dong et al., 2014). For these reasons,
in many cases, rules cannot be triggered. We iden-
tify these cases and resort to mining Web pages to
get evidence for missing facts that are crucial to
reach a decision for a claim (Popat et al., 2018).

Discovering rules and mining facts enable a
fully automatic system, but a new challenge arises
from these approaches. Both rules and mined facts
are uncertain, i.e., they come with a (possibly low)
measure of the probability of being correct. To ad-
dress this third challenge, we use probabilistic an-
swer set programming (Lee and Wang, 2016). The
reasoner is the enabler of the inference that com-
bines the evidence in producing a fact checking
decision with its explanation.

Our main contribution is a fully automated and
interpretable fact checking system that effectively
exploits uncertain evidence (Section 3). Experi-
mental results on a real KG show that our method
(i) obtains qualitative results that are comparable
or better than existing black-box ML methods and
(ii) outputs human consumable explanations (Sec-
tion 4). We conclude by discussing related work
and open problems in Section 5 and Section 6, re-
spectively.

2 Preliminaries

In this section, we describe the main building
blocks of our framework and define our problem.

Knowledge Graph. An RDF KG is a database

representing information with triples (or facts)
p(s,o) where a predicate p connects a subject s
and an object o. For example, the fact that E.
Musk was born in 1971 is expressed with a triple
birthYear(E. Musk, 1971). In a triple, the subject
is an entity, i.e., a real-world concept; the object
is either an entity or a literal, i.e., primitive types
such as number, date, and string; and the triple
predicate specifies a relationship between subject
and object. We call a triple to be assessed a claim.

Rule Mining in KGs. In our framework, we ex-
ploit algorithms for mining declarative Horn rules
from KGs (Galárraga et al., 2015; Ortona et al.,
2018). A Horn rule has the form:

h(x,y)← B (1)

where h(x,y) is a single atom (head of the rule)
and B (body of the rule) is a conjunction of atoms

B1(z1,z2)∧B2(z3,z4)∧·· ·∧Bn(z2n−1,z2n).

An atom is a predicate connecting two variables,
two entities, an entity and a variable, or a variable
and a constant (string or number). A mining al-
gorithm outputs positive rules (e.g., spouse in the
head), which identify relationships between enti-
ties, e.g., “if two persons have a child in common,
they are in the spouse relation”, and negative rules
(negspouse in the head), which identify data con-
tradictions, e.g., “if two persons are in the parent
relation, one cannot be the spouse of the other”.

A fact is derived from a rule if all the variables
in the body of the rule can be replaced with con-
stants in the KG. For example, consider again Ta-
ble 1 and the negative rule: negfoundedBy(a,b)
← foundingYear(a,c), birthYear(b,d), >(d,c). We
can derive negFoundedBy(E. Musk, Chevrolet)
because there is a replacement for the body
of the rule, i.e, “foundingYear(Chevrolet,1911),
birthYear(E. Musk,1971), >(1971,1911)”.

For rule mining, we adopt RUDIK (Ortona
et al., 2018), which, for every KB predicate out-
puts rules together with a measure of support.

Assessment of Claims on the Web. As KGs are
usually incomplete, we also exploit textual docu-

ments for our analysis. Text mining systems get as
input a claim c expressed in natural language and
analyze c’s credibility w.r.t. relevant Web docu-
ments. The systems exploit the joint interaction
among language style of documents, their stance
towards a claim, and source trustworthiness.

For example, consider the claim found-
edBy(Chevrolet, W. Durant), which is not in the
KG, and positive rule from Table 1: found-
edBy(a,b) ← keyPerson(a,b), foundedBy(c,b),
product(c,d), product(a,d). Assume the KG con-
tains the facts keyPerson(Chevrolet, W. Durant),
foundedBy(GM, W. Durant), and product(GM,
Automobile), but it misses the product informa-
tion for Chevrolet. It can be a false fact or a true
one missing from the KG (OWA). We therefore
test product(Chevrolet, Automobile) with the text
mining system and obtain that, according to Web
documents, the fact is true with confidence 0.57.

In our framework, we adopt CREDEYE, a state
of the art system for the automatic credibility as-
sessment of textual claims (Popat et al., 2016). To
extract Web articles relevant to the input claim,
it uses a commercial search engine (i.e., Bing).
Each document is divided into a set of overlap-
ping snippets, and snippets that are strongly re-
lated to the claim in terms of unigram and bigram
are extracted. Snippets are then used to compute
support and refute scores with logistic regression
classifiers trained on claims and evidence docu-
ments from the Snopes fact checking repository.
The scores are fed as features into a classifier with
L1-regularization, distantly trained on Snopes.

(Probabilistic) Answer Set Programming.
Given a claim, we collect the rules, the evidence
(from the KG and the Web sites), and cast
fact checking as a reasoning problem. For this
task, we adopt LPMLN (Lee and Wang, 2016), a
probabilistic extension of answer set programs
with the concept of weighted rules from Markov
Logic. In ASP, search problems are reduced to
computing stable models (a.k.a. answer sets), a
set of beliefs that are described by the program.
In the case of a Horn program, the stable models
coincide with the minimal models, but they differ
as soon as the program allows more expressive
language constructs, such as negation, defaults,
and aggregates. We refer to (Gelfond and Lifs-
chitz, 1988; Lee et al., 2008; Ferraris et al., 2011)
for the definitions of stable models.

LPMLN extends the (deterministic) stable model

semantics by embracing the concept of weighted
rules. In LPMLN, a weight is assigned to each rule
so that the more rules a stable model satisfies, the
larger weight it gets, and the probability of the sta-
ble model is computed by normalizing its weight
among all stable models. In our setting, given a set
of rules and evidence facts, we want to see if the
given claim belongs to the stable model.

More precisely, let σ be a signature as in first-
order logic. An LPMLN program Π is a finite set of
weighted rules of the form:

w : A← B (2)

where A is a disjunction of atoms of σ , B is a con-
junction of literals (atoms and negated atoms) of
σ , and w is a real number or the symbol α . When
A is⊥ (the empty disjunction), the rule asserts that
B should be false in the stable model. An LPMLN

rule (2) is called soft if w is a real number or hard
if w is α . An LPMLN program is ground if its
rules contain no variables. An LPMLN program Π

that contains variables is identified with a ground
LPMLN program grσ [Π] which is obtained from
Π by replacing every variable with every ground
term of σ . The weight of a ground rule in grσ [Π]
is the same as the weight of the corresponding rule
in Π. By Π we denote the unweighted logic pro-
gram obtained from Π, i.e., Π = {R | w : R ∈Π}.

For a ground LPMLN program Π, ΠI denotes
the set of rules w : R in Π such that I satisfies
R (denoted I |= R) and SM[Π] denotes the set
{I | I is a (deterministic) stable model of ΠI}. The
(unnormalized) weight of I under Π is defined as:

WΠ(I) =

exp(∑
w:R∈ΠI

w) if I ∈ SM[Π];

0 otherwise.

The probability of I under Π is the normalized
weight defined as: PΠ(I) = limα→∞

WΠ(I)
∑J∈SM[Π]WΠ(J) .

LPMLN2ASP (Lee et al., 2017) is an implemen-
tation of LPMLN using ASP solver CLINGO. The
system returns the most probable stable models. In
our problem formulation, given a claim p(x,y), we
identify the rules that have predicate p or negp in
the conclusion and the evidence facts for the bod-
ies of such rules. We then run LPMLN2ASP and
check if p or negp are in the stable model.

Problem Statement. Given an input claim to
be verified and a KG, our goal is to compute an
assessment of the veracity of the claim and the

Figure 1: Our Fact checking framework EXPCLAIM.

explanations for such decision, expressed as the
union of substitutions for the body of the rules that
have triggered the inference in the reasoner.

The uncertainty in the discovered rules and in
the facts extracted from the Web make the problem
challenging and the role of the reasoner important.

Limits of Existing Solutions. Both the text min-
ing and the rule generation system can be used
individually as fact checking tools according to
our problem definition. However, they both have
strong limitations. The uncertain rules alone can-
not make a clear assessment decision in many
cases because of (i) conflicting rules both support-
ing and refusing a fact at the same time, and (ii)
lack of evidence in the KG. The Web mining can-
not provide semantic explanations and also suffers
from the cases where there is no enough evidence
to obtain an answer. These limitations also apply
for other ML fact checking systems (Ciampaglia
et al., 2015; Shi and Weninger, 2016; Bordes
et al., 2013; Socher et al., 2013) and motivate our
choice to use a unified framework to combine both
sources of signals with a probabilistic reasoner.

3 Framework

Figure 1 shows our framework, EXPCLAIM. The
Rule discovery module takes as input the KG K to
generate the rules. We then convert the discov-
ered rules Σ into the input language of the rea-
soner, where the weight of a rule is its support. For
the given claim c : p(x,y), p ∈ K and rules Σ, the
Evidence Generation module collects relevant evi-
dence facts (triples satisfying the body of the rules)
from the KG and from Web with the Text mining
module. We then feed rules and evidence to the
Reasoner module, where different modes of com-
putation can be used to infer if p(x,y) or negp(x,y)
is in the answer set. The reasoner output includes a
human-interpretable explanation for the decision.
The details of the main steps are given next.

3.1 Rule Generation
Consider a claim c : p(x,y) with p ∈ K, our first
step is to obtain the set of rules Σ.

Rule Discovery: The rule discovery module starts
by generating M positive and M negative examples
for p. Positive examples are (x,y) entity pairs s.t.
p(x,y) ∈ K, and negative examples are (x,y) pairs
that satisfy the following conditions (Ortona et al.,
2018):

• p(x,y) /∈ K;
• there is either some y′ 6= y s.t. p(x,y′) ∈ K or

some x′ 6= x s.t. p(x′,y) ∈ K;
• there is some p′ 6= p s.t. p′(x,y) ∈ K.

RUDIK uses the examples and the KG to mine
positive and negative rules (Σ) for p.

Consider the mining of positive rules for predi-
cate spouse. Positive examples are pairs of mar-
ried people, and negative examples are pairs of
people who are not married to each other, accord-
ing to the three conditions above. Given the exam-
ples, the algorithm outputs approximate rules that
(i) maximize the coverage of the positive exam-
ples and (ii) minimize the coverage of the negative
ones. The example sets switch role for the discov-
ery of negative rules, i.e., not married people play
the role of the positive examples.

As in association rule mining, the support s of
each rule is computed as the support value of the
rule divided by the number of examples used in
the rule discovery step (Galárraga et al., 2015).

Convert Rules into LPMLN: Rules in Σ are rewrit-
ten into the input language of LPMLN2ASP with
their weights. For instance, for the spouse predi-
cate, a positive rule is rewritten into LPMLN as

w : spouse(a,b)← child(a,c), parent(c,b). (3)

An original support s equal to 0 corresponds to
a weight w of −∞ and a support of 1 to a weight
of +∞. We convert the rule support into a weight
for a program with the equation: w = ln s

1−s .

Generic Rules: We add two rules to the set asso-
ciated to each predicate. These rules are generic
and model natural constraints that play an impor-
tant role in our fact checking system.

The first rule ensures that p(x,y) and negp(x,y)
cannot be true at the same time, i.e., a claim should
not be assessed as false and true. This is a hard
rule, which is always valid.

α : ⊥← p(x,y),negp(x,y) (4)

The second rule enforces the functionality of a
predicate. If a predicate is functional, such as the
predicate expressing the capital of a country, then
there is only one value that can be in the solution.
However, this is not true for all predicates, e.g.,
a person can be the author of several books. The
support of the rule models the functionality of the
predicate. We express this constraint stating that a
claim cannot have two different object values.

w : ⊥← p(x,y), p(x,z),y 6= z (5)

These generic rules steer the reasoner in the
computation of the truthfulness/falseness proba-
bility for the input claim.

3.2 Evidence Generation
For a given claim, we execute the following steps
to gather the evidence for a fact checking decision.

Generate Evidence Triples from KG: For each
rule in Σ, we substitute the head variables with the
values of the claim and collect all the triples in
the KG that have a valid substitution to its body.
More precisely, the head variables in the body
of a rule are constrained to the value of the sub-
ject and object of the claim. Then, the evidence
triples are identified by querying the KG with the
rewritten body of the rule. For example, given the
spouse rule above and claim spouse(Mike,Laure),
the body is rewritten as a query: child(Mike,c),
parent(c,Laure), where c is a universal variable.

Generate Evidence Triples from Web: Our rea-
soner models also the uncertainty for the evidence
facts. The KG is considered trustworthy, so the
weights for the evidence from the KG are set at
infinite. However, because of the OWA, we can-
not find every true fact in the KG. For claims
for which no rule can be executed, we resort to
a Web text mining system (Popat et al., 2016).
For each rule, we substitute the subject and the
object according to the input claim. If a single
atom is non-replaceable with KG facts in the body
of a rule, then we use the Web module to vali-
date the missing fact. Notice that only grounded
facts can be verified with the Web module, such as
child(Mike,Marie). If the rewritten body contains
a fact with a variable, such as child(Mike,c) above,
we discard the claim. If the Web module returns
a probability p of a fact being correct greater than
0.5, than we add it to our evidence.

As an example, consider the positive rule:
locatedIn(x,y) ← hasCapital(z,x), locatedIn(x,y),

the claim locatedIn(Sacramento, USA), and a KG
with fact hasCapital(CA, Sacramento). Assum-
ing that the fact for CA located in USA is miss-
ing from the KG, we query the Web module for
locatedIn(CA, USA).

Similarly to the conversion of the rule sup-
port into the weight of an LPMLN program (Sec-
tion 3.1), we convert the probability p of a fact of
being true into a weight w for the fact when we use
it as evidence for the reasoner.

3.3 Inference for Fact Checking
We discuss two inference methods that enable us
to expose the rules and the evidence triples in-
volved in a decision for a claim p(x,y).

• Pure ASP checks if p(x,y) or negp(x,y) is
in the stable model of the rules without in-
cluding the rule weights. This method only
states if the positive or negative triple for the
claim can be derived. Since we rely on Horn
rules, there is only one stable model for them.
If the stable model contains both p(x,y) and
negp(x,y), it violates constraint (4), so we
conclude neither p(x,y) nor negp(x,y). A
similar case happens when the stable model
violates the functionality of a predicate.
• LPMLN MAP inference with weighted rules

checks if p(x,y) or negp(x,y) is in the most
probable stable model of the weighted rules
using LPMLN2ASP. This method utilizes the
weighted rules and the evidence facts to find
a more likely answer at the cost of violating
constraints (4) and (5).

Example. We want to check if Glen Cook is the
author of the book Cold Copper Tears. The fol-
lowing weighted rules are mined from the KG2:

1 0.04: author(A,B) ← runtime(A,C),
activeYearsStartYear(B,D), C<D.

2 0.04: author(A,B) ← birthYear(B,C),
runtime(A,D), C>D.

3 0.13: author(A,B) ← author(C,B),
subsequentWork(A,C).

4 0.02: author(A,B) ← previousWork(A,C),
literaryGenre(C,D),genre(B,D).

5 0.02: negauthor(A,B) ← writer(C,B),
format(C,D), format(A,D).

6 0.38: negauthor(A,B) ← runtime(A,C),
activeYearsStartYear(B,D), C<D.

7 0.31: negauthor(A,B) ← birthYear(B,C),
runtime(A,D), C>D.

8 0.02: negauthor(A,B) ← writer(C,B),
previousWork(C,A).

2For readability, we report normalized support (confi-
dence) for rules (evidence triples), instead of weights.

9 0.02: negauthor(A,B) ← writer(C,B),
previousWork(C,D), subsequentWork(A,D).

10 0.08: negauthor(A,B) ← writer(C,B),
genre(C,D), genre(A,D).

11 0.02: negauthor(A,B) ← writer(C,B),
subsequentWork(C,A).

12 0.02: negauthor(A,B) ← previousWork(A,C),
subsequentWork(D,C), writer(D,B).

13 α : ⊥← negauthor(A,B), author(A,B).
14 0.04: ⊥← author(A,B), author(A,C), B 6=C.

Notice that not all rules are semantically cor-
rect: rule 1 is not valid (and has low support),
while rule 3 is correct in most cases (in fact it has a
higher support). Notice also rule 13, which is the
hard constraint stating that a fact cannot be true
and false at the same time and rule 14 reflecting
the low functionality for the author predicate. The
evidence generator module collects the following
triples from the KG (facts with confidence 1) and
the Web mining module (all other facts):
0.55: literaryGenre(’Cold_Copper_Tears’,’

Fantasy’).
0.52: literaryGenre(’Cold_Copper_Tears’,’

Mystery_fiction’).
1: previousWork(’Cold Copper Tears’,’Bitter Gold Hearts’).
0.69: subsequentWork(’Cold Copper Tears’,’Old Tin

Sorrows’).
0.56: activeYearsStartYear(’Glen_Cook

’,’1970’).
0.59: author(’Bitter_Gold_Hearts’,’Glen_Cook

’).
1: author(’Old Tin Sorrows’,’Glen Cook’).
1: genre(’Glen Cook’,’Fantasy’).
1: genre(’Glen_Cook’,’Science_fiction’).
1: literaryGenre(’Bitter_Gold_Hearts’,’

Mystery_fiction’).
1: literaryGenre(’Bitter Gold Hearts’,’Fantasy’).
1: literaryGenre(’Old_Tin_Sorrows’,’

Mystery_fiction’).
1: literaryGenre(’Old_Tin_Sorrows’,’Fantasy’)

.
1: previousWork(’Bitter_Gold_Hearts’,’

Sweet_Silver_Blues’).
1: previousWork(’Old_Tin_Sorrows’,’

Cold_Copper_Tears’).
1: subsequentWork(’Bitter_Gold_Heart’,’

Cold_Copper_Tears’).
1: subsequentWork(’Old_Tin_Sorrows’,’

Dread_Brass_Shadows’).
1: author(’The_Black_Company’,’Glen_Cook’).
1: genre(’The_Black_Company’,’Dark_fantasy’).
1: genre(’The_Black_Company’,’Epic_fantasy’).
1: genre(’The_Black_Company’,’Fantasy_novel’)

.

The LPMLN inference outputs that the input fact
is true because of rules 3 and 4 together with the
facts in bold in the evidence set. Here, Old Tin
Sorrows is the subsequentWork of Cold Copper
Tears whose author is Glen Cook. These two facts
satisfy the body of rule 3 to derive the author rela-
tion between Cold Copper Tears and Glen Cook.
Similarly, for rule 4, Fantasy is the genre of Glen

Cook, which is also the literaryGenre of book Bit-
ter Gold Hearts. Further, Bitter Gold Hearts is
the previousWork of Cold Copper Tears. This se-
quence of three facts in the evidence set satisfies
the body of rule 4 to derive the author relation be-
tween the test entities. By using the MAP infer-
ence, we can find in the answer set:

author(Cold_Copper_Tears,Glen_Cook)

4 Experiments

We test our proposal against baseline methods
over claims from a real KG. Code and datasets are
available online3.

spouse deathPl. vicePres. almaMater
Positive 22 25 65 27
Negative 72 33 27 21

Table 2: Number of discovered rules for each predicate.

Datasets. From the latest (online) DBpedia, we
selected four predicates P = spouse, deathPlace,
vicePresident, almaMater. In the following, all
rules have been mined from 2K positive and 2K
negative examples. Statistics for the discovered
rules are reported in Table 2.

We create 3 datasets with each containing 100
true and 100 false facts for every predicate, for
a total of 2400 claims. True facts are randomly
taken from the KG, false ones are created accord-
ing to the procedure described in the previous sec-
tion. True facts are then removed from the graph.

Metrics. For each claim in the 4 predicates, we
count correctly labelled claims (T) and incorrectly
labelled ones (F). We also count Undecided (U)
claims, when a method cannot make a decision,
e.g., neither p(x,y) or negp(x,y) are in the stable
model. We use precision, defined as (T)/(T+F), re-
call, defined as (T)/(T+F+U), and their combination
in the F-score (harmonic mean).

Methods. We run three baseline methods. The
first is the Web text miner CREDE (Popat et al.,
2016). Although CREDE was not designed to
check arbitrary claims, we show that it also han-
dles KG facts reasonably well. The second is the
state of the art link prediction method for KGs
KGM (Shi and Weninger, 2016), which uses the
graph facts as training data and an ML classifier.
The third baseline is the application of the dis-
covered rules, without considering their weights

3https://github.com/ppapotti/expclaim

https://github.com/ppapotti/expclaim

(ASP). The first two approaches (CREDE and
KGM) cannot provide explanations, while the third
(ASP) does not exploit the reasoning. We identi-
fied 0.5 as the threshold value for both CREDE and
KGM to maximize their F-score.

We consider two variants of our solution. The
first is the LPMLN MAP inference with weighted
rules over the KG data only (MAP). The second
is MAP with evidence collected from the KG and
Web documents (MAP+W). For these methods,
we check if the claim is in the stable model.

almaMat. deathPl. spouse vicePres.
CREDE .41(.03) .59(.06) .44(.07) .36(.15)

KGM .73(.08) .68(.01) .86(.01) .81(.03)
ASP .70(.06) .01(.01) .31(.08) .18(.16)
MAP .88(.14) .75(.15) .87(.11) .66(.22)

MAP+W .88(.09) .83(.11) .86(.10) .68(.18)

Table 3: Average F-score results (SD) for four predi-
cates with all methods over 3 datasets.

Results. Table 3 reports F-score results and stan-
dard deviation (SD) for true and false claims av-
eraged over the 3 datasets. For two predicates,
MAP+W is the best method in terms of F-score,
with an average over all predicates of 0.81, fol-
lowed by MAP with .79 and KGM with .77. For
all predicates, method ASP has very poor perfor-
mance because of a large number of claims with
no rule to be grounded with the KG evidence. Sev-
eral of these claims are solved with the reasoner in
MAP with high precision (1 in most cases) but not
perfect recall. Web evidence in MAP+W enables
the triggering of more rules, but at the cost of a
lower precision because the text miner is not al-
ways reliable, as shown in the results for CREDE.

The issue of undecided claims affects the results
heavily for predicate vicePresident in all methods
based on rules. In general, there is no clear corre-
lation between the number of rules and the qual-
ity of the results for the rule-based methods. This
suggests that the quality of the rules (and of the ev-
idence facts) is more important than their number.
Also, more functional predicates, such as spouse,
are easier to fact check for most methods.

Table 6 reports a detailed analysis for predicate
deathPlace. The first evidence is that KGM has the
best performance for true claims but falls behind
MAP methods for false ones. Neither CREDE per-
forms well with false claims. We emphasize that
in fact checking false claims are more important.

Results for the rule-based methods show that
reasoning is key for our approach. For true claims,

FALSE : almaMater(Michael White, UT Austin)
← employer(Michael White, UT Austin)
← occupation(Michael White, UT Austin)
← almaMater(Michael White, Abilene

Christian Univ.), almaMater(Michael
White, Yale Divinity School)

Table 4: Example of MAP+W output for claim alma-
Mater(Michael White, UT Austin).

ASP correctly labels only 1% of the test facts,
while the MAP labels 58% of them without mis-
takes on average. ASP cannot handle facts for
which there is a contradiction among the posi-
tive and the negative rules, while MAP inference
makes the right decision by exploiting the weights
of the rules. However, for 42 true claims on aver-
age, none of the rules are triggered in MAP. The
coverage is increased by adding more evidence
with the Web mining module (MAP+W), at the
cost of a lower precision but better overall F-score.
The benefit of rules and Web evidence is more
apparent with false claims. While in this setting
CREDE and KGM show poor results, MAP+W re-
ports high precision (94% on average) and an aver-
age recall of 83%, with a very significant increase
in all metrics compared to MAP. From a manual
verification, we explain the better results for false
claims with the better quality of the negative rules
w.r.t. positive ones for deathPlace, i.e., it is eas-
ier to find a negative rule than a positive rule for
this predicate. This is consistent with previous rule
quality assessments (Ortona et al., 2018).

In all the cases for which an answer is pro-
duced, rule-based methods explain their decision
by showing involved rules and corresponding evi-
dence sets. This makes it relatively easy to identify
what is the cause for a conclusion, as for the exam-
ple reported in Table 4. The given claim is labeled
as false because of the three rules that apply with
evidence coming both from the KG and the Web.

spouse deathPl. vicePres. almaMat.
CREDE 6435 7377 7210 7355
KGM 16 15 12 13
ASP 7 8 9 8
MAP 475 822 1880 408

MAP+W 485 1897 3448 409

Table 5: Average execution times (secs) for 200 claims.

Finally, we report on the execution times in Ta-
ble 5. Methods KGM and ASP are the fastest,
with a single claim checked in less than 0.1 sec-
onds. Although we are not counting the time to

True claims False claims
CREDE KGM ASP MAP MAP+W CREDE KGM ASP MAP MAP+W

Correct(/100) 50(8) 96(1) 1(1) 58(27) 62(31) 23(8) 7(2) 0 62(14) 78(8)
Incorrect(/100) 19(3) 4(1) 0 0 21(18) 55(1) 93(2) 0 11(4) 5(4)

Undecided(/100) 31(9) 0 99(1) 42(27) 17(13) 22(7) 0 100(1) 28(18) 17(9)
Precision .72 .96 1 1 .75 .29 .07 1 .85 .94

Recall .69 1 .01 .58 .83 .78 1 0 .72 .83
F-score .70 .98 .01 .74 .79 .43 .13 .01 .78 .88

Table 6: Average results (SD) for deathPlace predicate with all methods over 3 datasets.

gather Web pages, CREDE is the slowest method,
with up to 37 seconds on average to check a claim.
MAP and MAP+W are in the middle, taking from
2 to 17 seconds to check a claim on average. The
time differences depend on the predicate at hand,
as checking predicates with less evidence in KG
requires more calls to the text mining module.

5 Related Work

There are two main tasks in computational fact
checking: (1) monitor and spot claims (Hassan
et al., 2017; Jaradat et al., 2018), (2) check claims
and explain outcomes. We focus on the sec-
ond task and on factual facts, specifically. Re-
lated approaches try to align the fact to trusted
data resources, such as KGs (Shiralkar et al.,
2017; Huynh and Papotti, 2018), Web docu-
ments (Lehmann et al., 2012), and databases (Cao
et al., 2018; Wu et al., 2014). These approaches
create features for binary classifiers from the data
in the KG. Features exploit the structure of the
training examples, in the form of paths (Shi and
Weninger, 2016; Ciampaglia et al., 2015) or ge-
ometric properties in a multi-dimensional space
with embeddings (Bordes et al., 2013; Socher
et al., 2013). We distinguish from these works
by providing semantically rich rules and evidence
facts as explanations for a fact checking outcome.

Markov Logic combines first-order logic and
Markov networks (Richardson and Domingos,
2006). In principle, learning in Markov Logic
could learn the uncertain rules and inference can
be applied to the learned rules. We tested alchemy
to learn rules for spouse relation with 10 positive
examples and it was not able to produce results
after 2 hours of execution. This illustrates that
rule learning in Markov Logic has scalability is-
sues with large KGs. ILP systems for rule dis-
covery, such as ALEPH (Srinivasan, 2001), make
assumptions on the input data that do not hold in
KGs and RUDIK outperforms this kind of sys-
tems (Ortona et al., 2018).

Other proposals have studied the problem of ex-
plainable fact checking with rules, but they focus
on manually crafted constraints (Gad-Elrab et al.,
2019; Leblay, 2017), while our system relies on
discovered rules only. Experimental results on
the same DBpedia predicates reported in previous
work (Gad-Elrab et al., 2019) show that our solu-
tion performs better despite being fully automatic.
Our proposal also does better than similar attempts
that rely on KG only (Pradhan, 2018).

6 Conclusion

We presented a fully automated fact checking
framework based on KGs and Web documents as
reference information. Given a fact expressed as
a triple over entities in the KG, our method vali-
dates its veracity with high accuracy and provides
an explanation of the decision by exposing facts
that support or contradict the given claim accord-
ing to a set of rules. The system does not rely on
a human configuration, as rules are automatically
discovered and additional information to comple-
ment the KG is mined from the Web.

An interesting direction for extending the
framework is to include a module for claim de-
tection and explore the opportunities of an end-to-
end system (Thorne et al., 2018). A second direc-
tion is to exploit the information from the reasoner
to steer the quality management of the KG (Dong
et al., 2014), e.g., inspect undecided claims to
identify parts of the KG that need data curation.
Finally, we aim at integrating natural language
generation techniques to produce explanations that
are easier to read for the target users (Gatt and
Krahmer, 2018).

Acknowledgments: We are grateful to Anish
Pradhan for useful discussions and the anonymous
referees for their comments. The second author’s
work was partially supported by the National Sci-
ence Foundation under Grant IIS-1815337. The
first and the third authors were partially supported
by the ANR JCJC Grant “InfClean”.

References
BABAKAR, M. AND MOY, W. 2016. The

state of automated factchecking. https:
//fullfact.org/blog/2016/aug/
automated-factchecking/.

BORDES, A., USUNIER, N., GARCIA-DURAN, A.,
WESTON, J., AND YAKHNENKO, O. 2013. Trans-
lating embeddings for modeling multi-relational
data. In NIPS. 2787–2795.

CAO, T. D., MANOLESCU, I., AND TANNIER, X.
2018. Searching for truth in a database of statistics.
In WebDB. 4:1–4:6.

CIAMPAGLIA, G. L., SHIRALKAR, P., ROCHA, L. M.,
BOLLEN, J., MENCZER, F., AND FLAMMINI, A.
2015. Computational fact checking from knowledge
networks. PloS one 10, 6.

DONG, X., GABRILOVICH, E., HEITZ, G., HORN,
W., LAO, N., MURPHY, K., STROHMANN, T.,
SUN, S., AND ZHANG, W. 2014. Knowledge vault:
a web-scale approach to probabilistic knowledge fu-
sion. In KDD. 601–610.

FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2011.
Stable models and circumscription. Artificial Intel-
ligence 175, 236–263.

GAD-ELRAB, M. H., STEPANOVA, D., URBANI, J.,
AND WEIKUM, G. 2019. Exfakt: A framework for
explaining facts over knowledge graphs and text. In
WSDM. 87–95.

GALÁRRAGA, L., TEFLIOUDI, C., HOSE, K., AND
SUCHANEK, F. M. 2015. Fast rule mining in onto-
logical knowledge bases with AMIE+. The VLDB
Journal 24, 6, 707–730.

GATT, A. AND KRAHMER, E. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research 61, 65–170.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable
model semantics for logic programming. In ICLP.
1070–1080.

HASSAN, N., ARSLAN, F., LI, C., AND TREMAYNE,
M. 2017. Toward automated fact-checking: Detect-
ing check-worthy factual claims by claimbuster. In
KDD.

HUYNH, V. AND PAPOTTI, P. 2018. Towards a bench-
mark for fact checking with knowledge bases. In
Companion of The Web Conference 2018 on The
Web Conference (WWW).

JARADAT, I., GENCHEVA, P., BARRÓN-CEDEÑO, A.,
MÀRQUEZ, L., AND NAKOV, P. 2018. ClaimRank:
Detecting check-worthy claims in Arabic and En-
glish. In NAACL-HTL. 26–30.

LEBLAY, J. 2017. A declarative approach to data-
driven fact checking. In AAAI. 147–153.

LEE, J., LIFSCHITZ, V., AND PALLA, R. 2008. A re-
ductive semantics for counting and choice in answer
set programming. In AAAI. 472–479.

LEE, J., TALSANIA, S., AND WANG, Y. 2017. Com-
puting LPMLN using ASP and MLN solvers. The-
ory and Practice of Logic Programming.

LEE, J. AND WANG, Y. 2016. Weighted rules under
the stable model semantics. In KR. 145–154.

LEHMANN, J., GERBER, D., MORSEY, M., AND
NGOMO, A. N. 2012. Defacto - deep fact valida-
tion. In ISWC. 312–327.

ORTONA, S., MEDURI, V. V., AND PAPOTTI, P. 2018.
Robust discovery of positive and negative rules in
knowledge bases. In ICDE. 1168–1179.

POPAT, K., MUKHERJEE, S., STRÖTGEN, J., AND
WEIKUM, G. 2016. Credibility assessment of tex-
tual claims on the web. In CIKM.

POPAT, K., MUKHERJEE, S., YATES, A., AND
WEIKUM, G. 2018. Declare: Debunking fake news
and false claims using evidence-aware deep learn-
ing. In EMNLP. 22–32.

PRADHAN, A. 2018. Explainable fact checking by
combining automated rule discovery with proba-
bilistic answer set programming. M.S. thesis. ASU.

RICHARDSON, M. AND DOMINGOS, P. 2006.
Markov logic networks. Machine learning 62, 1-2,
107–136.

SHI, B. AND WENINGER, T. 2016. Discriminative
predicate path mining for fact checking in knowl-
edge graphs. Knowledge-Based Systems 104, 123–
133.

SHIRALKAR, P., FLAMMINI, A., MENCZER, F., AND
CIAMPAGLIA, G. L. 2017. Finding streams in
knowledge graphs to support fact checking. In
ICDM. 859–864.

SOCHER, R., CHEN, D., MANNING, C. D., AND NG,
A. 2013. Reasoning with neural tensor networks for
knowledge base completion. In NIPS. 926–934.

SRINIVASAN, A. 2001. The Aleph manual.

SUCHANEK, F. M., KASNECI, G., AND WEIKUM, G.
2007. Yago: a core of semantic knowledge. In
WWW. ACM, 697–706.

THORNE, J., VLACHOS, A., CHRISTODOULOPOU-
LOS, C., AND MITTAL, A. 2018. FEVER: a large-
scale dataset for fact extraction and verification. In
NAACL-HLT.

WU, Y., AGARWAL, P. K., LI, C., YANG, J., AND
YU, C. 2014. Toward computational fact-checking.
Proceedings of the VLDB Endowment 7, 7, 589–600.

https://fullfact.org/blog/2016/aug/automated-factchecking/
https://fullfact.org/blog/2016/aug/automated-factchecking/
https://fullfact.org/blog/2016/aug/automated-factchecking/

