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Abstract. This note relates to bounds on the chromatic number χ(Rn) of the
Euclidean space, which is the minimum number of colors needed to color all the
points in Rn so that any two points at the distance 1 receive different colors. In
[6] a sequence of graphs Gn in Rn was introduced showing that χ(Rn) ≥ χ(Gn) ≥

(1 + o(1))n
2

6
. For many years, this bound has been remaining the best known

bound for the chromatic numbers of some low-dimensional spaces. Here we prove
that χ(Gn) ∼ n

2

6
and find an exact formula for the chromatic number in the case

of n = 2k and n = 2k − 1.
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1. Introduction

In this note, we study the classical chromatic number χ(Rn) of the Euclidean
space. The quantity χ(Rn) is the minimum number of colors needed to color all the
points in Rn so that any two points at a given distance a receive different colors.
By a well-known compactness result of Erdős and de Bruijn (see [1]), the value of
χ(Rn) is equal to the chromatic number of a finite distance graph G = (V,E), where
V ⊂ Rn and E = {{x,y} : |x − y| = a}.
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Now we know that

(1.239 . . . + o(1))n ≤ χ(Rn) ≤ (3 + o(1))n,

where the lower bound is due to the third author of this paper (see [8]) and the upper
bound is due to Larman and Rogers (see [6]). Also, in [3] one can find an up-to-date
table of estimates obtained for the dimensions n ≤ 12.

It is worth noting that the linear bound χ(Rn) ≥ n + 2 is quite simple, and the
first superlinear bound was discovered by Larman, Rogers, Erdős, and Sós in [6].
They considered a family of graphs Gn = (Vn, En) with

Vn = {x = (x1, . . . , xn) : xi ∈ {0, 1}, x1+. . .+xn = 3}, En = {{x,y} : |x−y| = 2}.

In other words, the vertices of Gn are all the 3-subsets of the set [n] = {1, . . . , n} and
two vertices A,B are connected with an edge iff |A ∩ B| = 1. Larman et al. used in
[6] an earlier result by Zs. Nagy who proved the following theorem.

Theorem 1.1 ([6]). Let s and t ≤ 3 be nonnegative integers and let n = 4s + t.
Then

α(Gn) =

⎧

⎨

⎩

n, if t = 0,
n − 1, if t = 1,
n − 2, if t = 2 or t = 3.

The standard inequality χ(Gn) ≥ |Vn|
α(Gn) combined with the above theorem gives

an obvious corollary.

Corollary 1.1 ([6]). Let s and t ≤ 3 be nonnegative integers and let n = 4s + t.
Then

χ(Gn) ≥

⎧

⎨

⎩

(n−1)(n−2)
6 , if t = 0,

n(n−2)
6 , if t = 1,

n(n−1)
6 , if t = 2 or t = 3.

The bounds from the corollary are applied to estimate from below the chromatic
numbers χ(Rn−1), since the vertices of Gn lie in the hyperplane x1 + . . . + xn = 3.
Now all these bounds are surpassed due to the consideration of some other distance
graphs (see [3]). However, it could happen that actually χ(Gn) is much bigger than
the ratio |Vn|

α(Gn) . It turns out that this is not the case, and the main result of this
note is as follows.

Theorem 1.2. If n = 2k for some integer k ≥ 2, then

χ(Gn) =
(n − 1)(n − 2)

6
.
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Additionally, if n = 2k − 1 for some integer k ≥ 2, then

χ(Gn) =
n(n − 1)

6
.

Finally, there is a constant c such that for every n,

χ(Gn) ≤
(n − 1)(n − 2)

6
+ cn.

Our proof yields that c ≤ 5.5. With some more work we could prove that c ≤ 4.5.
On the other hand, since n(n−1)/6− (n−1)(n−2)/6 = (n−1)/3, we have c ≥ 1/3.

In the next section, we prove Theorem 1.2.

2. Proof of Theorem 1.2

Easily,
χ(G3) = 1, χ(G4) = 1, χ(G5) = 3.

Let f(n) := (n−1)(n−2)
6 . We show by induction on k that χ(G2k) = f(2k). For

k = 2 it is trivial. Assume that for some k we established the induction hypothesis.
Partition the set [n] =

[

2k+1
]

into the equal parts A1 =
[

n
2

]

, A2 = [n] \
[

n
2

]

of size
2k. Denote by U1 and U2 the sets of vertices of G = G2k+1 lying in the sets A1

and A2 respectively. By the induction assumption, each of the induced subgraphs
G[U1] and G[U2] can be properly colored with at most f(2k) colors. Cover all pairs
of elements of A1 with disjoint perfect matchings N1, . . . , N2k−1 and all pairs of
elements of A2 with matchings M1, . . . ,M2k−1. We form a color class C(i, j) for
1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2k−1 as follows. Consider the matchings Ni,Mi and
assume that the edges are {u1, u2}, {u3, u4}, . . . in Ni and {v1, v2}, {v3, v4}, . . . in Mi.
For j = 1, . . . , 2k−1 let D(i, j) denote the following set of quadruples (indices are
considered modulo 2k):

{u1, u2, v2j−1, v2j}, {u3, u4, v2j+1, v2j+2}, . . . , {u2k−1, u2k , v2j−3, v2j−2}.

For i = 1, . . . , 2k − 1 and j = 1, . . . , 2k−1, the color class C(i, j) is formed by the
collection of triples contained in the members of D(i, j). The intersection sizes are
all 0 or 2, so the triples in C(i, j) form an independent set in G. Moreover, each
triple is contained in a member of some D(i, j). The total number of used colors is

2k−1(2k − 1) + f(2k) = 22k−1 − 2k−1 +
(2k − 1)(2k − 2)

6
= f(2k+1).

This proves the first statement of the theorem. Since χ(Gn) ≤ χ(Gn+1), this also
implies the statement of the theorem for n = 2k − 1.

It remains to show that there exists a constant c such that χ(Gn) ≤ n2

6 + cn for
every n. Consider our coloring in steps.
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Step 1: Let n = 4s1+t1 where t1 ≤ 3. First, color all triples containing the elements
4s1 + 1, . . . , 4s1 + t1 with at most t1(n − 1) < 3n colors. Now consider the set [4s1]
and all the triples in this set. Partition [4s1] into A1 = [2s1] and A2 = [4s1] − [2s1]
and color the triples intersecting both A1 and A2 with s1(2s1 −1) < n

4

(

n
2 − 1

)

colors
as above.

Step 2: Since the triples contained in A1 are disjoint from the triples contained in
A2, we will use for coloring the triples contained in A2 the same colors and the same
procedure as for the triples contained in A1. Consider A1. Let n1 = |A1| = 2s1 =
4s2 + t2 where t2 ≤ 3. Since 2s1 is even, t2 ≤ 2. By construction, n1 ≤ n

2 . Similarly
to Step 1, color all triples containing the elements 4s2 + 1, . . . , 4s2 + t2 with at most
t2(n1 − 1) < 2n1 colors. Partition [4s2] into A1,1 = [2s2] and A1,2 = [4s2] − [2s2] and
color the triples intersecting both A1,1 and A1,2 with at most n

8

(

n
4 − 1

)

new colors.
Step i (for i ≥ 3): If 2si−1 ≤ 2, then Stop. Otherwise, repeat Step 2 with [2si−1]

in place of [2s1].
Altogether, we use at most

(

3n +
n

4

(n

2
− 1

))

+

(

2n

2
+

n

8

(n

4
− 1

)

)

+

(

2n

4
+

n

16

(n

8
− 1

)

)

+ . . . <

< 5n +
n2

8
·
4

3
=

n2

6
+ 5n =

(n − 1)(n − 2)

6
+ 5.5n − 1/3

colors. The theorem is proved.

3. Discussion

First of all, we note that the constant 5 in the bound χ(Gn) ≤ n2

6 + 5n is not the
best possible. Certainly, it can be improved. However, to find the exact value of the
chromatic number is still interesting. For example, we know that χ(R12) ≥ 27 (see

[3]). At the same time, χ(G13) ≥

⌈

(13

3 )
12

⌉

= 24 (due to Corollary 1.1), and the proof

of Theorem 1.2 applied for n = 13 yields a bound χ(G13) ≤ 31.
It would be quite interesting to study more general graphs. Let G(n, r, s) be the

graph whose set of vertices consists of all the r-subsets of the set [n] and whose set
of edges is formed by all possible pairs of vertices A,B with |A ∩ B| = s. Larman
proved in [5] that

χ(Rn) ≥ χ(G(n, 5, 2)) ≥

(

n
5

)

α(G(n, 5, 2))
≥ (1 + o(1))

(

n
5

)

1485n2
∼

n3

178200
.

Thus, the main result of Larman was in finding the bound α(G(n, 5, 2)) ≤ (1 +
o(1))1485n2. However, the so-called linear algebra method ([2], see also [8]) can
be directly applied here to show that α(G(n, 5, 2)) ≤ (1 + o(1))

(

n
2

)

∼ n2

2 . This
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substantially improves Larman’s estimate and gives χ(G(n, 5, 2)) ≥ (1+o(1))n3

60 . We
do not know any further improvements on this result. On the other hand, observe
that for any 3-set A, the collection of 5-sets containing A forms an independent set in
G(n, 5, 2), yielding χ(G(n, 5, 2)) ≤

(

n
3

)

∼ n3

6 . It is plausible that χ(G(n, 5, 2)) ∼ cn3

with a constant c ∈ [1/60, 1/6], but this constant is not yet found and even no better
bounds for c have been published.

Furthermore, the graphs G(n, 5, 3) have been studied, since the best known lower
bound χ(R9) ≥ 21 is due to the fact that χ(G(10, 5, 3)) = 21 (see [4]). No related
results concerning the case of n → ∞ have apparently been published.

Now, the consideration of graphs G(n, r, s) with some small r, s and growing n is
motivated. So assume that r and s are fixed and n → ∞. We have

χ(G(n, r, s)) ≤ min{O(nr−s), O(ns+1)}.

The first bound follows from Brooks’ theorem, since the maximum degree of G(n, r, s)
is

(

r

s

)(

n − r

r − s

)

= (1 + o(1))
r!

s!(r − s)!(r − s)!
nr−s.

The second bound is a simple generalization of the above-mentioned bound χ(G(n, 5,
2)) ≤ (1 + o(1))n3/6.

Note that the second bound can be somewhat improved. Assume s < r/2, so
q := ⌈(r − 1)/s⌉ is at least 2. Assuming that q divides n, partition [n] into q equal
classes, A1, . . . , Aq. Let C be the family of (s + 1)-sets that are subsets of some Ai.
For each B ∈ C, the r-sets containing B form an independent set in G(n, r, s), and
by the pigeonhole principle every r-set contains such B, hence

χ(G(n, r, s)) ≤ |C| = q

(

n/q

s + 1

)

= (1 + o(1))
ns+1

qs(s + 1)!
.

In particular, χ(G(n, 5, 2)) ≤ (1 + o(1))n3

24 , which improves the previous bound n3

6 .
It is worthwhile to look at the construction in Section 2 from a different point

of view. For n = 2k we constructed a 4-uniform hypergraph H with the property
that every 3-subset of vertices is covered exactly once. Note that e(H) =

(

n
3

)

/4.
Then we decomposed E(H) into

(

n
3

)

perfect matchings. Each matching gives a color
class of our coloring. Note that instead of providing the explicit decomposition, we
could have used a classical theorem of Pippenger and Spencer [7], which claims the
existence of (1 + o(1))

(

n
3

)

covering matchings.
This motivates the following possible approach to the case r = 2s + 1. The

discussion here is not a proof, just sketching a possible way of a generalization of our
argument. Assume that we managed to construct an (r + s)-uniform hypergraph H
that covers every r-set exactly once. Then e(H) =

(

n
r

)

/
(

r+s
s

)

. Assume that H can be
decomposed into t hypergraphs, N1, . . . ,Nt, such that for every i and every A,B ∈ Ni
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we have |A∩B| ≤ s− 1. Then the r-sets covered by sets in Ni form an independent
set, yielding χ(G(n, r, s)) ≤ t. If true, a generalization of the theorem of Pippenger
and Spencer [7] would give t ≤ (1 + o(1))

(

n
r

)

/
(

n
s

)

= (1 + o(1))(s!/r!)nr−s. This
bound, if true, would be asymptotically best possible, since the already mentioned
linear algebra method (see [2], [8]) ensures that α(G(n, 2s + 1, s)) ≤ (1 + o(1))

(

n
s

)

and so χ(G(n, 2s + 1, s)) ≥ (1 + o(1))
(

n
r

)

/
(

n
s

)

, provided s + 1 is a prime power. In

particular, we would get χ(G(n, 5, 2)) ∼ n2

60 .
The case of simultaneously growing n, r, s has also been studied. Namely, r ∼ r′n

and s ∼ s′n with any r′ ∈ (0, 1) and s′ ∈ (0, r′) have been considered. This is
due to the fact that the first exponential estimate to the quantity χ(Rn), χ(Rn) ≥
(1.207 . . . + o(1))n, was obtained by Frankl and Wilson in [2] with the help of some
graphs G(n, r, s) having r ∼ r′n and s ∼ r′

2 n. Lower bounds are usually based on
the linear algebra (see [8]) and upper bounds can be found in [9].

References

[1] N.G. de Bruijn, P. Erdős, A colour problem for infinite graphs and a problem in the theory of
relations, Proc. Koninkl. Nederl. Acad. Wet., Ser. A 54 (1951), 371–373.

[2] P. Frankl, R. Wilson, Intersection theorems with geometric consequences, Combinatorica 1
(1981), 357–368.

[3] A.B. Kupavskiy, On coloring spheres embedded into Rn, Sb. Math. 202 (2011), N6, 83–110.
[4] A.B. Kupavskiy, A.M. Raigorodskii, On the chromatic number of R9, J. of Math. Sci. 163

(2009), N6, 720–731.
[5] D.G. Larman, A note on the realization of distances within sets in Euclidean space, Comment.

Math. Helvet. 53 (1978), 529–535.
[6] D.G. Larman, C.A. Rogers, The realization of distances within sets in Euclidean space, Math-

ematika 19 (1972), 1–24.
[7] N. Pippenger, J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, J.

Combin. Theory, Ser. A 51 (1989), 24–42.
[8] A.M. Raigorodskii, On the chromatic number of a space, Russian Math. Surveys 55 (2000),

N2, 351–352.
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