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Abstract

Automated fact-checking (AFC) systems exist
to combat disinformation, however their com-
plexity makes them opaque to the end user,
making it difficult to foster trust. In this paper,
we introduce the E-BART model with the hope
of making progress on this front. E-BART
is able to provide a veracity prediction for a
claim, and jointly generate a human-readable
explanation for this decision. We show that
E-BART is competitive with the state-of-the-
art on the e-FEVER and e-SNLI tasks. In ad-
dition, we validate the joint-prediction archi-
tecture by showing 1) that generating explana-
tions does not significantly impede the model
from performing well in its main task of ve-
racity prediction, and 2) that predicted verac-
ity and explanations are more internally coher-
ent when generated jointly than separately. Fi-
nally, we also conduct human evaluations on
the impact of generated explanations and ob-
serve that explanations increase human ability
to spot misinformation and make people more
skeptical about claims.

1 Introduction

Automated fact-checking (AFC) makes use of nat-
ural language processing (NLP) techniques to de-
termine the veracity of a claim. The problem is
defined in the following way: given a statement
(claim) and some evidence, determine whether
the statement is true with respect to the evidence
(Stammbach and Ash, 2020). This is a challenging
task for a human, let alone an autonomous sys-
tem (Graves, 2018). However, AFC systems are
able to approximate this process of evidence re-
trieval and synthesis with some degree of success
(Stammbach and Ash, 2020; Vlachos and Riedel,
2014). The benefits and applications of an AFC
system are numerous. The problem of disinfor-
mation is not new, however the rate of which it
propagates has continued to increase, largely aided

by the increasing popularity of social media plat-
forms (Pennycook et al., 2021). AFC systems are
starting to become a critical tool in combating the
sheer quantity of claims that need to be verified.

While accurate (Stammbach and Ash, 2020;
Portelli et al., 2020), AFC systems have been un-
able to supplement traditional fact-checkers due to
a limitation in their design. A user may not ac-
cept to believe in a statement without first under-
standing the concepts and facts underpinning that
statement. Such justifications are expected when
reading journalistic fact-checking outcomes such
as on Politifact; the fact-check outcome is accom-
panied by an explanation informing the reader of
how the decision was reached. Without provid-
ing users with an explanation, the decision pro-
vided by an automated system is far less likely to
be trusted (Toreini et al., 2020), especially as it is
not generated by humans.

Automated systems have recently been devel-
oped to this effect, and have demonstrated promis-
ing initial results (Graves, 2018). While these ini-
tial results are unquestionably impressive, critical
evaluation of the work reveals that many of these
systems use separate models for veracity predic-
tion and explanation generation. We argue that
systems such as these are not actually describ-
ing their own actions and decision processes, and
that the veracity prediction model is not made any
more transparent.

In this paper, we propose and experimentally
evaluate a system that jointly makes a veracity
prediction and provides an explanation within the
same model. This is novel as compared to classic
post-hoc explainability methods that are built on
top of existing machine learning models. As such,
the generated explanations more closely reflect the
decisions made by the veracity prediction model.
In addition to this, we show that large transformer
models are flexible enough to multitask, and are



thus able to explain their actions without detriment
to the original task. This allows human end users
to better interface with transformer models, foster-
ing a more trustworthy relationship between hu-
mans and deep learning models.

We specifically address the following research
questions:

• RQ1: How can we design a deep learn-
ing model to classify information truthfulness
and, at the same time, generate a natural lan-
guage explanation supporting its classifica-
tion decision?

• RQ2: Can such model result in both accurate
classification decisions and high quality nat-
ural language explanations?

• RQ3: Are machine-generated explanations
useful for humans to better assess informa-
tion truthfulness?

By creating an automated system that is capa-
ble of both evaluating the truthfulness of a state-
ment and simultaneously generating a human-
interpretable explanation for this decision, it is
hoped that automated fact-checking systems will
become more widely adopted.

2 Related Work

2.1 Existing Explainable-AFC Models
A number of techniques for generating explana-
tions to accompany AFC decisions have been pro-
posed. Saliency-based methods, such as those pro-
posed by Shu et al. (2019) and Wu et al. (2020),
use attention mechanisms to highlight the input
that is most useful in determining the veracity pre-
diction and present this information to the end user
as a form of explanation. Logic-based approaches
make use of graphs (Denaux and Gomez-Perez,
2020), rule mining, and probabilistic answer set
programming (Ahmadi et al., 2019) to output a se-
ries of logical rules that result in a veracity pre-
diction. This set of rules constitutes an explana-
tion. While these methods are highly transparent
and logical, the resulting explanation is not always
human-readable (Ahmadi et al., 2019).

Summarisation techniques provide an expla-
nation by summarising the retrieved evidence.
The system proposed by Atanasova et al. (2020)
utilises DistilBERT (Sanh et al., 2019) to pass
contextual representations of the claim and evi-
dence to two task-specific feed-forward networks

which produce a classification and an extractive
summary. Kotonya and Toni (2020) take a sim-
ilar approach but tailor their model to the pub-
lic health domain. The pipeline utilises Sentence-
BERT (Reimers and Gurevych, 2019) to filter the
evidence, a BERT-based veracity predictor, and a
separate BERT-based summarisation model. The
work by Kotonya and Toni (2020) differs from
Atanasova et al. (2020) as it produces abstrac-
tive explanations, which are generally more coher-
ent and similar to the way a human would gener-
ate a summary, rather than extractive explanations
which take sentences verbatim from the evidence.

The framework proposed by Stammbach and
Ash (2020) also produces abstractive explana-
tions, but places higher emphasis on the evidence
retrieval process. The framework consists of two
components: 1) an evidence retrieval and verac-
ity prediction module, and 2) an explanation gen-
eration module. The first component is an en-
hanced version of the DOMLIN system (Stamm-
bach and Neumann, 2019), which uses separate
BERT-based models for evidence retrieval and
veracity prediction. For explanation generation,
GPT-3 (Brown et al., 2020), a large pertained
multi-purpose NLP model based on the Trans-
former, is used in ‘few-shots’ mode to generate a
summary of the evidence with respect to the claim.

The system we present in this paper differs to
the existing literature as rather than using two sep-
arate models for the veracity prediction and expla-
nation generation, a single model is used to output
both a veracity prediction and an abstractive sum-
marisation.

2.2 BART Transformer Architecture

BART (Lewis et al., 2020) is a transformer
(Vaswani et al., 2017) model that aims to gener-
alise the capabilities of both BERT (Devlin et al.,
2019) and GPT-style models. It consists of a bi-
directional encoder, similar to BERT, as well as
an auto-regressive decoder, similar to GPT. BART
is pre-trained on a de-noising task whereby input
text is corrupted and the model aims to reconstruct
the original document, minimising the reconstruc-
tion loss. In contrast to existing de-noising mod-
els, BART is more flexible in that it is not trained
to rectify a specific type of input corruption, but
rather any arbitrarily corrupted document.

The pre-trained BART model can be fine-tuned
to a number of downstream tasks. The authors



noted that the model performs comparably to other
models, such as RoBERTa (Liu et al., 2019b), on
natural language inference tasks. They also note
that BART outperforms current state-of-the-art
models on natural language generation tasks, such
as summarisation (Lewis et al., 2020; Shleifer and
Rush, 2020). Its ability to perform well on these
two contrasting tasks made it an attractive choice
as the base model for a system that can jointly pre-
dict the veracity of a claim, an inference task, and
provide an explanation, a generative task.

3 A Model for Jointly Predicting and
Explaining Truthfulness

Many of the systems in the reviewed literature use
separate Transformer models for veracity predic-
tion and explanation generation. Outlined here
is our proposed architecture, E-BART, that jointly
outputs a veracity prediction, as well as a human-
readable, abstractive explanation addressing RQ1.

To adapt the BART-large encoder-decoder
model to this downstream task, a ‘joint prediction’
head was developed. This head sits atop the BART
model, and manipulates the transformer hidden
states into the form of the desired output. Both the
BART base model and the joint prediction head
can be fine-tuned as a single unit to customise pre-
trained BART weights to the joint prediction task.

The joint prediction head is depicted in green
in Figure 1. The head takes as input the final de-
coder hidden state embeddings. It then passes all
embeddings to a single feed-forward layer to pro-
duce a series of logits which form the basis of the
predicted explanation. To facilitate classification,
the hidden state embeddings corresponding to the
final sequence separator token (</s> in BART)
are extracted and passed to a small feed-forward
network to shape the output to the desired number
of classes. The logits obtained from this are then
passed to a final soft-max layer to produce proba-
bilities for each class. Unlike in BERT which uses
embeddings corresponding to the [cls] token
which is pre-pended to the input to perform classi-
fication, in BART the final sequence separator to-
ken is used instead as the decoder can only attend
to the left of the current token. This conditions
the classification on the entire input sequence. It
is instructive to consider the training and inference
processes separately, as they differ slightly due to
the auto-regressive nature of the BART decoder.

During training, the encoder generates hidden

Figure 1: E-BART Training configuration.

Figure 2: E-BART Inference process.

states from the tokenised input that are then in-
jected into the decoder. The tokenised gold sum-
mary is presented to both the input and sum-
marization output of the decoder, with the input
shifted right by one token. This conditions the
decoder to predict the next token given the cur-
rent token. Concurrently, the classification labels
are presented to the classification output of the
joint prediction head. The loss is calculated as
the weighted sum (with parameters α and (1− α))
of the Cross Entropy Loss computed between the
summarisation logits and the gold summary, and
the Cross Entropy Loss between the classification
logits and the ground truth classification.

Figure 2 shows the inference process. Run-
ning inference on the model begins by running



the encoder with the tokenised input to generate
the encoder hidden states, as before. In contrast
to the training process, the decoder is presented
with the start sequence token (<s> in BART),
and generates logits auto-regressively, guided by a
beam search. The final phase of inference runs the
decoder with the entire generated sequence pre-
sented at its input. At this point, the joint predic-
tion head extracts the embeddings corresponding
to the token immediately before the final sequence
separator token from the generated sequence. This
is done to mirror the training process. These em-
beddings are passed to the classification compo-
nent of the joint prediction head, and then to a
soft-max layer to produce the final classification.

4 Experimental Evaluation

4.1 Datasets

To evaluate the proposed models we make use of
different datasets. The FEVER dataset consists
of 185,445 claims, associated evidence, and ve-
racity labels. The claims were generated by ma-
nipulating sentences taken from Wikipedia, and
are labelled with either “Supports”, “Refutes”, or
“Not enough info” based on whether the evidence
entails the claim (Thorne et al., 2018).

The e-FEVER dataset by Stammbach and Ash
(2020) augments the original FEVER dataset
(Thorne et al., 2018) with explanations generated
by their framework. It consists of 50,000 exam-
ples from the FEVER train set, and 17,687 from
the development set. This provides a resource with
claims, retrieved evidence, veracity labels, and ex-
planations.

The e-SNLI dataset (Camburu et al., 2018) ex-
tends the SNLI dataset (Bowman et al., 2015)
with human-generated explanations for each of the
570k examples. The SNLI task is to take two
sentences and predict whether one entails, contra-
dicts, or is neutral with respect to the other. e-
SNLI adds complexity by also requiring a gener-
ated explanation for the label.

4.2 Training Methodology

To investigate RQ2 and evaluate the performance
of the proposed model on the FEVER and ex-
tended e-FEVER tasks, two different versions of
the model were trained. In the e-FEVER dataset,
if the GPT-3 component decided that the retrieved
evidence was insufficient, it would produce a de-
fault ’null’ explanation. Our first model, E-

BARTSmall, was trained on the subset of the e-
FEVER training set that did not include null ex-
planations. This resulted in 40,702 examples. To
process the data, the “+” character used to sepa-
rate page titles from evidence was removed. The
model inputs were tokenised and formatted as:
“<s> claim </s> evidence </s>”. The verac-
ity labels were made numerical and explanations
were tokenised in a similar manner. The processed
dataset was used to fine-tune the BART-large
model with joint prediction head for 3 epochs. Our
second model, E-BARTFull, was trained in ex-
actly the same way as the first, however it was
trained using the entire e-FEVER training set, in-
cluding examples with null explanations.

4.3 Evaluation Methodology
The development split of the e-FEVER dataset
was prepared identically to the training split, pro-
ducing e-FEVER Full and e-FEVER Small which
do, and do not, include examples with null expla-
nations, respectively.

When evaluating the veracity prediction accu-
racy of the models, it was noted that including the
“Not enough info” class could under-represent
the actual classification performance. Take the ex-
ample in Table 1, which has a ground truth label
of “Not enough info”. Manual inspection shows
that the explanation and evidence indicate that the
claim is indeed refuted, which was correctly pre-
dicted by our model. Hence we report two sets of
results, one with, and one without examples that
have a e-FEVER label of “Not enough info”.

4.4 Evaluation Results on Original FEVER
To compare with existing models, we report the
classification performance of E-BART on the orig-
inal FEVER development set. The DOMLIN sys-
tem (Stammbach and Neumann, 2019) was used
for evidence retrieval (discarding its veracity pre-
dictions) to provide evidence for 17k out of the
20k examples in the development set. We use our
E-BART models to generate veracity predictions
for the 17k examples, and then label the remaining
with ‘Not enough info,’ as specified in the DOM-
LIN paper. Results are reported for the develop-
ment set rather than the test set, as ground-truth
labels were not published for the latter.

On the FEVER dataset, E-BARTSmall and E-
BARTFull achieved label accuracies of 75.0 and
75.1, respectively, outperforming state-of-the-art
methods. For comparison, other published model



Table 1: Ground truth label is “Not enough info” and predicted label is “Refutes”.

Claim Evidence Generated Expla-
nation

Marnie was di-
rected by some-
one who was
“The Master of
Nothing”.

Alfred Hitchcock Sir Alfred Joseph Hitchcock (13 August
1899-29 April 1980) was an English film director and pro-
ducer, at times referred to as “The Master of Suspense”.
Marnie (film) Marnie is a 1964 American psychological
thriller film directed by Alfred Hitchcock.

Marnie was di-
rected by Alfred
Hitchcock, who
was “The Master
of Suspense”.

accuracies on this dataset include: BERT-BASED
74.6 (Soleimani et al., 2020), DOMLIN 72.1
(Stammbach and Neumann, 2019), UCL MR 69.7
(Yoneda et al., 2018), UNC 69.6 (Nie et al., 2019),
and UKP-Athene 68.5 (Hanselowski et al., 2018).
E-BART compares favourably to the existing lit-
erature despite the e-FEVER training set having
95k less examples compared to FEVER, which
the other models were trained on. It is hypothe-
sised that the performance improvements are de-
rived from using BART as a base model, and from
requiring the model to further attend to the most
relevant evidence in forming an explanation. The
most noteworthy comparison is between E-BART
and DOMLIN, which use identical evidence re-
trieval mechanisms, thus isolating the contribution
of E-BART over standard veracity predictors.

4.5 Evaluation Results on e-FEVER
Table 2 shows the results obtained on the develop-
ment e-FEVER dataset. To the best of our knowl-
edge, there have been no other results reported on
this recent dataset, hence we present a comprehen-
sive snapshot of E-BART’s performance.

Perhaps unsurprisingly, both our models per-
formed better on e-FEVER Small, which con-
tained less inconclusive examples. More sur-
prising is the consistency of E-BART’s perfor-
mance regardless of whether it was trained on e-
FEVER Small or e-FEVER Full. This indicates
that E-BART is robust to situations where evi-
dence is sparse. Table 3, qualitatively shows that
the model can even express the fact that it was not
able to find relevant evidence.

The ROUGE metrics evaluate the consistency
between the generated and e-FEVER dataset ex-
planations, but are not necessarily representative
of explanation quality. For instance, the explana-
tion generated by GPT-3 may include some addi-
tional information compared to E-BART. Whether
this additional information results in a better ex-

planation compared to something more succinct is
largely subjective and dependent on the system’s
use case. In Tables 1, 3 and 4, we present exam-
ples from the development set.

4.6 Evaluation Results on e-SNLI

The e-SNLI task presents a similar challenge to e-
FEVER, whereby the entailment between two sen-
tences is predicted (similar to predicting veracity
of a claim with respect to evidence), and an expla-
nation is generated.

A different version of the E-BART model was
trained specifically on this dataset. The data
was prepared by enumerating the labels, remov-
ing noisy data, and tokenising the summaries. The
first and second sentences were concatenated and
tokenised in the same way as the claim and expla-
nation for the e-FEVER evaluation.

On the test e-SNLI dataset, E-BART achieved a
label accuracy of 90.1 and a BLEU score of 32.70.
The model proposed in conjunction with the e-
SNLI dataset, e-INFERSENT, achieved an accu-
racy of 84.0 and BLEU score of 22.4 (Camburu
et al., 2018). In calculating the BLEU metric for
the explainable models, the first two gold expla-
nations were used as references as per (Camburu
et al., 2018). As a further comparison, the follow-
ing are the best performing models published in
the literature1 which, however, do not provide ex-
planations: CA-MTL 92.1 (Pilault et al., 2021),
SemBERT 91.9 (Zhang et al., 2020), MT-DNN
91.6 (Liu et al., 2019a), SJRC 91.3 (Zhang et al.,
2018), D-CRCo-AN 90.1 (Kim et al., 2019), and
LMTransformer 89.9 (Radford et al., 2018).

The performance of E-BART compares
favourably with the state-of-the-art for this
different task, corroborating the result from the
FEVER task, and further confirming that E-BART

1https://nlp.stanford.edu/projects/
snli/

https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/


Table 2: Effectiveness of the models on the e-FEVER dataset.

Model Dataset Accuracy Accuracy ROUGE ROUGE ROUGE ROUGE
no N.E.I full 1 2 L Sum

E-BARTSmall eFEVER Small 87.2 78.2 73.581 64.365 71.434 71.585
E-BARTSmall eFEVER Full 85.4 77.1 59.447 50.177 57.697 57.782
E-BARTFull eFEVER Small 87.1 78.1 64.530 55.283 62.691 62.820
E-BARTFull eFEVER Full 85.2 77.2 65.511 57.598 64.071 64.144

Table 3: Ground truth label is “Supports” and predicted label is “Supports”.

Claim Evidence Generated Explanation

CBS is the
network that
aired The
Millers

The Millers The multi-camera series aired from October 3,
2013 to July 18, 2015 and ran 34 episodes over two seasons
on CBS. CBS announced the cancellation of The Millers
on November 14, 2014, four episodes into the show’s sec-
ond season.

The Millers aired on CBS,
however it does not say
whether it was the net-
work that aired it.

is flexible enough to provide explanations without
compromising its performance on the main task.
To compliment the BLEU metric, we provide
some examples in Tables 5 and 6 for manual
verification of explanation quality.

4.7 Validating the Use of Joint Models:
Experiment 1

To further investigate RQ2 and test the ability of
our joint models, we compare the performance of
E-BART to a pipeline that produces a veracity pre-
diction and generates an explanation using two in-
dependent models. To ensure that the results be-
tween the two methods are comparable, the archi-
tecture and training methodology was kept as con-
sistent as possible. The separate pipeline, which
we term Separate-BART, uses a BART-based se-
quence classifier, and a BART-based model for
language generation. Both E-BART and Separate-
BART were initialised with the same pre-trained
weights, and were trained and evaluated on e-
FEVER Small. However due to memory con-
straints, the inputs were truncated to a maximum
length of 256 tokens (which only truncated 4.56%
of examples). In addition to this, a virtual batch
size of 32 was used (batch size four, with eight
gradient accumulation steps) to overcome conver-
gence issues. When training the sequence gener-
ator model, a batch size of two with two gradient
accumulation steps was used, also due to memory
restrictions on available hardware. In comparison,
the joint model was trained with a batch size of

four and no additional gradient accumulation.
The results in Table 7 indicate that the predic-

tion performance of both types of model is al-
most identical, with Separate-BART being slightly
more effective. Manual inspection of the gener-
ated explanations revealed that both were of a sim-
ilar quality in terms of expressiveness and cohe-
siveness. This experimental result reinforces what
was seen in the practical evaluations on e-FEVER
and e-SNLI: that E-BART is able to jointly pro-
vide an explanation without diminishing the per-
formance on its main task.

4.8 Validating the Use of Joint Models:
Experiment 2

This experiment aims to investigate whether the
internal consistency between the predicted verac-
ity and predicted explanation differs between the
joint and separate models. We use the same E-
BART and Separate-BART models from Experi-
ment 1, but train an additional ’judge’ model to
predict the veracity of a claim, given an explana-
tion. The ground truth veracity labels and dataset
explanations from e-FEVER Small were used to
train the BART-based sequence classifier. As such,
its weights are not conditioned on those of E-
BART or Separate-BART, meaning that it is inde-
pendent from both models.

We run the experiment by taking the claims
from the development set and the predicted ex-
planations from E-BART. The claims and expla-
nations are then passed to the ’judge’ model to



Table 4: Ground truth label is “Refutes” and predicted label is “Refutes” (E-BART˙Small Model).

Claim Evidence Gold Expla-
nation

Generated Expla-
nation

Janet
Leigh was
incapable
of writing.

Janet Leigh Janet Leigh (born Jeanette Helen Morri-
son; July 6, 1927-October 3, 2004) was an American
actress, singer, dancer and author. Janet Leigh She
also wrote four books between 1984 and 2002, includ-
ing two novels.

Janet Leigh
was capable
of writing.

Janet Leigh wrote
four books between
1984 and 2002, in-
cluding two novels.

Table 5: Ground truth label is “Entailment” and predicted label is “Entailment”.

Sentence 1 Sentence 2 Generated Explanation

One tan girl with a wool hat is running and
leaning over an object, while another per-
son in a wool hat is sitting on the ground.

A tan girl runs
leans over an
object

One tan girl with a wool hat is running
and leaning over an object is a rephras-
ing of a tan girl runs leans over an ob-
ject.

produce a veracity prediction. This ’judge’ verac-
ity prediction is then compared against the verac-
ity prediction from E-BART, and the accuracy is
computed. The process was repeated for Separate-
BART, and the results are presented in Table 8.

The results show a higher accuracy for E-BART
as determined by the ’judge’ model. This provides
indication that the veracity prediction and expla-
nation generated by E-BART are more consistent
with each other than those generated by Separate-
BART. Ultimately this means that joint models are
one step closer to being truly interpretable com-
pared to models that generate explanations sepa-
rately in a post-hoc manner. While this is not con-
clusive proof, it does provide some evidence that
there are consistency gains to be made when using
joint prediction and explanation models.

4.9 Testing the Impact of Explanations

To address RQ3, we experimentally validated the
benefit of explanations generated by our model
with human annotators, performing the crowd-
sourcing study detailed in the following. We col-
lected the data using the Amazon MTurk crowd-
sourcing platform. To test the impact of machine-
generated explanations of truthfulness, we de-
ployed two versions of the same human annota-
tion task. In the first version (Task 1), we provided
participants with a claim from the FEVER dataset
and we asked them to provide a truthfulness as-
sessment on the true/false binary scale along with
a sentence justifying their assessment, as this has

been shown to improve assessment quality (Kutlu
et al., 2020). In the second version (Task 2), we
provided participants with both the claim and the
explanation generated by our E-BART system and
ask for an assessment and justification. Thus,
the only difference between Task 1 and 2 is the
absence or presence of the E-BART explanation.
Each worker has been asked to assess the truth-
fulness of four claims, two labelled in the ground
truth as “Supports”, and two labelled as “Refutes”.
Each claim has been assessed by ten distinct hu-
man participants. To avoid bias, we performed a
randomisation process while generating the claim-
participant assignments (i.e., in the MTurk HITs).
For consistency, we kept the same assignments
(i.e., same HITs) for the two versions of the task.
Participants were only allowed to complete one
version of the task. To ensure high quality of the
collected data and to avoid adversarial behaviour,
we required participants to spend at least 2 sec-
onds on each task page.

Figure 3 shows the external agreement between
the ground truth and the crowd when considering
both the individual participant judgments and the
judgements aggregated over the ten participants
assessing the same claim using majority vote. As
we can see from the figure, the accuracy of the par-
ticipants in Task 2 is higher than the ones of Task
1 (0.70 for Task 1 and 0.74 for Task 2 for the indi-
vidual; 0.83 for Task 1 and 0.90 for Task 2 for the
aggregated judgments). The differences are statis-
tically significant according to the Mann-Whitney



Table 6: Ground truth label is “Neutral” and predicted label is “Neutral”.

Sentence 1 Sentence 2 Generated Explanation

A young family enjoys
feeling ocean waves
lap at their feet.

A young man and woman
take their child to the
beach for the first time.

Just because a young family enjoys feeling ocean
waves lap at their feet does not mean that they
take their child to the beach for the first time.

Table 7: Effectiveness of the joint and separate models.

Model Accuracy Accuracy Rouge Rouge Rouge Rouge
no N.E.I full 1 2 L Sum

E-BART 87.2 78.2 73.581 64.365 71.434 71.585
Separate-BART 88.1 78.9 73.070 63.634 71.005 71.136

Table 8: Internal consistency of the joint and separate
models.

Model Accuracy Accuracy
no N.E.I full

E-BART 91.8 86.8
Separate-BART 90.4 85.8

U test at the p < 0.05 level for both the individual
and the aggregated judgements. We can addition-
ally observe that the display of explanations (i.e.,
Task 2) reduces the number of false positives (i.e.,
claims that are false but are erroneously perceived
as being true by human subjects) from 122 to 93;
Thus, it appears that the explanations automati-
cally generated by our E-BART model have the ef-
fect of making people more skeptical about claims
(see also Table 3 for an example). Performing sim-
ple aggregations and under condition of Task 2, we
are able achieve 90% non-expert label accuracy,
which is a promising step towards crowdsourced
truthfulness annotations (Roitero et al., 2020).

5 Conclusions

In this paper we explored the potential of AFC
models jointly making a prediction and provid-
ing a human-readable explanation for that predic-
tion. To this end, we proposed the E-BART archi-
tecture and evaluated its performance on the ex-
tended FEVER and SNLI tasks. Experimentation
revealed that E-BART could achieve results com-
parable to the state-of-the-art and simultaneously
generate coherent and relevant explanations. We
argued that jointly predicting explanations makes
AFC systems more transparent, and fosters greater
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Figure 3: External agreement between ground truth and
crowd for raw (first row) and aggregated (second row)
truthfulness assessments. Task 1 shows just the claim
while Task 2 shows the claim and the natural language
explanation generated by our E-BART model.

trust in the system. Finally, human evaluation
of the impact of generated explanations revealed
that the explanations provided by E-BART gener-
ally make people more accurate in detecting mis-
information and more skeptical of a claim they en-
counter online.
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