
University of Koblenz-Landau
Department of Computer Science

Software Chrestomathy as a Knowledge-Driven
Research Infrastructure for Software

Engineering

Andrei Varanovich

October 2017

Vom Promotionsausschuss des Fachbereichs 4: Informatik der Universität Koblenz-Landau
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation

Vorsitzende des Promotionsausschusses: Prof. Dr. Dietrich Paulus
Berichterstatter: Prof. Dr. Colin Atkinson

Prof. Dr. Ralf Lämmel
Prof. Dr. Alfonso Pierantonio

Datum der wissenschaftlichen Aussprache: 14.07.2017

Abstract

The term “Software Chrestomaty” is defined as a collection of software systems meant to be

useful in learning about or gaining insight into software languages, software technologies, soft-

ware concepts, programming, and software engineering. 101companies software chrestomathy is

a community project with the attributes of a Research 2.0 infrastructure for various stakehold-

ers in software languages and technology communities. The core of 101companies combines

a semantic wiki and confederated open source repositories. We designed and developed an

integrated ontology-based knowledge base about software languages and technologies. The

knowledge is created by the community of contributors and supported with a running exam-

ple and structured documentation. The complete ecosystem is exposed by using Linked Data

principles and equipped with the additional metadata about individual artifacts. Within the

context of software chrestomathy we explored a new type of software architecture – linguistic

architecture that is targeted on the language and technology relationships within a software

product and based on the megamodels. Our approach to documentation of the software sys-

tems is highly structured and makes use of the concepts of the newly developed megamodeling

language MegaL. We “connect” an emerging ontology with the megamodeling artifacts to raise

the cognitive value of the linguistic architecture.

i

Zusammenfassung

Der Begriff “Software Chrestomaty” ist als Sammlung von Betriebssystemen definiert, die nüt-

zlich sein kann, um über Betriebssprachen, Betriebstechnologien, Konzepts, Programmierung

und Software-Engineering zu lernen oder einen Einblick in denen zu gewinnen. 101companies

software chrestomathy ist ein Gemeinschaftsprojekt mit den Merkmalen von Research 2.0 In-

frastruktur für die unterschiedlichen Verwahrern in Betriebssprachen und Technologiegemein-

schaften. Das Kernstück von 101companies umfasst ein semantisches Wiki und verbündete

Open-Source-Repositories. Wir gestalteten und entwickelten eine integrierte auf Ontologie

basierende Informationsbank über Betriebssprachen und Technologien. Die Information ist

bei der Gemeinschaft der Beitragsleistenden geschafft und mit einem laufenden Beispiel und

strukturiertem Belegmaterial unterstützt. Das ganze Ökosystem wird mit der Verwendung

von Link Data Prinzipien aufgedeckt und mit zusätzlichen Metadaten über die individuellen

Artefakte ausgerüstet. Im Kontext von Software Chrestomaty untersuchten wir eine neue Art

der Softwarearchitektur, bzw. linguistische Architektur, die sich auf das Verhältnis zwischen

Sprachen und Technologie in einem Softwareartikel abzielte und sich auf die Megamodelle

beruhte. Unser Vorgehen mit der Beschreibung des Betriebssystems ist hoch strukturiert und

nutzt die Konzepte der neu entwickelten Sprache MegaL. Wir schließen die entstehende Ontolo-

gie mit den Megamodellartefekten an, um den kognitiven Wert der linguistischen Architektur

zu erhöhen.

ii

Acknowledgements

This research was done within the Software Language Team of the University of Koblenz-

Landau led by Prof. Dr. Ralf Lämmel – my supervisor. His vision and professionalism played

a big part in the success of this research. The energy and inspiration of Jean-Marie Favre from

the University of Grenoble (France) helped enormously at the beginning of this research. His

broad outlook helped to set up a research agenda. I am grateful to GTTSE 2011, and SoTeSoLa

2013 summer school participants and organizers. Vadim Zaytzev from CWI (Amsterdam, the

Netherlands) was the early adopter of our megamodeling approach, which was quite inspiring

and led to a series of productive visits. It would never be possible to implement so complex

technical infrastructure without the substantial contributions of Thomas Schmorleiz, and Mar-

tin Leinberger who are fully committed to the project. Finally, my thanks to the long list of

students of the University of Koblenz-Landau who contributed to the project in various roles.

A number of events helped to validate the early research ideas. SATToSE seminar series enabled

valuable discussion with the broader yet very friendly community. I am thankful to Paul Klint

from CWI (Amsterdam, the Netherlands) for his critical retrospective on the matters of science

and Erwann Wernli from University of Bern (Switzerland) for his tips as an “experienced”

Ph.D. student.

Additionally I would like to thank my two colleagues at the University of Koblenz-Landau,

Sabine Hülstrunk and Ekaterina Pek.

This journey would never be possible without my wife Tatsiana.

iii

iv

Dedication

In memory of Anatoly Alexeevich Minkovsky (1945 - 2014), my teacher and friend.

v

“The game of science is, in principle, without end. He who decides one day that scientific
statements do not call for any further test, and that they can be regarded as finally verified,
retires from the game.”

Sadia Malik

vi

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Research Context . 1

1.1.1 Technological Spaces . 2

1.1.2 Data Mining from Community Knowledge Resources 3

1.1.3 Linked Data and Open Data for Software Engineering 4

1.1.4 Viewpoints in Software Architecture . 5

1.2 Problem Statement . 6

1.2.1 Organizing Software Languages and Technologies 6

1.2.2 Ontology-based Knowledge Management 8

1.2.3 Knowledge Integration . 8

1.2.4 Discovery Learning . 9

1.2.5 Understanding Modern Software Products 10

1.3 Research Method . 11

1.4 Contributions . 13

vii

viii CONTENTS

1.4.1 Software Chrestomathy . 14

1.4.2 Technology Modeling . 16

1.5 Basic Terminology . 17

1.6 Structure of the Thesis . 19

1.7 Related Publications . 20

2 Background 23

2.1 Program Chrestomathies . 23

2.2 Linguistic Architecture . 26

2.2.1 Instances of Linguistic Architecture . 26

3 State of the Art 32

3.1 Technical Spaces and Polyglotism . 34

3.2 Education and Knowledge Engineering . 35

3.3 Ontologies for Software Engineering . 37

3.4 Linked Data for Software-Engineering Research 39

3.5 Open-Source and Social-Software Ecosystems 40

4 Problem Space 42

4.1 Challenges . 43

4.1.1 Open Science Challenge . 43

4.1.2 Knowledge Engineering Challenge . 43

4.1.3 Knowledge Integration Challenge . 44

4.1.4 Reverse Engineering Challenge . 44

CONTENTS ix

4.1.5 Linked Data Challenge . 45

4.1.6 Ontology Engineering Challenge . 45

4.1.7 Technology Modeling Challenge . 46

4.1.8 Educational Challenge . 47

4.2 Requirements . 48

4.2.1 Core Properties of Software Chrestomathy (R1) 48

4.2.2 Ontology-driven Classification (R2) . 48

4.2.3 Linking Documentation and Source Code (R3) 49

4.2.4 Vocabulary Engineering Through Knowledge Integration (R4) 50

4.2.5 Linked Data Enabled Infrastructure (R5) 51

4.2.6 A Chrestomathic Ontology (R6) . 52

4.2.7 Linguistic Architecture of Software Products (R7) 52

4.2.8 General-purpose Language for Technology Models (R8) 53

4.3 Validation . 54

5 101companies Software Chrestomathy 55

5.1 Introduction . 55

5.2 Welcome 101companies . 56

5.3 Illustration . 57

5.4 Features of the 101companies System . 60

5.4.1 An Excerpt of 101haskell . 64

5.4.2 Feature Hierarchical company . 65

5.4.3 Feature Total . 66

x CONTENTS

5.4.4 Feature Cut . 68

5.4.5 Feature Parsing . 70

5.4.6 Feature Logging . 72

5.5 Stakeholders of the 101companies Project . 74

5.6 Key Categories of the 101companies Ontology 75

5.7 Themes of 101companies Contributions . 76

5.8 Linking Documentation and Source Code . 78

5.8.1 101companies Chrestomathy – Inventory 78

5.8.2 The Exploration Use Case . 82

5.8.3 Specification of the Information of Interest 83

5.8.4 Classification of Metadata . 83

5.8.5 Rule-based Metadata Assignment . 84

5.8.6 The 101meta Language . 84

5.8.7 Language Links . 86

5.8.8 Technology Links . 87

5.8.9 Concept Links . 88

5.8.10 Links Related to the 101companies Domain 89

5.8.11 Method Assignments . 89

5.8.12 Fragment Scope . 90

5.8.13 Summary of 101meta Usage . 91

5.9 The 101ecosystem . 93

5.10 Related Work . 94

5.11 Conclusion . 97

CONTENTS xi

6 Chrestomathic Knowledge Integration 98

6.1 Introduction . 98

6.2 Selection of Textbooks . 100

6.3 Term Extraction . 101

6.4 Vocabulary Consolidation . 103

6.5 Monitoring Vocabulary Usage . 105

6.6 Conclusion . 110

7 A Chrestomathic Ontology 111

7.1 Introduction . 111

7.2 Basic Principles of SoLaSoTe . 113

7.2.1 Classification criteria . 113

7.2.2 Design principles . 114

7.3 Ontology authoring with 101wiki . 116

7.4 SoLaSoTe . 119

7.4.1 Entity Types . 121

7.4.2 Metadata . 121

7.4.3 References to External Resources . 124

7.4.4 References to Code Fragments . 124

7.5 Workflow of ontology processing . 126

7.6 Evaluation criteria . 129

7.7 Conclusion . 131

xii CONTENTS

8 Technology Modeling 132

8.1 Introduction . 132

8.2 Illustration of Linguistic Architecture . 133

8.3 Entity and Relationship Types for Megamodels 134

8.3.1 Background . 135

8.3.2 Entity Types of MegaL . 136

8.3.3 Relationship Types of MegaL . 137

8.4 An Initial Megamodel for O/X Mapping . 138

8.4.1 Stepwise Development of the Megamodel 138

8.4.2 Summary of the Megamodel . 140

8.4.3 Discussion . 140

8.5 A Megamodel for O/X Mapping with .NET . 141

8.5.1 The Use of Schema-Derived Object Models 141

8.5.2 Technology Components for .NET . 142

8.5.3 Additional Linguistic Details . 143

8.5.4 Discussion . 144

8.6 Linked Megamodels . 144

8.6.1 Binding Placeholder Entities . 144

8.6.2 Exploring Linked Megamodels . 145

8.6.3 MegaL/RDF, Linked Megamodels and Linked Data 145

8.7 Interpretation of Linguistic Architecture . 146

8.7.1 Megamodeling with MegaL . 149

CONTENTS xiii

8.7.2 An Illustrative Megamodel . 150

8.7.3 Interpretation of Megamodels . 152

8.7.4 Traceability Recovery . 156

8.7.5 Executable Specification of MegaL . 157

8.7.6 Specification Style . 158

8.7.7 Abstract Syntax of Megamodels . 158

8.7.8 Well-formedness of Megamodels . 159

8.7.9 Abstract Syntax of Interpretations . 159

8.7.10 Correctness and Completeness . 160

8.7.11 Evaluation of Relationships . 162

8.8 Related work . 163

8.9 Conclusion . 166

9 Evaluation of 101companies Software Chrestomathy 167

9.1 Introduction . 167

9.2 Comparison of Feature Implementations across Languages, Technologies, and

Styles . 168

9.2.1 The Underlying Infrastructure . 170

9.2.2 Methodology . 172

9.2.3 Execution . 173

9.2.4 Results . 175

9.2.5 Related Work . 176

9.3 A Chrestomathy-based Course . 177

9.3.1 Teaching Concept . 178

9.3.2 Course Content . 179

9.3.3 Course Evaluation . 180

9.4 Code-sharing Management . 181

9.5 Threats to validity . 182

9.6 Conclusion . 182

10 Conclusion and Future Work 183

10.1 Summary of the Thesis Achievements . 183

10.2 Future Work . 185

10.3 Conclusion. 186

Appendices 188

A.1 Themes of 101companies Implementations . 188

A.2 The SoLaSoTe ontology of software languages, technologies, and concepts 194

A.2.1 Entities of SoLaSoTe . 194

A.2.2 Prefixes used by SoLaSoTe . 196

A.2.3 Relationships of SoLaSoTe . 231

Bibliography 253

xiv

List of Tables

2.1 Comparison of programming chrestomathies . 25

5.1 Classification of features in the 101companies system 61

5.2 Requirements of the 101companies system . 61

5.3 Features of the 101companies system . 62

6.1 Numbers of candidate terms . 103

7.1 Evaluation criteria . 130

10.1 Requirements coverage per chapter . 184

xv

List of Figures

1.1 Research method . 13

1.2 Research areas of the thesis . 14

2.1 Where do you currently store your research data? (researchers/multiple answers,

N=1202) . 24

5.1 A UML class diagram serving as an illustrative data model 57

5.2 Illustrative code-level complexity indicators for 101companies implementations . 58

5.3 Illustrative tag clouds regarding usage of languages 59

5.4 Illustrative tag clouds regarding usage of technologies 59

5.5 Illustrative tag clouds regarding contributors . 60

5.6 Illustrative tag cloud regarding feature frequency for implementations 63

5.7 Stakeholders of the 101companies project . 75

5.8 The key categories of the 101companies ontology 77

5.9 Java theme of 101implementations . 78

5.10 Linking in the context of traditional software products vs. software chrestomathies. 79

5.11 Informal megamodel of 101repo and 101wiki with links. 80

5.12 Exploration of the 101companies implementation antlrAcceptor. 82

5.13 Information of interest. (Some attributes and associations were omitted for

brevity and clarity.) . 83

xvi

LIST OF FIGURES xvii

5.14 Architecture of the 101ecosystem (on the left) with examples for providers, con-

sumers, and resources (on the right). 92

6.1 Illustration of knowledge integration for the ‘Monad’ concept according to dif-

ferent knowledge resources. 99

6.2 Chapter terms for [Tho11] . 107

6.3 The derived Haskell vocabulary . 108

6.4 Comparison of the different Haskell textbooks 108

6.5 Vocabulary usage for [Hut07] at a given point in time. 109

7.1 The software concept ‘Zipper’ as rendered on the 101wiki. 117

7.2 101wiki and GitHub user profile pages . 118

7.3 Sketch of SoLaSoTe schema . 120

7.4 Properties for a Java-based contribution. 120

7.5 Metadata triples with Contribution haskellWriter as the subject (abbreviated

as ‘this’) and other entities as objects. 123

7.6 Instances of the Theme Haskell introduction. 123

7.7 The wiki paragraph contains a code fragment from which one can navigate right

away to the relevant code in the repository; see the “Explore” button. The

underlying markup specifies the location of the file ‘src/Company/Total.hs’, the

syntactic category “pattern” of the fragment, and the name ‘total’. 125

7.8 Wikidump of the Zipper page from section 7.3 126

7.9 Wiki2triples I/O . 127

7.10 Property inheritance for Language . 127

8.1 The linguistic architecture of a software product when displayed with the Me-

gaL/Explorer tool. 133

8.2 Megamodels in different areas of computer science. 135

xviii LIST OF FIGURES

8.3 An initial megamodel for O/X mapping drawn with the MegaL/yEd editor. . . . 140

8.4 Figure 8.3 expressed in MegaL/RDF. 146

8.5 RDF-based links for the megamodel of figure 8.1. 146

8.6 Interpretation of a megamodel . 147

8.7 MegaL processing pipeline . 152

8.8 The configuration for the megamodel in figure 8.6 154

8.9 Scala-based traceability check for ANTLR’s generator 157

9.1 Overview of the underlying infrastructure hinting also at ‘links’ in the sense of

Linked Data . 171

9.2 Idealized Python code for the comparison. The code operates on Linked Data. . 173

9.3 Objective of the validation of feature location 174

9.4 An NCLOC-based comparison of implementations of features “Total”, “Cut”,

and “Hierarchical company” . 175

9.5 Lectures in the functional programming course. 179

9.6 The script for a lecture on higher-order functions. 180

9.7 Course evaluation: satisfaction of the students with practical illustrations on 1-6

scale (higher is better). 180

1 MDE theme of 101implementations . 188

2 Haskell data theme of 101implementations . 189

3 Haskell introduction theme of 101implementations 189

4 Haskell potpourri of 101implementations . 190

5 Haskell genericity of 101implementations . 190

6 NoSQL theme of 101implementations . 191

7 Python potpourri theme of 101implementations 191

8 Scrap your boilerplate theme of 101implementations 191

9 Starter theme of 101implementations . 192

10 Web programming theme of 101implementations 192

11 Web applications in Java theme of 101implementations 193

xix

xx

Chapter 1

Introduction

In this chapter we identify the scope of the research, introduce the key definitions and contri-

butions, outline the research methodology.

Research Context

Today’s developers face a myriad of software technologies and software languages. The IT

industry demands technology-savvy, polyglot developers with strong knowledge of entire de-

velopment ecosystems. Any project of significant size can involve a dozen different technolo-

gies and languages, each one with specific concepts and terminology, possibly obfuscated by

buzzwords. Types of languages include programming languages, modeling languages, and

technology-specific languages for configuration and metadata. In 2006, Neal Ford, a software

architect at ThoughtWorks, commented on the state of the IT industry, specifically the growing

popularity of .NET platforms, Java platforms, and web development: “Now, increasingly, we’re

expanding our horizons. More and more, applications are written with Ajax frameworks (i.e.,

JavaScript). If you consider the embedded languages we use, it’s even broader: XML is used as

This chapter is an original part of the thesis. The key definitions were introduced in two conference
papers: [FLSV12] Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz and Andrei Varanovich. 101companies:
A community project on software technologies and software languages. In TOOLS (50), pages 58–74, 2012.
[FLV12] Jean-Marie Favre, Ralf Lämmel and Andrei Varanovich. Modeling the linguistic architecture of software
products. In MoDELS, pages 151–167, 2012.

1

2 Chapter 1. Introduction

an embedded configuration language widely in both the Java and .NET worlds.”1 In 2008, the

adoption of polyglot persistence began with the new generation of database platforms: “Poly-

glot persistence, like polyglot programming, is all about choosing the right persistence option

for the task at hand.”2

We believe this industrial trend brings new challenges for programming-language and software-

engineering research in the form of new models of development, documentation, evolution,

adoption, comprehension, comparison, and education, where such heterogeneous, multilanguage

and multitechnological setups are considered a key requirement.

Technological Spaces

In the modeling, metamodeling, and software language communities, the notion of a techno-

logical space (TS)3 helps in identifying and communicating commonalities and differences in

grammarware, XMLware, modelware, objectware, and tupleware [KBA02a, DGD06]. A TS

is defined as a “working context with a set of associated concepts, body of knowledge, tools,

required skills, and possibilities” [KBA02a]. It is often associated with a given user community

with shared know-how, educational support, common literature, and even regular workshops

and conferences. In the model transformation context, a TS can be defined as the meta-

metamodel that is used [MVG06], but this definition cannot be applied generally.

All TSs have different levels of maturity. For some TSs, the scope of research and best practices

are not established. For instance, in the grammarware context, the divide between having best

practices and not having them is called “hacking versus engineering,” where hacking refers to

accomplishing tasks with ad hoc approaches for a long time [KLV05].

As suggested by the definition of TS, inventions are often made in the context of a single engi-

neering field, typically associated with a specific conference series. Consequently, TSs are often

more like silos, but there are efforts to build bridges between them (i.e., to build interoperability
1http://memeagora.blogspot.de/2006/12/polyglot-programming.html
2https://www.altamiracorp.com/blog/employee-posts/polyglot-persistence
3The term technological space is often referred to as a technical space. In this thesis, we use the former,

original variant.

http://memeagora.blogspot.de/2006/12/polyglot-programming.html
https://www.altamiracorp.com/blog/employee-posts/polyglot-persistence

1.1. Research Context 3

between technological platforms). In many cases, the impedance mismatch is revealed, and the

bridging technologies are developed [LM06b, Mei06]. The process of bridging TSs shows the

need for a proper level of abstraction over them to be able to reuse the artifacts from one TS in

other TSs. Not surprisingly, semantic web ontologies and Model Driven Engineering (MDE)—

in particular model transformations—became promising research directions [DGD06, BDJ+03].

Based on sound foundations, they aim to orchestrate different TSs. Engineers benefit from

them by understanding the diversity of things that can be modeled. On a practical level, it is

still difficult to see a big picture due to the variety of involved technologies and limited tool

support.

An open, visionary question underlies the general agenda for research on TSs: is there a unifying

theory of TSs? Answering this question requires a joint community effort. Such an effort

should be cross-disciplinary and requires coordinated effort from different TS communities. One

promising example is the Software Language Engineering (SLE) community: “SLE’s mission is

to fuse several communities that have traditionally looked at software languages from different

and yet complementary perspectives.”4

Data Mining from Community Knowledge Resources

With the growth of the Internet and social media, community knowledge has become an integral

part of the development process. Many developers invest their time in answering questions on

popular forums, such as StackOverflow.5 Their contributions on such forums, in turn, increase

their development performance [VFS13]. In 2008, GitHub launched a social-coding platform

with rich community functionalities (such as wikis, followers, and network graphs). By the end

of 2013, GitHub had reached 10 million source-code repositories.6

Such knowledge sharing ecosystems became an important source of information for many

research communities. For instance, the International Working Conference on Mining Soft-

ware Repositories (MSR) has hosted a mining challenge since 2006.7 In 2013 and 2014,
4http://www.sleconf.org/2014/
5http://stackoverflow.com
6https://github.com/blog/1724-10-million-repositories
7http://msrconf.org/challenge.php

http://www.sleconf.org/2014/
http://stackoverflow.com
https://github.com/blog/1724-10-million-repositories
http://msrconf.org/challenge.php

4 Chapter 1. Introduction

the datasets for its mining challenge were created from StackOverflow and GitHub, respec-

tively [Bac13, Gou13].

Recommendation systems and integrated development environments (IDEs) are additional

contexts that employ community knowledge. Recent research on bug-tracking systems has

shown that bug-fixing times are lower when reports about bugs come with additional Twitter,

Wikipedia, or StackOverflow links [CS13]. This boost in productivity also occurs in IDEs where

developers do not need to change the context while facing a question about an unknown API

or an exception’s stack trace [RYR13].

Today’s polyglot developers are a part of the global, collaborative knowledge-creation ecosys-

tem. This knowledge-creation ecosystem has complex attributes, such as quality of knowledge

(i.e., based on voting and individual-expertise score) and problem context (i.e., based on tag-

ging). On the other side, many books are available online and provide more classical, expert

views on different TSs; these books are often more systematic and tend to cover a well-defined

scope. Such a rich and diverse knowledge ecosystem contains state-of-the-art information about

many domains of software engineering. However, the lack of a uniform model of the knowledge

leaves the question of mining the data for research unanswered.

Linked Data and Open Data for Software Engineering

An important aspect of software engineering research and education is that resources be open

and free to access, which enables researchers to develop, reuse, compare, and evaluate different

techniques.

Collaborative research is joint work by different partners where everyone contributes new knowl-

edge and effort in response to a research challenge. An example of collaborative research is

e-research, which further stimulates the use of advanced technologies to solve research tasks that

are data intensive and require cross-disciplinary effort. E-research is built around information-

centric research capabilities and technologies that help researchers collect, manage, share, pro-

cess, analyze, store, find, understand, and reuse information.

1.1. Research Context 5

In software engineering, Linked Data8 and Open Data [ABK+07b] are two notable concepts

that support technical collaboration. Linked Data principles help researchers expose the most

popular software-engineering artifacts. Software repositories exposed in this way are ready for

software-repository mining [KFH+12c, KFRC11]. Heterogeneity of documentation (e.g., via

wikis and schemas) in different repositories can be properly orchestrated [How08].

In the context of software-engineering education, a Massive Open Online Course (MOOC) is a

new tool that leverages Linked Data and Open Data principles. In addition to traditional course

materials, MOOCs comprise a community of students participating in the learning process.

On the conceptual side, MOOCs often promote Open Data compliance, for example, through

open and free-to-use content and supporting resources. However, MOOCs became just a differ-

ent delivery model from the ones used in traditional curricula (i.e., university courses). Most

of the visible MOOCs use closed licenses and limit access rights. Their learning resources are

only loosely integrated into a global knowledge space.

Viewpoints in Software Architecture

IT professionals need to be equipped with various knowledge tools to deal with the complex-

ity of real-world software systems. Knowledge about actual systems is often abstracted and

represented in whatever form is most useful for stakeholders. The viewpoint-oriented approach

aims to integrate multiple perspectives in system development [FFK+92]. In the context of

enterprise architecture, this approach has already been popular for two decades [SAtDL04]

and covers requirements for engineering and aligns viewpoints with modeling languages, such

as Unified Modeling Language (UML) [KS96, SE93]. In practice, viewpoints—perspectives

on the software project—are used on the basis of the Reference Model of Open Distributed

Processing (RM-ODP)9 and the Institute of Electrical and Electronics Engineers (IEEE) 1471

standard.10 Each viewpoint is typically associated with one or more designated modeling

languages [DQPvS03] and is subject to different metaware, that is, metamodels and model-
8http://linkeddata.org/
9http://www.rm-odp.net/

10http://standards.ieee.org/findstds/standard/1471-2000.html

http://linkeddata.org/
http://www.rm-odp.net/
http://standards.ieee.org/findstds/standard/1471-2000.html

6 Chapter 1. Introduction

driven software technology [Fav04a]. Software architecture typically comprises the following

four views [HNS99]:

1. The conceptual view describes the architecture in terms of domain elements (i.e., the

functional features of the system).

2. The module view describes the decomposition of the software and its organization into

layers.

3. The execution view is the run-time view of the system. It is the mapping of modules to

run-time items, defining the communication among them, and assigning them to physical

resources.

4. The code view captures how modules and interfaces in the module view are mapped to

source files and how they are further organized into directories. This information also

affects the build process of the system.

The viewpoint-oriented approach is also used to support design decisions, which are cross cut-

ting and intertwined. During the software maintenance process, the design rules and constraints

are often violated [Bos04]. The traditional software-architecture viewpoints span all stages of

the software-development process and offer different levels of problem-specific abstractions.

The viewpoints are not limited to software, but also extended to learners and other stakeholders.

Zachmann framework [Zac02] provides a matrix of perspectives and aspects without prescrib-

ing how the enterprise architecture description should look like. However, there is no standard

way of using the various viewpoints and diagram types identified in general model-driven de-

velopment approaches [AS08]. One approach is to have a conceptual model for defining and

navigating around different views [AT14].

1.2. Problem Statement 7

Problem Statement

Organizing Software Languages and Technologies

The following quote from the website of the International Conference on Software Language

Engineering provides an approximate definition of software language:

“The term ‘software language’ comprises all sorts of artificial languages used in software develop-

ment including general-purpose programming languages, domain-specific languages, modeling

and meta-modeling languages, data models, and ontologies. Used in its broadest sense, exam-

ples include modeling languages such as UML-based and domain-specific modeling languages,

business process modeling languages, and web application modeling languages. The term ‘soft-

ware language,’ in contrast to a ‘programming language,’ also comprises APIs and collections

of design patterns that are implicitly defined languages.”11

This definition emphasizes the complexity of languages used in different TSs and goes far

beyond the notion of a programming language. Modern polyglot developers are concerned with

the applicability of software languages to a particular domain problem. There still exists a

well-known notion that developers “think” in a given software language such that developers

are framed within a certain context of software language and technology.

The lack of a classification scheme and the diversity of software languages are two factors

that prevent effective communication between communities. Developing such a classification

requires a proper abstraction level that authors and users would understand. Because doing so is

clearly not a one-person effort, collaboration should be supported. Technical communities often

use wikis as collaboration platforms. Most advanced wikis provide some limited classification

idioms (e.g., categories of pages). Wikipedia is a well-known example. It is a knowledge resource

for many software-engineering topics and explicitly declares the lack of a classification scheme

for programming languages: “There is no overarching classification scheme for programming

languages. A given programming language does not usually have a single ancestor language.

Languages commonly arise by combining the elements of several predecessor languages with new
11http://planet-sl.org/sle2011/

http://planet-sl.org/sle2011/

8 Chapter 1. Introduction

ideas in circulation at the time. Ideas that originate in one language will diffuse throughout a

family of related languages, and then leap suddenly across familial gaps to appear in an entirely

different family.”12

Ontology-based Knowledge Management

The etymology of the term knowledge breaks it into two elements: (1) know- means to have

learned from experience and implies having gained an understanding of a subject, and (2) -ledge

means an organized body of facts or teachings and implies a need for knowledge organization

and reuse.13 In this thesis, we use these two attributes as a definition of knowledge.

Ontology is often considered a means to capture domain knowledge [GPFI+]. It defines domain

vocabulary and relationships between terms.14 There exist many methods and tools to build,

maintain, and reuse ontologies. Most of them rely on the deep analysis and understanding the

underlying domain. The most significant challenge to conducting research in the field of SLE is

the rapid pace of change in the field. SLE is constantly evolving because new languages and new

paradigms for using them constantly emerge. For example, JavaScript existed for a long time

as a language for client-side programming for the web. However, with the evolution of server-

side technologies, JavaScript has successfully entered the server-side context. Today, without

server-side JavaScript experience, one cannot be considered a JavaScript expert, whereas that

would not have been the case several years ago.

Several approaches should be used to manage knowledge about SLE. Because there is no sin-

gle domain expert, managing knowledge about SLE needs to rely on contributions from many

experts. The most appropriate modeling language(s) should be selected such that the level

of abstraction is raised. An ontology specification language(s) might be considered. Docu-

mentation of knowledge should include examples that apply to the technologies of interest.

Documentation should be structured so that its diverse audience (e.g., computer science stu-

dents, professional developers, and SLE researchers) can understand and use it.
12http://en.wikipedia.org/wiki/Programming_language
13http://www.etymonline.com/index.php?term=knowledge
14We do not analyze philosophical aspects of the ontology in this thesis.

http://en.wikipedia.org/wiki/Programming_language
http://www.etymonline.com/index.php?term=knowledge

1.2. Problem Statement 9

Knowledge Integration

With the rise of online communities, more knowledge about software engineering becomes avail-

able as so-called user-generated content. Examples include Wikipedia, more domain-specific

wikis, possibly open and online textbooks, forums like StackOverflow, the Apple Knowledge

Base, and support forums by Microsoft. The organizational- and process-management research

community recognized the value of and potential for integrating organizational knowledge two

decades ago. In these communities, there is agreement that “the primary role of the firm,

and the essence of organizational capability, is the integration of knowledge” [Gra96]. In that

context, the definition of knowledge integration is “an ongoing collective process of construct-

ing, articulating and redefining shared beliefs through the social interaction of organizational

members” [HN03].

As discussed in section 1.1, software developers extensively participate in communities that

are outside their organizational boundaries. Community resources (such as wikis, forums, and

open online textbooks) are important knowledge resources, each using a particular vocabulary

and knowledge model. To understand how developers use such resources is an open research

problem [WLJ13]. We believe the knowledge- and education-centric view on such resources is

also of potential value. Such a view is concerned with aggregating, organizing, and maintaining

knowledge in the programming domain to be useful specifically for learning [LSV14].

Knowledge integration, in fact, can also contribute to ontology development and knowledge

management in general. Assuming there is a process for creating topic models and vocabularies

on top of the integrated online resources, the process could support an ontology for software

languages and technologies. The resulting vocabularies and relationships between the resources

help teach how to program and how to document programs.

Discovery Learning

Discovery learning is a method where students are free to work in a learning environment with

little or no guidance [May04]. Maintaining knowledge via heterogeneous community resources

10 Chapter 1. Introduction

and software repository goes beyond e-learning delivery models. Individuals can access these

resources any time on their own. Certain organization and guidance should be embedded in

the content, as pure discovery learning rarely efficient [May04]. Additional structure required

to facilitate class-room instructor-led trainings (so-called synchronous model). This needs to

be efficiently combined with the self-education capabilities, where the learners are exposed to

the broad set of contributions in various forms (source code implementations, textual content

and ontology).

Understanding Modern Software Products

Understanding modern software products is difficult. The discipline of software architecture

is about mastering the complexity of software using the view that the essential entities and

relationships of software constitute the model (i.e., the architecture) of a software product.

Different kinds of models serve different points of view (say, different stakeholders of a software

project). Most existing approaches to software architecture focus on logical architecture, where

entities of interest are coarse grained (e.g., modules, interfaces, classes, features, or aspects)

and relationships are imports, calls, and other dependencies. Established approaches also

exist for dealing with physical architecture (i.e., build systems), such as Ant, Maven, and

other implicit approaches that are integrated in IDEs, such as Eclipse. In the case of physical

architecture, entities of interest are coarse-grained entities (such as files), and relationships are

build dependencies and invocations of tools (such as compilers and linkers) [FLV12].

The MDE discipline tries to raise the level of abstraction at which software engineers write

code. It aims to improve developers’ short-term productivity by increasing the value of the

functionality in software artifacts, and it aims to improve long-term productivity by preventing

software artifacts from becoming obsolete too quickly [AK03]. But MDE has several practical

limitations [LV14]:

• Not all software projects are parts of model management systems.

• Not all software projects are within Technological Spaces that are sufficiently covered by

MDE.

1.3. Research Method 11

• Metamodels or metamodel-like artifacts, such as schemas, are often unavailable or of

limited relevance outside clean-roomMDE. That is, people often refer to languages instead

of metamodels (i.e., to conceptual entities rather than artifacts).

Developers use several practical approaches to understand all non-trivial relationships among

the elements of a software project. Test-driven development (TDD) is one frequently used

methodology that helps developers understand the design of existing software and develop new

software. According to Agile Alliance, TDD is “the craft of producing automated tests for

production code, and using that process to drive design and programming.”15 Similar low-level

approaches can rely on build systems or scripts that check project integrity. A build system

might contain build-related data as well as various filtering techniques to define views of the

build architecture [ATSM07].

The spectrum of approaches is diverse, ranging from the low-level, source-code–based to differ-

ent kinds of software architecture. MDE brings its own stack of tools to manage the complexity

of software projects across various dimensions. But we are not aware of an approach that treats

languages (as opposed to their descriptions via metamodels or grammars) as first-class citizens

that provide a linguistic view of software projects. Such a viewpoint can be useful as a cognitive

model for the benefit of software language engineers and possibly software engineers.

Research Method

Traditional scientific methods use the hypothetico-deductive model of research [GS09], which

can be roughly summarized as the following sequence of steps:

1. Formulate a question.

2. Hypothesize.

3. Study.
15http://agilealliance.org/programs/roadmaps/Roadmap/tdd/tdd_index.htm

http://agilealliance.org/programs/roadmaps/Roadmap/tdd/tdd_index.htm

12 Chapter 1. Introduction

4. Analyze.

5. Evaluate.

The scope of this thesis includes several research areas (see figure 1.2 for a summary) and targets

a broad audience of software engineering researchers and educators with different motivations.

The research questions are the following:

• Can the notion of software chrestomathy be adopted in software-engineering research and

education?

• How can a software chrestomathy be instantiated as a Research 2.0 platform?

• How can a software chrestomathy be made useful in understanding software languages

and technologies?

• How can a software chrestomathy be made useful in software-engineering education?

To answer these questions while coping with their complexity, we adopt the design research

methodology: “Design science refers to an explicitly organized, rational and wholly systematic

approach to design; not just the utilization of scientific knowledge of artifacts, but design

being in some sense a scientific activity itself” [Cro07]. Our goal is to obtain evidence that

answers the research questions as unambiguously as possible. Doing design research requires

the creation of an innovative, purposeful artifact for a special problem domain [PTRC07]. For

this research project, the artifact is a 101companies software chrestomathy and the underlying

infrastructure; We evaluate it using a case-study design under the action-research paradigm

to show its applicability. Chapter 3 contains an in-depth discussion (section 4.3) of how this

artifact would answer the research questions stated in this thesis. Figure 1.1 illustrates the

steps as they apply to this work.

To identify the scope and requirements of this research, we follow a phased system-analysis

method. As it further follows from the structure of the thesis (section 1.6), chapter 3 and

chapter 4 mainly correspond to the following phases: scope definition, problem analysis, and

1.4. Contributions 13

Figure 1.1: Research method

requirements analysis. After the problem is identified in chapter 3, the rest of the research is

organized in such a way that each section establishes a link between a problem space (chapter 4)

and a solution space – that is, each section has self-contained objectives and contributions. In

that manner, the validation also becomes an integral part of the thesis. The applications of

the solution conclude the study – that is, we show the usefulness of the 101companies software

chrestomathy as a solid artifact in several research contexts.

Contributions

The original contributions of this thesis are the following:

• development and validation of a software chrestomathy as an integral part of the design

research methodology;

• ontology-based knowledge management for software chrestomathy;

14 Chapter 1. Introduction

Figure 1.2: Research areas of the thesis

• validation of the various aspects of the interpretable linguistic architecture.

Software Chrestomathy

We adopted the linguistic notion of chrestomathy for the SLE context; a software chrestomathy

is a collection of software systems meant to be useful in learning about or gaining insight into

software languages, software technologies, software concepts, programming, and software en-

gineering [FLSV12, Lae13]. We aimed to develop a free, structured, wiki-style knowledge

resource that included an open-source repository for different stakeholders with interests in

software technologies, software languages, and TSs (notably teachers, software developers, soft-

ware technologists, ontologists, and learners of software engineering and software languages).

Based on that objective, we designed and implemented the 101companies platform (also called

1.4. Contributions 15

101project or just 101). The software chrestomathy we developed serves a Research 2.0 platform

for software-engineering research and education.

The core of 101companies combines a semantic wiki and confederated open-source repositories.

We developed an approach to establish links between source code and documentation using

a rule-based language that invokes file processors for validation, fact extraction, fragment lo-

cation, and other functions. It can handle many languages and technologies using techniques

that can be language specific or language agnostic. Additionally, the refined 101companies

chrestomathy as well as the underlying techniques and derived information resources are avail-

able in the open-source ecosystem. As such, it supports Research 2.0, in particular, Open

Science [Nie11] and Linked Data [HB11a]. Resources on the platform adhere to Linked Data

principles and are available to stakeholders in the way that is most useful to them. The rele-

vant formats and the underlying ontology are accessible and documented; the platform generally

supports both programmatic and interactive access. In chapter 9, we argue the case for the ap-

plicability of these resources for reverse engineering and data mining. The chrestomathy-based

course for computer-science students is another case of the evaluation.

On the knowledge-management side, we implemented a textbook-driven knowledge-integration

mechanism that establishes a consolidated vocabulary for chrestomathy, wikis, and textbooks.

The degree of knowledge integration in terms of vocabulary usage can be monitored. We

further enriched all entities (e.g., implemented features, languages, technologies, concepts, and

external resources) with metadata for classifying and identifying relationships among entities.

To prove the usefulnesses of such knowledge organization in classical undergraduate education,

an introductory functional programming course was layered directly on top of 101companies.

Validation boils down to the argument that the available content (semantic wiki, interlinked

source code, and interlinked external resources) intrinsically provides the foundation for a viable

course. We further discuss the educational perspective of 101 in chapter 9.

101companies’ role model is a Wikipedia for the community of polyglot developers and TS

travelers. We expect 101companies to serve as Research 2.0 infrastructure.

16 Chapter 1. Introduction

Technology Modeling

In the context of the 101companies project, we developed a megamodeling approach for technol-

ogy modeling supported by the MegaL language and associated tools for editing and exploring

megamodels—a new form of modeling for software technologies that addresses the linguistic

architecture of software products. Megamodeling has MDE foundations [BJV04a]; however, our

approach to modeling software technologies was not tailored to MDE. Our approach addresses

the linguistic architecture of software products: the relationships between software artifacts

(e.g., files), software languages (e.g., programming languages), and software technologies (e.g.,

code generators). This new type of software architecture complements other, more estab-

lished dimensions: logical architecture (the subject of classical software architecture); specific

paradigms (such as component-, feature-, or aspect-oriented software development); and phys-

ical architecture (typically concerned with building, packaging, and deploying software and,

hence, with entities such as files and servers).

The value of our megamodels is a cognitive one. They facilitate understanding technologies and

their usage. We strongly improve such cognitive value by enabling a form of linked megamodels

such that entities and relationships are linked to resources (e.g., in the 101companies repository)

so that megamodels can be explored and validated. This process is instantiated in a form

of interpretation: resolution of megamodel elements to resources (e.g., system artifacts) and

evaluation of relationships subject to designated programs (tools) available through a plug-in

framework. Interpretation reduces concerns about the adequacy and meaning of megamodels

because it helps to apply the megamodels to actual systems. We leverage Linked Data principles

for the results of resolution (e.g., links to GitHub repositories or DBpedia resources). We

implemented MegaL with an object-oriented (OO) framework with dynamically loaded plug-ins.

The implementation is also supported by an executable specification of interpreted megamodels

that are formalized in a deductive system. Without this enhancement, megamodeling does not

provide sufficient validated insight into actual systems.

Through this contribution, we have equipped the megamodeling notion for the linguistic ar-

chitecture of software systems with a language mechanism for resolving entities, capturing

1.5. Basic Terminology 17

traceability between them, and evaluating relationships.

Basic Terminology

Chrestomathy is one of the central terms in this work. The word is formed from the Greek words

chresto, “useful,” and mathein, “to learn.” In philology and linguistics, chrestomathy refers to

a collection of sample texts (literary passages), usually in one language, possibly from different

authors, designed to be useful in learning a language, specifically its grammar. For instance and

quoting from [Läm13], the Coptic Gnostic Chrestomathy collects texts in the Coptic language;

these texts were systematically edited to include annotations for grammatical analysis, such as

relationships between prepositions, verbs, and nouns [Lay04].

E-science is a broadly interpreted term, mainly concerned with the application of IT throughout

the scientific process [Boh13]. E-science “promotes innovation in collaborative, computationally-

or data-intensive research across all disciplines, throughout the research lifecycle.”16

Linked Data is “a set of best practices for publishing structured data on the Web.” It is based

on five principles [BCH07, HB11b]:

1. Use URIs as names for “things.”

2. Use HTTP URIs so that people can look up names.

3. Provide useful information in the HTTP response.

4. Include links to other “things” to make them discoverable.

5. Use standards for response formats and query languages (e.g., RDF and SPARQL).

Open Data is a concept implying that a given set of data is available to everyone without any

copyright restrictions or other means of protection [ABK+07a].

16https://escience-conference.org/

https://escience-conference.org/

18 Chapter 1. Introduction

Open Science was defined by Michael Nielsen in his TED talk as “the idea that scientific

knowledge of all kinds should be openly shared as early as is practical in the discovery process.”17

The six principles of Open Science are open methodology, open source, open data, open access,

open peer review, and open educational resources [KLRB11].

Program or programming chrestomathy18 has been a concept in the wild in the programming

community for several years [Läm13]. A program chrestomathy is a collection of sample pro-

grams in one or more programming languages designed to be useful in learning about pro-

gramming and programming languages. Such a chrestomathy may focus on specific language

aspects, such as comparison of programming style, expressiveness, and applicable programming

techniques in one language or across several languages (e.g., [Rue01, Wei13, Man13, RJJ+08]).

Importantly, the collected programs are expected to implement certain features (such as tasks

or requirements) as prescribed by the chrestomathy.

Reproducible research is research that can be redone by researchers other than those who con-

ducted the original research. In the context of SLE, research is mainly made reproducible by

making the code and data associated with research publications available.19

Science 2.0 or Research 2.0 is a version of e-science that includes a shift from publishing

final results by well-defined collaborative groups toward a more open approach that includes

publicly sharing raw data, preliminary experimental results, and related information [FH09].

E-science motivates the development of data-intensive scientific applications based on semantic

methodologies and technologies. It has no particular connection to computer science, and

we use it more as an umbrella term, emphasizing the following characteristics of information

sharing and collaboration: e-research, networked science, e-science, computational science, big

science, and linked science. Research 2.0 contrasts with the traditional ways of doing research

and involves following modern Web 2.0 techniques oriented toward collaboration. This thesis

contributes to Research 2.0 efforts in computer science.

17http://www.ted.com/talks/michael_nielsen_open_science_now
18http://c2.com/cgi/wiki?ProgrammingChrestomathy
19Reproducible Research (http://reproducibleresearch.net/) is a portal that collects the bibliography of

reproducible papers.

http://www.ted.com/talks/michael_nielsen_open_science_now
http://c2.com/cgi/wiki?ProgrammingChrestomathy
http://reproducibleresearch.net/

1.6. Structure of the Thesis 19

Software chrestomathy is a program chrestomathy that has also collected (build-able, runnable,

modularized) systems rather than just programs in the sense of single source-code units. When

moving from programs to systems, a number of software-engineering–related aspects may be

covered (e.g., build management, testing, documentation, and modeling features to be imple-

mented by the systems) [Läm13].

A technical or technological space is a “working context with a set of associated concepts, body

of knowledge, tools, required skills, and possibilities. It is often associated to [sic] a given user

community with shared know-how, educational support, common literature and even workshop

and conference meetings. It is at the same time a zone of established expertise and ongoing

research and a repository for abstract and concrete resources” [KBA02b]. This concept is one

of the motivating items for the work presented in the thesis.

The 101companies project is a community project aimed at collecting systems that implement

certain features of a small, hypothetical information system—the 101system for human resource

management—in different ways [FLSV12]. These systems are referred to as contributions; they

are maintained in a confederated GitHub-based repository, the 101repo.20 All contributions are

documented on a wiki for the project, – the 101wiki.21

Structure of the Thesis

In chapter 3, “State of the Art,” we perform a systematic and critical analysis of the state of the

art in software engineering, as it concernes the scope of our research on a software chrestomathy.

In chapter 4, “Problem Space,” we set up the problem space and identify the scope of chal-

lenges associated with an open-research software chrestomathy. In chapter 5, “101companies

Software Chrestomathy,” we define key concepts associated with software chrestomathy. We

also describe 101companies and illustrate its usefulness for different shareholders. In chapter 6,

“Chrestomathic Knowledge Integration,” we describe the knowledge-integration framework that

we used to create a consolidated vocabulary for making linkages among chrestomathy, wikis,
20https://github.com/101companies/101repo
21http://101companies.org

https://github.com/101companies/101repo
http://101companies.org

20 Chapter 1. Introduction

and online textbooks. In chapter 7, “A Chrestomathic Ontology,” we discuss the ontology-

based approach to knowledge organization in the 101companies software chrestomathy. We

also discuss principles for modeling knowledge about software technologies and languages. In

chapter 8, “Technology Modeling,” we describe a megamodeling approach to linguistic archi-

tecture. Chapter 9, “Evaluation of the 101companies Software Chrestomathy,” demonstrates

the validity of our research. We analyze 101companies using action research to show its appli-

cability in practice. The final chapter concludes the thesis and discusses the broad potential

for further improvement of the 101companies software chrestomathy and its applicability.

Related Publications

This section lists publications that I co-authored and contributed to as part of the research for

this thesis.

[FLSV12] Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz and Andrei Varanovich.

101companies: A community project on software technologies and software languages. In

TOOLS (50), pages 58–74, 2012.

[FLL+12b] Jean-Marie Favre, Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz and An-

drei Varanovich. Linking documentation and source code in a software chrestomathy. In

WCRE, pages 335–344, 2012.

[FLV12] Jean-Marie Favre, Ralf Lämmel and Andrei Varanovich. Modeling the linguistic

architecture of software products. In MoDELS, pages 151–167, 2012.

[LMV13] Ralf Lämmel, Dominik Mosen and Andrei Varanovich. Method and tool support

for classifying software languages with wikipedia. In SLE, pages 249–259, 2013.

[LLSV14b] Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz and Andrei Varanovich.

Comparison of Feature Implementations across Languages, Technologies, and Styles. In Proc.

of IEEE CSMR-WCRE 2014. IEEE, 2014

[LSV14] Ralf Lämmel, Thomas Schmorleiz andAndrei Varanovich. The 101haskell Chrestomathy

1.7. Related Publications 21

– A Whole Bunch of Learnable Lambdas. In Postproceedings of IFL 2013, 2014.

[LV14] Ralf Lämmel and Andrei Varanovich. Interpretation of Linguistic Architecture. In

European Conference on Modelling Foundations and Applications (pp. 67-82). Springer Inter-

national Publishing.

[LVL+14] Ralf Lämmel, Andrei Varanovich, Martin Leinberger, Thomas Schmorleiz and

Jean-Marie Favre. Declarative Software Development (Distilled Tutorial). In Proc. of PPDP

2014.

Below we quote a number of the reviews, as a sign of appreciation for the novelty of the research

has been represented in our publications.

• TOOLS 2012: “Being an unconventional paper, it is written in an unconventional manner.

I would have not written the paper in this way for introducing a project like that. Anyway,

I definitely prefer to respect the way it is written because it reflects an original style and

an original attitude. Both things are needed to science and technology to progress. Some

of the ideas are arguable, and many projects like this have failed in the past due to lack

of support by the community or, alternatively, due to excessive and too tight control by

it. Authors should stick to their ideas and should try to build the project in their way.”

• WCRE 2012: “Points in favour: 101companies project: http://101companies.org; this is

certainly a worthwhile repository of the techniques and results by the parsing (program-

ming language) and reverse engineering communities; a very useful teaching tool; it would

have been useful to have had this resource for the Y2K conversion process.”

• IFL 2013: “Both the paper and its topic are far from the usual kind of research papers

that we normally see. That does not mean that the paper without merit. In fact I liked

this paper quite a bit. The paper made me search out a few of the citations to get a

better understanding of the larger context. Which further whetted my appetite for what

the paper contained.”

The publications mentioned above contribute to the significant part of the thesis with the

22 Chapter 1. Introduction

substantial revisions and additions. In particular, with the relation to the scope and the

consistency of the research method applied in this work. The thesis is written in the style of a

monograph, thus, none of the publications have one-to-one correspondence to the chapter. The

degree of contribution is emphasized in the footnotes at the beginning of each chapter.

Chapter 2

Background

This chapter provides the background on two key notions developed in this thesis.

Program Chrestomathies

There is very little reusability in research generally (see figure 2.1 from [Smi11]). In fields such

as physics and chemistry, experimental papers provide a lot of technical details to enable others

to reproduce experiments and validate findings. In software engineering research, many tools

are built to support publications. However, there are not many means to distribute the tools

together with the papers, so reusability remains in general low.

Using open source is an easy yet efficient way to distribute such tools [MVDBK14a], though not

the only one. The Executable Paper Grand Challenge is a contest created to improve the way

scientific information is communicated and used.1 Three winners of this contest illustrate the

variety of approaches to enable the reusability of publications. Nowakowski et al. introduce the

concept of executable papers, which are static papers supplemented with interactivity [NCH+11].

SHARE provides an operation management for virtual machines that can be cited from research

papers [GM11]. Such virtual machines contain all the necessary software and data to reproduce

results presented in the paper, making the research papers fully reproducible. Verifiable Result
This chapter is an original part of the thesis based on the analysis of the existing research work.

1http://www.executablepapers.com/

23

http://www.executablepapers.com/

24 Chapter 2. Background

Identifier (VRI) [GD11], once included in the publication, “can be used by any reader with a web

browser to locate, browse and, where appropriate, re-execute the computation that produced

the result.”

Figure 2.1: Where do you currently store your research data? (researchers/multiple answers,
N=1202)

In software engineering, three well-known cases support reusability:

1. Natural open source and social software ecosystems. These are collaborative-oriented en-

vironments, with the minimal structure and maximum flexibility oriented on collaborative

software creation.

2. Program chrestomathies. Their primary focus on learning makes them useful in different

contexts. However, lack of standards and reusability leads to proprietary vendor or task

specific instances.

3. Linked data. The most structuraly and technicaly sophisticated approach which is often

enriched with the ontology and mostly focuses on the data to be exposed. Has limited

capabilities, mainly inspired by the underlying technologies. As a result, a lot of useful

data is not explored.

Program chrestomathies are collections of program examples, possibly in different languages,

which are used to demonstrate the specifics of programming languages, their implementations,

paradigms, and platforms. In the simplest case, a chrestomathy may contain the “Hello World!”

2.1. Program Chrestomathies 25

example. In more advanced cases, chrestomathies demonstrate stacks or even product portfolios

by vendors (e.g., see chrestomathies for Microsoft2 or Oracle/Sun.)3 Table 2.1 shows a concise

comparison of programming chrestomathies.

Suites of performance benchmarks account for a specific category of programming chrestomath-

ies. Such suites consist of source code from programs that is suitable for challenging the per-

formance of language implementations systematically. The results can be compared across

different implementations of a language or across different languages. For instance, the Com-

puter Language Benchmarks Game (CLBG) is a widely used repository of such comparisons

across a wide range of programming languages.4

Table 2.1: Comparison of programming chrestomathies

Aspect Java Pet Storea 99 Bottles of Beerb Rosetta Codec CLBGd

Focus Java platform Single Task Tasks Algorithms

Scope of comparison - Languages Languages Languages

Technological spaces Limited Ignored Limited Ignored

Ontology-driven No No No No

Classroom-tested Unknown No No No

Source code Zip archive Website Website Website
a http://java.sun.com/developer/releases/petstore

b http://www.99-bottles-of-beer.net/

c http://rosettacode.org/

d http://shootout.alioth.debian.org/

As a conslusion which followed from the comparison, we anticipate the need for a collec-

tion of related software products (i.e., possibly small, actually running systems) using vari-

ous combinations of software languages and technologies, for the purpose of demonstrating

languages and technologies as well as software engineering concepts such as architecture, mod-

eling, deployment, documentation, testing, and reverse engineering. The 101companies software

chrestomathy introduced in this thesis, is meant to provide another useful knowledge resource

to the software development and engineering community.
2http://archive.msdn.microsoft.com/ContosoAutoOBA
3https://wikis.oracle.com/display/code/Home
4http://shootout.alioth.debian.org/

http://java.sun.com/developer/releases/petstore
http://www.99-bottles-of-beer.net/
http://rosettacode.org/
http://shootout.alioth.debian.org/
http://archive.msdn.microsoft.com/ContosoAutoOBA
https://wikis.oracle.com/display/code/Home
http://shootout.alioth.debian.org/

26 Chapter 2. Background

In [ON08], two open source contexts are distinguished: software and content, and we analyze

to what extent the entry barriers for contributors are different in the two contexts. While

software contribution requires a certain threshold of expertise in order to pass the review

process, content contribution has virtually no entry barriers other than basic computer literacy.

To some extent, both roles are separated by the proposed contributor roles in the 101companies

project. However, ideally, a contributor of an implementation is also supposed to contribute

content (so that the implementation is strongly documented).

Linguistic Architecture

Several abstraction levels and views are used in software development. For instance, structural,

behavioral, component-based, and architectural models are commonly used. Most models use

different kinds of artifacts. However, there are types of elements (namely, languages and tech-

nologies) that do not have a physical representation. Nevertheless, they play a key role in

software engineering. For example, when modeling the programming language Java, the whole

Java ecosystem is often considered. A person who is a Java developer implicitly has broad

knowledge of Java technologies, often accompanied by a certain way of thinking (e.g., Java-

thinking versus Prolog- or Haskell-thinking). Linguistic architecture considers such entities and

their relations.

Instances of Linguistic Architecture

In this section we analyze several domains of software engineering. We seek traces of entities

and relations between them, and those that are the main concern in each specific domain

(community). Communities can vary in how explicitly they treat the artifacts in a model-

driven way. We highlight the discovered notions in italic.

In Software Maintenance

Karus and Gall study the coevolution of languages and other project artifacts, such as docu-

mentation, binaries, and graphics files [KG11]. The ultimate goal of the research is to find a

2.2. Linguistic Architecture 27

coevolution profile of languages, that is, pairs of languages that are coevolving in open-source

software (OSS) projects. The results show that beside programming languages like Java or

C, markup languages (e.g., XML, Web Services Description Language [WSDL]) and trans-

formation languages (e.g., extensible stylesheet language [XSLT]) constitute such coevolution

profiles.

Feilkas, Ratiu, and Jurgens are concerned with the loss of architectural knowledge, namely that

documentation and source code are not kept in sync [FRJ09]. They analyze the degree of con-

formity between documentation and source code. For architecture conformance analysis, they

represent a software system as a set of types with a set of dependencies between them. Such

representation allows applying the conformance checking. The results reveal that more struc-

tured documentation in a machine-readable form and automatic dependency analysis create

bigger architecture-awareness in the development team.

Eichberg et al. present an approach to expressing constraints on structural dependencies be-

tween elements of software [EKKM08]. Such elements consist of architectural-, design-, and

implementation-level decisions. Further, there are design-level constraints, such as stating that

only factory classes can access constructors of product classes when the factory pattern is em-

ployed. Finally, there are implementation-level constraints, such as stating that the fields of

a certain class can only be accessed via getter and setter methods of the same class. The ap-

proach uses declarative queries to group source elements across programming-language module

boundaries into overlapping ensembles. The paper presents ensembles, which are continuously

enforced as the software evolves.

Harrison et al. write that the concern manipulation environment (CME) provides a way to

represent concerns across different types of software-engineering artifacts in the context of

aspect-oriented software development [HOJT05]. One of the mechanisms to assign concerns is

a fixed set of queries over relations, such as extends, implements, refersTo, or referredToBy.

The querying capabilities of a CME rely on a predefined set of predicates.

In the context of software maintenance, it is useful to know how developers understand a pro-

gram and fix bugs. Soh et al. represent program entities as a resource (XML, MANIFEST.MF,

28 Chapter 2. Background

properties, HTML files, etc.) or composite parts of a Java program (i.e., project, package, file,

class, attribute, or method) [SKG+13]. By surfacing such program entities from interaction

history, the authors were able to identify exploration strategies for developers.

In Antipattern Detection

Palma et al. analyze static and dynamic properties of REST services to detect REST antipat-

terns, such as forgetting hypermedia (see [Til08]), where the links between web resources are not

present in the response body or header [PDMG14]. HTTP responses are considered structural

entities, and certain queries are executed on top of them for pattern and antipattern detection

in an automated manner.

Palma et al. apply a similar method to detect service-oriented architecture (SOA) antipatterns

in web services [PMTG14]. The relevant properties of web-service–specific antipatterns are

encoded in DSL. For instance, names are analyzed to identify Remote Procedure Call (RPC)-

like behavior, exposing create, read, update, and delete (CRUD)-type operations (e.g, read_

and create_), which is are CRUD interface antipatterns.

A number of similar approaches exist for OO antipatterns, where structural program elements

(e.g., classes) are queried [KKS+11, SMSB11]. Settas et al. go a step further and put an-

tipattern definitions into semantic relationships in the form of the OWL ontology SPARSE

[SMSB11]. SPARSE is represented through 31 OWL ontology antipattern instances. Linskey

and Prud’hommeaux analyze field-level access and mutation for an object-relational (O/R)

mapper to accelerate data access through caching [LP07].

In Software- and Language-Modeling Foundations

Wang et al. attempt to establish an identity criterion for software-related artifacts through a

requirements-engineering perspective [WGGM14]. A notion of the program as an artifact with

internal behavior is complemented by notions of the software system as an interface to the

environment and the software product that determines the specific effect in the environment

based on certain conditions. A program, however, cannot be identified either with a code, a

2.2. Linguistic Architecture 29

process, or an algorithm. Thus, the need for the technical artifact is motivated. The identity

of the artifact is further connected to its proper function, that is, the function the artifact is

intended to perform [Bak04].

In the context of the evolution of languages, Meyers and Vangheluwe study the two main

aspects of a language model: its syntax (how it is represented) and its semantics (what it

means) [MV11]. An abstract language model is represented by multiple concrete syntaxes.

The parsing function maps between concrete and abstract syntaxes. A metamodel describes

the abstract syntax and static semantics of a language. Dynamic semantics are not covered by

the metamodel. The abstract syntax of a model can be represented as a graph with nodes that

are elements of the language and edges that are relations between these elements and elements

of the language. Instance models of the language are said to conform to the metamodel of the

language. Kühne refers to this conformance as linguistic instance of [Küh06a].

In Traceability Recovery

Traceability is a necessary system characteristic for software management, software evolution,

and validation [Nas05]. A survey on tracing approaches in traditional software engineering

and the elaboration of a traceability taxonomy is presented in [VKP02]. Entities and relations

constitute a conceptual trace model [RJ01]. We consider such a model from two perspectives.

The first perspective is a focus of the traceability-recovery field; it is actual recoverability in

which the accuracy of extracted dependencies plays the critical role.

In Egyed’s study [Egy03], trace dependencies characterize the relationships between the follow-

ing software elements: test scenarios, data flow, use case, class diagrams, and implementation

classes. Different types of trace dependencies provide a set of high-level relationships between

software artifacts. The approach relies on an observable and executable software system, a list

of development artifacts, and scenarios describing test cases or usage scenarios for those devel-

opment artifacts. Analyzing traceability between classes and requirements in an OO system

is a promising way of improving the accuracy (precision and recall) of traditional information

retrieval (IR) approaches [AGA13].

30 Chapter 2. Background

The second perspective of the trace model is concerned with the actual modeling of traceability

links, which make the model even more strongly connected to the notion of linguistic architec-

ture. The research approaches using this perspective still take into consideration a somewhat

basic model of the program, mainly focusing on the novel methods of information retrieval

[ACC00]. However, the application-domain knowledge that programmers express in identifiers

[ACDLM99] can also represent the essential properties of an OO system [FA98]. A separate

model for traceability links themselves also facilitates the loose coupling between models and

traceability information [GG07].

Concept location is another instance of exploring linguistic architecture [MSRM04a]. In fact,

software-engineering concepts in a broader sense are central in the chrestomathic ontology

presented in the chapter 7 of this thesis. The concepts themselves are worth analyzing as

soon as their types are also a concern in our analysis of linguistic architecture. Wilde et al.

represent a program as a set of “program-components–implement-functionality pairs, where a

test case establishes a relation between a program component and a functionality” [WGGS92].

Traces of test-case execution are used to identify elements of the source code that implement

that feature. Barbero, Jouault, and Bézivin use domain-specific conceptual entities, such as

bug reports (which contain definitions of several bugs, define relationships between them, and

connect them to code patches) or Java projects (models with files, dependencies, and bug

trackers) [BJB08].

In Model-driven Engineering

MDE has provided a direct inspiration for the notion of linguistic architecture, which is not

limited to MDE-only, however. Bézivin uses megamodels to illustrate the relations between a

model, a metamodel, and a meta-metamodel [Béz04]. Other entities are not explicitly captured.

Two relationships (representedBy and conformantTo) are used; they correspond to instanceOf

and inherits in the OO paradigm. Favre considers languages in a set-theoretic sense next

to models. Additionally, Favre considers programs, functions, interpreters, and recognizers

[Fav04b]. Favre and Nguyen propose a notation for megamodels supported by several exam-

ples [FN04a]. In their notation, everything is a system (a real system, an abstract system, a

2.2. Linguistic Architecture 31

model, a metamodel, and so forth) or a set (in practical terms, a language). Such entities are

bound by five kinds of well-defined relationships: δ (DecomposedIn), µ (RepresentationOf), ε

(ElementOf), χ (ConformsTo), and τ (IsTransformedIn).

Klint, Lämmel, and Verhoef use conceptual entities (such as schemas, grammars, and specifica-

tions), functions (transformation and processor), technology (tooling), and processes (coding,

generation, customization, recovery, evolution, implementation) to define a grammarware TS

[KLV05].

Chapter 3

State of the Art

In Jim Gray’s last talk to the Computer Science and Telecommunications Board on January 11,

2007, he described his vision for the fourth paradigm of scientific research, specifically for data-

driven research [HTT]. Data-driven research focuses on tools and methods for data capture,

curation, and analysis and for communication and publication infrastructure. In his talk, he

uses a data iceberg analogy: “Then comes the publication of the results of your research, and

the published literature is just the tip of the data iceberg. By this, I mean that people collect a

lot of data and then reduce this down to some number of column inches in Science or Nature—

or 10 pages if it is a computer science person writing. So what I mean by ‘data iceberg’ is that

there is a lot of data that is collected but not curated or published in any systematic way.”

Gray’s iceberg analogy is also applicable to the research on TSs. Reproducibility—the ability

to repeat calculations for analyzing data and obtaining computational results [Mes10]—is a

fundamental aspect of research. Consider an example in software engineering. Academic tools

are essential parts of research, but many tools remain prototypes and hardly become products.

One reason is that citation count is the key criterion for researchers’ output [MvdBK14b]. For

instance, it has become increasingly complex to reproduce methods used in software analysis,

and often researchers only reproduce old methods to compare them with new methods. There

are positive examples of already available tools that promote collaboration-oriented research

This chapter is an original part of the thesis based on the analysis of the existing research work.

32

33

and enable researchers to set up frameworks for comparing items of interest, including tools,

benchmarks, and user studies. Such collaboration may advance reproducibility in software

engineering research, which in turn may lead to tool platforms where researchers rely on ex-

isting tools to build new prototypes. The workshop series at the International Workshop on

Advanced/Academic Software Development Tools and Techniques1 and Elsevier’s Science of

Computer Programming special issues on Experimental Software and Toolkits (EST) promote

this vision.

Reproducible research not only helps “to reproduce figures in the revisions of a paper, [and]

to create earlier results again in a later stage of our research”2 but also serves as a basis for

more advanced uses of research data. So reproducibility is closely related to reusability, which

is rarely supported by publications. In the software analysis context, the MSR conference has

two special types of publications that support reusability. Data papers “should describe data

sets curated by their authors and made available to others. They should address the following:

description of the data, including its source; methodology used to gather it; description of the

schema used to store it, and any limitations and/or challenges of this data.” And in a mining

challenge, researchers demonstrate the usefulness of their mining tools on preselected software

repositories and summarize their findings in a challenge report.3

Another dimension of Gray’s iceberg is the stakeholder. There are many stakeholders with

interests in software technologies, software languages, and TSs, notably software developers,

software technologists, ontologists, teachers, and students of software engineering and software

languages. And their interests often diverge. As a result, it is difficult to provide clean semantics

for the data (what the data means), clearly represent the data, and provide technical means to

consume the data using open-web standards. Even within the same use case (e.g., education),

diverse stakeholders, including university students and IT professionals, require different levels

of insight on the same topics (e.g., learning a new programming language.)

In this work, we are concerned with designing, implementing, and evaluating a software chrestomathy

1http://wasdett.wikispaces.com/
2http://reproducibleresearch.net/
3http://2014.msrconf.org/

http://wasdett.wikispaces.com/
http://reproducibleresearch.net/
http://2014.msrconf.org/

34 Chapter 3. State of the Art

as a basis for a knowledge-driven research infrastructure. We define the scope of the research

on software chrestomathy and evaluate the state of the art using the following: an analysis of

three instances of reusability in software engineering; a discussion of TSs and different means

for analyzing and understanding them; the role of ontologies in software engineering; an analy-

sis of linguistic architecture—a concept introduced in this thesis—in different fields of software

engineering and its role in technology modeling; and a discussion about issues of knowledge

engineering for programming education.

Technical Spaces and Polyglotism

In the communities of modeling, metamodeling, and software languages, the concept of TSs

helps in identifying and communicating commonalities and differences for grammarware, XML-

ware, modelware, objectware, and tupleware [KBA02a, DGD06]. An open question remains:

what technical spaces and programming technologies should be leveraged for a given assign-

ment? There are existing benchmarks in other areas of programming languages, databases,

and software engineering, which are usually meant to evaluate technologies and approaches in

a more specific domain (e.g., a generic programming benchmark for Haskell libraries [RJJ+08]

and STBenchmark, a benchmark for mapping systems for schemas, such as relational-database

schemas [ATV08]). A more structural, model-based level of abstraction is promoted by MDE.

The top three reasons for using models in MDE are team communication, understanding a

problem at an abstract level, and capturing and documenting designs [HWRK11]. Ko, Meyers,

and Aung found six learning barriers which users of programming interfaces would encounter:

the inherent difficulty of the problem (design), finding available interfaces (selection), combin-

ing available interfaces (coordination), using available interfaces (use), evaluating the external

behavior of the program that does not match expectations (understanding), and acquiring in-

formation about a program’s internal behavior (information) [KMA04]. They also found that

using examples helped programmers overcome selection and coordination barriers.

Polyglotism is gaining researchers’ attention mainly due to practical demand (i.e., the need

for new tools for and approaches to multilanguage comprehension in software projects). A

3.2. Education and Knowledge Engineering 35

problem of references across artifacts written in different languages—referred to as “seman-

tic cross-language links” [MS12]—is one of the central challenges in this domain. Tomassetti,

Torchiano, and Vetro present six categories of semantic interactions as a taxonomy [TTV13].

Tomassetti, Rizzo, and Torchiano introduce a language-agnostic approach to automatically

detecting cross-language relations [TRT14]. Tomassetti and Torchiano are concerned with

clustering of groups of languages that are used together in the same software project [TT14].

Selected projects hosted on GitHub are used as a corpus for analysis. The authors refer to

such clusters as language cocktails and introduce several of their aspects, such as the level of

polyglotism and the size of the most common clusters. Tomassetti et al. articulate the prob-

lem of language integration and present the model-based approach in the context of language

workbench [TVT+13].

Education and Knowledge Engineering

Programming Education

Some techniques used in programming education—some of which may also be adopted in the

context of software chrestomathy—include the following: collaborative learning [HZMK08];

designated search methods [YYN+07]; teaching-oriented, domain-specific development envi-

ronments [RDL08]; systematic and semi-automated means of involving peers [YYN+07]; and

the use of traceability to connect implementations with designs or specifications for the sake of

understanding and validation [Gas08].

Various related accounts of programming education exist that clearly emphasize the impor-

tance of examples. For instance, Zhang and Nguyen describe the methodology of a Java tu-

torial, which fundamentally leverages simple, short, correct, and interactive examples [ZN04].

However, a software chrestomathy should not simply be considered a collection of examples;

organization and annotation of examples are crucial. Finally, there are course designs that

share the goal of covering programming broadly across programming domains and TSs (e.g.,

[Jac04]).

36 Chapter 3. State of the Art

Ontologies and Linked Data in Education

Dietze et al. apply Linked Data principles to address the challenge of integrating the frag-

mented landscape of technology-enhanced learning (TEL) repositories to provide “rich and

well-interlinked data for the educational domain” [DYG+12]. The project operates on existing

TEL resources, addressing the heterogeneities of APIs, schemas, and response message for-

mats. Borges, Maldonado, and Barbosa use an existing ontology of software testing, ontoTest

[BNRM08], to exercise a conceptual modeling of the educational content [BMB11]. Such an

approach relies on ontologies to provide better comprehension of the knowledge domain and

support for knowledge sharing and reuse.

Sosnovsky and Gavrilova describe an ontology for teaching and learning C programming [SG05].

More generally, Kasai et al. describe an ontology of fundamental concepts in IT education

and their relationships [KYNM06]. The dimension of ontology-based support for education

still needs to be explored in the 101companies project; related courses have used simple, less

structured education methods.

Collaborative Knowledge Creation

In the e-learning context, some authors propose a combination of collaborative forums and

wiki technologies to motivate deeper student engagement, better coordination, and progress

monitoring [GLM+08]. Students are encouraged to produce new material based on discussion.

Empirical results indicate better performance among active participants. Such a collabora-

tive discussion-based model is quite typical for online e-learning, which by definition is lack-

ing in-person context. In contrast, 101companies stimulates the creation and aggregation of

reference-knowledge artifacts by integrating trusted and authoritative knowledge resources and

wiki content created by domain experts. Forte and Bruckman discuss a collaborative knowl-

edge construction platform, Science Online [FB07]. This approach is called constructionism

and advocates learning by working on personally meaningful projects. Under this approach,

collective models of knowledge production and learning are connected. Because in MediaWiki,

references are typically associated with one article, the authors built a bibliographic extension

3.3. Ontologies for Software Engineering 37

to systematically handle references to external resources that automatically created a page for

the reference and motivated a centralized discussion of linked resources.

E-Learning in Software Engineering

Despite of the broad application of the e-learning in general, there is very limited empirical

evidence of its applicability for software engineering in particular. Teaching Software Engi-

neering is challenging,as the benefits of Software Engineering concepts only become visible and

understandable for students if they are applied to realistic problem scenarios of appropriate size

and complexity. Wikis have gained the strongest attention lightweight platforms for exchanging

reusable artifacts between and within software projects [DRR+05]. Some evaluations [MT07]

have also confirmed that the strength of a wiki, as a collaborative authoring tool, can facilitate

the learning of course concepts. Along the pedagogical dimension, the e-learning collaboration

tools enable the process of an active construction of the new knowledge, so-called "knowledge-

as-construction", opposite to the "knowledge-as-transmission" in the traditional class learning

with the lecturer [Had03]. MOODLE, a course management system, supports a range of dif-

ferent resource types that allow including almost any kind of digital content into the courses

[ATN04]. Further approaches include specially designed modeling tools support an easy access

to specific Software Engineering concepts and ease their understanding by students [DEH+05].

Integrated virtual learning [Ham08] and game-based [CSH07] environments is another instance,

still lacking a solid empirical evidence of their impact.

Ontologies for Software Engineering

According to [Smi01], three areas are creating a demand for the application of ontologies in com-

puter science: database and information systems, software engineering (in particular, domain

engineering), and artificial intelligence. Guizzardi discusses their in-depth analysis as well as the

philosophical and historical foundations of ontologies in general [Gui05]. We analyze ontologies

and their applications from specific domains of software engineering.

Ruiz and Hilera distinguish two categories of ontology for software engineering and technology:

38 Chapter 3. State of the Art

domain knowledge ontologies and ontologies as software artifacts, typically used in software

processes [RH06].

Souza, Falbo, and Vijaykumar provide a systematic literature review of ontologies in software

testing [SdAFV13]. They point out there is a lack of uniformity in vocabularies and limited

domain coverage. The Web Ontology Language (OWL) is used as an implementation level for

ontologies in all studies. They also find that all ontologies are presented as UML class-diagrams.

And they conclude the following: most ontologies have limited coverage; ontology evaluation is

not discussed; none of the analyzed testing ontologies is truly a reference ontology; and none

of them is based on a foundational ontology. A need exists for a well-established reference

software testing ontology. A reference ontology must be a heavyweight ontology; therefore, it

must comprise conceptual models that include concepts, several kinds of relations, and axioms

that describe constraints and allow information to be derived from domain models.

Henderson-Sellers et al. combine conceptual modeling and ontology engineering approaches to

normalize the semantics of the terms used in the software engineering ISO standards developed

by SC7, a subgroup responsible for software engineering standards [HSGPML14]. The authors

aimed to create unambiguous definitions of all terminology, increase conformity of standards

to the ontological descriptions of terminology, and categorize the standards themselves.

Ratiu, Feilkas, and Jurjens are concerned with the extraction of domain ontologies from domain-

specific APIs [RFJ08]. They analyze the similarity between APIs based on their graph represen-

tations. They use the following relations to represent API usage: isA, the taxonomic relation;

hasProperty, the relation between a concept and its properties; actsOn, the relation between

an action and its patients (the parameter of a method); and isDoer, the relation between an

agent and its actions (the method of a class). Such a simple yet flexible model enabled a high

degree of abstraction from different APIs.

Barcellos and Falbo developed a Software Measurement Task Ontology (SMTO) to support

semantic interoperability between different measurement-related standards and to support se-

mantic integration of software applications that support measurement [BdAF13]. The authors

acknowledge the limitation of domain ontologies. They note that it is important to achieve a

3.3. Ontologies for Software Engineering 39

common understanding regarding both domain- and task-related aspects of software measure-

ment.

De Carvalho, Almeida, and Guizzardi propose using ontologies to define semantics for declar-

ative, domain-specific languages (DSLs) [dCAG14]. Their approach uses a reference domain

ontology to define the admissible states of the world. They use a representation of the valid

expressions of a DSL to determine the abstract syntax and the real-world semantics of the

language. The elements are are axiomatized in three corresponding logic theories, enabling

a systematic treatment of real-world semantics, including formal tooling to support language

design and assessment.

A software evolution ontology is introduced in [TKB10]. Different aspects of object-oriented

(OO) systems are captured in three models: the software ontology model (som), the bug ontol-

ogy model (bom), and the version ontology model (vom). The software ontology model is based

on FAMOOS Information Exchange Model (FAMIX), a programming language-independent

model for representing OO source code [DDT99]. FAMIX and other metamodels abstract OO

concepts in a similar way. The version ontology model specifies the relations between files,

releases, and revisions of software projects and the projects themselves, and the bug ontology

model is inspired by the bug-tracking system Bugzilla. Nardi, Falbo, and Almeida study an

adoption of foundational ontologies for dealing with semantic conflicts in enterprise application

integration (EAI) initiatives [NdAFA13].

In [TKB10], the conceptual and digital entities are referred to as the “global cloud of software

source code” and enriched with related information (versions, releases and bug reports). The

usage of semantic technologies, such as OWL, RDF, and SPARQL Protocol and RDF Query

Language (SPARQL), is proposed to represent a software project semantically with the ability

to interlink other projects.

40 Chapter 3. State of the Art

Linked Data for Software-Engineering Research

Linked Data provides a structural approach to exposing different software artifacts from source

code repositories [KFH+12c, KFRC11]. MSRs create the context for exposing additional analy-

sis and source-code–processing tools. The diversity of repositories is supported with the various

documentation techniques used across them. Linked Data techniques are used to link docu-

mentation across different repositories [How08]. Source-code traceability is another promising

application of Linked Data [IH12]. More ambitious approaches, such as Linked Data driven

software development methodology, aim to expose all data from source code, version control

systems, and bug tracking tools as Linked Data [IUHT09].

In addition to just surfacing the artifacts, organizing a common vocabulary is an important

means for increasing reusability. Asset Description Metadata Schema (ADMS) describes “se-

mantic assets, defined as highly reusable metadata and reference data” [Dek13]. Peristeras

applied ADMS in the context of e-government to tackle the semantic interoperability of sys-

tems [Per11]. There is also ADMS for Software (ADMS.SW) [Goe11], which Berger applied to

the Debian Package Tracking system [Ber12]. Berger’s goal was to “generate RDF [Resource

Description Framework] meta-data documenting the source packages, their releases and links to

other packaging artifacts” and to link the packages to other open-source software and derivative

distributions for traceability. Another use case for Linked Data is simplifying the integration of

data from multiple code forges in open-source repositories, specifically to interlink the identities

of a developer across different data sources on the web [ICH12].

In a broader context, the need to combine and expose data is called mash up architecture

[MG08]. An architecturally similar approach has been applied in software engineering to im-

prove software-engineering tools by enriching them with information from different sources such

as web-based APIs and information repositories [GTS10]. Overall, we must admit there is lim-

ited adoption of data-driven approaches to surface software artifacts in software-engineering

research.

3.5. Open-Source and Social-Software Ecosystems 41

Open-Source and Social-Software Ecosystems

We consider two types of ecosystems. One is the “traditional” open source software ecosystem.

This is an instance of the ecosystem from [MS05] “a collection of software products that have

some given degree of symbiotic relationships”, which is consistent with the alternative definition

by [Lun08] “a collection of software projects which are developed and evolve together in the

same environment.” In open source collaboration is the important aspect of such environment.

Such ecosystems are considered similar to natural ones [MCG14], [MBM13]. The health [Jan14]

and quality [FACF14] models are important characteristics of such ecosystems.

Another complementary type of ecosystem is the social-programmer ecosystem, which stems

from modern notions of social coding and developer communities [SFFC+13]. The primary

goal of such an ecosystem is improving and expanding people’s knowledge adoption rather

than software development. In addition to building relationships, collaborative tools (such as

Twitter) help developers learn new technologies and adopt new practices [SFS14]. With the

rise of social-computing platforms (such as StackOverflow), the importance of socio-cultural

context also increases [MMM+11]. Software development is “increasingly less characterized by

writing code and more by the need to aggregate, compose, and debug a diverse set of languages,

components, services, and code snippets into functioning systems” [GCS13].

Chapter 4

Problem Space

The research agenda on software chrestomathies [Lae13] is concluded with the following state-

ment: “research on software chrestomathies challenges software engineering and computer sci-

ence in various respects.” In this chapter we bring these challenges to the research context of the

thesis in the following ways: we list the relevant challenges and then we define the requirements,

that scope the problem space of our research, according to the design research methodology,

discussed in chapter 1.

The majority of this chapter is an original part of the thesis, with some requirements derived from the
conference publication [FLL+12b] Jean-Marie Fayre, Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz and
Andrei Varanovich. Linking documentation and source code in a software chrestomathy. In WCRE, pages
335–344, 2012.

42

4.1. Challenges 43

Challenges

Open Science Challenge

Open science and generally Research 2.0 promotes a development of the data-intensive collab-

orative scientific application. Software chrestomathy is one instance of such an application. It

might be considered within a broader scope of the eScience agenda [FH09]. More specifically,

it can serve as an infrastructure to evaluate the languages, technologies and tools across tech-

nological spaces. Software chrestomathy is an advanced effort to illustrate the variation points

and technology options that are linked to the notion of technical spaces. The usage of the

software chrestomathy goes beyond the research community. Professional developers may be

framed in a specific technological space acquiring “silos of knowledge”, laboriously. However,

developers are expected to travel technological spaces and adapt to new technologies and lan-

guages rapidly and continuously. This will only be possible once developers obtain convenient

access to sufficiently organized, abstract, and connected knowledge resources.

Knowledge Engineering Challenge

With all the many features, contributions, languages, technologies, and concepts in scope, one

can easily understand that some degree of knowledge engineering is needed for maintaining the

quality and usefulness of a chrestomathy. This is the central research challenge comprised of

the following research questions:

• What is the ontology administering a chrestomathy so that all involved entities (such

as code artifacts, languages, technologies, and concepts) are organized (classified, associ-

ated)?

• What is the vocabulary of such an ontology, e.g., the concrete programming concepts to be

covered by the feature model or to be mentioned in the documentation of contributions?

• How can existing knowledge resources, such as textbooks or Wikipedia, be usefully inte-

grated in the scope of a chrestomathy for the immediate benefit of users?

44 Chapter 4. Problem Space

Knowledge Integration Challenge

We assume the following definition of knowledge integration: “Knowledge integration is the

dynamic process of linking, connecting, distinguishing, organizing and, structuring models of

scientific phenomena.”[Lin00] A key knowledge integration challenge for software chrestomathy

is the heterogeneity and complexity of the involved sources, which require methodological and

algorithmic precautions to actually obtain a vocabulary that is useful, say, for teaching and

documentation. To this end, the mining thresholds should be controlled, the queries (visual-

izations) on vocabulary data for decision making and quality assurance should be used, and

non-automated validation steps along the way should be applied.

To develop a process for an integration of such community resources, certain questions have to

be addressed:

• What are the “useful” resources to be integrated?

• What is the balance between knowledge integration and knowledge creation?

• How should an integrated knowledge base be connected with the actual software engi-

neering best practices?

Reverse Engineering Challenge

A software chrestomathy, as opposed to traditional software products, collects source-code

samples that exercise many software languages, technologies, and concepts. Chrestomathies

imply specific forms of complexity that challenge reverse engineering techniques: heterogeneity

in terms of the “many” languages and technologies used by the collected samples and variability

in terms of tasks or features implemented by the samples. Linking the expected architecture

described by documentation with the actual architecture extracted from source code is a well-

known reverse engineering problem [MNS95, MNS01]. There exist methodologies for software

architecture reconstruction (SAR) including Symphony [vDHK+04], CacOphoNy[Fav04b], and

others [PFGJ02, KLL09, LOV02]. However, previous research on SAR addressed traditional

4.1. Challenges 45

architecture (as opposed to linguistic architecture; see [DP09] for a survey) and traditional

products (as opposed to software chrestomathies). Our approach is specifically concerned with

the linguistic architecture of software products [FLV12] with links, for example, from source-

code artifacts to software languages, software technologies, and software concepts. (Traceability

for product features in source code is also of interest.)

Linked Data Challenge

Surfacing software chrestomathy data and vocabulary so that it is useful for the stakeholders,

such as software analysts and consumers of software knowledge is another original challenge in

the context of software chrestomathy. We are aware of a single effort concerning the provision of

facts about source-code repositories using Linked Data. That is, SeCold is an open and collab-

orative platform for sharing software datasets, as introduced in [KFH+12a]. In its first release,

the dataset contains about two billion facts such as source-code statements, software licenses,

and code clones from 18,000 software projects exposed using Linked Data principles. Overall,

our research community is just at the beginning of handling such repositories and derived arti-

facts as Linked Data. When applied to a software chrestomathy, Linked Data principles imply

that all wiki pages, all source code units, all derived resources including metadata, and all on-

tological entities (software concepts, languages, technologies) must be referable through HTTP

URIs with responses that reveal content, metadata, and semantic links to other resources, also

including external resources.

Ontology Engineering Challenge

Ruiz an Hilera distinguish two categories of ontology for Software Engineering and Technology[RH06]:

domain knowledge ontologies and ontologies as software artifacts, typically used in software

processes. Software chrestomathy, by definition, relies on the community authored knowl-

edge, and has an open model of contributions, that provide insights into technologies and

software engineering best practices. From this perspective, the ontology engineering challenge

for software chrestomathy is twofold. The ontology is meant to help managing knowledge

46 Chapter 4. Problem Space

about programming technologies and relates in this regard to other applications of ontologies

to knowledge management [CJB99, SSSS01]. For instance, the work of [RFD+08] describes

the semi-automatic derivation of an ontology for domain-specific programming concepts—as

they are supported, for example, by APIs for XML or GUI programming. Such ontologies

may feed into a more comprehensive ontology of programming technologies. An ontology for

software languages, technologies, and concepts as an important abstraction level for software

engineers and programmers meant to be useful in understanding, comparing, or learning about

such entities. Such a general ontology has not been delivered before.

Technology Modeling Challenge

Technology models describe important characteristics of a software technology in relation to rel-

evant software artifacts, software languages, and other entities. Technology models are “declar-

ative entity-relationship models with entities for languages, technologies, concepts, and artifacts

and with relationships to express data flow, dependencies, conformance, and others.” [LVL+14]

Such technology modeling is a form of megamodeling focusing on the linguistic architecture of

software projects. The notion of megamodeling has received much recent interest, specifically

in the MDE community with diverse application areas such as model management [BJRV05],

software architecture [HMMP10], and models at runtime [SNG10]. Different definitions of

“megamodel” are in use, see, for example, [DKM13] for a more recent proposal. Usually, it is

assumed that a megamodel is a model whose model elements are again models by themselves

while the term “model” is interpreted in a broad sense to include metamodels, conformant

models, and transformation models. We analyzed the instances of the linguistic architecture

in chapter 2. As the analysis suggests, technology models can also benefit from ontological

knowledge. The latter focuses on classification and characteristics overall. The former focuses

on the use of the technology in terms of the involved artifacts, their characteristics, and related

data flows. The challenge at hand is to investigate the potential for a general-purpose technol-

ogy modeling language that captures the essential linguistic relations and is not tailored to a

particular TS or field of MDE.

4.1. Challenges 47

Educational Challenge

Software chrestomathy, by definition, is supposed to be useful in learning. We foresee diverse

profiles of learners. The aspects of software chrestomathy, discussed in chapter 3, are of dif-

ferent relevance. Professionals require a more abstract view of different technologies involved,

while university students may benefit from open chrestomathy-based courses on programming

technologies. An ontology for teaching and learning C programming is described in [SG05].

More generally, an ontology of fundamental concepts in IT-education and their relationships is

described in [KYNM06]. The dimension of ontology-based support for education still needs to

be explored in the software chrestomathy; related courses used simple, less structured education

methods so far. Since a software chresomathy aims at representing and conveying knowledge,

an effort must be made to effectively serve knowledge consumers.

48 Chapter 4. Problem Space

Requirements

Core Properties of Software Chrestomathy (R1)

In chapter 3 we defined a software chrestomathy as an advanced conceptualization of the pro-

gram chrestomathy notion. To generalize this notion, the following requirements from Table 2.1

should be implemented:

1. Focus on software technologies and software languages.

2. Scope of the comparison is implementations of the same software system.

3. Various technological spaces should be covered.

4. Ontology-driven knowledge organization.

5. Classroom tested.

All code and data should be made available following the precepts of Research 2.0, and specif-

ically Open Science, and Linked Data. The software chresomathy project should always favor

simplicity and incrementality over sophistication and completeness, thereby catering to com-

munity involvement and continuity of the project.

Ontology-driven Classification (R2)

A chrestomathy breaks down into physical entities (contributions, individual source files, frag-

ments thereof, and source code illustrations other than contributions) and conceptual entities

(languages, technologies, concepts, features, and others). These entities engage in certain on-

tological relationships.

Despite some disagreement on what an ontology is [PGS02], we do not aim to review ontological

definitions. Our goal is to demonstrate the usefulness of an ontological approach to knowledge

organization in a software chrestomathy. The following requirements should be realized:

4.2. Requirements 49

1. A wiki should be used to document all involved entities, with an explicit semantics and

taxonomy. The ultimate taxonomy of software languages should subsume and integrate

existing, fragmented classifications in a transparent manner.

2. Semantic web-like properties should serve as an explicit linkage between concepts, their

relationships, and generic theories.

3. A context of modularization should be clear, such as classification of languages, technolo-

gies or features.

4. A minimal axiomatization to detail the difference between similar concepts should be

supported.

5. A good naming policy should be realized.

6. A wiki should provide the means for rich documentation, including software engineering

metadata, associated with a given contribution, the ability to link to existing knowledge

resources for languages and technologies or express the dependencies between languages

and technologies.

Linking Documentation and Source Code (R3)

A software chrestomathy is concerned with these kinds of links:

Actual links. These links reside in the source code. Reverse engineering techniques may

recover these links. The graph of the links and the underlying entities is referred to as the

actual (or “as-implemented”) architecture.

Expected links. These links reside in higher-level models or documentation. The correspond-

ing graph is referred to as the expected (or “as-designed”) architecture.

Links to establish. In order to ensure consistency between source code and documentation,

links should be established between source-code and documentation entities. These links may

50 Chapter 4. Problem Space

be documented within the code, within the documentation, or elsewhere; they may also be

discovered by appropriate analyses (e.g., based on name conventions).

To support the co-evolution of documentation and source code in the highly diverse chrestomathic

ecosystem we add the following requirements for linking documentation and source code:

Generality. The approach must work for most, if not all, software languages and software

technologies.

Scalability. The approach must support trading off accuracy of fact extraction against devel-

opment effort for fact extractors. (That is, simple textual or lexical fact extractors should

provide enough basic information, while more language-specific and possibly costly syntactical

or semantical extractors provide optional information, e.g., for more advanced links and more

rigorous checks.)

Declarativeness. The approach should rely on declarative rules, as opposed to any low-level

encoding.

Scoping. Rules must be controllable in terms of the specific directory-, file-, or fragment-level

scope.

Evolvability. Manual and automated addition and removal of rules should be straightforward

and traceable.

Assistance. The analysis of existing metadata should be used in generating recommendations

for metadata revisions.

Reuse. Existing language-technology-aware analysis tools, libraries or web services should be

reused.

Vocabulary Engineering Through Knowledge Integration (R4)

In addition to collaborative knowledge creation, a software chrestomathy knowledge manage-

ment process relies on knowledge integration. The goal is to establish a consolidated vocabulary

4.2. Requirements 51

for inter-linkage across chrestomathy, wikis, and textbooks. We aim at the informed (hence,

semi-automated) consultation of multiple technical, readily indexed textbooks for the sake of

deriving a consolidated and manageable vocabulary with confirmed links to key sources such

as Wikipedia. Vocabulary mapping should be established in the context of ontology matching

[ES07, Ome02] with vocabularies of substantial size that may need to be matched largely au-

tomatically. In our context, the size needs to be limited to allow for human intervention. The

underlying framework as well as data related should be publicly available.

Linked Data Enabled Infrastructure (R5)

To address the key Linked Data challenge, we need to surface a software chrestomathy in a way

that confederates all resources in a useful and sufficiently efficient manner. In particular, the

resources should be conveniently explorable; navigation should be discoverable and feasible for

all relationships (links) between resources; the relevant formats and the underlying ontology

should be accessible and documented; both programmatic and interactive access should be

generally supported.

The following scenarios enable turning different parts of software chrestomathy into a linkable

and navigatable cloud of resources:

Navigate from wiki to repository. Contributions rely on a distributed repository, that is, more

then one physical repository for all contributions. With this setup, the naive naming-convention

based approach is not sufficient to maintain a clickable link on contribution pages on the wiki

and the associated folder in the physical repo. A plugin to enable navigation from the wiki to

the repo should be developed; the plugin has to interpret the registry of the confederated repo.

Navigate from repository to wiki. The source code resides on the arbitrary source control

system, such as GitHub. Often, the contributors own the repositories in a way, that any

external infrastructure can only read the content. With that in mind, we favor an approach of

having an explorable view on the repo from which one can navigate from the files and folders

to the associated wiki pages.

52 Chapter 4. Problem Space

Reference fragments on wiki pages. Such referencing of fragments requires design and devel-

opment of the concepts of fragment descriptor and fragment location. They should have an

unambiguous identifiers via URL and the underlying content.

Associate derived resources with primary resources Derived resources should be linked to their

primary counterparts, i.e. the source code from which the metadata was produced.

Operate on the wiki like a graph. A wiki-based knowledge base has a graph structure and

should provide the means to represent the chromatography as a traversable graph, with the

typed edges and the links between them.

Operate on the repo like a tree. Federated source code repository has a tree structure and

should be possible to browse through a repository, with the underlying folders and files.

A Chrestomathic Ontology (R6)

Ontologies are increasingly useful in software engineering for analysis, design, implementation,

documentation, testing, and maintenance of software systems. The chrestomathic ontology

SoLaSoTe should serve for knowledge representation, management and integration in the broad

context of software languages and software technologies – as opposed to more specific categories

of ontologies (such as domain ontologies, task ontologies, application ontologies, or (very) high-

level ontologies). It should handle classification and other forms of characterization of software

languages, software technologies and all kinds of software concepts relevant for programming

and development (e.g., design patterns, programming techniques, data structures, algorithms).

The ontology should be maintained on the chrestomathic wiki.

Linguistic Architecture of Software Products (R7)

Linguistic architecture is another original term developed in this thesis. It is a new, unexplored,

viewpoint on the software architecture and considered as a fundament for technology modeling.

Its relevance has to be shown and further connected to a software chrestomathy and should

help in managing diversity and heterogeneity of software technologies.

4.2. Requirements 53

General-purpose Language for Technology Models (R8)

To address the technology modeling challenge stated in the previous section, we need:

• To develop a megamodeling approach that is useful for understanding the linguistic archi-

tecture of software products in terms of the involved languages, technologies, and linguistic

relationships. The approach should be supported by the language and an associated tool

suite.

• To demonstrate technology modeling in the challenging context. For instance, Objec-

t/Relational/XML [Tho03, LM06a, MAB07] mapping (or O/R/X mapping).

• To improve the cognitive value of technology models by enabling a form of linked meg-

amodels such that entities and relationships are linked to resources (e.g., in the repository

of the software chrestomathy) so that technology models can be explored and validated.

54 Chapter 4. Problem Space

Validation

In compliance with the design research methodology discussed in chapter 1, the evaluation

should demonstrate how software chrestomathy contributes to the state of the art analyzed in

this chapter. The contribution spans across several research contexts that address the different

aspects of the problem statement.

According to subsection 1.2.1, “Organizing Software Languages and Technologies,” the project

should serve a more general scope in software development when compared to other efforts on

program collections and domain-specific software development challenges or benchmarks.

According to subsection 1.2.3, “Knowledge Integration,” the project should support comparison

and cross-referencing for diverse software technologies and software languages across TSs. From

an education perspective, the project should provide content and structure for different forms

of classical education, self-learning, or e-learning.

According to subsection 1.2.2, “Ontology-based Knowledge Management,” a large-scale effort

on organizing knowledge on programming languages and software engineering requires orga-

nization principles for vocabulary, documentation, and code. The project should provide an

infrastructure applying ontologies to software engineering [Ahm08]. In the context of software

chrestomathy, an ontology for software languages, technologies, and concepts that is meant to

be useful in understanding, comparing, or learning about such entities is an important abstrac-

tion level for software engineers and programmers.

According to subsection 1.2.5, “Understanding Modern Software Products,” the project should

use new forms of models for software technologies, such as megamodels [BJV04b, SCFC09],

and for comparative (and other) forms of software linguistics [FGLP11]. As a result, the

project should provide a macroscopic view of software projects that operates at a high level

of abstraction such a way that it identifies the essential entities of a software project and the

fundamental relationships between them.

Chapter 5

101companies Software Chrestomathy

In this chapter we provide a comprehensive introduction into a software chrestomathy and de-

velop its key properties together with the underlying infrastructure. The conent of this chapter

contributes to the following requirements: R1. Core Properties of software chrestomathy, R2.

Ontology-driven Classification, R3. Linking Documentation and Source Code.

Introduction

The software chrestomathy of the 101companies 1 community project demonstrates “many”

software languages and software technologies by implementing “many” variants of a human

resources management system; each implementation selects from “many” optional features. All

implementations are available through a source-code repository and they are documented on a

wiki. Source code and documentation encode references to software languages, software tech-

nologies, software concepts, and product features, which, by themselves, are also documented

This chapter is solely based on two conference papers: [FLSV12] Jean-Marie Favre, Ralf Lämmel, Thomas
Schmorleiz and Andrei Varanovich. 101companies: A community project on software technologies and software
languages. In TOOLS (50), pages 58–74, 2012. [FLL+12b] Jean-Marie Favre, Ralf Lämmel, Martin Leinberger,
Thomas Schmorleiz and Andrei Varanovich. Linking documentation and source code in a software chrestomathy.
In WCRE, pages 335–344, 2012.

1The “companies” postfix in “101companies” refers to the kind of system that is built time again in this
project: a system that models companies in terms of some human resources aspects: department structure,
employees, salaries. The “101” prefix in “101companies” refers to “101 ways” of building said system. Indeed,
there are more than “101 ways” of building a human resource management system with different software
technologies and software languages.

55

56 Chapter 5. 101companies Software Chrestomathy

and linked on the wiki. This setup implies the challenges of establishing links between source

code and documentation as well as verifying that source code and documentation are in agree-

ment. We describe an approach that addresses these challenges: it relies on a rule-based system

that extracts relevant information from source-code artifacts (e.g., information about language

and technology usage) and assigns metadata to the artifacts (e.g., methods for validation and

fact extraction). The linked source-code repository and wiki as well as various derived informa-

tion resources are available through the 101ecosystem for the benefit of the reverse engineering

community.

Welcome 101companies

Objective of 101companies

101companies is a community project in computer science (or software science) with the ob-

jective of developing a free, structured, wiki-accessible knowledge resource including an open-

source repository for different stakeholders with interests in software technologies, software

languages, and technological spaces; notably, teachers and learners in software engineering or

software languages as well as software developers, software technologists, and ontologists.

The Notion of Contribution

The project relies on the aggregation, organization, annotation, and analysis of an open-source

corpus of contributions to an imaginary Human Resource Management System: the so-called

101companies system, which is prescribed by a set of optional features. Contributions may be

implementations of system variations and specifications thereof. Each contribution should pick

a suitable, typically small set of features and demonstrate original and noteworthy aspects of

software technologies and software languages in a focused manner. Contributions are grouped

in themes to better apply to varying stakeholders and objectives. The project also relies on

contributions in the broader sense of resources for software technologies and software languages,

or components of an emerging ontology.

5.3. Illustration 57

Illustration

The following illustrations are meant to clarify the nature of the project and the scale that has

been reached. These illustrations should not be confused with any sort of (scientific) validation

of the project or the existing contributions.

The 101companies system (or just “the system”) is an imaginary Human Resource Management

System (HRMS) that serves as the “running example” in the 101companies project. That is,

contributions to the project implement or specify or otherwise address a HRMS system for a

conceived company as a client. A company consists of (top-level) departments, which in turn

may break down hierarchically into further sub-departments. Departments have a manager and

other employees. The imaginary system may be used by conceived employees and managers

within the conceived company. Employees have a name, an address, and a salary. The system

may support various features. For instance, the system could support operations for totaling all

salaries of all employees and cutting them in half; it could provide a user interface of different

kinds; and it could address concerns such as scalability or security. Features of the system are

discussed in section 5.4. Figure 5.1 specifies the basic data model of the system in UML.

Figure 5.1: A UML class diagram serving as an illustrative data model

Figure 5.2 gives an idea of the varying code-level complexity for the existing implementations

of the 101companies system. (Other forms of contributions are not considered here.) Based on

systematic tagging, we count only developer-authored code-like units as opposed to generated

code or IDE support files. The plots show the number of files and the lines of code for such units.

58 Chapter 5. 101companies Software Chrestomathy

At the time of writing, there are 192 implementations in the repository.

Implementations ordered by number of files Implementations ordered by lines of code

Figure 5.2: Illustrative code-level complexity indicators for 101companies implementations

(Lines of code may include comments.) The number of files hints at “file-level modularity” of

the implementations. As the medians suggest, most implementations are in the range of a

few hundred lines of code and less than ten files. The distribution of these numbers is a

result of different programming languages, different technologies, different feature sets that are

implemented as well as subjective factors due to developer choices. We should emphasize that

the plots serve for illustration; they cannot be expected to hint at any proper metric.

Here are some metrics for the 101 software chrestomathy:

• 25 features that can be implemented, subject to a feature model [Bat05], e.g.: Feature

Hierarchical company for the data model of a company to break down into departments

recursively with employees and a manager per department; Feature Total for computing

the salary total for all employees in a company; Feature Logging for logging all salary

changes. About 10 features are popular. The remaining features are either more specific

or perhaps premature or obsolete.

• There are 193 contributions, i.e., implementations of the 101system. (Several of these

contributions are premature, unmaintained, insufficiently documented, or otherwise sub-

optimal in terms of software engineering best practices.)

• 40 languages (mostly programming languages) are exercised.

• 96 technologies (e.g., libraries) are exercised.

5.3. Illustration 59

• 477 concepts are referenced by the wiki-based documentation. The term concept is used

here in the broad sense to include programming techniques, programming domains, clas-

sifiers (for programming languages, technologies, and features), and so forth.

Figure 5.3: Illustrative tag clouds regarding usage of languages

Figure 5.4: Illustrative tag clouds regarding usage of technologies

60 Chapter 5. 101companies Software Chrestomathy

Figure 5.5: Illustrative tag clouds regarding contributors

Features of the 101companies System

The term feature should be understood broadly as referring to optional requirements for the

imaginary system (e.g., as in the established sense of functional and non-functional require-

ments). The optionality of features encourages smaller contributions that demonstrate specific

aspects of software technologies and software languages. The feature set is not driven by con-

cepts of the human resources domain. Instead, the important consideration for each new feature

is that it should be helpful in demonstrating particularities of software technologies and soft-

ware languages. The feature set is constantly under revision since each additional technology

in scope, each new implementation (planned or completed) may trigger additional features or

a revision of the classification tree. Some features intentionally are left underspecified so that

contributions can apply suitable refinements for the benefit of useful demonstrations. (For in-

stance, there is a feature Client-server to constrain design such that an implementation uses a

client-server architecture without though specifying precisely client and server.) Ideally, each

feature would be demonstrated by several contributions. Some features may not be demon-

strated yet at all because they are at the stage of calling for contributions.

The classification of features is shown in Table 5.1.

5.4. Features of the 101companies System 61

Table 5.1: Classification of features in the 101companies system

Alternative feature An alternative feature in feature modeling. Feature Serialization –
serialization for company data and Feature Company of the 101system
are alternative features in that they provide fundamentally different
(mutually exclusive) options for serialization and data modeling.

Mandatory feature A mandatory feature in feature modeling. Feature Company of the
101system is a mandatory feature because it is pretty much impossible
to have any system without a data model.

Optional feature An optional feature in feature modeling. Pretty much all features of
the 101system are optional (except for the mandatory feature Feature
Company with its subfeatures) because an actual implementation of the
101system may freely choose to implement or not to implement certain
data, functional, non-functional, and UI requirements.

Or feature An "or" feature in feature modeling. Feature Parallelism of the
101system is an or feature because one could use both Feature Task
parallelism and Feature Data parallelism.

Features are represented as requirements for a new or altered software system or component.

Consider the following functional requirement for the 101system: “The system must be able to

total the salaries of all employees of the company and to report the total to the user.” Feature

Total describes this requirement in more detail.

Table 5.2: Requirements of the 101companies system

Requirements types
Functional A required IO behavior of a software system or a component
Non-functional A required quality of a software system or a component. For example

Development-time quality or Run-time quality
Data A constraint on the data model of a software system or a component
UI A requirement regarding the user interface of a software system

In the context of the 101companies project, it is important that “features” are directly related

to requirements and are loosely related to feature-oriented software development in that one

expects features to be actually or potentially implemented according to this paradigm. Table 5.3

summarizes the features and their relations to the particular requirement.

Figure 5.6 gives an idea of the distribution of feature coverage by existing contributions (in

fact, by implementations). The size of a feature name in the tag cloud expresses the frequency

62 Chapter 5. 101companies Software Chrestomathy

Table 5.3: Features of the 101companies system

Requirements

R
eq
ui
re
d
fe
at
ur
e

Feature Description D
at
a

Fu
nc
ti
on

al

N
on

-f
un

ct
io
na

l

U
I

Company Data model of companies with employees 3
Flat company Companies without departmental structure 3
Hierarchical company Companies with nested departments 3

C
om

pa
ny

Singleton The constraint for a single company 3
Total A query to total (sum up) the salaries of all employees 3
Median A query to compute the median of the salaries 3
Cut A transformation to cut all salaries by half 3
COI The ability to model conflicts of interest for employees 3
Mentoring The ability to associate mentors and mentees 3
History The ability to access company data over the timeline 3
Serialization Serialization of company data in files 3
Closed serialization Technology-specific representation 3
Open Serialization Technology-oblivious representation 3
Persistence Database-based persistence 3
Parsing Parsing of text-based syntax for company data 3
Unparsing Unparsing of text-based syntax for company data 3
Visualization Visual syntax for company data 3
Mapping Mapping company data across technological spaces 3
Distribution Distribute data / functionality on client / server 3
Parallelism Data parallelism for totaling huge companies 3
Logging Logging of data changes 3
Browsing Browsing company data 3

Hierarchical
company

Flattened company Flattened (normalized) representation 3
Depth A query to determine departmental nesting depth 3
Ranking The constraint for salaries to align with nesting level 3

Browsing Editing Editing company data such as names and salaries 3
Web UI Web-based user interface 3

Editing Restructuring Restructuring such as moving departments 3

of demonstration across all the implementations: the bigger, the more implementations declare

to demonstrate the feature. (The popularity of Company, Total, and Cut is a consequence

of the fact that most implementations pick these functional requirements as a lower bar for

demonstration.) In fact, these basic structural and behavioral features are interesting enough to

demonstrate already many programming techniques, mapping concerns, and overall capabilities

of software technologies.

5.4. Features of the 101companies System 63

Figure 5.6: Illustrative tag cloud regarding feature frequency for implementations

The 101haskell Chrestomathy

101haskell may be understood simply as the Haskell-specific cut through 101 and it thus demon-

strates different functional programming techniques and technologies. There are 35 Haskell-

based contributions.

It turns out that 101haskell served as the driving force in advancing the chrestomathy notion

assumed in 101 over the last 18 months. As a result, 101haskell is best suited to demonstrate

some aspects of an advanced chrestomathy:

• Software engineering best practices (subsection 5.4.1):

– The contributions are hosted on a sub-repo of 101repo.

– The Haskell code is modularized.

– Haskell’s Cabal is used for build management.

– Haskell’s HUnit is used for unit testing.

• The documentation is semantically enriched (section 5.6).

• Haskell textbooks are integrated with the 101wiki (chapter 6).

64 Chapter 5. 101companies Software Chrestomathy

An Excerpt of 101haskell

We present the excerpt in a feature-driven manner: one feature per subsection, with the fol-

lowing format for the subsections:

Requirement Specification. The feature is explained at the level of a requirement specifica-

tion for an information system. For instance, we may encounter a functional requirement

for a specific functionality expected by a user of the 101system.

Chrestomathic Purpose. The feature is motivated in terms of its value for a software chrestomathy.

That is, we mention relevant programming domains, concepts, techniques, or classes of

technologies that are naturally associated with the feature.

Haskell Illustration. One or more Haskell-based contributions (“implementations”) are briefly

sketched and explained. The emphasis is on pointing out the involved programming tech-

niques, technologies (libraries), and concepts.

Feature Flat company

Requirement Specification

A data model of companies is to be supported as follows. A company has a name and aggre-

gates employees. Each employee has a name, an address, and a salary. Names of companies

and employees are strings; addresses are strings, too; salaries are floating-point numbers. For

now, companies are “flat” in that they aggregate employees without any hierarchical company

structure, but see “non-flat” companies in subsection 5.4.2.

Chrestomathic Purpose

The data model exercises very basic data modeling facets: primitive types, tuples, lists, and

non-recursive type declarations.

5.4. Features of the 101companies System 65

Haskell Illustration (Contribution haskellStarter)

The data model is defined in terms of a system of type synonyms. Company and employee

terms are composed as tuples. Employees are aggregated as lists. Salaries are represented as

single-precision floating-point numbers. Thus:

type Company = (Name, [Employee])

type Employee = (Name, Address, Salary)

type Name = String

type Address = String

type Salary = Float

Consider the following sample instance:

sampleCompany :: Company

sampleCompany =

("Acme Corporation",

[

("Craig", "Redmond", 123456),

("Erik", "Utrecht", 12345),

("Ralf", "Koblenz", 1234),

("Ray", "Redmond", 234567),

("Klaus", "Boston", 23456),

("Karl", "Riga", 2345),

("Joe", "Wifi City", 2344)

]

)

Feature Hierarchical company

Requirement Specification

Departments are added to the data model of Feature Flat company. Companies aggregate

(top-level) departments. Each department has a name, a manager, and aggregates both sub-

departments as well as employees – other than the manager.

66 Chapter 5. 101companies Software Chrestomathy

Chrestomathic Purpose

The nesting of departments necessitates the data modeling facet of recursive types. Also, the

fact that a department aggregates both sub-departments and employees implies that a choice

must be made as to whether homogeneous or heterogeneous collections are used. In the first

case, a department has two separate (homogeneous) containers – one for employees, another for

sub-departments. In the second case, employees and departments end up in one (heterogeneous)

container.

Haskell Illustration (Contribution haskellComposition)

The homogeneous option is exercised here. The data model is defined mainly in terms of type

synonyms, as before, but an algebraic data type is used for recursive departments since type

synonyms cannot be recursive.

data Department

= Department Name Manager [Department] [Employee]

Consider the following sample instance (with an elision):

sampleCompany :: Company

sampleCompany =

("Acme Corporation",

[Department "Research"

("Craig", "Redmond", 123456)

[]

[("Erik", "Utrecht", 12345),

("Ralf", "Koblenz", 1234)],

...

Feature Total

Requirement Specification

Given a company, the salaries of all its employees are to be totaled. An implementation of this

functional requirement is to be demonstrated for a sample company (e.g., by means of a unit

5.4. Features of the 101companies System 67

test).

Chrestomathic Purpose

Conceptually, the required functionality corresponds to a query over the company structure such

that all employees are projected to their salaries, which are then summed up. Depending on

the data modeling and programming paradigm at hand, it may be straightforward to quantify

all employees (e.g., in a relational database with a table for employees) or it may require

some sort of walking over the tree-like structure of a company (e.g., in an object-oriented or

functional program). In the latter case, various programming techniques for traversal could

be exercised (e.g., visitors in OO programming or generic functions in functional programming

[LJ03a, RJJ+08]).

Haskell Illustration (Contribution haskellList)

The following implementation assumes the most basic data model (as of subsection 5.4.1).

Some non-basic bits of functional programming come to play in this contribution. That is, we

use the map combinator for list processing and local scope for arranging helper functions in the

scope of total. Also, function composition is used explicitly, thereby providing an example of

point-free style. Thus:

total :: Company → Float

total = sum . salaries

where

−− Extract all salaries in a company

salaries :: Company → [Salary]

salaries (n, es) = map getSalary es

where

−− Extract the salary from an employee

getSalary :: Employee → Float

getSalary (_, _, s) = s

Haskell’s HUnit framework for unit testing is leveraged for exercising the query. That is, a

comparison of the expected result of total with the actual result is declared as follows:

68 Chapter 5. 101companies Software Chrestomathy

totalTest :: Test

totalTest = 399747.0 ¬ =? total sampleCompany

Feature Cut

Requirement Specification

Given a company, the salaries of all employees of the company are to be cut in half. An

implementation of this functional requirement is to be demonstrated for a sample company

(e.g., by means of a unit test).

Chrestomathic Purpose

Conceptually, the required functionality corresponds to a transformation over the company

structure such that each employee is updated in terms of the salary, while preserving the

structure and the data of the company otherwise. The chrestomathic purpose can be compared

to the one of Feature Total (subsection 5.4.3), except that queries and transformations are

fundamentally different. That is, different programming idioms may be needed (e.g., update

rather than read). Additional decisions may be necessitated: a choice between immutable data

and destructive update.

1st Haskell illustration (Contribution haskellComposition)

The following implementation assumes the data model with nested departments (as of subsec-

tion 5.4.2). The transformation is modeled as a pure function. Local scope and map is used for

clarity and conciseness.

cut :: Company → Company

cut (n, ds) = (n, (map cutD ds))

where

−− Cut all salaries in a department

cutD :: Department → Department

cutD (Department n m ds es)

= Department n (cutE m) (map cutD ds) (map cutE es)

5.4. Features of the 101companies System 69

where

−− Cut the salary of an employee in half

cutE :: Employee → Employee

cutE (n, a, s) = (n, a, s/2)

The transformation is exercised by the following HUnit test, which simply verifies that the

individual cuts of the employees equate to cutting in half the total:

cutTest :: Test

cutTest

= total sampleCompany / 2 ¬ =? total (cut sampleCompany)

2nd Haskell Illustration (Contribution haskellSyb)

The following implementation leverages generic functional programming according to the “Scrap

your boilerplate” style (SYB [LJ03a]):

cut :: Company → Company

cut = everywhere (extT id (/(2::Float)))

The generic function is clearly more concise than the previous attempt. The function is applica-

ble to any data model for companies for as long as floating-point numbers are used for salaries

only, but the function could also be revised slightly to apply instead more carefully to salaries.

For SYB to be applicable, the involved algebraic data types must instantiate the typeclasses

Typeable and Data. The corresponding instances can be derived in a regular manner by the

compiler (GHC) on the grounds of suitable deriving clauses. The following module (fragment)

even demonstrates that such derivation can be requested even after the fact: in a module that

“stands alone” from the module with the actual data types:

{−# LANGUAGE DeriveDataTypeable, StandaloneDeriving #−}

import Company.Data

import Data.Data

import Data.Typeable

70 Chapter 5. 101companies Software Chrestomathy

deriving instance Data Department

deriving instance Typeable Department

Various other generic programming approaches could be illustrated as well, also including vari-

ations on SYB; see, for example, a comparison of approaches in [RJJ+08]. In fact, 101haskell

already covers a few approaches.

All 101haskell contributions rely on Cabal for build management. In this manner, they are

easy to build including dependency chasing on Hackage; they are easy to test, too. Here is the

Cabal spec for Contribution haskellSyb (with an elision):

name: haskellSyb

version: 0.1.0.0

synopsis: Generic Programming in Haskell with SyB

homepage: http://101companies.org/wiki/Contribution:haskellSyb

build−type: Simple

cabal−version: >=1.9.2

library

exposed−modules:

Company.Data

Company.Sample

Company.Generics

Company.Total

Company.Cut

...

build−depends: base >= 4.4 ∩< 5.0, syb >= 0.3

...

Feature Parsing

Requirement Specification

Company data is to be represented in a format that is suitable for human consumption and

editing (e.g., in some well-defined textual concrete syntax, a schema-defined XML-based format,

5.4. Features of the 101companies System 71

or CVS). This representation is to be parsed for the purpose of carrying out computations. For

brevity, we omit here any discussion of demonstration (testing).

Chrestomathic Purpose

Parsing brings the programming domain of language processing into the scope of the chrestomathy.

In this manner, different kinds of parsers (e.g., context-free grammar-based ones or XML

parsers), different parser technologies, and different styles of parsing can be exercised and

possibly compared.

Haskell Illustration (Contribution haskellAcceptor)

Let us use Parsec [LM01] – a popular, monadic combinator library for parsing in Haskell. All

parser functions are of the following type:

type Acceptor = Parsec String () ()

Thus, we use the identity monad as the base monad, the stream type for parsing is set to

String, the type for state along parsing is set to ‘()’, and the result type is also set to ‘()’ –

as we will be concerned here with acceptance only. (There is the more complete Contribution

haskellParsec that also constructs abstract-syntax trees according to the algebraic data types

of subsection 5.4.2.)

Let us implement this sort of concrete syntax of departments:

department = "department" literal "{"

manager

subunit*

"}"

The corresponding parsing function follows:

parseDepartment :: Parser

parseDepartment = do

72 Chapter 5. 101companies Software Chrestomathy

parseString "department"

parseLiteral

parseString "{"

parseManager

many parseSubUnit

parseString "}"

Feature Logging

Requirement Specification

Updates of salaries are to be logged so that salary changes can be reviewed afterwards. Each

log entry identifies the relevant employee by name and lists salary before and after update. In

particular, such logging is to be supported for Feature Cut. Here is an example of a log in CSV

format:

"Craig", 123456.0, 61728.0

"Erik", 12345.0, 6172.5

"Ralf", 1234.0, 617.0

...

The log is to be analyzed in a statistical manner to determine the median and the mean of all

salary deltas. Such demonstration (testing) is omitted for the sake of brevity.

Chrestomathic Purpose

Logging updates require some level of program instrumentation so that a plain computation

involving updates does indeed log those updates. Different programming techniques may be

used for this purpose. Logging calls for separation of concerns such that logging should not

affect parts of the program that are conceptually unrelated to logging. Indeed, logging is a

favorite aspect-oriented programming scenario [KLM+97] in that aspects (advanced modules)

may facilitate separation of concerns.

5.4. Features of the 101companies System 73

1st Haskell illustration (Contribution haskellLogging)

Logs may be modeled in Haskell as lists of entries as follows:

data LogEntry =

LogEntry {

name :: String,

oldSalary :: Float,

newSalary :: Float

}

A knowledgeable Haskell programmer may immediately suggest the use of the writer monad

for logging. However, let us start with a beginner’s implementation. When learning about

monads, a non-monadic implementation is definitely helpful. Consider, the following function

for cutting salaries at the department level, with logging integrated:

cutD :: Department → (Department, Log)

cutD (Department n m ds es)

= (Department n m’ ds’ es’, log)

where

−− Cut the manager’s salary

(m’,log1) = cutE m

−− Cut all salaries in the sub−departments

(ds’, logs2) = unzip (map cutD ds)

−− Cut all salaries of all immediate employees

(es’, logs3) = unzip (map cutE es)

−− Compose intermediate logs

log = concat ([log1]++logs2++logs3)

Unfortunately, the need for logging affects the overall processing of departments; see the occur-

rences of the idioms for grouping company data with a log, also implying zipping and unzipping

in the case of lists.

74 Chapter 5. 101companies Software Chrestomathy

2nd Haskell Illustration (Contribution haskellWriter)

A particular monad [Wad92], the writer monad, can be used to encapsulate logging. Func-

tionality involving salary updates is to be converted to monadic style. We revise Contribution

haskellLogging as follows:

cutD (Department n m ds es) =

do

m’ ←cutE m

ds’ ←mapM cutD ds

es’ ←mapM cutE es

return (Department n m’ ds’ es’)

The function is oblivious to logging; it is prepared for any effect.

Stakeholders of the 101companies Project

A stakeholder of the 101companies project is someone who affects or is affected by the project

or could be expected to do so. There are users of the project: learners subject to self-learning,

professional training, etc. who use the project to learn about software technologies and lan-

guages as well as teachers in university or professional education who use the project to prepare

their courses, lectures, etc. Further, there are contributors to the project: developers of im-

plementations or specifications of the 101companies system, authors of wiki content including

classifications of software technologies and languages, community engineers who manage the

project from a Research 2.0 perspective, and yet other kinds of contributors. There are also

stakeholders who may be interested in the project more broadly because they are researchers

in a relevant context (such as ontology engineering or software linguistics) or technologists

(such as owners of a software technology). Stakeholder roles are non-disjoint. For instance, a

technologist might be expected to also serve as an educator (a teacher) as well as a contributor.

The classification tree of stakeholders is shown in figure 5.7.

5.6. Key Categories of the 101companies Ontology 75

101stakeholder a stakeholder of the 101companies project
- 101contributor anyone who contributes to the 101companies project
– 101advisor anyone who serves on the advisory board of the project
– 101author anyone who authors content for the wiki of the 101companies project
– 101developer anyone who develops a contribution to the 101companies project
– 101engineer anyone who contributes to the infrastructure of the 101companies project
– 101gatekeeper anyone administering wiki and repository of the 101companies project
– 101research20er anyone who contributes as a community engineer to the 101companies project
– 101reviewer anyone who reviews a contribution to the 101companies project
- 101researcher anyone interested in research on software technologies and languages
– 101linguist anyone researching software linguistics
– 101ontologist anyone researching ontologies for software technologies and languages
- 101technologist anyone seeking technology adoption through the 101companies project
- 101user anyone who uses the 101companies project
– 101learner anyone who leverages the 101companies project for learning
– 101teacher anyone who leverages the 101companies project for teaching

Figure 5.7: Stakeholders of the 101companies project

Key Categories of the 101companies Ontology

The ontology classifies all entities that are relevant for the 101companies project. The categories

(or classes or concepts) are organized in two dimensions. In the first dimension, we distinguish

between general entities that can be said to exist regardless of the project (such as technologies)

versus project-specific entities (such as the features of the 101companies system). In the second

dimension, we distinguish between primary entities versus subordinated entities. While the first

dimension is profound, the second dimension is only introduced for convenience of consuming

the classification. The categories for primary, general entities are Technology for the deep

classification of actual software technologies, Capability for the deep classification of capabilities

of technologies, Language for the deep classification of actual software languages and Space

for the enumeration of actual technological spaces. When adding a new technology to the

ontology, then classifiers from the Technology tree are to be applied and the technology may

also be associated with capabilities, languages and technological spaces. When documenting a

contribution to the 101companies project, the contribution is to be associated with technologies

and languages. Classification and association help the users of the 101companies project to

navigate between software technologies, capabilities thereof, software languages, technological

spaces, and contributions of the project. In figure 5.8, the categories of technologies and

languages are broken down into (only the immediate) subcategories for the classification of

76 Chapter 5. 101companies Software Chrestomathy

such entities; also, actual technological spaces are revealed as members of category Space.

Specific technologies and languages may be members of multiple subcategories, and they may

be associated with multiple technological spaces.

Technologies may be subdivided into development or application technologies depending on

whether they target the developer by providing some kind of tool support or the application by

providing some kind of reusable components. For instance, IDEs or tools count as development

technologies whereas libraries or frameworks count as application technologies. Classification

of technologies may also apply to their possible status of being a programming technology in the

sense that they serve specific programming domains; consider, for example, web technology or

data technology. Given the central role of technological spaces, classification of technologies may

also apply to their possible status of being a mapping technology across spaces. Finally, some

technologies specifically support some software language, giving rise to further classification

according to language technology: consider, for example, compilers or program generators. All

these categories of technologies may be broken down further into subcategories. Some technolo-

gies may be naturally instances of multiple categories. Technologies are further characterized

by their capabilities.

Technologies are seen as providing capabilities to the developers or the systems that use the

technology. Examples of capabilities include logging, serialization, data parallelism, and map-

ping. Thus, each specific technology is not just classified according to technology subcategories,

but it is also to be associated with capabilities. For instance, the mapping capability further

breaks down into Object/XML mapping, Object/Relational mapping, etc. Each specific tech-

nology can be indeed associated with several capabilities. For instance, JAXB provides the

capabilities of both Object/XML mapping for Java and (XML-based, open) serialization.

Themes of 101companies Contributions

A theme is an explicitly declared group of contributions to the 101companies project. Themes

are meant to help users of the 101companies project efficiently consume knowledge about contri-

butions, software technologies, and capabilities, software languages, and technological spaces.

5.7. Themes of 101companies Contributions 77

Programming technologies
Technology a software technology
- Application technology a technology that is reusable in software applications
- Development technology a technology that is used in software development
- Language technology a technology that is dedicated to one or more software languages
- Mapping technology a technology for mapping between technological spaces
- Programming technology a technology that is dedicated to a certain programming domain

Software languages
Language a software language
- Domain-specific language a software language that addresses a specific domain
- Format language a software language that defines a representation format
- Markup language a software language that facilitates the annotation of text
- Metadata language a software language that facilitates the addition of metadata to artifacts
- Metalanguage a software language to define software languages
- Modeling language a software language to express information or knowledge or systems
- Programming language a software language for implementing programs
- Query language a software language for executable queries
- Scripting language a software language that is used to control applications
- Style sheet language a software language for presenting structured documents
- Tool-defined language a software language that is effectively defined by a tool
- Transformation language a software language for executable transformations
- XML language a software language that uses XML for representation

Technological spaces
Space a community and technology context
- Fileware a technological space focused on sequential and indexed files
- Grammarware a technological space focused on (textual) language processing
- Lambdaware a technological space focused on functions and functional programming
- Modelware a technological space focused on modeling and model-driven engineering
- Objectware a technological space focused on objects and OO programming
- Ontoware a technological space focused on ontologies and knowledge engineering
- Relationalware a technological space focused on relational databases
- XMLware a technological space focused on XML representation and XML processing

Figure 5.8: The key categories of the 101companies ontology

To this end, themes are tailored towards interests of specific stakeholders. Such specificity

translates into focus on a certain technological space, a category of technologies, or a certain

programming language. For instance, the Haskell theme addresses interests of those who want

to approach Haskell through the 101companies setup as well as those who want to approach

the 101companies setup on the grounds of Haskell knowledge.

Themes should be of a manageable size: 4-10 contributions per theme. Accordingly, the com-

position of a theme needs to be selective in identifying theme members. For instance, the XML

theme covers presumably all fundamental approaches to XML processing, but it leaves out

variations in terms of APIs and languages. Such variations can still be discovered easily by

users because contributions are richly tagged and cross-referenced. Appendix A contains the

78 Chapter 5. 101companies Software Chrestomathy

comprehensive list of themes.

Java mapping: Java theme of implementations that travel technological spaces
Description

Subject to appropriate bridges, i.e., subject to mapping facilities, any programming language can
be made to access and process models, XML, relational database tables, and text (concrete
syntax) in a type-based (say, schema-aware or metamodel-aware or grammar-aware) manner.
The present theme collects corresponding implementations for the programming language Java.

Members
- antlr4Acceptor An ANTLR4-based acceptor for textual syntax
- antlr4Lexer Lexer-based processing with ANTLR4
- antlr4Objects Object/Test mapping for Java with ANTLR4 for parsing
- antlr4ParseTreeListener Parsing text to trees and walk them with ANTLR4 Listeners
- antlr4ParseTreeVisitor Parsing text to trees and walk them with ANTLR4 Visitors
- antlr4Parser Processing textual syntax with semantic actions of ANTLR4
- antlrAcceptor An ANTLR-based acceptor for textual syntax.
- antlrLexer Lexer-based processing with ANTLR
- antlrObjects Object/Text mapping for Java with ANTLR for parsing
- antlrParser Processing textual syntax with semantic actions of ANTLR
- antlrTrees Parsing text to trees and walk them with ANTLR
- emfGenerative Model-Object mapping for Ecore and Java with EMF
- hibernate Object-Relational mapping for Java with Hibernate
- jaxbChoice Object-XML mapping for Java and XSD with JAXB
- jaxbComposition Object-XML mapping for Java and XSD with JAXB
- jaxbExtension Object-XML mapping for Java and XSD with JAXB
- jaxbSubstitution Object-XML mapping for Java and XSD with JAXB
- jdom Process XML data with Java’s JDOM API
- sax Push-based XML parsing in Java with SAX
- xom Exercise in-memory XML processing with XOM in Java
- xpathAPI Exercise XML processing with XPath embedded in Java

Figure 5.9: Java theme of 101implementations

Linking Documentation and Source Code

101companies Chrestomathy – Inventory

Separation between documentation and source code

Programming chrestomathies may easily embed source code fragments directly into the doc-

umentation repository (such as a wiki). In contrast, software chrestomathies have to use a

source code repository to organize, persist, and maintain all software artifacts. Thus, an addi-

tional documentation repository (which may also be based on a wiki) is used on top. Likewise,

5.8. Linking Documentation and Source Code 79

(This is not a UML diagram.) This picture illustrates informally the differences between the con-
stituents of traditional software products and those of software chrestomathies. The model will
be further refined in this chapter, leading progressively to an accurate UML class diagram in fig-
ure 5.13 specifying precisely the problem to be solved and a UML deployment diagram in figure 5.14.
The different kinds of links are drawn in different colors and modes (rectilinear, dotted, oblique) to
emphasize their fundamentally different nature.

Legend

Fig. 1. Linking in the context of traditional software products vs. software chrestomathies

for pointers.3

Non-contributions

We delimit the scope of the paper by highlighting absent
forms of validation and absent claims.

NC1. The paper provides no validation in terms of the size
of the software corpus. While many experimental papers focus
on a single particular technique, and then validate it on a
set of large software corpus, the focus of this paper is on
heterogeneity in the MLMT dimension (C1).

NC2. The paper provides no validation on traditional soft-
ware products. We believe that the technique proposed for lin-
guistic architecture reconstruction could be used with success
in the context of traditional software products.

NC3 We do not claim that the SAR techniques of this paper
are exhaustive or definitive. On the contrary, C3 expresses that
a longer community effort is needed to obtain more exhaustive
and more definitive results.

Road-map: The paper is structured roughly according to the
CacOphoNy methodology [2]. §II compiles an inventory of the
involved repositories (see the right of Figure 1) including the identi-
fication of the underlying metamodels and opportunities for links
(see Figure 2 for a preview). §III specifies more precisely what
information to reconstruct (see Figure 4 for a preview). §IV presents
corresponding tool support based on a rule-based system. Finally, §V
describes the integration of all information, as it is presented to the
different stakeholders concerned by the project, thereby leading to an
ecosystem (see Figure 5 for a preview). (Related work is discussed
in §VI and the paper is concluded in §VII.)

II. INVENTORY

A. Programming vs. software chrestomaties

Wikipedia defines the notion of chrestomathy as follows:
“Chrestomathy (from the Greek words [...]) is a collection of
choice literary passages, used especially as an aid in learning

3http://softlang.uni-koblenz.de/101meta/

a foreign language. In philology or in the study of literature,
it is a type of reader or anthology which presents a sequence
of example texts, selected to demonstrate the development of
language or literary style.”

The objective of the 101companies project is precisely
to provide useful knowledge to the software development
community. The distinction between what we coin here a
software chrestomathy and a programming chrestomathy, such
as RosettaCode, is directly based on the distinction software
products vs. programs, or software engineering vs. program-
ming. Programming chrestomathies typically illustrate pro-
gramming idioms, programming tasks, programming prob-
lems (e.g., important algorithms and data structures) on the
grounds of relatively small programs or excerpts. By contrast,
software chrestomathies, and in particular the 101compa-
nies chrestomathy, illustrate (possible small) actual running
systems in a way that language and technology usage as
well as software engineering concepts (architecture, modeling,
deployment, documentation, testing, reverse engineering, etc.)
are illustrated.

B. Separation between documentation and source code

Programming chrestomathies typically embed source code
fragments directly into the documentation repository (such as a
wiki), software chrestomathies have to use a full-fledge source
code repository to organize, persist, and maintain all software
artifacts—in addition to the documentation repository (which
may be based on a wiki as well). As shown in Figure 1,
the separation between documentation and source code is
shared by both traditional software product and software
chrestomathy.

C. General software knowledge

Software chresthomaties differ from general software prod-
ucts in an important way that is depicted in the figure by the
‘general’ level with the explicit materialization of (general)
software knowledge for software chrestomathies. In the case of

Family of actual associations (coded knowledge), e.g., calls, imports, and other inter/intra-artifact references.

Fig. 1. Linking in the context of traditional software products vs. software chrestomathies

for pointers.3

Non-contributions

We delimit the scope of the paper by highlighting absent
forms of validation and absent claims.

NC1. The paper provides no validation in terms of the size
of the software corpus. While many experimental papers focus
on a single particular technique, and then validate it on a
set of large software corpus, the focus of this paper is on
heterogeneity in the MLMT dimension (C1).

NC2. The paper provides no validation on traditional soft-
ware products. We believe that the technique proposed for lin-
guistic architecture reconstruction could be used with success
in the context of traditional software products.

NC3 We do not claim that the SAR techniques of this paper
are exhaustive or definitive. On the contrary, C3 expresses that
a longer community effort is needed to obtain more exhaustive
and more definitive results.

Road-map: The paper is structured roughly according to the
CacOphoNy methodology [2]. §II compiles an inventory of the
involved repositories (see the right of Figure 1) including the identi-
fication of the underlying metamodels and opportunities for links
(see Figure 2 for a preview). §III specifies more precisely what
information to reconstruct (see Figure 4 for a preview). §IV presents
corresponding tool support based on a rule-based system. Finally, §V
describes the integration of all information, as it is presented to the
different stakeholders concerned by the project, thereby leading to an
ecosystem (see Figure 5 for a preview). (Related work is discussed
in §VI and the paper is concluded in §VII.)

II. INVENTORY

A. Programming vs. software chrestomaties

Wikipedia defines the notion of chrestomathy as follows:
“Chrestomathy (from the Greek words [...]) is a collection of
choice literary passages, used especially as an aid in learning

3http://softlang.uni-koblenz.de/101meta/

a foreign language. In philology or in the study of literature,
it is a type of reader or anthology which presents a sequence
of example texts, selected to demonstrate the development of
language or literary style.”

The objective of the 101companies project is precisely
to provide useful knowledge to the software development
community. The distinction between what we coin here a
software chrestomathy and a programming chrestomathy, such
as RosettaCode, is directly based on the distinction software
products vs. programs, or software engineering vs. program-
ming. Programming chrestomathies typically illustrate pro-
gramming idioms, programming tasks, programming prob-
lems (e.g., important algorithms and data structures) on the
grounds of relatively small programs or excerpts. By contrast,
software chrestomathies, and in particular the 101compa-
nies chrestomathy, illustrate (possible small) actual running
systems in a way that language and technology usage as
well as software engineering concepts (architecture, modeling,
deployment, documentation, testing, reverse engineering, etc.)
are illustrated.

B. Separation between documentation and source code

Programming chrestomathies typically embed source code
fragments directly into the documentation repository (such as a
wiki), software chrestomathies have to use a full-fledge source
code repository to organize, persist, and maintain all software
artifacts—in addition to the documentation repository (which
may be based on a wiki as well). As shown in Figure 1,
the separation between documentation and source code is
shared by both traditional software product and software
chrestomathy.

C. General software knowledge

Software chresthomaties differ from general software prod-
ucts in an important way that is depicted in the figure by the
‘general’ level with the explicit materialization of (general)
software knowledge for software chrestomathies. In the case of

Family of expected associations (documented knowledge), e.g., subsystemImplemlentsFeature.

Fig. 2. Informal megamodel of 101repo and 101wiki being linked

the 101companies chrestomathy, this knowledge is represented
as wiki pages containing information about software lan-
guages, software technologies, and software concepts. Because
of the very wide scope due to the MLMT dimension, gathering
and organizing such software knowledge is an integral, non-
trivial objective of the chrestomathy. As suggested by the
dotted associations on the right of Figure 1, the problem of
establishing links is no longer limited to links between source
code and its documentation, but links between source code and
general software knowledge have to be established as well.
For instance, one may want to establish that a particular file
is valid according to a given language, that a particular file
fragment uses a particular technology, or that a particular set
of files constitute an instance of a software concept, such as
the MVC pattern.

D. Metamodels in the 101companies chrestomathy

In Figure 2, the repositories and constituents of the 101com-
panies project are described by simplified and informal meta-
models. We take the view that the instances of the classes
on the left are materialized by actual directories and files in
the 101repo GitHub repository, while the instances of the
classes on the right are materialized by wiki pages in the
101wiki. Examples of names of such instances are provided
as an illustration. The total number of instances (at the time

of writing) is also given for each class.

Consider the top-level directories in the middle of the figure:
‘jena’, ‘linqToDataSet’, etc. correspond to different variants of
the 101companies system, called ‘contributions’.

Consider the metamodel for the source-code repository on
the left of Figure 2. The hierarchical nature of the file system
is modeled in a straightforward manner. There is also an
association to decompose files into content (or fragments).
The details of such decomposition clearly depends on the
language(s) considered.

Consider the metamodel for the wiki on the right of Figure 2
rooted in the Contribution class whose instances document
contributions, i.e., different variants of the 101companies
system. Physically, instances correspond to wiki pages decom-
posed into sections that can be represented in the metamodel
by attributes such as ‘heading’, ‘description’, ‘issues’, etc. The
details of this metamodel are out of the scope of the present
paper, but interestingly enough contributors are required to
document all software languages, software technologies, and
software concepts used in their contributions as well as the
product features claimed to be implemented. This leads to the
‘expected’ links represented in blue on the right of Figure 2,
but there is no guarantee that the claims comply with the
‘actual’ links.

Family of associations to establish, e.g., classPertainsToSubsystem and functionImplementsFeature.

Software ChrestomathyTraditional Product

ExamplesDocumentationExamplesDocumentation?

general
level

documentation repository,
 expected architecture

general
level

problem
specific
level

problem
specific
level

source code repository,
actual architecture

source code repository,
actual architecture

documentation repository,
 expected architecture

ExamplesSourceArtifacts

MetaSourceArtifacts

ExamplesSourceArtifacts

expected
linkslinks to

establish

actual
links

SoftwareKowledge

abProductDocumentationProductSourceArtifacts
ExamplesSourceArtifacts abExamplesDocumentation

?

Figure 5.10: Linking in the context of traditional software products vs. software chrestomathies.

source code and some forms of documentation are commonly separated for traditional software

products; see figure 5.10.

Product-specific versus general level

Software chrestomathies differ from traditional software products in an important way as de-

picted in figure 5.10 by the general level with the explicit materialization of software knowledge

and meta-source artifacts that help with managing such knowledge. In the case of 101compa-

nies, software knowledge is represented as wiki pages containing information about software

languages, software technologies, and software concepts. Gathering and organizing such knowl-

edge is an integral, non-trivial objective of the chrestomathy. As suggested by the dotted

associations on the right of figure 5.10, the problem of establishing links is no longer limited to

links between source code and its documentation, but links between source code and software

knowledge have to be established as well. For instance, one may want to establish that a partic-

ular file is valid according to a given language, that a particular file fragment uses a particular

technology, or that a particular set of files constitutes an instance of a software concept, such as

the MVC pattern. Meta-source artifacts help with establishing such links and with processing

80 Chapter 5. 101companies Software Chrestomathy

the samples of the chrestomathy otherwise. For instance, one kind of meta-source artifact may

validate files to pertain to certain languages.

Metamodels for the 101companies Chrestomathy

On the left, an informal metamodel of 101repo, the GitHub-based source-code repository, is presented.
On the right, an informal metamodel of 101wiki, the MediaWiki-based wiki, is presented. The
association corresponding to the links to establish will be specified in figure 5.13. Elements drawn
in green and in rectilinear mode correspond to the actual architecture. Elements drawn in blue and
in oblique mode correspond to the expected architecture. Elements in red and marked with ‘?’ are
links to establish.

Legend

Fig. 1. Linking in the context of traditional software products vs. software chrestomathies

for pointers.3

Non-contributions

We delimit the scope of the paper by highlighting absent
forms of validation and absent claims.

NC1. The paper provides no validation in terms of the size
of the software corpus. While many experimental papers focus
on a single particular technique, and then validate it on a
set of large software corpus, the focus of this paper is on
heterogeneity in the MLMT dimension (C1).

NC2. The paper provides no validation on traditional soft-
ware products. We believe that the technique proposed for lin-
guistic architecture reconstruction could be used with success
in the context of traditional software products.

NC3 We do not claim that the SAR techniques of this paper
are exhaustive or definitive. On the contrary, C3 expresses that
a longer community effort is needed to obtain more exhaustive
and more definitive results.

Road-map: The paper is structured roughly according to the
CacOphoNy methodology [2]. §II compiles an inventory of the
involved repositories (see the right of Figure 1) including the identi-
fication of the underlying metamodels and opportunities for links
(see Figure 2 for a preview). §III specifies more precisely what
information to reconstruct (see Figure 4 for a preview). §IV presents
corresponding tool support based on a rule-based system. Finally, §V
describes the integration of all information, as it is presented to the
different stakeholders concerned by the project, thereby leading to an
ecosystem (see Figure 5 for a preview). (Related work is discussed
in §VI and the paper is concluded in §VII.)

II. INVENTORY

A. Programming vs. software chrestomaties

Wikipedia defines the notion of chrestomathy as follows:
“Chrestomathy (from the Greek words [...]) is a collection of
choice literary passages, used especially as an aid in learning

3http://softlang.uni-koblenz.de/101meta/

a foreign language. In philology or in the study of literature,
it is a type of reader or anthology which presents a sequence
of example texts, selected to demonstrate the development of
language or literary style.”

The objective of the 101companies project is precisely
to provide useful knowledge to the software development
community. The distinction between what we coin here a
software chrestomathy and a programming chrestomathy, such
as RosettaCode, is directly based on the distinction software
products vs. programs, or software engineering vs. program-
ming. Programming chrestomathies typically illustrate pro-
gramming idioms, programming tasks, programming prob-
lems (e.g., important algorithms and data structures) on the
grounds of relatively small programs or excerpts. By contrast,
software chrestomathies, and in particular the 101compa-
nies chrestomathy, illustrate (possible small) actual running
systems in a way that language and technology usage as
well as software engineering concepts (architecture, modeling,
deployment, documentation, testing, reverse engineering, etc.)
are illustrated.

B. Separation between documentation and source code

Programming chrestomathies typically embed source code
fragments directly into the documentation repository (such as a
wiki), software chrestomathies have to use a full-fledge source
code repository to organize, persist, and maintain all software
artifacts—in addition to the documentation repository (which
may be based on a wiki as well). As shown in Figure 1,
the separation between documentation and source code is
shared by both traditional software product and software
chrestomathy.

C. General software knowledge

Software chresthomaties differ from general software prod-
ucts in an important way that is depicted in the figure by the
‘general’ level with the explicit materialization of (general)
software knowledge for software chrestomathies. In the case of

Family of actual associations corresponding to links buried in source artifacts.

Fig. 2. Informal megamodel of 101repo and 101wiki being linked

the 101companies chrestomathy, this knowledge is represented
as wiki pages containing information about software lan-
guages, software technologies, and software concepts. Because
of the very wide scope due to the MLMT dimension, gathering
and organizing such software knowledge is an integral, non-
trivial objective of the chrestomathy. As suggested by the
dotted associations on the right of Figure 1, the problem of
establishing links is no longer limited to links between source
code and its documentation, but links between source code and
general software knowledge have to be established as well.
For instance, one may want to establish that a particular file
is valid according to a given language, that a particular file
fragment uses a particular technology, or that a particular set
of files constitute an instance of a software concept, such as
the MVC pattern.

D. Metamodels in the 101companies chrestomathy

In Figure 2, the repositories and constituents of the 101com-
panies project are described by simplified and informal meta-
models. We take the view that the instances of the classes
on the left are materialized by actual directories and files in
the 101repo GitHub repository, while the instances of the
classes on the right are materialized by wiki pages in the
101wiki. Examples of names of such instances are provided
as an illustration. The total number of instances (at the time

of writing) is also given for each class.

Consider the top-level directories in the middle of the figure:
‘jena’, ‘linqToDataSet’, etc. correspond to different variants of
the 101companies system, called ‘contributions’.

Consider the metamodel for the source-code repository on
the left of Figure 2. The hierarchical nature of the file system
is modeled in a straightforward manner. There is also an
association to decompose files into content (or fragments).
The details of such decomposition clearly depends on the
language(s) considered.

Consider the metamodel for the wiki on the right of Figure 2
rooted in the Contribution class whose instances document
contributions, i.e., different variants of the 101companies
system. Physically, instances correspond to wiki pages decom-
posed into sections that can be represented in the metamodel
by attributes such as ‘heading’, ‘description’, ‘issues’, etc. The
details of this metamodel are out of the scope of the present
paper, but interestingly enough contributors are required to
document all software languages, software technologies, and
software concepts used in their contributions as well as the
product features claimed to be implemented. This leads to the
‘expected’ links represented in blue on the right of Figure 2,
but there is no guarantee that the claims comply with the
‘actual’ links.

Individual actual UML-style associations corresponding to available facts.

Fig. 2. Informal megamodel of 101repo and 101wiki being linked

the 101companies chrestomathy, this knowledge is represented
as wiki pages containing information about software lan-
guages, software technologies, and software concepts. Because
of the very wide scope due to the MLMT dimension, gathering
and organizing such software knowledge is an integral, non-
trivial objective of the chrestomathy. As suggested by the
dotted associations on the right of Figure 1, the problem of
establishing links is no longer limited to links between source
code and its documentation, but links between source code and
general software knowledge have to be established as well.
For instance, one may want to establish that a particular file
is valid according to a given language, that a particular file
fragment uses a particular technology, or that a particular set
of files constitute an instance of a software concept, such as
the MVC pattern.

D. Metamodels in the 101companies chrestomathy

In Figure 2, the repositories and constituents of the 101com-
panies project are described by simplified and informal meta-
models. We take the view that the instances of the classes
on the left are materialized by actual directories and files in
the 101repo GitHub repository, while the instances of the
classes on the right are materialized by wiki pages in the
101wiki. Examples of names of such instances are provided
as an illustration. The total number of instances (at the time

of writing) is also given for each class.

Consider the top-level directories in the middle of the figure:
‘jena’, ‘linqToDataSet’, etc. correspond to different variants of
the 101companies system, called ‘contributions’.

Consider the metamodel for the source-code repository on
the left of Figure 2. The hierarchical nature of the file system
is modeled in a straightforward manner. There is also an
association to decompose files into content (or fragments).
The details of such decomposition clearly depends on the
language(s) considered.

Consider the metamodel for the wiki on the right of Figure 2
rooted in the Contribution class whose instances document
contributions, i.e., different variants of the 101companies
system. Physically, instances correspond to wiki pages decom-
posed into sections that can be represented in the metamodel
by attributes such as ‘heading’, ‘description’, ‘issues’, etc. The
details of this metamodel are out of the scope of the present
paper, but interestingly enough contributors are required to
document all software languages, software technologies, and
software concepts used in their contributions as well as the
product features claimed to be implemented. This leads to the
‘expected’ links represented in blue on the right of Figure 2,
but there is no guarantee that the claims comply with the
‘actual’ links.

Individual expected UML-style associations corresponding, for example, to links on the wiki.

Fig. 2. Informal megamodel of 101repo and 101wiki being linked

the 101companies chrestomathy, this knowledge is represented
as wiki pages containing information about software lan-
guages, software technologies, and software concepts. Because
of the very wide scope due to the MLMT dimension, gathering
and organizing such software knowledge is an integral, non-
trivial objective of the chrestomathy. As suggested by the
dotted associations on the right of Figure 1, the problem of
establishing links is no longer limited to links between source
code and its documentation, but links between source code and
general software knowledge have to be established as well.
For instance, one may want to establish that a particular file
is valid according to a given language, that a particular file
fragment uses a particular technology, or that a particular set
of files constitute an instance of a software concept, such as
the MVC pattern.

D. Metamodels in the 101companies chrestomathy

In Figure 2, the repositories and constituents of the 101com-
panies project are described by simplified and informal meta-
models. We take the view that the instances of the classes
on the left are materialized by actual directories and files in
the 101repo GitHub repository, while the instances of the
classes on the right are materialized by wiki pages in the
101wiki. Examples of names of such instances are provided
as an illustration. The total number of instances (at the time

of writing) is also given for each class.

Consider the top-level directories in the middle of the figure:
‘jena’, ‘linqToDataSet’, etc. correspond to different variants of
the 101companies system, called ‘contributions’.

Consider the metamodel for the source-code repository on
the left of Figure 2. The hierarchical nature of the file system
is modeled in a straightforward manner. There is also an
association to decompose files into content (or fragments).
The details of such decomposition clearly depends on the
language(s) considered.

Consider the metamodel for the wiki on the right of Figure 2
rooted in the Contribution class whose instances document
contributions, i.e., different variants of the 101companies
system. Physically, instances correspond to wiki pages decom-
posed into sections that can be represented in the metamodel
by attributes such as ‘heading’, ‘description’, ‘issues’, etc. The
details of this metamodel are out of the scope of the present
paper, but interestingly enough contributors are required to
document all software languages, software technologies, and
software concepts used in their contributions as well as the
product features claimed to be implemented. This leads to the
‘expected’ links represented in blue on the right of Figure 2,
but there is no guarantee that the claims comply with the
‘actual’ links.

Family of associations to establish to be made precise in the next UML diagram.

101repo 101wiki

SoftwareKnowledge

ExamplesDocumentationExamplesSourceArtifacts

Directory

1

Contribution
*

*

*

*

*

*

*

*

*

*

*

*

Term

Feature

+contributionDirectory 0..1

1

Language

?

Concept

Technology
197 (software) technologies:

JAXB, Symphony, JTA, POI, XOM, Glade, WCF, ...

60 (software) languages:

Ruby, Coq, XQL, XSD, CSS, OGNL, Rascal, ...

332 (software) concepts:

Parser, DTO, MVC, Anamorphism, Zipper, ...

127 (example-specific) contributions:

jena, linqToDataSet, emfGenerative, ...

35 (example-specific) features:

Company/Tree Structure, Friend/Many-to-many, ...

20 (example-specific) terms:

Company, Employee, Friend, Total, Salary, ...

127 top-level contribution directories

972 directories, 2882 files:

 jena/scripts/cut.ru

 linqToDataSet/CompanyDataSet.xss

 gwt/war/WEB-INF/web.xml

 mobl/www/js/jquery-1.4.min.js

 clojure/src/org/softlang/company.clj

 ...

FileContent

File

?
Links to
establish

Actual
links

Expected links

Figure 5.11: Informal megamodel of 101repo and 101wiki with links.

In figure 5.11, the repositories and constituents of the 101companies project are described by

simplified and informal metamodels. We take the view that the instances of the classes on the

left are materialized by actual directories and files in the 101repo source-code repository, while

the instances of the classes on the right are materialized by wiki pages on the 101wiki. Examples

of names of such instances are provided as an illustration. The total number of instances (at

the time of writing) is also given for each class.

Consider the top-level directories in the middle of the figure: ‘jena’, ‘linqToDataSet’, etc.

5.8. Linking Documentation and Source Code 81

correspond to different variants of the 101companies system, called contributions (or imple-

mentations).

Consider the metamodel for the source-code repository on the left of figure 5.11. The hierarchi-

cal nature of the file system is modeled in a straightforward manner. Files are also decomposed

into content (or fragments), which is important if, for example, the expected architecture makes

claims at the fragment level.

Consider the metamodel for the wiki on the right of figure 5.11 rooted in the Contribution

class whose instances document contributions. Physically, instances correspond to wiki pages

decomposed into sections that can be represented in the metamodel by attributes such as

“heading”, “description”, or “issues”. The details of this metamodel are out of the scope of

the present paper, but it is important to note that contributors are required to document all

software languages, software technologies, and software concepts used in their contributions

as well as the implemented product features. This leads to the expected links on the right

of figure 5.11. There is no guarantee, though, that these “claims” comply with the actual

architecture.

Opportunities for Links in the 101companies Chrestomathy

The problem to be solved is therefore to compare the actual architecture buried in 101repo

with the expected architecture documented in 101wiki. Such reconciliation begins at the roots

with the classes Directory and Contribution. The corresponding links are trivially established

because contributions have the same name in 101repo and 101wiki. At the component level,

one has to dive into the file system hierarchy and possibly into file contents to establish the

remaining links. Some links may be established generally on the grounds of rules that capture

rules of usage or, at least, best practices for languages and technologies. For instance, there is a

rule for files with a file extension ‘.rb’ to imply that the file uses the Ruby language. Other links

may require rules that are specific to a contribution and possibly software artifacts thereof. For

instance, a rule may express that a specific class of a specific contribution associates with the

software concept Parser.

82 Chapter 5. 101companies Software Chrestomathy

The Exploration Use Case

Before we discuss what information needs to be prepared, we should consider the different

stakeholders related to the enriched chrestomathy (developers, teachers, learners, and so sorth)

and their needs. For brevity, we focus on the central use case of exploration, which is of interest

to all stakeholders. That is, consumers of and contributors to the 101companies chrestomathy

want to navigate contributions in the hierarchical sense of the repository (i.e., directories, files,

and fragments) while also observing relevant knowledge about software languages, technologies,

and concepts, thereby also taking advantage of additional navigation paths.

Figure 5.12: Exploration of the 101companies implementation antlrAcceptor.

Figure 5.12 shows a snapshot of the 101explorer tool, which provides designated support for the

exploration use case. The figure snapshots some state of exploration for a specific contribution

antlrAcceptor, which was designed to demonstrate the ANTLR parser generator in a Java setup.

The four panels show the files, languages, technologies, and concepts for the contribution. Each

listed language, technology, and concept is also associated with the files that justify the listing.

For instance, the file Company.g is associated with the technology ANTLR because this file is

an input of ANTLR as hinted at by the ‘.g’ extension. Likewise, some ‘.java’ files are associated

with the software concepts Parser and Lexer.

5.8. Linking Documentation and Source Code 83

101wiki101repo

101meta

Directory

dirname

Contribution

*

Term

Feature

+contributionDirectory 0..1
1

Language

Concept

File

filename
content

isExternal?
nature?
...

render()
extract()
validate()
locate()
...()

Technology

Fragment

fragments?

inputOf? **
outputOf? **

dependsOn? **
partOf? **

elementOf? **

relatesTo?

*

*

relatesTo? **

renderers?
**

locators? *

*

extrators?
**

validators?
**

relatesTo? *

*
Locator

Extractor

Validator

Renderer

Plugin

*

GeSHi, text2html, ...

XMLFragmentLocator,
grep, GeFlo, ...

JFactExtractor, ...

CSharpValidator,
W3CValidator, ...

SoftwareArt ifact SoftwareDocum ent

101explorer
<<WebApplication>>

dependsOn

visualizes

visualizes

Plugins to develop
(typically by wrapping
available tools or APIs) Methods

to assign
Attributes
to assign

Links to
establish

MetaArt ifact

Attributes
available

Links
available

aka "MetaSourceArtifacts"
in Figure 1

Figure 5.13: Information of interest. (Some attributes and associations were omitted for brevity
and clarity.)

Specification of the Information of Interest

We need to specify in more detail what information to extract, to assign, and otherwise to

prepare in support of the exploration use case specifically; see figure 5.13. One can view

all such information as metadata to be associated with directories, files, and file fragments.

Association of metadata may rely on automated, generic rules (e.g., based on matching suffixes

of filenames) or it may require contribution- or file-specific rules or declarations.

Classification of Metadata

• Links to establish. The links define, for instance, which languages and technologies

are used (in the sense of megamodeling or linguistic architecture [FLV12]), and also

which software concepts, features and (domain) terms are involved; see the associations

‘elementOf’, ‘inputOf’, and others on the right-hand side of figure 5.13.

• Attributes to assign. The attributes help with processing source-code artifacts: see

the middle of figure 5.13. For instance, the “nature” of each file (e.g., binary, source file,

or archive) is used by the 101explorer to determine whether the content of a file should

be displayed or not.

84 Chapter 5. 101companies Software Chrestomathy

• Methods to assign. Files are associated with methods (e.g., for ‘rendering’ [i.e., pro-

ducing output that can be presented to users], ‘validation’ [i.e., establishing that a file

is valid according to some language], ‘fact extraction’, or ‘fragment location’). These

methods are plugged into the framework as shown on the left-hand side of figure 5.13.

Rule-based Metadata Assignment

Our approach relies on a rule-based system to assign metadata to software artifacts so that links

are established and further processing of the artifacts is instructed. The rule-based system is

effectively supported by the domain-specific language 101meta2. In the current implementation

of 101meta, rules are represented in JSON, but we use a simple concrete syntax in this paper

for clarity’s sake. The language is evolving, as new features are requested, but the assumed

main elements are presented here, first using a grammar, then through a series of examples.

The 101meta Language

Rules can be collected in sets. Each rule consists of a condition (on the left-hand side), an

optional scope (to deal with fragment-level metadata), and a set of metadata units to be

assigned (on the right-hand side). Thus:

RuleSet ::= Rule∗ .

Rule ::= Condition → [AssignmentScope] Assignment∗ .

AssignmentScope ::= fragment FragmentDesignator .

Operationally, rules are to be checked on files (and directories). Whenever a file meets the

condition, then the corresponding metadata units are assigned to it. In fact, when a fragment

designator is specified, then the metadata units are effectively assigned to the specified fragment

instead.

Conditions can be formed from Boolean connectors and basic constraint forms:

Condition ::= Constraint | ¬ Constraint | Constraint ∧ Constraint |

Constraint ::=

2http://101companies.org/Language:101meta

http://101companies.org/Language:101meta

5.8. Linking Documentation and Source Code 85

filename (String | RegExp)

| basename (String | RegExp)

| dirname (String | RegExp)

| suffix String

| content (String | RegExp)

| predicate Command .

The filename constraint allows matching on a given filename either via a simple string or

a regular expression. The constraints basename and dirname correspond respectively to a

constraint on the filename without any directory part or on the directory name. The suffix

constraint is essentially a shorthand for a pattern to constrain only the suffix (typically, the

extension) of a filename. The content constraint is used to express conditions on the content

of files by regular expression matching. Finally, the predicate constraint makes it possible

to perform arbitrary computations for conditions by applying an executable command to the

file under investigation, subject to an interpretation of the exit code. (We think of all such

commands as being plugged into the framework.)

In the 101companies project, so far, the following forms of metadata assignments have been

found useful, but the approach is obviously extensible in that new forms of metadata could be

added easily:

Assignment ::=

LinkAssignment

| AttributeAssignment

| MethodAssignment .

LinkAssignment ::=

elementOf LanguageName

| dependsOn TechnologyName

| partOf TechnologyName

| inputOf TechnologyName

| outputOf TechnologyName

| concept ConceptName // association relatesTo

| feature FeatureName // association relatesTo

| term TermName . // association relatesTo

86 Chapter 5. 101companies Software Chrestomathy

AttributeAssignment ::=

external // attribute isExternal

| nature String . // attribute nature

MethodAssignment ::=

renderer Command

| extractor Command

| validator Command

| locator Command .

These forms directly correspond to the specification of subsection 5.8.3 and figure 5.13 specifi-

cally.

Language Links

Here are a few, very simple examples:

suffix ".jar" → nature "archive" .

suffix ".xq" → nature "source" .

suffix ".xq" → elementOf "XQuery" .

The rules states that ‘.jar’ files are archives, while files with suffix ‘.xq’ are source files pertaining

to the XQuery language. Such information can be used by tools such as the 101explorer

or metrics tool as only source files should be rendered in the browser and count in metric

calculations.

There is an important conceptual difference between attribute assignment (first two rules) and

link assignment (third rule): in the first case ‘archive’ and ‘source’ are just scalar values, but

‘XQuery’ is actually representing a reference to a conceptual entity. Since the class Language is

the target of the ‘elementOf’ association (see figure 5.13), the string ‘XQuery’ must constitute a

valid language name in the ontology of the 101companies project. In particular, language names

can be completed in URLs on 101wiki.3 In this manner, tools like 101explorer can interpret

metadata units for the purpose of navigation. We mention in passing that metadata assignments

can be represented as RDF triples, subject to an appropriate megamodeling ontology [FLV12].
3XQuery maps to http://101companies.org/index.php/Language:XQuery.

http://101companies.org/index.php/Language:XQuery

5.8. Linking Documentation and Source Code 87

Technology Links

Let us consider also links to technologies as opposed to languages. The parser generator ANTLR

is used here for illustration. When ANTLR is used with Java, the technology is packaged as a

‘.jar’ archive. Hence, let us associate, for example, the (version-specific) file ‘antlr-3.2.jar’ with

the technology ANTLR.

basename "antlr−3.2.jar" partOf "ANTLR" .

The basename constraint implies that we do not care about the directory of the matched file

here. We use partOf here in the sense that a software artifact, such as a ‘.jar’ archive, can

be considered part of a technology, which is a conceptual (abstract) entity [FLV12]. We may

also perform regular expression matching on the basename to cover all possible versions of

the ‘.jar’ file:

basename "#^antlr−.∗\.jar$#" → partOf "ANTLR" .

Let us also consider indicators of technology usage. The suffix ‘.g’ is an indicator of ANTLR

usage because this extension is used for grammar files.

suffix ".g" → inputOf "ANTLR" .

Link assignment expresses here that the matched files serve as input for the parser generator

ANTLR. The use of ANTLR may also be inferred on the grounds of generated files. When

ANTLR is used in a common manner, then generated code for parser and lexer are to be found

in files with specific names as follows:

basename "#^.∗(Parser|Lexer)\.java$#" → outputOf "ANTLR" .

Actually, the use of ‘Parser’ or ‘Lexer’ in filenames does not generally imply usage of ANTLR.

Thus, we need to further constrain the rule in a way that the content of the files can be checked

to support the assumption about ANTLR usage. Specifically, looking at files actually generated

by ANTLR, a simple signature stands out in the first line:

// $ANTLR 3.2 Sep 23, 2009 12:02:23 Company.g .

88 Chapter 5. 101companies Software Chrestomathy

This is indeed enough here to help with decision making. We would like to ‘grep’ the file to

search both for the ‘$ANTLR’ string and the distinguished extension ‘.g’ in the same line.

basename "#^.∗(Parser|Lexer)\\.java$#"

∧ content "#// \$ANTLR.∗\\.g#"

→ outputOf "ANTLR" .

Another kind of evidence forANTLR usage concerns imports of its runtime API ‘org.antlr.runtime’.

suffix ".java"

∧ content "#^[\t]∗import[\t]∗org.antlr.runtime\.#"

→ dependsOn "ANTLR" .

Clearly, such import matching could be useful for many other technologies, in fact, APIs. Thus,

we may also factor such matching into a more general purpose predicate:

#!/bin/sh

usage: javaImportPredicate.sh <package> <javaFile>

grep −q "^[\t]∗import[\t]∗$1\." $2

Thus, we revise the rule to invoke the predicate instead of using a content constraint:

suffix ".java"

∧ predicate "javaImportPredicate.sh org.antlr.runtime"

→ dependsOn "ANTLR" .

We may later decide to re-implement the predicate at a syntax-aware level as opposed to regular

expression matching.

Concept Links

Wemay also want to annotate files with any software concepts of the 101companies chrestomathy.

For instance, we may want to express that certain files define a parser, a GUI, or contribute to

a MVC architecture. Here is a concrete example where files of a specific contribution, antlrOb-

jects, are tagged with the concepts Parser and Lexer :

filename "antlrObjects/org/softlang/parser/CompanyParser.java"

5.8. Linking Documentation and Source Code 89

→ concept "Parser" .

filename "antlrObjects/org/softlang/parser/CompanyLexer.java"

→ concept "Lexer" .

More general rules may also be conceivable here.

Links Related to the 101companies Domain

We can also assign features of the 101companies system as well as terms of the domain to

files and fragments. For instance:

filename "javaStatic/org/softlang/behavior/Total.java" →

feature "Type−driven query"

term "Total" .

Method Assignments

The preparation of information, as needed for the exploration use case requires several methods,

as discussed in subsection 5.8.3. The assigned methods may be invoked by functionality such

as the 101explorer, which operates on the matched file system. There are rules for method

assignment for many suffixes and ‘special’ filenames. For instance:

suffix ".wsdl" → renderer "php geshiRenderer.php xml" .

basename "Makefile" → renderer "php geshiRenderer.php text" .

That is, renderer methods are assigned to ‘.wsdl’ files and makefiles. The Generic Syntax

Highlighter, GeSHi4 is leveraged here; this is a PHP package supporting HTML generation for

source files for more than 200 languages with awareness of keywords, strings, comments, and

others. WSDL files are rendered as XML files; see the ‘xml’ argument being passed; makefiles

are rendered as plain text files; see ‘text’.

Eventually, we may also want to use more advanced renderers than GeSHI. For instance, we

could use a more WSDL-aware renderer that supports navigation for some of the WSDL ele-

ments.
4http://qbnz.com/highlighter/

http://qbnz.com/highlighter/

90 Chapter 5. 101companies Software Chrestomathy

In the following example, we register Python programs for validating Java source code and

extracting facts from the code.

suffix ".java" →

extractor "JFactExtractor.py"

validator "JValidator.py" .

Extractors extract facts from source code (e.g., the declared classes or the imported packages

in the case of Java). The facts can be used in various ways (e.g., for the purpose of establishing

technology-related links). Validators are meant to validate assumptions about files (e.g., to

pertain to certain languages). Validators can also be remotely invoked. For instance, ‘.html’ files

may be validated by a script which wraps an online service provided by the W3C consortium.

Validation may seem very similar to the predicate form of conditions; see subsection 5.8.6.

However, predicates serve for matching conditions whereas validators serve for the validation of

committed matches. Unsuccessful matching (based on predicates) is to be expected; unsuccess-

ful validation pinpoints an issue with software artifacts or rules, and hence, user intervention

may be required.

Fragment Scope

In all examples, so far, we really meant to annotate complete files. In general, it may be

necessary to limit the scope of metadata to apply only to file fragments. To this end, a fragment

designator has to be used as a scope of assignments. Consider, for example, the data model

for companies, as defined by a trivial Haskell-based contribution; one file contains all the data

types for companies, departments, and employees:

module Company where

data Company = Company Name [Department]

data Department = Department Name Manager [SubUnit]

data Employee = Employee Name Address Salary

We would like to point to all the specific domain terms ‘Company’, ‘Department’, and ‘Em-

ployee’. The following rule involves fragment designation to link the appropriate fragment

5.8. Linking Documentation and Source Code 91

(i.e., the data type ‘Company’) to the term ‘Company’:

filename "haskell/Company.hs"

→ fragment { "data" : "Company" } term "Company" .

We rely on language-aware support for fragment location. In the example, we rely on a Haskell-

specific locator, which is known due to the following method assignment:

suffix ".hs"

→ locator "HsFragmentLocator.py" .

There is also a more lexical and generic approach to fragment selection based on GeFLo,5 a

101companies-specific technology for generic fragment location, which, in turn, is based on

GeSHi.

Summary of 101meta Usage

Various derived resources are available online 6; some of them also directly illustrate and mea-

sure the use of 101meta in the chrestomathy. Here are some illustrative numbers, recorded at

the time of writing:

• Examined 2910 repository files.

• Gathered 307 101meta rules.

• Assigned metadata to 2030 files.

• Performed 6778 metadata assignments.

• Mapped 41 suffixes (pertaining to languages).

• Mapped 57 Java packages (accounting for APIs).

Rule execution for matching and subsequent phases for validation, rendering, etc. are performed

continuously on a worker machine of the 101companies project.
5http://101companies.org/index.php/Technology:GeFLo
6http://worker.101companies.org/data/resources/

http://101companies.org/index.php/Technology:GeFLo
http://worker.101companies.org/data/resources/

92 Chapter 5. 101companies Software Chrestomathy

101ecosystem

101web:ApplicationServer

Examples of external resources

Examples of fictional contributor machines

101wikiServer:MediaWikiServergitHub:GitServer

101worker:BuildServer

wikipedia:MediaWikiServer

rosettaCode:MediaWikiServer

linksTo

linksTo

w3c:ServiceProvider

101repo
<<GitRepository>>

contributions: Directory

technologies: Directory

languages: Directory

contributions: Directory

technologies: Directory

languages: Directory

101worker
<<GitRepository>>

modules: Directorymodules: Directory

101workerEngine
<<Component>>

pull101repo: Module

pull101wiki: Module

pull101worker: Module

gather101meta: Module

match101meta: Module

deployTo101web: Module

pull101repo: Module

pull101wiki: Module

pull101worker: Module

gather101meta: Module

match101meta: Module

deployTo101web: Module

101wiki
<<MediaWikiSystem>>

termPages: WikiPage[*]

contributionPages: WikiPage[*]

featurePages: WikiPage[*]

languagePages: WikiPage[*]

technologyPages: WikiPage[*]

conceptPages: WikiPage[*]

termPages: WikiPage[*]

contributionPages: WikiPage[*]

featurePages: WikiPage[*]

languagePages: WikiPage[*]

technologyPages: WikiPage[*]

conceptPages: WikiPage[*]

describes

101endPoint
<<SPARQLEndPoint>>

RDFStoreRDFStore

callsServices

vadimLaptop:Labtop

chanLabtop:Labtop

101workerSpace
<<FileSystem>>

101repo

101wikiGraph

ruleSet

matches

101repo

101wikiGraph

ruleSet

matches

101explorer
<<WebApplication>>

htmlAndJsonFileshtmlAndJsonFiles

101downloads
<<FileServer>>

dumpsdumps

output

output

output

input

output

pulls

pulls

pulls

output output output

... more modules here ...
... more results here ...

output

input

browses

browses chanBrowser
<<WebBrowser>>

vadimLocalRepo
<<GitClient>>pulls&pushes

ahmedDesktop:Desktop

ahmedLocalRepo
<<GitClient>>

MiningTool
<<Component>>

pulls&pushes

queries

downloads

Ahmed is a researcher in reverse eng.

He consumes and provides services.

Chan is studying software technologies.

She browses the 101chrestomathy.

Vadim contributes 101implementations

via the git repository.

https://github.com/101companies/101repo

https://github.com/101companies/101worker

http://101companies.org Examples of external resources,

contributors to the project and consumers

Examples of

 interactions

Deployment view of previous figures.

Repository level

Computation level

Service level

Figure 5.14: Architecture of the 101ecosystem (on the left) with examples for providers, con-
sumers, and resources (on the right).

5.9. The 101ecosystem 93

The 101ecosystem

It remains to integrate the analysis technique of the previous section into a framework that sup-

ports the different stakeholders and objectives of a software chrestomathy. The UML diagram

of figure 5.14 describes the resulting ecosystem of the 101companies project (see on the left)

and examples of external resources, consumers or producers machines (see on the right). The

ecosystem is an instance of the notion of metaware environment with meta-usecases according

to [Fav04b]. Each node (3D box) in the diagram corresponds to a different machine (virtual or

not).

The 101ecosystem consists of three levels corresponding to the flow of data from top to bot-

tom. At the repository level, the 101repo and 101wiki repositories of the chrestomathy are

located. The 101meta rules reside in 101repo directories for specific languages, technologies, or

contributions.

At the computation level, a build server (the so-called 101worker machine) continuously exe-

cutes modules to process the repositories so that information is extracted, computed, validated,

and prepared for presentation. For instance, the module match101meta executes all gathered

101meta rules and performs the assignment of metadata for 101repo. The use of a designated

build machine like this is a common architectural pattern.

At the service level, the results of the computations are served through endpoints of different

kinds. For instance, the repository is surfaced in a form that is ready for browsing; results of

matching are surfaced in a form that allows for human validation and provides assistance in

producing additional rules; the repositories are surfaced in different fact-extraction formats to

facilitate query techniques (e.g., based on SPARQL for RDF).

Let us consider the scenarios (on the right) of the figure; they are based on fictional characters

playing different roles.

Chan takes advantage of the knowledge contained in the chrestomathy and uses the 101explorer

to visualize information.

94 Chapter 5. 101companies Software Chrestomathy

Vadim actively contributes to the project by providing a new implementation of the 101compa-

nies system, demonstrating how the languages and technologies he has designed could be used

to solve software development problems.

Ahmed is interested in reverse engineering technologies. He is actively developing his own

analysis tools and tests them on the chrestomathy taking advantage of direct access to extracted

facts by either downloading dumps in different formats or querying through the SPARQL

endpoint. His tools (or parts thereof) could later be reused by the 101ecosystem for the benefit

of the community.

Related Work

Ontologies. Ontologies are widely used for knowledge management [CJB99, SSSS01], and

we have started to develop a 101companies ontology for organizing technologies, languages,

technical spaces, implementations of the 101companies system, the system’s specification, and

all documentation in the 101companies project. A few related uses are the following. The

semi-automatic derivation of an ontology for domain-specific programming concepts—as they

are supported, for example, by APIs for XML or GUI programming—is described in [RFD+08].

Clearly, such domain-specific ontologies are needed as modules of a broader ontology of pro-

gramming technologies, which we develop in chapter 7.

Wikis. In [VKV+06], semantic enhancements to Wikipedia are described: an extension to

the wiki-link syntax and an enhancement of the article view to cover visualization of semantic

data. Instead of such a powerful approach, we currently leverage more standard capabilities of

MediaWiki. That is, we basically use “categories” for classification, and we provide a number

of customized views and synthesized article elements that help in understanding and navigating

the 101companies wiki.

An even more advanced approach is described as OntyWiki in [ADR06]. In this approach, “in-

formational maps” visualize semantic content; each node at the information map is represented

visually and interlinked with related digital resources. Users are further enabled to change the

5.10. Related Work 95

knowledge schema and to contribute instance data. Our approach essentially relies on the much

simpler notion of a category tree (in fact, a direct acyclic graph) for classification, which can

also be modified and richly navigated.

Open-source contributors. Our proposal of contributor roles for the open-source 101com-

panies project is based on role sets that have been used in open-source projects, or that have

been inferred or identified after the fact by studying open-source projects (e.g., [And11, KUM11,

LPT06]).

In [ON08], two open source contexts are distinguished: software and content, and it is analyzed

to what extent the entry barriers for contributors are different in the two contexts. While

software contribution requires a certain threshold of expertise in order to pass the review

process, content contribution has virtually no entry barriers other than basic computer literacy.

To some extent, both roles are separated by the proposed contributor roles in the 101companies

project. However, ideally, a contributor of an implementation is also supposed to contribute

content (so that the implementation is strongly documented).

Derivation of abstractions. Program comprehension and reverse engineering routinely in-

volve the (semi-) automated derivation of models as abstractions over the source code. The

Rigi system [TWSM94, TMWW93] serves here as a seminal example: the system implements

automated techniques to compute and maintain architectural documentation from source code

using the Rigi Command Language (RCL).

Our approach mainly aims at establishing links between documented, conceptual entities (i.e.,

languages, technologies, software concepts, domain terms, and product features) and imple-

mented, physical entities (i.e., files and fragments thereof). Such link establishment can be

seen as a sort of source-code summarization in the sense of [HAMM10].

Consistency between models and source code. Software reflexion models [MNS95,

MNS01] also help software engineers to establish links between (high-level or design) models

96 Chapter 5. 101companies Software Chrestomathy

and source code. The reflexion approach is concerned with traditional (as opposed to linguistic)

architecture and focuses on summarizing differences and making the models work as a lens on

the source code.

Multi-language analyses. Previous research has also aimed at tools and methods that

apply to multiple languages without, however, addressing linguistic architecture. [MWHH06]

describes a fact extractor and an analysis to understand cross-language dependencies in projects

using scripting languages. [MSC+01] provides a web-based experience for analyzing C, C++,

and Java programs. [KWDE98] targets multi-language systems by using a common, graph-

based conceptual model for the involved languages. [KLW06] focuses on the formalization, man-

agement, exploration, and presentation of multi-language program dependencies. Moose [NL12]

serves versatile exploration of source code for all languages with an import path to its FAMIX

metamodel.

File extension usage in OSS. [KG11] examines the use of popular file extensions to analyze

language usage along the evolution history of some open-source projects. The approach of this

paper enables more diverse analyses of projects (e.g., in terms of different aspects of technology

usage), and it assigns methods to files, thereby supporting functionality such as exploration or

fact extraction.

Embedding approaches. Arguably, the link extraction and consistency problem would not

exist, if source code and documentation were embedded into the same artifacts either based on

literate programming [Knu84] (such that source-code fragments are embedded into the program

documentation and subject to extraction for compilation) or the opposite approach of docu-

mentation embedding (such that documentation fragments are embedded into the source-code

artifacts, subject to extraction for building the documentation). The latter approach is used

by such popular technologies such as Javadoc7 and Doxygen8.

7http://java.sun.com/j2se/javadoc/
8http://www.doxygen.org/

http://java.sun.com/j2se/javadoc/
http://www.doxygen.org/

5.11. Conclusion 97

These two embedding approaches are essentially program-centric in the sense that the integrated

artifacts are aligned with program structure. A multi-language, multi-technology software prod-

uct involves additional abstractions (e.g., ontologies of software development, domain glossaries,

feature models, and functional and non-functional requirements). Embedding all such informa-

tion in a single kind of artifact appears to be impractical in terms of both logistics (as different

stakeholders are involved) and concise representation (as n:m relationships would imply dupli-

cation during embedding). In fact, some embedding approaches also integrate the notion of link

(see @see X in Javadoc). Our work shows how to deal with a highly heterogeneous situation

in terms of kinds of artifacts, languages, technologies, concepts, and kinds of links.

Metadata assignment. Metadata, specifically in the sense of annotations, is often used to

support program comprehension and software maintenance [SCBR06, BGGN08] potentially

even enabling sharing among developers. Popular tools such as the TagSEA system9 or the

Eclipse Resource Tagger10 support tagging for the benefit of navigation and location finding.

Our work is inspired by metadata approaches that describe metadata external to the addressed

artifacts [SDdOV08, TS10].

Conclusion

The 101companies chrestomathy collects contributions, which implement certain features of

a feature model for an imaginary human-resources management system. The feature model

is designed to touch upon many issues in programming and the use of software technologies.

In particular we highlight the 101repo – a federated repository to maintain all source code

of the contribution with a version control system and 101wiki – a 101-specific semantic wiki

to maintain semi structured documentation of the contributions and related entities. A soft-

ware chrestomathy involves entities that go beyond “conservative” source-code and documen-

tation artifacts (i.e., languages, technologies, system features, software concepts, etc). Hence,

a chrestomathy should be enriched “semantically” so that all the artifacts are linked to the
9http://tagsea.sourceforge.net/

10http://taggerplugin.sourceforge.net/

http://tagsea.sourceforge.net/
http://taggerplugin.sourceforge.net/

98 Chapter 5. 101companies Software Chrestomathy

relevant concepts and rich exploration is enabled and the linked chrestomathy is amenable to

some limited consistency checks. We have described a corresponding approach for enriching

the 101companies chrestomathy; it relies on the rule-based language 101meta for metadata

assignment. Also, the approach enriches the repositories of the chrestomathy with derived in-

formation resources and services as they are of interest for consumers of and contributors to

the chrestomathy, culminating in the 101ecosystem.

Chapter 6

Chrestomathic Knowledge Integration

In this chapter we describe the process of the software knowledge integration as a way to

enrich the vocabulary of the 101companies software chrestomathy. This chapter contributes

to the requirements R4. Vocabulary Engineering Through Knowledge Integration and R5. A

Chrestomathic Ontology.

Introduction

Software knowledge is available from many resources. We are specifically interested in (open

online) community resources; think of Wikipedia, more domain-specific wikis, possibly open

and online textbooks, forums like StackOverflow, the Apple Knowledge Base, or the support

forums by Microsoft.

Each resource uses its specific vocabulary, in fact, its specific knowledge model. This hampers

effective use of such distributed, complementary resources. For instance, consider the situation

of a student who learns Haskell by consulting a textbook, HaskellWiki, and Wikipedia. Those

three resources use different terms and different means of organization; these resources lack

effective integration.

This chapter is based on the conference publication [LSV14] Ralf Lämmel, Thomas Schmorleiz and Andrei
Varanovich. The 101haskell Chrestomathy – A Whole Bunch of Learnable Lambdas. In Postproceedings of IFL
2013, 2014.

99

100 Chapter 6. Chrestomathic Knowledge Integration

We speak of knowledge integration here in the sense of the process that leads to the consistent

interlinkage of the chrestomathy’s documentation (on the 101wiki) and appropriate external

resources such as pages on external wiki pages or textbook paragraphs.

Knowledge integration is meant to be continuous in that, for example, more and more resources

may be integrated over time and monitoring is applied so that the effective use of the integrated

vocabulary is measured.

101wiki

Monads in Haskell can be
thought of as composable
computation descriptions. ...

HaskellWiki

Wikipedia

“Learn You a Haskell”

In functional programming, a
monad is a structure that
represents computations. ...

For a Few Monads More
A Fistful of Monads

Input and Output

“Real World Haskell”
Chapter!14.!Monads

In Chapter!7, I/O, we talked
about the IO monad, but ...

101repo

Concept:Monad

concepts / State_monad
concepts / Maybe_monad
concepts / Writer_monad

contributions / haskellLogging
contributions / haskellWriter

...

Concept:State monad

Concept:Maybe monad

Concept:Writer monad

Contribution:haskellLogging

Contribution:haskellWriter

Figure 6.1: Illustration of knowledge integration for the ‘Monad’ concept according to different
knowledge resources.

Consider figure 6.1 for an illustration based on the programming concept Monad [Wad92].

The concept is reified on the 101wiki.1 The chrestomathy contains contributions that exercise

monads (see chapter 5); there are also additional small examples in the 101repo. The 101wiki
1http://101companies.org/wiki/Monad

http://101companies.org/wiki/Monad

6.2. Selection of Textbooks 101

links to Wikipedia, HaskellWiki, and two online textbooks [Lip11, OSG08]. The 101wiki page

for monads is not meant to be comprehensive on the subject, but it links to textbook chapters

for additional information about monads. For instance, several chapters of [OSG08] are linked

to: Monads. Monad transformers. Programming with monads. Error handling. The Parsec

parsing library.

In the present chapter, we explain the semi-automatic, primarily textbook-driven process for

knowledge integration, as it was applied to 101haskell. This process yields terms to be covered

on the 101wiki and links to wikis and textbooks, subject to text mining and summarization

techniques. The process is supported by the designated 101integrate framework2 which helps

with processing (textbook) resources for the raw vocabulary extraction, mapping “raw” terms

to “consilidated” terms used on the wiki, and linking terms back to a resource’s paragraphs

in the interactive experience. A deliberate limitation of our approach is its assumption of a

vocabulary with a manageable number of terms – amenable to human-based validation and

content enrichment.

Selection of Textbooks

We begin with the selection of the resources. Selection was influenced by the assumed objective

to cover Haskell in the 101kb specifically in the context of teaching functional programming at

the introductory level. Some of the more powerful programming techniques such as functors or

monads should also be covered.

We determined that two popular textbooks were available online with open access: [OSG08,

Lip11]. (We are not aware of any other Haskell textbooks with this profile.) So we favored these

two books as we intended to produce a good experience in properly connecting to textbooks

from the 101wiki, especially for the benefit of students in the corresponding programming

course.3

We decided to select more resources to increase diversity and to actually study the contributions
2https://github.com/101companies/101integrate
3http://101companies.org/wiki/Course:Lambdas_in_Koblenz

https://github.com/101companies/101integrate
http://101companies.org/wiki/Course:Lambdas_in_Koblenz

102 Chapter 6. Chrestomathic Knowledge Integration

of different resources in a meaningful way. Thus, we selected the offline resource [Hut07]

because it is an established introductory text with which we were also familiar through teaching.

Further, we selected the offline resource [Tho11] because it is also an established text on Haskell;

its mathematical or logical approach was thought of as being complementary to the other texts.

In both cases, we were able to negotiate agreements with the authors so that we could indeed

access and analyze offline sources for the books and publish the extracted vocabularies including

some additional reporting information.

We apply continuous knowledge integration to these popular textbooks on functional program-

ming in Haskell:

CRAFT [Tho11] “Haskell: The Craft of Functional Programming”

PIH [Hut07] “Programming in Haskell”

RWH [OSG08] “Real World Haskell”

LYAH [Lip11] “Learn You a Haskell”

Term Extraction

Index and content normalization. The textbooks are normalized (cleaned up) upfront.

The rest of the extraction process is completely uniform for all books. The index and the raw

content are extracted from each book, while performing resource-specific data cleaning steps

so that formatting markup is eliminated. Source code was also excluded to eliminate related

mining challenges.

The raw index terms and the raw content are subsequently stemmed 4. As a result, one obtains

a normalized set of raw terms that is free of trivial redundancy. Subsequently, the list of raw

terms is reduced automatically by applying a threshold rank for “common English”5. The

threshold was defined manually by inspection of the raw terms sorted by rank. This process
4We use the Natural Language Toolkit (NLTK [BLK09]).
5We use http://www.wordcount.org for “common English”

http://www.wordcount.org

6.3. Term Extraction 103

led to approximately 2000 index entries for the four books combined. Common English was

also removed from the raw content.

Mining of candidate terms. All index entries are matched with all the content of all books.

Match counts for the index entries are broken down for the book chapters. Based on these

counts, candidate terms are determined by text mining and summarization [RBB97, AZ12], as

explained shortly. Candidate terms are either chapter terms, popular terms, or title terms, as

explained below.

Chapter terms are those terms per book and per chapter that are matched “most frequently”

in a chapter (say, the most frequent five terms per chapter), that also appear “often enough”

(say, at least three times) in one or more chapters of the book, but only in ‘few’ chapters (say,

in 25% of the chapters or less). This is a variation on inverse document frequency [Jon72]

in that globally frequent terms are not selected; instead, locally frequent terms without many

scattered occurrences are selected. Figure 6.2 shows a good part of the chapter terms for one

of the Haskell textbooks. There is one row per term and one column per chapter. A bullet in

a cell associates a term with a chapter. The size of the bullet represents matching frequency

relative to other chapter terms.

Popular terms are those frequently matched technical terms that are actually scattered over

many chapters; think of “function”, for example. Such terms cannot be identified by inverse

document frequency. Instead, we pick popular terms per book by ordering matched terms by

frequency, excluding terms that are already covered by the chapter terms, and selecting all

the more popular terms up to a threshold (such as the terms with >10% of topmost term’s

frequency). It turns out that the different books agree on the popular terms to a good extent.

For instance, all four books have “function” and “list” among the top-3 popular terms. Only

very few terms were added in this manner; see Table 6.3.

Title terms are determined by manual inspection of chapter titles. That is, the central terms of

a chapter’s topic were added, if they were still missing. For instance, the chapter “Reasoning

about programs” of [Tho11] has “induction”, “proof”, and “testing” as chapter terms, but

104 Chapter 6. Chrestomathic Knowledge Integration

another central term, “equational reasoning”, is missing. Only very few terms were added in

this manner; see Table 6.3.

Term validation. Chapter terms and popular terms are validated to exclude “uninterest-

ing” terms. The idea is here to focus on terms that concern functional programming, Haskell

programming, or generally programming. A term could end up being uninteresting because it

relates to a specific example in the book, which is not worth interlinking. For instance, the term

“picture” appears frequently in [Tho11] for the sake of a specific example. Also, the application

of a stop list for “common English” may have missed terms that are “common” in the specific

technical text at hand. For instance, the term “model” is used frequently in [Tho11] in the

style of “We can model a tournament by this type definition.”

Table 6.1: Numbers of candidate terms
Book Chapter terms Title terms Popular terms
CRAFT 52/55 12 2
PIH 25/31 6 3
RWH 65/72 8 4
LYAH 34/38 4 0

The discussed thresholds can clearly be used to control the number of candidate terms. As

we mentioned before, it is important to aim at a manageable number because of the subse-

quent steps involving human intervention. Table 6.3 summarizes the numbers for the Haskell

textbooks; the first column also shows the difference between chapter terms before and after

validation.

Vocabulary Consolidation

At this stage, the overall objective is to map candidate terms from the books to a consolidated

vocabulary on the 101wiki.

Term mapping and reification. We systematically process each candidate term as follows.

If the term is already present on the 101wiki, then we proceed right to the next term. If the

6.4. Vocabulary Consolidation 105

term goes by a different name on the 101wiki, then we record this correspondence so that an

accordingly aggregated mapping can be used for interlinking wiki terms and resources. For

instance, the term “class” appears as a chapter term of [Tho11]’s chapter “Overloading type

classes and type checking.” The term “class” would be overly ambiguous in a broader context

of programming, which is the context assumed by 101. Thus, we map “class” to “type class”

on the wiki.

The remaining case is when we face a candidate term that is not yet present on the wiki. (Most

of the textbook terms were initially indeed missing.) In this case, we need to reify (“make

existent”) the term on the wiki. To this end, we locate the term on Wikipedia or HaskellWiki.

In this manner, each term on the 101wiki is linked to yet another relatively standardized and

stable URL (URI). We aim at locating a Wikipedia and/or HaskellWiki page for a concept that

is the ‘same as’ the emerging concept on the 101wiki.

Organization of sub-vocabularies. All terms are to be organized in a simple taxonomy of

sub-vocabularies, thereby helping to understand the consolidated vocabulary. These are some

of the sub-vocabularies used for the Haskell textbooks:

• Haskell: Concepts that are effectively Haskell-specific (e.g., TMVar and Haskell package).

• functional programming: Concepts broadly associated with functional programming (e.g.,

map function or infinite lists.

• Programming: Concepts associated with programming in general (e.g., process and error).

• Data: Concepts focused on data structures, data types, data management, et al. (e.g.,

queue and list).

• Programming theory: Concepts associated with mathematical or formal treatment of

programs (e.g., induction).

• Software engineering: Concepts associated with software engineering (e.g., Programming

and Testing(.

106 Chapter 6. Chrestomathic Knowledge Integration

• Software architecture: Concepts associated with the high-level structure of software sys-

tems (e.g., User interface or Module).

• Mathematics: Concepts effectively rooted in mathematics (e.g., Identity element and

Induction).

• Computing: Concepts broadly associate with computing (networking, operating systems,

and so forth.) (e.g., TCP or UDP).

As for the textbooks at hand, the most popular vocabularies are (in decreasing order) Pro-

gramming, Data, and Functional programming. The remaining vocabularies are considerably

less frequent. In particular, the Haskell vocabulary was only populated by a few concepts; see

figure 6.3. This means that the books do not operate at a Haskell-specific abstraction level.

Comparison of the resources. At this stage, with a consolidated vocabulary, we can com-

pare the textbooks in terms of the contributing vocabularies. In particular, we review the terms

uniquely contributed by each textbook; see figure 6.4. At the bottom of the figure, all remain-

ing (“non-unique”) terms are listed. We observe that each book makes a contribution to the

consolidated vocabulary. [Tho11] contributes terms related profoundly to formal or mathemat-

ical areas of functional programming such as “Proof” and “Calculation”. [Hut07] contributes

the fewest terms and much of them are concerned with basic functional programming concepts

such as “Function application” and “Function definition”. [OSG08] contributes the most terms,

overall, and it mentions several technologies; the other books do not. [Lip11] contributes terms

related to advanced functional programming concepts, such as zippers and applicative functors.

Monitoring Vocabulary Usage

Subject to appropriate metrics, all terms should be “reasonably” referenced by the 101wiki. In

particular, the documentation of contributions and the description of features should make use

of the vocabulary. In this manner, we would be able to claim that the chrestomathy covers the

6.5. Monitoring Vocabulary Usage 107

textbooks and is interlinked with these knowledge resources. Therefore, we monitor coverage

and interlinkage, as described below.

Figure 6.5 illustrates monitoring of vocabulary usage. Such tables are computed from a given

state of the wiki. Derived terms (shown here for one book only) are listed vertically and ordered

by the number of referring contributions. Contributions are listed horizontally and ordered by

the number of referenced terms. The big bullets indicate direct references, whereas the small

bullets report on indirect references. For each term, the counts of directly and indirectly

referring contributions are shown. For each contribution, the counts of directly and indirectly

referenced terms as well as uniquely (directly) referenced terms are shown. For brevity, the

table is cut off horizontally and vertically so as not to show more terms and contributions

without any direct references.

Such monitoring tables can be used to drive improvement of coverage/interlinkage. We use

guidelines as follows. Each reified textbook term should be referenced directly by some number

of contributions (e.g., 1). Each contribution should refer directly to some number of terms (e.g.,

3). Each contribution should refer uniquely to some number of terms (e.g., 1).

Clearly, the figure shows the situation at a point in time, when not yet many textbook terms

are directly referenced. Thus, the figure suggests that the cut-off terms need to be referenced

from existing contributions, or perhaps suitable contributions are missing. Likewise, the cut-off

contributions need to be better linked to the vocabulary, unless they address concepts out of

the scope for the book at hand.

108 Chapter 6. Chrestomathic Knowledge Integration

T
er

m

G
et

ti
n
g

st
a
rt

ed
w

it
h

H
a
sk

el
l
a
n
d

G
H

C
i

B
a
si

c
ty

p
es

a
n
d

d
efi

n
it

io
n
s

D
es

ig
n
in

g
a
n
d

w
ri

ti
n
g

p
ro

g
ra

m
s

D
a
ta

ty
p
es

tu
p
le

s
a
n
d

li
st

s
P

ro
g
ra

m
m

in
g

w
it

h
li
st

s
D

efi
n
in

g
fu

n
ct

io
n
s

ov
er

li
st

s
P

la
y
in

g
th

e
g
a
m

e
IO

in
H

a
sk

el
l

R
ea

so
n
in

g
a
b
o
u
t

p
ro

g
ra

m
s

G
en

er
a
li
za

ti
o
n

p
a
tt

er
n
s

o
f
co

m
p
u
ta

ti
o
n

H
ig

h
er

o
rd

er
fu

n
ct

io
n
s

D
ev

el
o
p
in

g
h
ig

h
er

o
rd

er
p
ro

g
ra

m
s

O
v
er

lo
a
d
in

g
ty

p
e

cl
a
ss

es
a
n
d

ty
p
e

ch
ec

k
in

g
A

lg
eb

ra
ic

ty
p
es

C
a
se

st
u
d
y

H
u
ff
m

a
n

co
d
es

A
b
st

ra
ct

d
a
ta

ty
p
es

L
a
zy

p
ro

g
ra

m
m

in
g

P
ro

g
ra

m
m

in
g

w
it

h
m

o
n
a
d
s

D
o
m

a
in

S
p
ec

ifi
c

L
a
n
g
u
a
g
es

T
im

e
a
n
d

sp
a
ce

b
eh

av
io

u
r

action •

algebraic •
algebraic type •
base case •

bool •
calculation • •

code •
coding •

command •

complexity •
constructor • •
database •

design •

eq •
equality •
evaluation •
file •

filter •

float •
folding •

foldr •

GHCi •
guard •
head •

I/O • •

induction •
infinite list •
IO • •
local •

map • •
maximum •

model •

module • • •
monad • •

operator • •
package •
parser •
partial •
partial application •
pattern matching •

picture • • •
prelude •

proof •
queue •
random •

recursion • •

regular expression • •

set •
state •
strict •

testing • •

text • •

tree • • • •

tuple •

type checking •

Table 3: Chapter profiles of CRAFT

...

Figure 6.2: Chapter terms for [Tho11]

6.5. Monitoring Vocabulary Usage 109

Figure 6.3: The derived Haskell vocabulary

Terms in [Tho11] only: Local scope, Value, Complexity, Proof , Calculation, Equational reasoning, Head,
Equality, Programming, Queue, Argument, Result, Base case, Partial application, Program, Tuple, Set,
Program design, Type checking, Higher-order function, Name, Algebraic data type, Infinite list, Float

Terms in [Hut07] only: Haskell script, too generic term, Equation, Function application, Parser combi-
nator , Identity element, Declaration, Function definition, Product function, Lambda abstraction

Terms in [OSG08] only: Foreign function interface, Predicate, Operator precedence, Polymorphism,
Thread, Performance, MVar , Profiling, TCP, Directory, Property, Loop, Technology:Parsec, Parsing,
Monad transformer , Pointer , Technology:HPC , Type system, User interface, Language:XML, Core, Tech-
nology:Glade, Exception, Error , Process, Type signature, Type definition, Program optimization, Data type,
Technology:GHC , Pure function, Association list, Query, Output, UDP, Table

Terms in [Lip11] only: Fmap function, Accumulator , type-class instance, Functor , Data structure,
Monadic value, Import, Factorial, Zipper , Condition, Expression, Sum function, Applicative functor
Terms in more than one book: Monoid, Character , Type-class instance, Bit, List comprehension, Test-
ing, Fold function, Operator , Lazy evaluation, Recursion, I/O system, Number , State, Input, Haskell package,
Type, String, Type class, Random number , Tree, Command, Parser , Filter function, Code, Data constructor ,
Pattern, Integer , Database, Catamorphism, Evaluation strategy, Action, Technology:GHCi, Text, Tail, Reg-
ular expression, Map function, Language:Haskell, Induction, Function, Pattern matching, Prelude, Stack,
Eager evaluation, List, Maybe type, Monad, Module, Guard, Boolean, File

Figure 6.4: Comparison of the different Haskell textbooks

110 Chapter 6. Chrestomathic Knowledge Integration

Figure 6.5: Vocabulary usage for [Hut07] at a given point in time.

6.6. Conclusion 111

Conclusion

This chapter described the foundations of a software chrestomathy with a customized, semi-

automatic process for knowledge integration, in fact, vocabulary engineering tailored towards

producing a manageable number of interesting terms to be used for metadata in documentation.

The foundations are realized for 101haskell – the Haskell-specific sub-chrestomathy of the more

general 101 project. A functional programming course has been developed on top of the

chrestomathy (see chapter 9). Our experiences substantiate that an appropriately organized

and enriched software chrestomathy can be very useful for learning (and teaching).

Chapter 7

A Chrestomathic Ontology

In this chapter we describe SoLaSoTe – an ontology for software technologies, languages, and

concepts. It contributes to the requirement R6. A Chrestomathic Ontology.

Introduction

The software ontology SoLaSoTe, which is being developed in tandem with 101, serves for the

classification and other forms of characterization of software languages, software technologies,

and all kinds of software concepts relevant for programming and development (e.g., design

patterns, programming techniques, data structures, algorithms). The ontology is maintained

on 101wiki. An ontology targets software languages, technologies, and concepts as an important

abstraction level for software engineers and programmers meant to be useful in understanding,

comparing, or learning about such entities. In this chapter we provide an advanced case study on

ontology development and ecosystem provision, thereby addressing the issue of how to exactly

edit, maintain and inquire an ontology so that its authors and potential users can effectively

carry out their activities. We also demonstrate the feasibility of illustrating, assessing, and

driving the continuous advancement of an ontology by means of a systematic collection of
This chapter is based on the two publications with the substantial revisions and additions: [LMV13] Ralf

Lämmel, Dominik Mosen and Andrei Varanovich. Method and tool support for classifying software languages
with wikipedia. In SLE, pages 249–259, 2013. [LVL+14] Ralf Lämmel, Andrei Varanovich, Martin Leinberger,
Thomas Schmorleiz and Jean-Marie Favre. Declarative Software Development (Distilled Tutorial). In Proc. of
PPDP 2014.

112

7.1. Introduction 113

artifacts – in this case: a software chrestomathy. Full details, including all schemas, RDFS

queries and their results can be found in Appendix A.2.

114 Chapter 7. A Chrestomathic Ontology

Basic Principles of SoLaSoTe

An ontology is a special kind of information object that allows for formally representing the

relevant concepts and relations of a considered domain in a machine readable format [Obe06]).

Ontologies are a means to explicitly specify conceptual models with logic-based semantics. An

important step is the ontology design is a precise classification of the ontology under develop-

ment.

Classification criteria

Staab et. al [SSFS11] provide a concise yet solid analysis and definition of the nature of foun-

dational ontologies, core ontologies, and domain ontologies, and their relations to each other.

Such classification follows the three-layered architecture of ontology libraries [GFK+04] and

discriminate between foundational ontologies, core ontologies, and domain ontologies [Obe06].

A design approach for building core ontologies is further provided. Let us quickly review several

important points that are taken into consideration while classifying two ontologies presented in

this paper.

Ontologies can be classified across several dimensions ([Obe06], [GGM+02]).

• Foundational ontologies span across many fields and serve reference purposes [Obe06]

and describe concepts independently of a particular problem or domain. Therefore, a

foundational ontology is used to build an ontology library relying on ontological choices

known from philosophy, linguistics and mathematics.

• Domain ontologies represent knowledge that is specific for a particular domain. Domain

ontologies use terms in a sense that is relevant only to the considered domain and which

is not related to similar concepts in other domains [ES13].

• Core ontologies provide a detailed abstract definition of structured knowledge in one

of these fields. Core ontologies can be based on foundational ontologies and provide a

7.2. Basic Principles of SoLaSoTe 115

refinement to foundational ontologies by adding detailed concepts and relations in their

specific field. Core ontologies span across a set of domains in a specific field.

• Task ontologies describe the conceptualization related to a generic task.

• Application ontologies describe concepts dependent on a particular domain and a task.

We classify SoLaSoTe as a domain ontology for software technologies and languages.

Design principles

We include four additional design principles into our research methodology for a chrestomathic

ontology:

• Content-oriented. We rely on a 101companies software chrestomathy as a knowledge

accumulation platform. In fact, we lift up the scope of such software engineering knowl-

edge to the level of the social coding domain. Conceptual entities are enriched with the

structured documentation authored by the community of experts. 101companies domain

specific wiki supports the authoring. Such separation between the data and conceptual

entities also enables us to specify integrity constraints [Gru95].

• Cognitive value over formal inference. The expectation is that the ontology helps

developers understanding the languages and technologies and concepts they are dealing

with. The RDFS infrastructure is leveraged to primarily facilitate advanced querying

capabilities to explore ontological entities and relations.

• Continuity. A software chrestomathy is a special instance of a social coding as it is

concerned the code-centric collaboration perspective [KDSG14]. In particular, it deals

with the major part of social coding scenarios [KGB+14], that is about software engineer-

ing and collaboration-enabled. A chrestomathic ontology should leveverage the existing

vocabulary integration, structured documentation, and automatic medatada infereence

capabilities of the 101infrastructure (see chapter 5).

116 Chapter 7. A Chrestomathic Ontology

• User adoption. Solid metamodeling foundations. Use tools and techniques that are

familiar to people in SE/MDE domain. In this matter, we developed a three-staged

approach that involves a DSL for conceptual-level design. As an implementation level we

use RDFS and SPARQL that are generated from DSL. In this way we ensure a first-class

experience from various semantic web tools, such as triple store or inference engines.

7.3. Ontology authoring with 101wiki 117

Ontology authoring with 101wiki

In the terminology of knowledge representation and integration, the software chrestomathy

101 (chapter 5) and specifically its wiki (i.e., 101wiki) can be viewed as a knowledge base;

we also use the name 101kb, thus. That is, 101kb contains for general software knowledge

with categories for software concepts (e.g., “object composition” or “unit testing”), software

languages (e.g., Haskell, XML, and SQL), and software technologies (e.g., “javac”, “hibernate”,

or “ant”). Further, 101kb contains more specific, illustrative softwareknowledge in terms of

documentation for many implementations of the 101system – a Human Resources Management

System. These implementations are also referred to as contributions because they constitute

the central means of contributing to the community resource 101.

Consider figure 7.1 for some illustration of knowledge available through 101kb. Knowledge

about the software concept ‘Zipper’ is shown. The Headline section explains the concept in

informal terms. The Metadata section contains classification-related or ontological knowledge.

In particular:

• ‘this’ (i.e., “Zipper”) is an instance of the namespace for software concepts.

• ‘this’ is a member of the vocabularies “data” and “functional programming”.

• ‘this’ is classified as a data structure.

The Backlinks section readily reports on other wiki pages mentioning the “Zipper” concept.

Specifically, three contribution pages are listed – these are documentations of small software

systems in the chrestomathy that make use of a zipper or are inspired by the concept. Another

mention arises from the page for the software concept “Zipper monad” which essentially provides

a specific implementation of the concept.

Ultimately, the Resources section links to external resources. The “Learn You a Haskell”

resource is the online available textbook of the same name [Lip11]; the link takes one right

to the book’s chapter on zippers. Further, there is a DOI-based reference for the seminal

118 Chapter 7. A Chrestomathic Ontology

Figure 7.1: The software concept ‘Zipper’ as rendered on the 101wiki.

paper on zippers [Hue97]. Finally, there are also links to zipper-related pages on Wikipedia and

HaskellWiki. Except for the textbook link, all the other resource links are marked with the

predicate “identifies”, which, in the ontology of 101, implies that these resources are judged as

being dedicated to the relevant concept as opposed to merely providing relevant information,

in which case a weaker predicate ‘linksTo’ would be used. Textbook links are currently not

classified in this manner.

Stakeholders of 101 are defined in chapter 5. 101 uses GitHub for hosting a source code of the

7.3. Ontology authoring with 101wiki 119

contributions. Every contributor has a GitHub account. In fact, single-sign-on with GitHub is

a default authentication process of 101wiki. In this way the user profile fof 101contributor is

complemented by the corresponding GitHub profile. Figure 7.2 illustrates this concept: a list

of 101contributions developedBy enriched with the public information about the contributor,

including the contact details and a broadened performance metrics of the contributions in open

source projects.

Figure 7.2: 101wiki and GitHub user profile pages

120 Chapter 7. A Chrestomathic Ontology

SoLaSoTe

A chrestomathy breaks down into physical entities (contributions, individual source files, frag-

ments thereof, and source code illustrations other than contributions) and conceptual entities

(languages, technologies, concepts, features, and others). These entities engage in certain on-

tological relationships, as we discuss in this section. In the case of 101, all documentation

is manifested on the 101wiki. Thus, the ontology is modeled and maintained through a so-

called Semantic Wiki [Bou09]. The ontology can also be accessed programmatically through

an RDF-based triple store.

Figure 7.3 sketches SoLaSoTe’s schema: the major entity types and available properties (say,

“predicates” in the RDF terminology). For instance, ’isA’ and ’instanceOf’ are used for classi-

fication.

SoLaSoTe and 101 are intertwined in so far that the semistructured documentation of contri-

butions on 101wiki refers to SoLaSoTe entities and uses designated properties; see the schema’s

block with “Contribution” as subject in figure 7.3. Documentation may thus declare the fea-

tures implemented by a contribution as well as the languages, technologies, concepts (e.g.,

design patterns) used by the contribution.

For instance, figure 7.4 lists the properties for a Java-based contribution, as part of its docu-

mentation, as rendered on 101wiki.

The contribution exercises database technologies as well as SQL while implementing a number

of 101’s features. ’this’ is the subject of the properties, i.e., the actual contribution. The schema

of figure 7.3 can be represented more formally in RDFS and OWL and the consistency of the

actual ontology (i.e., use of the right predicates for the right subject and object types) can

be checked by SPARQL queries that are obtained as interpretation of OWL. In this manner,

101wiki is also partially validated. This mix of declarative methods is inspired by Semantic Web

research. The expectation is that the ontology helps developers understanding the languages

and technologies and concepts they are dealing with. Importantly, developers can query the

ontology through 101triples – a SPARQL endpoint. For instance, the following query identifies

7.4. SoLaSoTe 121

Figure 7.3: Sketch of SoLaSoTe schema

• this developedBy Contributor:DerJackel
• this implements Feature:Cut
• this implements Feature:Depth
• this implements Feature:Total
• this uses Language:Java
• this uses Language:SQL
• this uses Technology:Eclipse
• this uses Technology:H2
• this uses Technology:JDBC

Figure 7.4: Properties for a Java-based contribution.

“popular concepts” (i.e., it sorts concepts referred to in the documentation of contributions by

the number of referring contributions).

122 Chapter 7. A Chrestomathic Ontology

Entity Types

101 aggregates knowledge about entities of the following types:

Contribution. Chrestomathy members as discussed before.

Contributor. People who submit and maintain contributions.

Feature. Tasks to be implemented by contributions.

Language. Software languages used by the contributions.

Technology. Software technologies used by the contributions.

Concept. Software concepts exercised by the contributions.

Theme. Sets of contributions covering specific topics.

External sources. See later.

The types serve as namespaces on the wiki, while they correspond to proper types in the

underlying RDF representation.

Metadata

Entities (say, resources in the sense of RDF) can be associated through triples with appropriate

predicates. We also refer to such triples as (semantic) metadata.

Metadata for contributions

• Contribution developedBy Contributor: a contribution, e.g., Contribution

haskellHxt, was developed by a contributor, e.g., Contributor Thomas Schmorleiz.

• Contribution implements Feature: a contribution, e.g., Contribution haskellSyb,

implements a feature, e.g., Feature Cut.

• Contribution uses Language: a contribution, e.g., Contribution haskellHxt, uses a

language, e.g., Language XML. All 101haskell contributions use Language Haskell.

7.4. SoLaSoTe 123

• Contribution uses Technology: a contribution, e.g., Contribution haskellAcceptor,

uses a technology, e.g., Technology Parsec. All 101haskell contributions use Technology

GHC, Technology Cabal, and Technology HUnit.

• Contribution emphasizes Concept: a contribution, emphasizes the relevance of some

concept. For instance, Contribution haskellWriter emphasizes Concept Writer monad.

Such triples are synthesized from mentions of concepts in the section motivating the

chrestomathic purpose.

• Contribution relatesTo Contribution: a contribution, relates to another contribution

in terms of reuse. For instance, Contribution haskellWriter was derived from Contri-

bution haskellLogging by setting up monadic style. Such triples are synthesized from

mentions of contributions in the section explaining relationships between contributions.

General metadata

• Concept isA Concept: a concept, such as Concept Functional programming

language, is a specialization of a concept, such as Concept Programming language.

• Entity instanceOf Entity: an entity, such as Language Haskell, is an instance of an

entity, such as Concept Functional programming language. Also, Feature Cut is an

instance of Concept Functional requirement.

• Entity partOf Entity: an entity, such as Technology GHC, is part of another entity, such

as Technology Haskell Platform.

• Entity mentions Entity: an entity, such as Contribution haskellWriter mentions

another entity, such as Concept Writer monad, which in turn mentions Concept Output,

which in turn is been mentioned by Concept IO. Such triples are synthesized from ordinary

links on the wiki pages.

Consider figure 7.5 for an illustration: declared (but not synthesized) metadata is shown for

Contribution haskellWriter.

124 Chapter 7. A Chrestomathic Ontology

• this developedBy Contributor:Ralf LÃďmmel
• this developedBy Contributor:Thomas Schmorleiz
• this implements Feature:Cut
• this implements Feature:Hierarchical company
• this implements Feature:Logging
• this instanceOf Namespace:Contribution
• this instanceOf Theme:Haskell introduction
• this instanceOf Theme:Haskell potpourri
• this uses Language:Haskell
• this uses Technology:Cabal
• this uses Technology:GHC
• this uses Technology:HUnit

Figure 7.5: Metadata triples with Contribution haskellWriter as the subject (abbreviated as
‘this’) and other entities as objects.

• haskellStarter : Basics of functional programming
• haskellEngineer : Basics of software engineering
• haskellList: List processing with map and friends
• haskellProfessional: Idiomatic code for many features
• haskellLambda: Anonymous functions
• haskellComposition: Recursive algebraic data types
• haskellVariation: Multiple constructors per type
• haskellMonoid: Queries in monoidal style
• haskellLogging: Logging in non-monadic style
• haskellWriter : Logging in monadic style
• haskellParsec: Parsing with the Parsec library
• haskellSyb: Generic programming à la SYB style

Figure 7.6: Instances of the Theme Haskell introduction.

Themes of contributions. The aforementioned predicates are helpful in imposing additional

structure onto the chrestomathy. For instance, the ‘instance-of’ relation is used for assembling

themes, i.e., sets of contributions. Haskell-centric themes collect 101haskell contributions that

address a specific topic (say, stakeholder), e.g., introduction to Haskell or generic functional

programming; see figure 7.6 for a theme. 101haskell contributions also participate in themes

that are not Haskell-specific, thereby demonstrating the “Haskell way” of addressing some

7.4. SoLaSoTe 125

problem (e.g., parsing or web programming).

References to External Resources

The 101wiki also links to external resources such as Wikipedia, DBpedia, or HaskellWiki. The

idea is here to make good use of external knowledge resources rather than reproducing large

amounts of content on the 101wiki. Such references are authored again as triples in the metadata

section of an entity’s page. The references are to be qualified by an appropriate predicate to

express the degree of semantical similarity between the internal and external resources.

• Entity sameAs URI: The 101wiki and the other resource are assumed to be semanti-

cally identical. For instance, the 101wiki uses “Zipper” in the same sense as Wikipedia.1

• Entity similarTo URI: The two resources are similar with some degree of semantical

mismatch though [HHT11]. For instance, the 101wiki uses “equality” in close reference

to programming, whereas Wikipedia associates equality primarily with mathematics.2

• Entity linksTo URI: Any relationship weaker than ‘similarTo’.

References to Code Fragments

The illustration section of a contribution tends to include code fragments from the actual

contributions. Copying and pasting fragments into wiki pages would imply two drawbacks.

First, the code on the page may go out sync with the code in the 101repo. Second, the wiki

user would be insufficiently supported in navigating from the wiki to the repo. Thus, we extend

a resource-centric approach such that the wiki may refer to fragments in the repo. Consider

figure 7.7 for an illustration.

These references rely on a URI scheme (as illustrated in the figure), a language-specific frag-

ment locator (to look up the relevant code fragment), and a language-specific renderer. In this
1http://en.wikipedia.org/wiki/Zipper_(data_structure)
2http://en.wikipedia.org/wiki/Equality(mathematics)

http://en.wikipedia.org/wiki/Zipper_(data_structure)
http://en.wikipedia.org/wiki/Equality (mathematics)

126 Chapter 7. A Chrestomathic Ontology

A 101wiki paragraph from Contribution haskellSyb

Underlying markup for the explorable code fragment

<fragment url="src/Company/Total.hs/pattern/total"/>

Figure 7.7: The wiki paragraph contains a code fragment from which one can navigate right
away to the relevant code in the repository; see the “Explore” button. The underlying markup
specifies the location of the file ‘src/Company/Total.hs’, the syntactic category “pattern” of
the fragment, and the name ‘total’.

manner, source code (repo) and documentation (wiki) may evolve in a loosely coupled manner

with possibly different authors for both artifacts, while being still effectively connected, thereby

supporting navigation by wiki users. We note that the illustration on the wiki must not be

confused with regular code documentation. That is, the illustration serves for highlighting a

contribution’s characteristics with regard to the chrestomathy, as opposed to the comprehen-

sive documentation of a given contribution as an individual software system. Thus, classic

techniques, such as literate programming [Knu84], are not applicable. We need to enable loose

coupling for wiki and repo.

7.5. Workflow of ontology processing 127

Workflow of ontology processing

The concept of 101worker as a part of 101wiki and refers to a computational infrastructure

that executes modules to process the repositories so that information is extracted, computed,

validated, and prepared for presentation [FLL+12a]. Its usage scenario was later illustrated

in the context of cross-language and technology feature detection and metric computation

[LLSV14a]. It is organized as an executable pipeline, consists of modules – units of execution.

101worker provides an API to feed an output of one module as an input to another one. The

pipelines are usually scenario specific, and encoded in a JSON configuration files. The worfkow

of has 3 modules ["wiki2json", "onto2ttl", "wiki2triples"].

wiki2json Produces a so-called wikidump – a JSON dump of the all 101wiki pages. In

this dump the semantic properties are separated from the content of the page sections. They

uniformly represent the relations between wiki page and subresources within the page, that

have partOf relation to it.

{
// always an one−sentence summary of the page
"headline": "A data structure for location−based manipulation of a data structure"
// the page is a member of 2 vocabularies
"memberOf": [{"p": "Vocabulary", "n": "Data"},

{"p": "Vocabulary", "n": "Functional programming"}],
"n": "Zipper", // name of the page
"p": "Concept", // prefix of the page
"subresources": {}, // the page is not a container
"mentions": [{"p": null, "n": "Data structure"}],
"isA": [{"p": null, "n": "Data structure"}],
"identifies": ["http://en.wikipedia.org/wiki/Zipper (data structure)",]
}

Figure 7.8: Wikidump of the Zipper page from section 7.3

wiki2triples Turns wikidump into RDFS tripples and populates the triple store. Not the

whole wiki is turned into tripples. The blacklist is used to filter out namespaces, that are not a

part of the ontology. For every page from the remaining list the mapping to the SSN entity type

is established. The first state of the validation is performed: check of the allowed properties.

The goal is to report on the semantic properties used on the page, that are not defined in SSN

128 Chapter 7. A Chrestomathic Ontology

entity declarations and therefore cannot be put into an ontology. Validation process for every

page is implemented as follows. A list of allowed relationships is commuted using SSN models

as an input. Overloading table is built to support base properties. The models define which

properties to expect in the different types. Models can inherit properties from other models

(i.e. subtyping is allowed). For every SSN model, a list of properties directly defined in the

model is created. After this the inherited properties from the base type are appended to the list.

Once the mapping between the page and the list of allowed properties are identified, we check

whether the properties used on the wiki page are contained in the list of allowed properties.

Figure 7.9 summarizes the input-output of the module.

Figure 7.9: Wiki2triples I/O

To further illustrate the process, let us use an example.

"@id": "Language",
"@type": ["Entity","Instrument"],
...
"properties": [
{
"property": "langDesignedBy",
"super": "designedBy",
"range": "foaf:Person",
"minCardinality": "0",
"comment": "Designers of languages"
}

]

"@id": "Entity",
"@type": "Resource",
....
"properties": [
{
"property": "designedBy",
"range": "foaf:Person",
"minCardinality": "0",
"comment": "Designers of entities"

}

Figure 7.10: Property inheritance for Language

If we look at the Language model (figure 7.10), there is a property ‘langDesignedBy’ which is

7.5. Workflow of ontology processing 129

a sub-property for ‘designedBy’. Inherited properties have unique names, to avoid ambiguity

in OWL reasoning. However, on the corresponding wiki page, the super-property is to be

expected. The page for Language:Java will have the property ‘designedBy’, which is a natural

name to use for the page author. All subtypes of ‘designedBy’ propery which have the domain

‘Language’ are checked. If the range of the sub-property matches the type of the object of the

‘designedBy’ relation on the language page (foaf:Person in our example), then the property is

used correctly.

onto2ttl Produces a RDFS (turlte syntax) representation from SSN representation of the

conceptual model of the ontology. The triple store is populated by using RDF(s) data.

130 Chapter 7. A Chrestomathic Ontology

Evaluation criteria

To deal with the ontology validation, we use the following approach. We pick two sources with

the quality criteria for a well designed ontology. These sources cover the broad scope on ontology

design scenarios, with the different relevance and applicability to SoLaSoTe. Below we create

an evaluation matrix, address the criteria one by one, reflecting on a particular applicability.

[OLG+06] provides a list of problems that should be avoided when a carefully engineered

foundational ontology is used as a modeling basis. We provide a list below in a form, so

that the problems are already negated and turned into requirements for our ontology design.

Additionally, we use the selected criteria for “beatiful ontologies” [dG11].

7.6. Evaluation criteria 131

Table 7.1: Evaluation criteria
Conceptual unambiguity [OLG+06] It
should be straightforward for users to under-
stand the intended meaning of concepts, the
accociations between the concepts, and their
relations to the modeled entities.

This aspect is fully instantiated in SoLaSoTe
with the support of 101wiki and the under-
lying infastructure (see chapter 5)

Good axiomatization [OLG+06] An ontol-
ogy should not contain modeling artifacts,
i.e those concepts and accociations that do
not carry ontological meaning. The clarity
of concept definitions should be supported
by the axiomatization of the ontological en-
tities.

SoLaSoTe does not include a formal axiom-
atization yet. However, it has a partial in-
stantiation in technology modeling, with the
underlying interpretation and resolution en-
gines (see chapter 8)

Broad scope [OLG+06] The distinction be-
tween the objects and events within an infor-
mation system (regarding data and the ma-
nipulation of data) and the real-word objects.
As an example consider the distinction be-
tween a user account and its corresponding
natural person(s).

We do not see this point as obviously appli-
cable, as SoLaSoTe mainly talks about digital
entities. Physical artifacts, such as files, are
unambiguously distinguished.

Structure [dG11] Reusing foundational on-
tologies; being designed in a principled way;
being formally rigorous; implementing also
non-taxonomic relations; following strictly
an evaluation methodology; being modular,
or embedded in a modular framework.

SoLaSoTe is a content and community driven
effort, which is, by the nature, opposite to
’structure-first’ approaches. This is also fa-
cilitated by the 101wiki. There is an ef-
fort needed, to investigate the possibilities
for integration of foundational ontologies.
Right now some basics are supported, such
as FOAF 3 for contributors.

Conceptual coverage [dG11] Providing
important reusable distinctions; having a
good domain coverage.

SoLaSoTe covers a number of technological
spaces, primarily motivated by various types
of contributions to the 101companies soft-
ware chrestomathy.

Conceptual task [dG11] Being oriented at
an explicit task; having spelled out require-
ments from scenarios.

SoLaSoTe supports a broader community ef-
fort and thus this requirement is weakly ap-
plicable.

Social sustainability [dG11] Being the re-
sult of an evolution (many revisions); imple-
menting scientific knowledge.

Being first introduced at GTTSE 2011 4 with
more then 40 external contributors, we be-
lieve this requirement fully instantiated, also
via underlying evolution of 101companies

Pragmatic sustainability [dG11] Having
applications built on top of it; designed for
efficient query answering; maintaining origi-
nal expressivity of data, and improving or en-
riching it; able to get rid of clunky constructs
or to overcome expressivity limitations; be-
ing well documented; solving other technical
aspects.

At this point the Linked Data part of
101companies is mainly leveraged in a num-
ber of scenarios (see chapter 9). The biggest
potential we see in a joint development of the
core ontology for linguistic architecture, sup-
ported by SoLaSoTe as a domain ontology,
and its applications.

132 Chapter 7. A Chrestomathic Ontology

Conclusion

In this chapter we provided an advanced case study on ontology development and ecosystem

provision, thereby addressing the issue of how to exactly edit, maintain and inquire an ontology

so that its authors and potential users can effectively carry out their activities. We also demon-

strated the feasibility of illustrating, assessing, and driving the continuous advancement of an

ontology by means a systematic collection of artifacts – in this case: software chrestomathy

(i.e., a collection of small software systems).

Chapter 8

Technology Modeling

In this chapter we focus on technology modeling as a mean to describe the linguistic architecture

of software technologies, supported by the modeling language MegaL. This chapter contributes

to the requirements R7. Linguistic Architecture of Software Products and R8. General-purpose

Language for Technology Models

Introduction

101companies software chrestomathy collects implementations (software systems) in different

technologies spanning across many technological spaces. Together with the produced artifacts

they are engaged in a certain type of relations; in fact, any software systems is an entity-

relationship model with entities for languages, technologies, concepts and artifacts and with

relationships to express data flow, conformance, and others. Such types of models are known as

megamodels in MDE. A software chrestomathy contributions are essentially non-instantiated

technology models.

This chapter is based on two publications without major additions: [FLV12] Jean-Marie Favre, Ralf Lämmel
and Andrei Varanovich. Modeling the linguistic architecture of software products. In MoDELS, pages 151–167,
2012. [LV14] Ralf Lämmel and Andrei Varanovich. Interpretation of Linguistic Architecture. In European
Conference on Modelling Foundations and Applications (pp. 67-82). Springer International Publishing.

133

134 Chapter 8. Technology Modeling

The upper frame uses the MegaL/yEd visual notation for megamodeling.
The lower frame shows linked artifacts of the product explained later in the paper.

Figure 8.1: The linguistic architecture of a software product when displayed with the Me-
gaL/Explorer tool.

Illustration of Linguistic Architecture

Consider the upper frame in figure 8.1. (The lower frame will be discussed in section 8.6.) The

linguistic architecture of a software product is described in the MegaL/yEd visual notation.1
1MegaL is currently a combination of an ontology and a set of concrete syntaxes; there exist these flavors

of the language: MegaL/yEd—a visual notation, MegaL/TXT—a textual notation and MegaL/RDF—an RDF

8.3. Entity and Relationship Types for Megamodels 135

The product is a C#-based application which makes use of .NET’s Object/XML mapping

technology.2 In fact, the product is a 101companies implementation, which is named xsdClasses

and available online. Hence, the application deals with companies (as in the human resources

domain) including operations for totaling and cutting salaries (symbolized by the model element

Operations.cs) as well as XML-related functionality for de-/serialization (see Serialization.cs).

There are model elements for XML types according to the XSD language for XML schemas

(see file Company.xsd) and C# classes (see file Company.cs) with fragments (see Company,

Department, and Employee). There are correspondence relationships between the XML and

object types to show that instances of these types can be (roughly) converted into each other

(modulo the X/O impedance mismatch [LM07]). Class generation is automated with a batch file

(see CompanyXSD2CS.bat), which essentially invokes the .NET tool xsd.exe (see dependsOn).

Ultimately, the operation for cutting companies is invoked by demo functionality (see Demo.cs)

and applied to a specific company – the Acme Corporation.3

The displayed linguistic architecture describes artifacts as they arise during development time

and runtime together with the relationships regarding dataflow, language membership, schema/-

type conformance, and correspondence. Characteristics of the .NET technology for Objec-

t/XML mapping are clearly identifiable. Consider, for example, the fact that the class gen-

erator is not described as generating “arbitrary” C#. Instead, the subset CSharpFromXsd is

introduced for referring to regular C# as produced by the generator. The identification of such

“hidden” languages is fundamental to the understanding of software technologies.

Entity and Relationship Types for Megamodels

The proposed form of megamodeling essentially involves the identification and classification of

entities and relationships that make up the linguistic architecture of software products or the

underlying software technologies. In this section, we gather a set of entity and relationship

types that may be used in megamodels.

version of MegaL. The correspondance between these notations is rather straightforward and it will be introduced
by means of illustration in the course of the paper.

2http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.71).aspx
3http://en.wikipedia.org/wiki/Acme_Corporation

http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.71).aspx
http://en.wikipedia.org/wiki/Acme_Corporation

136 Chapter 8. Technology Modeling

A tombstone diagram for
bootstrapping a C compiler4

Mechanics of an
ATL-based model transformation5

ATL Documentations
!

! ATL Starter’s Guide Date 07/12/2005

Page 2!

MMM

MMt

Ma Mb

MMa

Mt

MMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

MMMMMM

MMtMMt

MaMa MbMb

MMaMMa

MtMt

MMbMMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation
Figure 1. An overview of model transformation

Figure 1 summarizes the full model transformation process. A model Ma, conforming to a metamodel
MMa, is here transformed into a model Mb that conforms to a metamodel MMb. The transformation is
defined by the model transformation model Mt which itself conforms to a model transformation
metamodel MMt. This last metamodel, along with the MMa and MMb metamodels, has to conform to a
metametamodel (such as MOF or Ecore).

3 A simple transformation example
This section introduces the transformation example that is going to be developed in the document. The
aim of this first example is to introduce users with the basic concepts of the ATL programming. To this
end, this example considers two similar metamodels, Author (Figure 2) and Person (Figure 3), that
both encode data relative to persons.

Figure 2. The Author metamodel

Figure 3. The Person metamodel

Both metamodels are composed of a single eponym element: Author for the Author metamodel and
Person for the Person metamodel. Both entities are characterized by the same couple of string
properties (name and surname).
The objective is here to design an ATL transformation enabling to generate a Person model from an
Author model. The transformation to be designed will have to implement the following (obvious)
semantics:

• A distinct Person element is generated for each source Author element;
o The name of the generated Person has to be initialized with the name of the source

Author;
o The surname of the generated Person has to be initialized with the name of the

source Author.

Figure 8.2: Megamodels in different areas of computer science.

Background

Megamodel-like models exist in different areas of computer science. Linguistic relations have

been of interest since the early days of computing as tombstone diagrams testify. In figure 8.2,

on the left, we show a tombstone diagram, as it is used in compiler construction to describe

the bootstrapping process for a C compiler, also written in the programming language C and

compiling to M (the machine language) such that initially another C compiler is needed –

this time written (or executable) in M . Hence, languages and compilers serve as entities while

relationships are concerned with dataflow or function application and membership.

On the right, we show a much more recent diagram, as it appears in the documentation of the

ATL transformation language; the diagram shows the mechanics of a model transformation in

terms of entities for the involvedmodels andmetamodels as well as relationships for conformance

and dataflow.

Further inspiration, specifically regarding linguistically relevant relationships, can be drawn

from fundamental research on modeling and model management. The ‘conformsTo’ relation-

ship is established in modeling for relating models and metamodels [Fav05a, Küh06b]. We also

rely on yet other basic modeling relationships (as in UML)—in particular ‘partOf’ and ‘depend-

sOn’. The ‘elementOf’ and ‘subsetOf’ relationships are hardly used directly in regular modeling,
4Source: http://en.wikipedia.org/wiki/Tombstone_diagram
5Source: http://wiki.eclipse.org/ATL/Concepts#Model_Transformation

http://en.wikipedia.org/wiki/Tombstone_diagram
http://wiki.eclipse.org/ATL/Concepts#Model_Transformation

8.3. Entity and Relationship Types for Megamodels 137

but it appears in fundamental discussions, when the usage of languages is taken into account as

opposed to sole restriction to metamodel-based conformance [Fav05a, Küh06b]. The ‘modelOf’

or ‘representationOf’ relationship [Küh06b, MFB09, MFBC11] is important for capturing the

roles of descriptions, definitions, specifications, programs, or more generally models in meg-

amodels. Ideally bidirectional intermodel mappings [DXC11, DMC12], with interpretations at

both the schema (metamodel) and the instance (model) level, give rise to the ‘correspondsTo’

relationship in our terminology.

Based on this background, the MegaL ontology defines a set of entity and relationship types as

discussed below.

Entity Types of MegaL

We distinguish three kind of entities: abstract entities, which appear at the mathematical level

of thinking; conceptual entities, which are cognitive elements such as languages or technologies;

digital entities, which correspond to artifacts that reside in and are processed by computers.

We use these types of abstract entities: Entity, Set, Pair, Relation, Function, FunctionApplication

(i.e., pairs pertaining to a function). For instance, functions are needed to model the meaning of

tools or programs. Further, we use these types of conceptual entities: Language and Technology.

Languages can be viewed (in a simplified manner) as sets. Technologies can be viewed as

compound entities with components for tools, languages, and others. Finally, we use these

types of digital entities: Artifact (the base type for the following types), File, Fragment (of a

file), Program, Library, ObjectGraph.

The aforementioned entity types are just sufficient for the examples in this paper. The meg-

amodel ontology can be extended to cover different domains, technological spaces, or engineer-

ing activities [Fav04a]. For instance, a megamodel in the context of model-driven engineering

may benefit in clarity from additional digital entity types for models, metamodels, and model

transformations.

138 Chapter 8. Technology Modeling

Relationship Types of MegaL

Based on the fundamental relationships and the types of entities, as identified above, the

following relationship types can be derived. Again, the list is trimmed down for the scope of

this paper. We apply a UML-like convention to use ‘:Type’ for a concrete (anonymous) entity

of the given type.

• :Language subsetOf :Language

• :Artifact elementOf :Language

• :Language domainOf :Function

• :Function hasRange :Language

• :FunctionApplication elementOf :Function

• :Artifact inputOf :FunctionApplication

• :FunctionApplication hasOutput :Artifact

• :Artifact conformsTo :Artifact

• :Artifact partOf :Artifact

• :Artifact correspondsTo :Artifact

• :Artifact dependsOn :Artifact

• :Artifact dependsOn :Language

• :Artifact realizationOf :Function

• :Artifact definitionOf :Language

• :Program partOf :Technology

• :Library partOf :Technology

Megamodels initially just declare entities and relationships. Eventually, megamodels may be

linked so that both entities and relationships are meaningfully demonstrated by actual artifacts

of specific software products. This will be discussed in section 8.6.

8.4. An Initial Megamodel for O/X Mapping 139

An Initial Megamodel for O/X Mapping

Megamodeling is demonstrated in this section for O/X mapping. In (schema-first) O/X map-

ping [Ron12, LM06a], one is concerned with marrying object-oriented programming with XML-

based data representation in such a way that an object model for data representation is gener-

ated from an XML schema and library functionality is responsible for mediating between XML

documents (“files”) and objects back and forth. The population of objects from XML data is

also called de-serialization, while the other direction is referred to as serialization. The notion

of O/X mapping is also known as XML data binding. In the context of the .NET platform,

the term XML serialization is used as well.

Stepwise Development of the Megamodel

Let us develop an initial megamodel for O/X mapping, step by step. We use MegaL/TXT–

this simple textual notation can express the same concepts as the visual notation MegaL/yEd

that we used earlier. The textual notation comes with straightforward syntactic shorthands

for recurring patterns [Fav04a] such as ‘→’ and ‘7→’ (instead of combinations of ‘domainOf’,

‘hasRange’, ‘inputOf’, ‘hasOutput’).

We begin with the languages involved in O/X mapping:

Languages XSD, CSharp, XML, ClrObjectGraphs .

The C# (or CSharp) language is mentioned because it is assumed here that schema-derived ob-

ject models are represented in C#. We could make the object-oriented programming language

a parameter of the megamodel, but we commit to C# here for the sake of concreteness. XSD

is the language of XML schemas. XML is the language of XML trees (or XML documents),

(i.e., the primary [“on file”]) representation format for data. Finally, ClrObjectGraphs is the

language of object graphs. Again, we could make the in-memory representation of objects a

parameter of the megamodel, but we commit to .NET’s CLR representation here for sake of

concreteness.

In fact, another language should be identified:

140 Chapter 8. Technology Modeling

Language CSharpFromXsd subsetOf CSharp .

That is, CSharpFromXsd proxies for the C# subset that is used by the class generator of the

O/X mapping technology. In conservative discussions of O/X mapping, this language is never

articulated. However, awareness of this language and its characteristics helps to understand

O/X mapping.

The characteristics of schema-derived object models vary indeed for each O/X mapping technol-

ogy. In the case of .NET’s O/X mapping technology, we can state the following characteristics

for all x ∈ CSharpFromXsd: (i) x declares classes only—as opposed to interfaces, enumerations,

etc. (ii) The classes of x declare fields and properties as members, but no methods. (iii) x use

attributes controlling XML serialization.

Let us now consider the major artifacts involved in O/X mapping. There are two type-level

artifacts involved in such O/X mapping: an XML schema and an object model. There are also

two instance-level artifacts involved: an actual XML document and an actual object graph:

File xmlTypes elementOf XSD .

File ooTypes elementOf CSharpFromXsd .

File xmlDoc elementOf XML .

ObjectGraph clrObj elementOf ClrObjectGraphs .

We also need to impose ‘conformsTo’ relationships as constraints on the instance-level artifacts:

an arbitrary XML document would not be suitable; it must conform to the XML schema at

hand; likewise for the object graph. Thus:

xmlDoc conformsTo xmlTypes .

clrObj conformsTo ooTypes .

Ultimately, we expect an O/X mapping technology to provide functionality for class generation

and for deserialization (as well as serialization, which we skip here though). To this end,

we introduce the following conceptual entities, in fact, functions, and we apply them in the

expected manner to relate the artifacts at the type and instance levels. Thus:

8.4. An Initial Megamodel for O/X Mapping 141

Function classgen : XSD → CSharpFromXsd .

Function deserialize : XML → ClrObjectGraphs .

classgen(xmlTypes) 7→ ooTypes .

deserialize(xmlDoc) 7→ clrObj .

Figure 8.3: An initial megamodel for O/X mapping drawn with the MegaL/yEd editor.

Summary of the Megamodel

Figure 8.3 summarizes the megamodel in the form of a diagram drawn with the MegaL/yEd

editor.6 The visual and the textual notation convey the same information. Note that icons and

colors are bound to entity types in the diagram. Some megamodel elements can be mapped to

different visual elements. For instance, ‘partOf’ relationships are represented by node embed-

ding in the upper frame of figure 8.1, but a regular ‘partOf’ edge could also be used.

Discussion

The initial megamodel of this section was deliberately kept simple. This intermediate state

also allows us to reflect on methodological questions of megamodeling:

• Do we model all important aspects of O/X mapping overall?

• What specifics of .NET’s O/X mapping technology should be modeled?
6Our implementation uses yEd for megamodel editing http://www.yworks.com/en/products_yed_about.

html with GraphML http://graphml.graphdrawing.org/ for the representation.

http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html
http://graphml.graphdrawing.org/

142 Chapter 8. Technology Modeling

Without focus on O/X mapping, these questions take the following form:

• Do we model all general aspects of the kind of technology at hand?

• What specifics of a concrete technology should be modeled?

It is relatively easy to observe that the megamodel could be enhanced to incorporate additional

aspects of O/X mapping, overall. For instance, we did not yet model the fact that O/X mapping

is carried out ‘for a purpose’: some OO program is meant to use the generated object model

to implement data-processing functionality. As to the question of technology-specific aspects,

we did not yet model the components of .NET’s technology for O/X mapping. These and

additional aspects are addressed in the following section.

A Megamodel for O/X Mapping with .NET

We advance the megamodel of the previous section to cover generally more aspects of O/X

mapping and to also apply more directly to the situation for the .NET platform.

The Use of Schema-Derived Object Models

The value proposition of O/X mapping depends on the fact that it enables essentially OO

programming on XML data. We capture this aspect in the megamodel by introducing a

problem-specific program that is said to depend on the schema-derived object model. This

is another placeholder for an entity that does not belong to the technology itself, but instead

to the software product that uses the technology. Thus:

File problemProgram elementOf CSharp .

problemProgram dependsOn ooTypes .

8.5. A Megamodel for O/X Mapping with .NET 143

Technology Components for .NET

The technology consists of a code-generation tool, xsd.exe, a library, hosted by the names-

pace System.Xml.Serialization, and custom attributes (annotations) for metadata.7 We declare

corresponding entities:

Program xsdDotExe . −− the "xsd.exe’’ tool

Library XmlSerializer . −− namespace "System.Xml.Serialization"

Language XsdMetadata .

We can model now the fact that the xsd.exe tool realizes the class generation functionality

for O/X mapping. In fact, the tool also realizes additional functionality (e.g., related to O/R

mapping). To this end, the tool can be used in different modes controlled through the command

line or an API, but we do not model such variability here. Thus:

xsdDotExe realizationOf classgen .

Previously, we simply assumed a function, deserialize, for deserializing XML into objects, with-

out however clarifying the origin of the function. It is the problem-specific program that

essentially performs de-serialization. In fact, we assume that some part of the program realizes

serialization by making appropriate use of .NET’s library for XML serialization. Thus:

Fragment deserialization partOf problemProgram .

deserialization dependsOn XmlSerializer .

deserialization realizationOf deserialize .

We can also clarify the role of metadata in O/X mapping. We assume that, subject to an

appropriate interpretation of ‘partOf’ for languages, the C# language indeed comprises a part

for metadata such that metadata for O/X mapping is a subset of general metadata.

Language CSharpMetadata .

CSharpMetadata partOf CSharp .

XsdMetadata subsetOf CSharpMetadata .

7http://msdn.microsoft.com/en-us/library/ms950721.aspx

http://msdn.microsoft.com/en-us/library/ms950721.aspx

144 Chapter 8. Technology Modeling

Also, we can capture the characteristics of schema-derived classes to depend on metadata for

O/X mapping. We do not formalize other characteristics of CSharpFromXsd. Thus:

ooTypes dependsOn XsdMetadata .

Additional Linguistic Details

Let us call problemLanguage a problem-specific language underlying the involved type-level

artifacts. We think of this language as being abstract, rather than concretely represented by

XML trees or object graphs. This language can be viewed as a proxy for the domain that is

covered with an Object/XML mapping effort.

Language problemLanguage .

xmlTypes definitionOf problemLanguage .

ooTypes definitionOf problemLanguage .

It remains to establish a correspondence relationship between XML and object types as well as

the involved instances:

xmlTypes correspondsTo ooTypes .

xmlDoc correspondsTo clrObj .

At the instance level, the object graph, which is obtained by de-serialization, is expected to be

a representation of the original XML document and vice versa such that the original document

could be re-obtained by serialization from which we abstract here for simplicity.

At the type level, correspondence means that (ideally) XML schema and object model are

related by bidirectional intermodel mappings (say, ‘structure-preserving’ bijections) modulo

difficulties due to the O/X impedance mismatch [LM07]. The couple of de-serialization and

serialization functionalities should be considered the concrete interpretation of these mappings

at the instance level, but this view is not developed in detail here. More intuitively, we could

say that there is 1:1 mapping of types driven by name equality or similarity, and for each couple

of associated types there is also a correspondence at the ‘member’ level.

8.6. Linked Megamodels 145

Discussion

We conclude with a discussion of potential directions for enhancing the megamodel. We have fo-

cused here on de-serialization, but serialization could also be of interest, if XML transformation

or generation is to be modeled. Further, we have not modeled any variability or configurability

admitted the mapping technology, as needed for advanced usage scenarios of the technology.

We claim originality for analyzing O/X mapping by megamodeling. For comparison, the ar-

guably most comprehensive catalog of O/X mapping technologies [Ron12] uses an informal

metamodel to compare technologies (tools) on the grounds of capabilities and limitations—

linguistically relevant entities and relationships are not considered.

Linked Megamodels

A difficulty with metamodeling and even more with megamodeling approaches resides in the

high level of abstraction involved. This difficulty is even exacerbated by megamodels that

deal with technologies, as in the previous two sections, because of the gap between the abstract

notation and the very concrete artifacts a software engineer deals with, e.g., some files or objects.

As a result it may be hard to convince anyone that any given statement in the megamodel holds.

Linked megamodels close the gap between abstraction and concreteness by linking each entity

in the megamodel to a web resource. Thus, an entity is no longer represented merely as an

identifier, leaving considerable room for misunderstanding and misinterpretation; instead, the

identifier is linked to a unique resource that can be browsed and examined at will. Relation-

ships can also be linked. As a result, it becomes much easier to understand and to validate

megamodels.

Binding Placeholder Entities

Note that in the megamodel discussed in the previous two sections, artifact placeholders were

used for some entities (e.g., xmlDoc and clrObj). When the goal is to validate or illustrate the

146 Chapter 8. Technology Modeling

megamodel, then it is useful to “bind” placeholders to actual artifacts. This has been done in

figure 8.1 with the concrete artifacts being part of a particular software product. That is, X/O

mapping is illustrated thanks to the xsdClasses implementation of the 101companies project.

For instance, the placeholder xmlDoc is bound to Company.xsd – an XML schema file of the

xsdClasses implementation.

Exploring Linked Megamodels

From the end-user perspective, linked megamodels are seen as hypertext documents that can

be explored. Figure 8.1 shows a screenshot of the MegaL/Explorer tool. The upper frame

corresponds to a clickable image that is produced with MegaL/Editor. Within the context of

the explorer, a click on an entity displays the corresponding resource in the lower frame. For

instance, clicking on the CSharp node leads to a wiki page for C# according to the 101companies

project; clicking on xsd.exe node also leads to a page for the tool; clicking on a file (e.g.,

Company.xsd), displays the content of the file extracted from the 101companies repository.

Relationships (i.e., graph edges) are also clickable. In figure 8.1, the user has selected the

(circled) correspondence link between the Company fragments respectively in Company.xsd

and Company.cs. As a result, the source fragments are shown side by side in the lower frame—

clearly showing what the xsd.exe tool actually generates for a given example.

MegaL/RDF, Linked Megamodels and Linked Data

Technically, linked megamodels are represented in RDF by following Linked Data principles.

Figure 8.4 and figure 8.5 show fragments of two megamodels expressed in MegaL/RDF as

sets of triples while using RDF/turtle syntax. The first figure is concerned with the general

megamodel for O/X mapping. It contains therefore placeholders with generic names (e.g.

xmlDoc and xmlTypes). By contrast, the second figure is concerned with the bound megamodel

for the 101companies implementation xsdClasses. It contains product-specific names (e.g. ,

CompanyDotXSD), but also, and this is a very important aspect, links to concrete software

artifacts, which should be considered as resources according to RDF principles.

8.7. Interpretation of Linguistic Architecture 147

_:xmlTypes rdf:type mgl:File .
_:xmlTypes rdfs:label "xmlTypes" .
_:xmlTypes mgl:elementOf lang:XSD .
_:xmlTypes mgl:inputOf _:classgen .

_:xmlDoc rdf:type mgl:File .
_:xmlDoc rdfs:label "xmlDoc" .
_:xmlDoc mgl:elementOf lang:XML .
_:xmlDoc mgl:conformsTo _:xmlTypes .
_:xmlDoc mgl:inputOf _:classgen .

_:classgen_app_1 rdf:type mgl:FunctionApplication .
_:classgen_app_1 rdfs:label "classgen" .
_:classgen_app_1 rdf:elementOf _:classgen .
_:classgen_app_1 rdf:hasOutput _:ooTypes .

... etc. ...

Entities are associated with a prefix, e.g., rdf,
corresponding to a unique URI (not shown
here). This means that each entity is now as-
sociated with a URL where the corresponding
resource can be found. Only ‘blank nodes’, i.e.,
those with the _ prefix, are local identifiers.
The rdf and rdfs prefixes refers to RDF and
RDFS definitions respectively. The prefix mgl
refers to the MegaL ontology which contains
definitions for both entity types (represented
as OWL classes) and relationships types (rep-
resented as OWL properties).

Figure 8.4: Figure 8.3 expressed in MegaL/RDF.

_:CompanyDotXSD rdf:type mgl:File .
_:CompanyDotXSD rdfs:label "Company.xsd" .
_:CompanyDotXSD mgl:elementOf lang:XSD .
_:CompanyDotXSD mgl:inputOf _:CompanyXSD2CSDotBat .
_:CompanyElement mgl:partOf _:CompanyDotXSD .
_:CompanyElement rdf:type mgl:FileFragment .
_:CompanyElement rdfs:label "Company" .
... other fragments omitted ...

_:CompanyDotXSD mgl:partOf impl:xsdClasses .
_:CompanyDotXSD mgl:filename "./Company.xsd" .
_:CompanyElement mgl:xpathLocation

"//*[@name=\"Company\"]" .
... etc

The first block of triples shows some properties
of the file Company.xsd including its decompo-
sition into fragments.
The second block models links to online soft-
ware artifacts. For instance the impl pre-
fix refers to 101companies implementations,
./Company.xsd refers to a file name, and the
property mgl:xpathLocation refers to a frag-
ment of the schema file.

Figure 8.5: RDF-based links for the megamodel of figure 8.1.

Since all information in the 101companies project is represented as RDF triples, links between

101companies resources and external ones such as Wikipedia pages (i.e., Dbpedia8) resources

in terms of RDF, this approach therefore enables the integration of megamodels and various

other resources in the Linked Data global data space.

Interpretation of Linguistic Architecture

The megamodeling language MegaL is designed to model the linguistic architecture of soft-

ware systems: the relationships between software artifacts (e.g., files), software languages (e.g.,

programming languages), and software technologies (e.g., code generators) used in a system.

The present chapter delivers a form of interpretation for such megamodels: resolution of meg-

amodel elements to resources (e.g., system artifacts) and evaluation of relationships, subject

8http://dbpedia.org

http://dbpedia.org

148 Chapter 8. Technology Modeling

http://dbpedia.org/page/Java_(programming_language) https://code.google.com/p/javaparser/

 Java : Language
 ?javaProgram : File
 javaProgram elementOf Java

http://introcs.cs.princeton.edu/java/11hello/HelloWorld.java
public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World");

 }

}

evaluated!
byresolved !

to

resolved!
to

https://github.com/avaranovich/megal

MegaL

interpreted!
by

plugged!
into

Figure 8.6: Interpretation of a megamodel

to designated programs (such as pluggable “tools” for checking). Interpretation reduces con-

cerns about the adequacy and meaning of megamodels, as it helps to apply the megamodels

to actual systems. We leverage Linked Data principles for surfacing resolved megamodels by

linking, for example, artifacts to GitHub repositories or concepts to DBpedia resources. We

provide an executable specification (i.e., semantics) of interpreted megamodels and we discuss

an implementation in terms of an object-oriented framework with dynamically loaded plugins.

The present section fills in the notion of interpretation of megamodels. In this manner, we

provide a general facility to apply megamodels to actual systems and to validate the claims

that are made by megamodels.

Consider figure 8.6 as an illustration. The megamodel in the center of the figure declares a

language Entity ‘Java’, a file entity parameter ‘javaProgram’, and a relationship between these

entities such that the latter is an element of the former. Thus, the megamodel essentially

describes a trivial Java-based system. The MegaL model can be interpreted as indicated in

the figure, subject to a configuration and suitable plugins not shown here in detail. The

interpretation entails these aspects:

8.7. Interpretation of Linguistic Architecture 149

• The language ‘Java’ is resolved in terms of the corresponding resource (page) according

to the ontology provided by DBpedia.

• The parameter ‘javaProgram’ is resolved to the on-line version of a ‘hello world’ program

on a web server at the Princeton University.

• The ‘elementOf’ relationship is evaluated by the Java parser of the javaparser project

hosted on Google Code.

Characteristics of the Approach

We begin with characteristics of the basic MegaL approach, essentially inherited from [FLV12].

• Extra models on top of systems: A megamodel is seen as an abstraction over an existing

system, added “after the fact”, as opposed to forming a part of a system or expressing its

composition, as in the case of model management.

• Flexibility in terms of technological spaces: Software technologies and systems may involve

different technological spaces (such as grammarware or Javaware) without preference for

a specific one such as MDE.

• Decreased relevance of metamodels: Metamodels or metamodel-like artifacts (e.g., schemas)

are often unavailable or of limited relevance outside clean-room MDE. That is, we often

refer to languages instead of metamodels (i.e., to conceptual entities rather than artifacts).

We continue with characteristics of interpretation.

• Resource-based resolution of entities: The entities in a megamodel may be resolved to

resources that can be addressed with URIs, thereby enabling transparent reuse of existing

ontologies (e.g., DBpedia) and repositories (e.g., GitHub repos). We leverage Linked Data

principles.

• Flexibility in terms of ontologies: A comprehensive ontology for software engineering does

not exist. Thus, different ontologies, subject to a plugin infrastructure, may be combined

to assign meaning to the entity types and the conceptual entities in a megamodel.

150 Chapter 8. Technology Modeling

• Tool-based interpretation of relationships: Relationships may be interpreted by desig-

nated programs (“tools”) (e.g., a program implementing the membership test for a given

language). This is supported by a plugin infrastructure, without favoring any particular

semantics formalism.

• Traceability recovery: The actual semantics of transformation relationships is often unac-

cessible, as it is buried in software technologies. Thus, it may be preferable to construct

a simplified and accessible variant of the actual semantics that provides insight due to its

simplicity and through recovered traceability links for the involved artifacts.

Megamodeling with MegaL

This section describes the language elements of MegaL. We develop a relatively simple, illus-

trative megamodel, which will serve as the running example of the paper. All original aspects

of interpretation are deferred to the next two sections.

MegaL Entities

All entities in a megamodel must get assigned an entity type. These types are also defined

in MegaL. Entity types are declared as subtypes of the root entity type Entity or subtypes

thereof. In this manner, a classification hierarchy (i.e., a taxonomy or ontology of entity types)

is described. Here are some reusable entity types, as declared in actual MegaL syntax:

Set < Entity // Sets such as languages; see below

Language < Set // Languages as sets, e.g., sets of strings

Technology < Entity // Technologies in the sense of conceptual entities

Artifact < Entity // Artifacts as entities with a physical manifestation

File < Artifact // Files as a common kind of artifact

Function < Set // A function such as the meaning of a program

FunctionApplication < Entity // A particular application of a function

Entity types are used in entity declarations as those of figure 8.6:

Java : Language // Entity Java is of type Language

?javaProgram : File // Entity (parameter) javaProgram is of type File

8.7. Interpretation of Linguistic Architecture 151

We defer the discussion of the exact difference between entities and entity parameters (see the

prefix ‘?’) until we deal with resolution in subsection 8.7.3.

MegaL Relationships

All relationships between entities are instances of appropriate relationship types. Again, these

types are defined in MegaL. Here are some reusable relationship types, as declared in actual

MegaL syntax:

elementOf < Entity ∗ Set // Membership in the set−theoretic sense

conformsTo < Artifact ∗ Artifact // Conformance in the sense of metamodeling

defines < Artifact ∗ Entity // Such as a grammar defining a language

domainOf < Set ∗ Function // The domain of a function

rangeOf < Set ∗ Function // The range of a function

inputOf < Entity ∗ FunctionApplication // The input of a function application

outputOf < Entity ∗ FunctionApplication // The output of a function application

partOf < Entity ∗ Entity // A physical or conceptual containment relationship

Relationship types are used in declarations as this one in figure 8.6:

javaProgram elementOf Java

An Illustrative Megamodel

Let us capture key aspects of ANTLR usage in a software system. ANTLR9 is (among other

things) a parser generator that targets, for example, Java. Thus, ANTLR can be used to

generate Java code for a parser for some language from a grammar given in ANTLR’s grammar

notation.

Entities

We declare the essential entities of ANTLR usage for parser generation:
9http://www.antlr.org/

http://www.antlr.org/

152 Chapter 8. Technology Modeling

ANTLR : Technology // The technology as a conceptual entity

Java : Language // The language targeted by the parser generator

ANTLR.Notation : Language // The language of parser specifications

ANTLR.Generator : Function (ANTLR.Notation → Java)

?aLanguage : Language // Some language being modeled with ANTLR

?aGrammar : File // Some grammar defining the language at hand

?aParser : File // The generated parser for the language at hand

?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation and ANTLR.Generator.

That is, ANTLR’s notation for grammars is a conceptual constituent of the ANTLR technology

as such. ANTLR’s generation semantics is also such a constituent. The dot notation implies

part-of relationships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology

ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration of ANTLR.Generator.

The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator

Java rangeOf ANTLR.Generator

Relationships

The previously declared entities engage in relationships as follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation

aGrammar defines aLanguage // The grammar defines some language

aParser elementOf Java // Java is used for the generated parser

ANTLR.Generator(aGrammar) 7→ aParser // Generate parser from grammar

anInput elementOf aLanguage // Wanted! An element of the language

anInput conformsTo aGrammar // Conform also to the grammar

8.7. Interpretation of Linguistic Architecture 153

The declaration of the ‘7→’ relationship is actually a shorthand. We need a designated entity

for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication

ANTLR.GeneratorApp1 elementOf ANTLR.Generator

aGrammar inputOf ANTLR.GeneratorApp1

aParser outputOf ANTLR.GeneratorApp1

Interpretation of Megamodels

Interpretation entails resolution of megamodel entities and evaluation of megamodel relation-

ships. Resolution of entity parameters commences in a “pointwise” manner in that the parame-

ters are mapped to specific URIs. Resolution of entities (as opposed to parameters) commences

in a schematic manner, subject to “resolvers” (i.e., programs) for mapping entity names to URIs.

Evaluation relies on “evaluators” (again, programs) for checking the relevant relationships and

possibly producing traceability evidence. Pointwise mappings, resolvers, and evaluators are

identified in a configuration that goes with a megamodel.

Megamodel Processing

The MegaL processor is a Java-based object-oriented framework. Given a megamodel and a

configuration, the MegaL processor performs the steps summarized in figure 8.7.

Figure 8.7: MegaL processing pipeline

154 Chapter 8. Technology Modeling

That is, the megamodel is parsed into an abstract syntax tree based on a suitable object

model. In the next step, the configuration file is processed and the corresponding plugins are

dynamically loaded and associated with the appropriate AST nodes for entity and relationship

types. In the next step, the megamodel and the plugins are analyzed for well-formedness and

mutual compliance; see subsection 8.7.5 for a precise, formal account. Eventually, resolvers

and evaluators are invoked. Resolution determines entity URIs and pings them for availability.

Evaluation applies evaluators to the resources (the underlying content) of entities.

Along this pipeline, events are triggered and reported, making the process fully transparent.

Any resolution and evaluation problems would also be reported along the way. For instance,

the resolution of the ‘Java’ entity of figure 8.6 is reported as follows:

> Looking up entity type Language.

< Looked up entity type Language successfully.

> Linking entity Java.

• URI located via configuration.

< Linked entity Java successfully.

Ideally, all entities of a megamodel should be resolved (successfully) and relationships should

be evaluated (successfully). However, this is not always feasible. That is, one may be missing

resolvers or evaluators for some of the used entities and relationships. In this sense, inter-

pretation may be incomplete, but this would be evident from the event report generated by

megamodel processing.

Configuration of the Interpretation

Configuration relies on a simple JSON-based DSL with language elements for URI mapping

and registration of mapping resolvers as well as evaluators.

Figure 8.8 shows the configuration for the introductory Java example. In the “links” section,

the parameter ‘javaProgram’ is resolved in a pointwise manner so that it links to the ‘hello

8.7. Interpretation of Linguistic Architecture 155

{
"links" : [{

"name": "javaProgram",
"resource" : "http://introcs.cs.princeton.edu/java/11hello/HelloWorld.java"

}],
"resolvers" : [{ "plugin" : "megal.resolvers.dbpedia" }],
"evaluators" : [{

"plugin" : "megal.evaluators.FileElementOfLanguage"
"checkers" : [{ "plugin" : "megal.checkers.languages.Java" }]

}]
}

Figure 8.8: The configuration for the megamodel in figure 8.6

world’ program on Princeton University’s web server. In the ‘resolvers’ section, we register a

DBpedia resolver which is prepared to resolve entity names of the language type to resource

URIs on DBpedia. In particular, this resolver handles the ‘Java’ entity of the megamodel. In the

“evaluators” section, we register an evaluator ‘....FileElementOfLanguage’, which can evaluate

‘elementOf’ relationships when the left operand is a file resource and the right operand is

a language. The ‘elementOf’ plugin relies on second-level plugins, ‘checkers’, for individual

languages. In the configuration file, we register indeed a checker (i.e., a membership test) for

‘Java’. This checker is a wrapper around the Java parser of the javaparser project. In the MegaL

project, we aim at collecting all such plugins as consolidated and reusable interpretations of

well-defined resources identified through Linked Data principles.

Application to the Running Example

Let us consider the interpretation of the megamodel for ANTLR, as introduced in subsec-

tion 8.7.2. To begin with, we should pick some software system that exercises ANTLR. Clearly,

there is no shortage of such systems. As it happens, the MegaL implementation itself also uses

ANTLR. Thus, let us apply the MegaL model for ANTLR to MegaL’s parser.

Entity Parameters

They are resolved as follows:

aLanguage The language at hand is fixed to be MegaL. A link is needed. We choose to link to the

language’s GitHub project.10

10https://github.com/avaranovich/megal/

https://github.com/avaranovich/megal/

156 Chapter 8. Technology Modeling

aGrammar The grammar at hand is the ANTLR-based parser specification of MegaL. Thus, we need

to link to a specific file .../MegaL.g4 in said repository.

aParser The parser at hand is a Java source-code file .../MegaLParser.java that was generated by

ANTLR—again, a file in said repository.

anInput Any MegaL source could be linked here. We choose to link to MegaL’s prelude with the

predefined types, as discussed in subsection 8.7.1—again, a file in said repository.

Entities

They are resolved as follows:

Java A DBpedia resolver is used as explained in figure 8.7.3.

ANTLR The DBpedia resolver may not be used here because we rely on the fact that ANTLR is

a compound entity with constituents, as listed below. In the 101companies project [FLSV12],

software technologies, languages, and concepts are organized in an ontological manner. There is

a suitable composition-aware ‘101companies’ resolver for technologies, which links ANTLR to a

resource.11

ANTLR.Notation Use the same resolver as for ANTLR.

ANTLR.Generator Use the same resolver as for ANTLR.

ANTLR.GeneratorApp1 An application is a pair of the input and output entities. Thus, an

application entity is resolved, at a basic level, once input and output are resolved. A more

advanced resolution entails the identification of a system artifact’s fragment that expresses the

application. More specifically, the application of ANTLR’s generator could be pinpointed in a

build script.

Relationships

They are evaluated as follows:
11http://101companies.org/resources/technologies/ANTLR

http://101companies.org/resources/technologies/ANTLR

8.7. Interpretation of Linguistic Architecture 157

elementOf The evaluatorFileElementOfLanguage of figure 8.7.3 is enriched by additional second-

level plugins (i.e., “checkers”) to serve aLanguage (thus, MegaL) and ANTLR.Notation – in

addition to just Java previously.

conformsTo Another evaluatorFileConformsToFile is needed. It is the language of the right

operand that defines the applicable conformance semantics. The result of a conformance test

can be richer than just a Boolean value; it may be a set of traceability links between the

operands; see subsection 8.7.4.

defines An evaluatorTriangle is used which simply checks that a megamodel with the relationship

‘x defines y’ also contains the relationships ‘z elementOf y’ and ‘z conformsTo x’. This is

Favre’s triangle [Fav05a].

‘7→’ In fact, we evaluate ANTLR.GeneratorApp1 elementOf ANTLR.Generator after desugaring.

That is, we need to check that aParser is the output generated by ANTLR.Generator from

aGrammar. There are several options for checking function applications. As suggested earlier,

we may pinpoint the actual application (e.g., in a build script). We could also pinpoint traces

of the application (e.g., the Java comment included by ANTLR into the generated source file).

We could also apply the function (i.e., run the generator) and compare the result with the

existing output artifact. Ultimately, we may analyze input and output and establish problem-

specific traceability links based on our understanding of the mapping, thereby also sharing our

understanding with others. This is illustrated below.

Traceability Recovery

Traceability links may be recovered, for example, for conformance relationships and function

application relationships (i.e., “transformations”). This is illustrated for the application of

ANTLR.Generator. The input, aGrammar, is essentially a list of ANTLR rules with unique

nonterminals on the left-hand sides. The output, aParser, is essentially a Java file exercising

certain code patterns. In particular, for each nonterminal n, there is a corresponding method

that implements the rule:

public final nContext n() throws RecognitionException { ... }

158 Chapter 8. Technology Modeling

// Get methods of interest
val methods = aParser.getMembers()

.filter(x => x.isInstanceOf[MethodDeclaration])

.filter(x => ((x.getThrows().map(y => y.getName()).
contains("RecognitionException"))))

// Get grammar rules
val rules = aGrammar.rules
// Check 1:1 correspondence of names including the same order
val isAlligned = methods.zip(rules).forall(x => x._1.getName().equals(x._2))

Figure 8.9: Scala-based traceability check for ANTLR’s generator

Thus, a suitable approach to traceability recovery is to retrieve nonterminals from the gram-

mar and all relevant methods from the generated Java source and to check for a one-to-one

correspondence; see figure 8.9 for illustration. For brevity, we show simplified evaluator code

that checks only for correspondence, while the actual evaluator collects traceability links (i.e.,

pairs of URIs) of the following form:

〈 "http://.../MegaLParser.java/class/MegaLParser/method/megamodel/1" ,

"http://.../MegaL.g4/grammar/megal/rule/megamodel/1" 〉

The URIs describe the relevant fragments in a language-parametric manner. That is, the

URIs start with the actual resource URI for the underlying artifact. The rest of the URI,

which is underlined for clarity, describes the access path to the relevant fragment. To this end,

syntactical categories of the artifact’s language (see “class” and “method” versus “rule”) and

names of abstractions (see “megamodel”) are used. (We note that “megamodel” is the first

nonterminal, in fact, the startsymbol of the grammar for MegaL.)

Executable Specification of MegaL

The following specification of MegaL clarifies the meaning of entity resolution and relationship

evaluation. The specification assumes an abstractMegaL syntax—without convenience notation

for functions and function applications and without consideration of compound entities. The

specification does also not cover traceability recovery (subsection 8.7.4).

8.7. Interpretation of Linguistic Architecture 159

Specification Style

The specification is a deductive system, as commonplace for type systems and operational

semantics. The specification is executable – directly as a logic program in Prolog.12 MegaL is

not a regular programming language. Thus, it requires some insight to identify counterparts

for what is usually referred to as static versus dynamic semantics.

We assume that interpreted megamodels consist of two parts: the actual megamodel and (the

description of) the interpretation—the latter as an abstraction of the configuration, resolvers,

and evaluators used in the actual implementation of subsection 8.7.3. Given a megamodel MM

and an interpretation Interp, the informal process of figure 8.7 is formally described as follows:

process(MM, Interp) =⇒

megamodel(MM), % Inductive syntax definition of megamodels

okMegamodel(MM), % Well−formedness relation for megamodels

interp(Interp), % Inductive syntax definition of interpretations

okInterp(Interp), % (Trivial) well−formedness of interpretations

correct(MM, Interp), % Correctness of interpretation w.r.t megamodel

complete(MM, Interp), % Completeness of interpretation w.r.t. megamodel

evaluate(MM, Interp). % Evaluation of relationships

We discuss the contributing judgments in turn.

Abstract Syntax of Megamodels

A megamodel is a list of declarations. There are declarations for entity-types (etdecls), relation-

ship types (rtdecls), entities (edecls), entity parameters (pdecls), and relationships (rdecls).

The declared names are atoms (“ids”) and so are all the references to the names. Thus:

megamodel(MM) =⇒map(decl, MM).

decl(etdecl(SubT, SuperT)) =⇒ atom(SubT), atom(SuperT).

12The specification is available online http://softlang.uni-koblenz.de/megal-interpretation/ Basic
logic programming is used, except for higher-order predicates [NS00] for list processing: map (for applying a
predicate to the elements of a list), filter (for returning the elements that satisfy a predicate), and zip (for
building a list of pairs from two lists).

http://softlang.uni-koblenz.de/megal-interpretation/

160 Chapter 8. Technology Modeling

decl(rtdecl(R, T1, T2)) =⇒ atom(R), atom(T1), atom(T2).

decl(edecl(E, T)) =⇒ atom(E), atom(T).

decl(pdecl(E, T)) =⇒ atom(E), atom(T).

decl(rdecl(R, E1, E2)) =⇒ atom(R), atom(E1), atom(E2).

Well-formedness of Megamodels

Well-formedness is defined as a family of relations, as usual, on the syntactical domains. Well-

formedness ensures that all referenced names of entity types, relationship types, and entities (or

parameters) are actually declared. (This is part of what we call “Analyze” in figure 8.7.) We

omit most of these routine definitions; a more insightful detail is well-formedness of relationship

declarations:

okRDecl(MM, rdecl(R, E1, E2)) =⇒

member(rtdecl(R, Tl1, Tr1), MM), % RType exists

getEntityType(MM, E1, Tl2), % Type of left entity

getEntityType(MM, E2, Tr2), % Type of right entity

subtypeOf(MM, Tl2, Tl1), % Left type Ok

subtypeOf(MM, Tr2, Tr1). % Right type Ok

That is, any declared relationship between two entities E1 and E2 must be based on a relationship-

type declaration for the same relationship symbol R with entity types T l1 and Tr1 in such a

way that the actual entity types T l2 and Tr2 are subtypes of the declared types T l1 and Tr1.

Subtyping is defined in terms of the type hierarchy defined by entity-type declarations. This is

subtyping like in a single-inheritance OO programming language.

Abstract Syntax of Interpretations

We invent a representation of interpretations (say, definitions) of parameters (pdefs), entity

types (etdefs), and relationship types (rtdefs). In this manner, we abstract from the plugins

of the OO framework and the configuration as discussed in subsection 8.7.3. Thus:

8.7. Interpretation of Linguistic Architecture 161

interp(Interp) =⇒map(def, Interp).

def(pdef(E, U)) =⇒ atom(E), uri(U).

def(etdef(T, F)) =⇒ atom(T), function(F, [atom], [uri]).

def(rtdef(R, T1, T2, P)) =⇒ atom(R), atom(T1), atom(T2), predicate(P, [uri, uri]).

That is, a parameter definition (pdef) associates an entity parameter E with a URI U ; an

entity-type definition (etdef) associates an entity type T with a function F mapping entity

names to URIs; a relationship-type definition (rtdef) associates a relationship type 〈R, T1, T2〉

with a predicate P on entity URIs. Thus, etdefs and rtdefs model resolvers and evaluators,

respectively. We view the aforementioned predicates and functions here as being defined by

their extension (i.e., a suitable set of tuples). Thus:

predicate(Tuples, Types) =⇒ set(Tuples), map(tuple(Types), Tuples).

function(Tuples, Domain, Range) =⇒ ... % likewise for functions

tuple(Types, Tuple) =⇒ zip(Types, Tuple, TT), map(apply, TT).

In the actual implementation, resolvers and evaluators are of course programs that may retrieve

resources via the URIs over the Internet.

Correctness and Completeness

We present correctness and completeness as two aspects of well-formedness of the megamodel-

interpretation couple. (We do not discuss well-formedness of interpretations by themselves, as

there are only a few trivial constraints.)

Correctness means that an interpretation does not provide any definitions that are not used

anymore by the associated megamodel. Provision of superficial definitions may be acceptable,

though, in practice.

Completeness means that an interpretation suffices to resolve all entities or parameters and to

evaluate all relationships for a given megamodel. As discussed, in practice, we do not necessarily

require completeness, as we may be unable to resolve certain entities or to evaluate certain

162 Chapter 8. Technology Modeling

relationships, at a given point. However, ambiguities regarding resolution or interpretation

should be reported.

Correctness and completeness are again specified as families of relations. For example, here is

the judgment for establishing correctness of relationship-type definitions w.r.t. a megamodel.

correctRTDef(MM, rtdef(R, Tl1, Tr1, _)) =⇒

okT(MM, Tl1), % Left entity type exists

okT(MM, Tr1), % Right entity type exists

member(rtdecl(R, Tl2, Tr2), MM), % Relationship type exists

subtypeOf(MM, Tl1, Tl2), % Definition vs. declaration (left)

subtypeOf(MM, Tr1, Tr2). % Definition vs. declaration (right)

That is, for each relationship-type definition of the interpretation, we can find a corresponding

declaration of the megamodel that uses the same or more general entity types.

Let us also consider the counterpart from the family of relations for completeness (i.e., the

relation for establishing that a given relationship can be evaluated unambiguously by a defi-

nition). This judgment is involved – it is comparable to resolution of names in a non-trivial

programming language.

% Relationship−type definition unambiguous

completeDecl(MM, Interp, rdecl(R, El, Er)) =⇒

getRTDef(MM, Interp, R, El, Er, _).

% Determine suitable relationship−type definition

getRTDef(MM, Interp, R, El, Er, RTDef) =⇒

getEntityType(MM, El, Tl), % Look up left entity type

getEntityType(MM, Er, Tr), % Look up right entity type

filter(applicableRTDef(MM, R, Tl, Tr), Interp, RTDefs),

reduceRTDefs(MM, RTDefs, RTDef).

% Applicability of a relationship−type definition

applicableRTDef(MM, R, Tl1, Tr1, rtdef(R, Tl2, Tr2)) =⇒

8.7. Interpretation of Linguistic Architecture 163

subtypeOf(MM, Tl1, Tl2),

subtypeOf(MM, Tr1, Tr2).

% Eliminate more general relationship−type definition

reduceRTDefs(_, [RTDef], RTDef). % One rtdef left

reduceRTDefs(MM, RTDefs1, RTDef) =⇒

member(RTDef1, RTDefs1), % Pick some rtdef

member(RTDef2, RTDefs1), % Pick some rtdef

RTDef1 6=RTDef2, % Two different rtdefs

RTDef1 = rtdef(R, Tl1, Tr1, _),

RTDef2 = rtdef(R, Tl2, Tr2, _),

subtypeOf(MM, Tl1, Tl2),

subtypeOf(MM, Tr1, Tr2),

delete(RTDefs1, RTDef2, RTDefs2), % Remove the more general rtdef

reduceRTDefs(MM, RTDefs2, RTDef).

This approach is similar to instance resolution in Haskell [HHJW96], the one for multi-parameter

type classes with overlapping instances specifically [SSS06]. That is, definitions (“instances” in

Haskell terms) are not proactively rejected by themselves – just because they are overlapping

in some sense. Instead, any given relationship is considered as to whether it can be associated

uniquely with a definition that is more specific than all other applicable definitions.

Evaluation of Relationships

Evaluation is straightforward at this stage, as all preconditions have been established. That is,

entities or parameters thereof can be replaced by URIs and relationships can be evaluated on

the URIs for the arguments. Thus:

evaluateDecl(MM, Config, rdecl(R, El, Er)) =⇒

getRTDef(MM, Config, R, El, Er, rtdef(_, _, _, P)),

getEUri(MM, Config, El, Ul),

getEUri(MM, Config, Er, Ur),

164 Chapter 8. Technology Modeling

applyPredicate(P, [Ul, Ur]).

% Get URI for entity via definition

getEUri(MM, Config, E, U) =⇒

getEntityType(MM, E, T), % Look up entity type

member(etdef(T, F), Config), % Look up definition

applyFunction(F, [E], [U]). % ’Resolve’

% Application of extension−based predicates and functions

applyPredicate(Tuples, X) =⇒member(X, Tuples).

applyFunction(Tuples, Arg, Res) =⇒ append(Arg, Res, X), member(X, Tuples).

Soundness (i.e., alignment between “type system” and “semantics”) follows trivially in this

approach – as the completeness judgment immediately ensures that all instances of entity

resolution and relationship evaluation can be attempted. Thus, the only remaining option for

evaluateDecl to fail is that a resolution was not successful or a specific relationship failed.

Related work

Megamodeling. Megamodeling is somewhat established in the communities of modeling and

model-driven engineering. Existing forms of megamodels do not cover the range of linguistic re-

lationships of MegaL (such as ‘elementOf’, ‘subsetOf’, and ‘correspondsTo’); they have not been

used in a manner to understand software technologies across technological spaces. We look at

representative examples. In [SCFC09], megamodeling is applied to the human-computer inter-

action domain. In [Fav05b], a UML/OCL-based megamodel of MDA/MDE is provided, thereby

supporting reasoning about MDA/MDE. In [VSG11], megamodeling is used for organizing and

utilizing runtime models and relations in a model-driven manner while also supporting a high

level of automation. In [JVB+10], megamodeling is used to coordinate “heterogeneous” models

in the sense of conforming to a multiplicity of metamodels expressed in different DSLs. In

[Gra07], megamodeling is applied to model transformation with the objective of supporting

8.8. Related work 165

the evolution of software architectures. In [HSG10], some forms of megamodels and associated

applications are surveyed.

Some model transformation approaches involve explicitly chains or compositions of transfor-

mations, perhaps even involving different model transformation languages and dealing with

different “modeling spaces”. Such compositions can be viewed as a form of executable meg-

amodels. In [LR11], the authors motivate the need for a precise semantics for model-to-model

transformations, thereby enabling verification of correctness for compositions, thereby, in turn,

encouraging reusability.

Foundations of Modeling. Our work is substantially inspired by recent efforts on the foun-

dation of modeling from which we derive basic idioms of megamodeling. We rely on established

relationships such as ‘conforms to’ and ‘element of’ [Fav05a, Küh06b]. Further, there is the

multi-faceted ‘represents/models’ relation [MFB09, MFBC11]. We derive the correspondence

relation from the field of model management. In [DXC11, DMC12], a categorical approach to

intermodel mappings including heterogeneous (meta)model correspondences is developed.

Viewpoints. We compare MegaL with several approaches to megamodeling. The Atlas Meg-

aModel Management approach (AM3) conveys the idea of modeling in the large, establishing

and using general relationships, such as conformance, and metadata on basic macroscopic en-

tities (mainly models and metamodels) [BJRV05]. Based on the assumption that all managed

artifacts are models conforming to precise metamodels, a solution for typing megamodeling

artifacts is proposed in [VJBB11]. Model typing is based on the conformance relationship;

metamodels are used as types. MegaL is clearly not restricted to modeling resources and does

not require the existence of metamodels. Also, MegaL’s approach to megamodel interpretation

provides an open, heterogeneous type system.

A formal, graph-oriented view on megamodels is considered in [DKM13]; entities are vertices

and relations are edges between them. It is argued that the semantics of relations are hidden in

the type name and are not presented in the megamodel. To fill this gap, the authors zoom into

166 Chapter 8. Technology Modeling

nodes and edges and disassemble them into more elementary building blocks. In the case of

MegaL, such a formal analysis of the relationships is less relevant, as it is not directly applicable

to actual software projects and technologies. Instead, as shown in subsection 8.7.4, we leverage

tool-based relationship evaluators with optional traceability recovery. MegaL is also influenced

by existing megamodeling patterns and idioms discovered in theoretical work [FN04b, Fav05a,

DKM13].

In a comprehensive survey [WvP10] of traceability in MDE, the authors conclude, that trace-

ability practices are still emerging, specifically in the MDE context. MegaL’s interpreted meg-

amodels may associate entities in relationships with traceability links, as it was shown in sub-

section 8.7.4. This approach is again heterogeneous in terms of the technological spaces; it

assumes a language-parametric approach to fragment location. Traceability is also used in

megamodeling for models at runtime [SNG10], where high-level relationships between models

are derived from observable low-level traceability between model elements.

A type system and a type inference algorithm for declarative languages with constraints for

MDE are presented in [JSB12]. Elsewhere [BJ06], OCL [Gro06] constraints and ATL rules [JK06]

are used to implement consistency and conformance checking.

Megamodels of metamodels and model transformations are organized into an architectural

framework [FM06], which promotes re-usability of architectural elements and realizes architec-

tural descriptions [HMMP10]. We plan to re-implement such descriptions in MegaL, thereby

providing evidence of its usefulness as an architecture description language.

MegaL relies on the resources being exposed via HTTP and uniquely identifiable. Such re-

sources can be directly exposed via web servers and web-accessible source control systems.

Another promising direction is to apply Linked Data [BHBL09] principles, which allows attach-

ing rich metadata. MegaL already applies such principles (e.g., in the sense of the DBpedia and

101companies resolvers). Linked Data principles are also leveraged in [KFH+12b] in a related

manner for the purpose of exposing facts about artifacts in software repositories.

8.9. Conclusion 167

Architectural frameworks and notations. Formal notations and models can be used to

characterize and reason about a system design, thus a part of software architecture discipline

[SG96]. While the intuition might suggest a deeper relation between MegaL and the existing

architectural notations, MegaL primary goal is to operationalize the technology modeling con-

cepts developed in this thesis. [AG97] distinguishes the implementation and the interaction

relationships between part of the system being described. MegaL primarily focuses on the in-

teraction part and consistency checking, and does not cover the breath and depth in terms of

other possible aspects of the software system. For instance, Zachman architecture framework

[Zac87] explicitly states, that entity-relationship diagrams are not able to express all the con-

straints and ignore the operations performed by and on the entities [SZ92]. MegaL considers

some relations executable, i.e. in a form of a function application, capturing input and output

and leaving out the details of the operation itself.

Conclusion

We have developed a form of technology modeling that targets the linguistic architecture of

software technologies and software products. Megamodels serve as cognitive models for the

benefit of software engineers, software linguists, and others.

We have equipped the megamodeling notion for the linguistic architecture of software systems

with a language mechanism for resolving entities, capturing traceability between them, and

evaluating relationships. Our approach is not tailored to MDE. We applied the approach to

a megamodeling scenario that indeed involves elements of Javaware and grammarware. We

formalized the key ideas of interpreted MegaL models in a deductive system and described

an open-source implementation. Without this enhancement, megamodeling does not provide

enough validated insight into actual systems.

The types of megamodeling relationships with the underlying entity types represent patterns

of the linguistic architecture of software systems. MegaL has already been applied to some

typical scenarios of technology usage, as they are demonstrated by software systems in the

101companies chrestomathy, thereby capturing important entity and relationship types. It

168 Chapter 8. Technology Modeling

remains to complete a megamodeling ontology in a systematic manner so that we can be

confident that all such major types have been discovered.

Chapter 9

Evaluation of 101companies Software

Chrestomathy

This chapter evaluates the 101companies software chrestomathy, according to a design research

methodology selected in this work.

Introduction

According to the design research methodology, we need to validate the usefulness of the artifact,

created in this work – 101companies software chrestomathy. It should facilitate a certain

number of research directions in an open and reproducible manner, based on the underlying

infrastructure. In this chapter, we present three research scenarios, from the research agenda

on software chrestomathies [Lae13].

Polyglot analysis and transformation. In section 9.2 we describe and validate a method

for comparing programming languages or technologies or programming styles in the context of

implementing certain programming tasks. To this end, we analyze a number of “little software
This chapter is mainly based on two publications with some additional related work: [LLSV14b] Ralf Läm-

mel, Martin Leinberger, Thomas Schmorleiz and Andrei Varanovich. Comparison of Feature Implementations
across Languages, Technologies, and Styles. In Proc. of IEEE CSMR-WCRE 2014. IEEE, 2014. [LVL+14]
Ralf Lämmel, Andrei Varanovich, Martin Leinberger, Thomas Schmorleiz and Jean-Marie Favre. Declarative
Software Development (Distilled Tutorial). In Proc. of PPDP 2014.

169

170 Chapter 9. Evaluation of 101companies Software Chrestomathy

systems” readily implementing a common feature set. We analyze source code, structured

documentation, derived metadata, and other computed data. More specifically, we compare

these systems on the grounds of the NCLOC metric while delegating more advanced metrics

to future work. To reason about feature implementations in such a multi-language and multi-

technological setup, we rely on an infrastructure that enriches traditional software artifacts

(i.e., files in a repository) with additional metadata for implemented features as well as used

languages and technologies.

Integration with teaching. In section 9.3 an introductory functional programming course

is layered directly on top of 101haskell. The validation boils down to the argument that the

available content, in the intrinsic form (semantic wiki, interlinked source code, interlinked

external resources) provides the foundation of a viable course.

Similarity management. In section 9.4 we summarize the work done in the context of code-

sharing management and product line engineering: a software chrestomathy contains “little

systems” (contributions) that are similar by design, and hence, one can expect to detect clones.

An approach to use clone detection is to actually manage the similarity of contributions to

help with understanding and evolution. The referenced work was done by several members

of the 101companies collaboration with the external research group. 101companies and its

infrastructure enabled the research with the corpus and some software analysis capabilities.

The author of this work was not a part of the collaboration, and it is used in this section for

one purpose: to provide an additional proof of the applicability of software chrestomathy across

research domains.

Comparison of Feature Implementations across Languages,

Technologies, and Styles

Consider the following research question: “Which programming language or technology or style

is most suited for implementing a certain programming task”

9.2. Comparison of Feature Implementations across Languages, Technologies, and Styles 171

For instance, let us pick the task of “totaling salaries of employees in a company”, which is

a possible functional requirement for an information system. This task could be implemented

in any given language in many different styles, making use of many different programming

technologies. The task could be implemented in Java in such a manner that the company

structure is represented in either plain objects or DOM -based objects for XML. The latter

option is illustrated by using the JDOM 1 API:

// doc represents an input XML document

Iterator<?> iterator =

doc.getDescendants(new ElementFilter("salary"));

// Iterate over all salary elements

while (iterator.hasNext()) {

Element elem = (Element)iterator.next();

Double salary = Double.valueOf(elem.getText());

total += salary;

}

Consider another implementation of the task, this time in Haskell while assuming a designated

data model for the company structure and the use of a generic programming style (“Scrap your

boilerplate” (SYB) [LJ03b]) for processing the data, also subject to a designated library.2 Thus:

−− Traverse "everything" to aggregate all floats (salaries)

total :: Company → Float

total = everything (+) (extQ (const 0) id)

We want to compare many such different implementations. In principle, feature implemen-

tations can be discovered using static text retrieval techniques [MM03], dynamic program

analysis [EKS03], or combinations of the two [PGM+07]. For the shown samples, it may be

straightforward to locate feature “Total”. Consider another feature regarding the hierarchical

organization of the company structure in terms of top-level departments breaking down hier-

archically into sub-departments. We refer to this feature as “Hierarchical company”. At the

code level, this feature may be associated with a recursively defined type for departments. The
1http://www.jdom.org/
2http://hackage.haskell.org/package/base-4.6.0.1/docs/Data-Data.html

http://www.jdom.org/
http://hackage.haskell.org/package/base-4.6.0.1/docs/Data-Data.html

172 Chapter 9. Evaluation of 101companies Software Chrestomathy

Haskell implementation does indeed define such a data model (not listed here). The feature’s

implementation is implicit though in the JDOM -based Java implementation because of the

lack of an explicit data model.

We describe and execute a methodology for the comparison of feature implementations across

languages, technologies, and styles. We leverage the 101companies project, as it provides a

suitable chrestomathy [Läm13] (i.e., a collection of systems exercising different languages, tech-

nologies, and styles), while being comparable in terms of implemented features. The comparison

relies on feature location and metrics calculation. 101’s infrastructure is readily leveraged for

all required analysis. All resources including available metadata and computed information are

organized and exposed according to Linked Data principles [BCH07, HB11b] so that they are

conveniently explorable; both programmatic and interactive access is possible. The relevant

formats and the underlying ontology are openly accessible and documented. The methodol-

ogy is “context-aware” in that different viewpoints and interactions are considered for feature

location. (We adopt this meaning of context awareness from [PXT+11].) For instance, we dis-

tinguish “as intended” features versus “as implemented” (i.e., features specified by the system

documentation versus features located by the analysis of source code).

Eventually, we compare the same feature set in different systems (i.e., implementations or

“contributions” according to 101) in terms of the NCLOC metric. We postpone more advanced

metrics to future work. The methodology includes non-automated aspects for the sake of

selecting targets for comparison, the validation of results, and their interpretation.

The Underlying Infrastructure

The infrastructure for creating, analyzing and accessing resources is briefly summarized in

figure 9.1. We expose and access all involved resources according to Linked Data principles.

System documentation is provided by a wiki platform—the 101wiki. A textual description is

enriched with a metadata section for semantic properties; see the upper left corner of figure 9.1.

Authoring such properties is part of the structured documentation process that goes beyond

plain source-code documentation. For instance, some properties specify the features thought to

9.2. Comparison of Feature Implementations across Languages, Technologies, and Styles 173

Figure 9.1: Overview of the underlying infrastructure hinting also at ‘links’ in the sense of
Linked Data

be implemented by the system. Such knowledge is exposed through “links” – some of them are

shown in figure 9.1. Features are also documented on the 101wiki; see the upper right corner

of figure 9.1.

Source code is maintained in a (GitHub-based) repository – the 101repo; see the lower left corner

of figure 9.1. We use a computational infrastructure, the 101worker, to analyze source files for

the sake of deriving resources and dumps, which are again published. In the present paper, we

are specifically interested in computed metadata as follows: a) the features implemented by

source files, subject to feature location; b) the languages and technologies used by the source

files, subject to simple heuristics; c) data for source-code metrics, in fact, NCLOC.

To produce a) and b) we use simple, automated rules expressed in 101meta – a language for

associating metadata units with files. We introduced this language in chapter 5. For instance,

the Java code from section 9.2 is associated with these units, rendered here in JSON notation:

[{ "language" : "Java" },

{ "technology" : "JDOM" },

{ "feature" : "Total" }]

To compute derived resources such as metrics data in the sense of c) we plug designated modules

into the 101worker. A metrics module associates the source file f (i.e., a “primary” resource)

with a “derived” resource f .metrics.json with metrics data formatted again in JSON.

174 Chapter 9. Evaluation of 101companies Software Chrestomathy

Methodology

We use the following methodology for comparison of feature implementations across languages,

technologies, and styles in terms of the diversity present in 101:

Feature selection. Determine a set of features that are often enough implemented to be

promising in terms of a comparison. Some features in 101 are indeed very popular. The

feature set needs to be small enough to make it relatively easy to validate the correctness of all

results, as manual validation and interpretation is necessary; see below.

Implementation selection. Determine a set of implementations (contributions in 101’s

terminology) that are promising in terms of comparison. We can hardly assume that feature

location and other algorithmic aspects of the methodology are completely robust across the

diversity at hand. Thus, the set of selected implementations must be small enough to allow

validation. Here we note that 101’s contributions often modularize feature implementations

with one source file per feature, thereby enabling straightforward consideration of implementa-

tions even with supersets of the selected features.

Language, technology, and style detection. Perform language and technology detection.

In this paper, we only care about “programming style” in so far as it is hinted at by the use of

technologies. When interpreting comparison results, we may very well take knowledge of styles

into account.

Feature location. Locate the selected features in the selected implementations. Some fea-

tures may be missed because of their implicit implementation and thus require manual tagging.

More generally, feature location must be validated. For simplicity, we do not admit implemen-

tations where any source file mixes the feature selected with additional features, as this would

require a degree of feature location that is not available to us across many languages.

9.2. Comparison of Feature Implementations across Languages, Technologies, and Styles 175

Walk over all files of all contributions and build a mapping from features to files
featureIndex = {}
for folders, files in walk(Namespace(’contributions’)):

for file in files:
for feature in file.features:

featureIndex.setdefault(feature, []).append(file)

Validation step
validateAutomaticTagging(featureIndex)
for contribution in config.selectedImpls:

for f in (set(contribution.implements) & config.selectedFeatures):
if not any(file.member =contribution for file in featureIndex.get(f, [])) and

not f in config.implicit.get(contribution.name, []):
... # Feature not found, error handling kicks in

Count NCLOC for every file that belongs to a selected implementation and is concerned with a selected feature
contributionIndex = {}
for feature in config.selectedFeatures:

for file in featureIndex.get(feature, []):
member = file.member
if member in config.selectedImpls and file.relevance =’system’:

contributionIndex[member.name] =
contributionIndex.get(member.name, 0) + file.metrics.ncloc

Figure 9.2: Idealized Python code for the comparison. The code operates on Linked Data.

Metric computation. In this work, we limit ourselves to NCLOC as metric, as there is

hardly any other metric available at this point for many different languages, but see the discus-

sion in subsection 9.2.5. The metric is computed for source files identified by feature location

or manual tagging. The metric values are summed up for all the files of an implementation.

Interpretation. The different NCLOC sums are interpreted by an expert who consults the

selected implementations.

Execution

We facilitate feature and implementation selection by building a mapping from all features to

the files implementing a feature; see the first code block in figure 9.2. To this end, we use the

Linked Data access path to the 101repo holding (all source-code files of) all implementations of

101. Feature location has been applied to the 101repo upfront. We note in passing that 101repo

is a confederated repository with many distributed, physical repositories, but the Linked Data

access path shields the programmer from such complexity.

176 Chapter 9. Evaluation of 101companies Software Chrestomathy

Figure 9.3: Objective of the validation of feature location

Based on inspection of the mapping, we should pick features that stand out as being popular

and modularly implemented; see the parameter config.selectedFeatures in figure 9.2. In

this paper, we pick 101’s features for totaling and cutting salaries on top of the data model

for hierarchical companies. Eventually, we also pick a few implementations; see the parameter

config.selectedImpls in figure 9.2. One selection is discussed in subsection 9.2.4.

Eventually, we compute a mapping from 101’s contributions to NCLOC; see the last code

block in figure 9.2. To this end, we iterate over the selected features and, in turn, over all

files concerned with each feature. If the file belongs to a selected implementation and is also

tagged as being “system” relevant (as opposed to generated code or included third-party code),

then the file’s NCLOC value is counted towards the general NCLOC value for the associated

implementation (“contribution”).

Feature location is validated semi-automatically; see the middle code block in figure 9.2 and

see figure 9.3 for a summary of the validation objective. In particular, the results of rule-based

feature location are compared with the documented (“specified”) features, thereby revealing

potential discrepancies between feature location and documentation. (As an aside, for several

contributions, feature location was also performed manually, thereby enabling the validation of

the identified source files).

Feature location may miss “implicit” implementations, as discussed in the introduction. This

situation may be confirmed by code inspection. In those cases, the discrepancies between

feature location and documentation are manually silenced by declaring the implicit status; see

the parameter config.implicit in figure 9.2.

9.2. Comparison of Feature Implementations across Languages, Technologies, and Styles 177

Figure 9.4: An NCLOC-based comparison of implementations of features “Total”, “Cut”, and
“Hierarchical company”

Results

Within the scope of an early research achievement, presented in this section, we aim to address

exemplarily the research question as to what language, technology, or style is more suited for

implementing a certain programming task.

Figure 9.4 shows the chart for the execution of subsection 9.2.3 for seven selected implementa-

tions with a coverage of three languages—Java, Python, and Haskell.

There are four Java-based implementations. Three of them (see the names java...) show very

similar metrics, which is a consequence of the fact that they are implemented in different but

basic styles of OO programming (class inheritance versus object composition versus families of

static methods). The fourth Java-based implementation, jdom, is strikingly more concise. This

178 Chapter 9. Evaluation of 101companies Software Chrestomathy

is the case because an implicit data model and a query API for features such as “Total” are

used.

The Haskell-based implementation haskellComposition uses an explicit data model and it uses

no special API. Nevertheless, it is nearly as small as the Java-based implementation jdom. The

Python-based implementation pyjson is even more concise; it does not leverage an explicit data

model. It turns out that haskellSyb is the most concise implementation, despite its explicit im-

plementation of a data model. Code inspection and expertise suggests the following arguments.

Haskell is generally very concise, compared to Java. Python may be similarly concise and it

may benefit from the omission of explicit data models. However, Haskell’s SYB style [LJ03b]

makes the implementation of query and transformation features such as “Total” and “Cut”

highly concise; such a style is not established in Python or Java.

Related Work

The comparison aspect of the presented research is original. However, there is related work,

along different dimensions, that could suggest improvements of the methodology for comparison

and suggest more interesting experiments.

Feature location. Feature (or concept) location [RW02] is a common maintenance activ-

ity [DRGP13] performed by developers. A systematic survey is provided in [DRGP13]. In

the absence of external documentation, advanced information retrieval methods, such as latent

semantic indexing (LSI), are applied [MSRM04b]. So far, we use only a very basic, text-based

location approach operating on source text including program identifiers and comments, while

only taking advantage of knowledge of the lexical structure; see some of the rules in [FLL+12b].

Novel context-aware approaches to feature location [PXT+11] suggest using both a requirement

model (e.g., a feature model) and a program model as input. However, deeper investigation

and adoption of “just enough” requirement model is an open issue. An interactive exploration

approach is proposed in [WPXZ13] to support the human-oriented and information-intensive

process of feature location. The results show an increase of developer productivity while using

9.3. A Chrestomathy-based Course 179

multi-faceted search.

Program comprehension & API analysis. Creating a conceptual model of the source code

is used in various program comprehension activities such as multi-language cross-referencing

[KWDE98] or business-rules extraction [CCA+13]. As we demonstrated, API usage might

encapsulate most of the code of a more traditional feature implementation. We should bring

models of APIs (e.g., classifiers for APIs, API domains, and API facets [DRLP13]), into the

scope of the rule-based system for metadata computation, thereby imposing more structure on

comparison.

Software metrics. We use NCLOC as a starting point for comparing implementations.

Empirical evidence exists about correlation of the size of a software system with its fault-

proneness [EBGR01] and maintainability [DJ03]. In the case of object-oriented systems, more

advanced size metrics, such as NIM (Number of Instance Methods) or TNOS (Total Number Of

Statements) [LK94] can be considered. However, the methodology clearly requires metrics that

can be used across various languages and paradigms. Furthermore, any selected metrics should

also agree with complexity as perceived by programmers [KK12]. More research is needed on

metrics suitable for comparison.

A Chrestomathy-based Course

101haskell, as described in the present section, was used in an introductory functional program-

ming course during summer semester 2013 at the University of Koblenz-Landau.3 (Two-thirds

of the students were in the second semester and already had basic Java programming skills.

The remaining students were in the first semester.) The present section describes the underly-

ing teaching concept, motivates designated course content on top of 101haskell, and discusses

a limited course evaluation.

3http://101companies.org/wiki/Course:Lambdas_in_Koblenz

http://101companies.org/wiki/Course:Lambdas_in_Koblenz

180 Chapter 9. Evaluation of 101companies Software Chrestomathy

Teaching Concept

We highlight aspects that set the present teaching concept apart from common practice. These

aspects relate to the use of the 101haskell and infrastructure of 101.

“Favor live programming.” Most of the lecture time is dedicated to live programming,

where all relevant concepts are systematically illustrated. The list of concepts for each lecture

is published on the 101wiki. The illustrations given during live programming are essentially

variations on the illustrations readily available on the wiki. More complex examples, such as

non-trivial 101haskell contributions, are not developed from scratch but are readily demon-

strated as available from the 101repo. Slides are not used. Some amount of wiki content may

be projected, however. Also, 101wiki pages may contain embedded media.

“Embrace multiple external resources.” Past teaching experience has suggested that our

students are rarely willing to follow given textbook recommendations; instead, unstructured

search is popular. In this course, we respond to this attitude by helping students leverage avail-

able online resources more systematically. In particular, Wikipedia, HaskellWiki, and Haskell

textbooks are readily linked from the course material, as discussed in chapter 6.

“Complement the running example.” The lectures spend considerable time on explaining

all concepts with the help of diverse, basic examples that are unrelated to the 101system, but

even these examples are available through the 101repo. Implementations of the 101system serve

typically as less basic illustrations. The homework assignments are not necessarily tied to the

101system. Occasionally, an assignment could be concerned with the modification of a given

contribution.

“Open source and open linked data.” Absolutely all course material is open. Reuse in

courses and collaborative advancement is appreciated and straightforward. In particular, reuse

9.3. A Chrestomathy-based Course 181

does not cause any copyright issues whatsoever because lecturers may reuse wiki content and

repo content simply by linking to it, without copy-and-paste as needed for slide-based reuse.

Course Content

Most of the content is readily available via the wiki pages for contributions, concepts, and

others. The only course-specific content is the lineup of all lectures and per-lecture scripts for

the itemized and linked content of the lectures.

• Lecture First steps
• Lecture Basic software engineering
• Lecture Searching and sorting
• Lecture Basic data modeling
• Lecture Higher-order functions
• Lecture Type-class polymorphism
• Lecture Functors and friends
• Lecture Monads
• Lecture Parsing and unparsing
• Dry run for final
• Lecture Generic functions
• Final

Figure 9.5: Lectures in the functional programming course.

Figure 9.5 shows the lineup of the lectures for the course. Two lecture slots are repurposed for

the final exam and the exam’s dry-run. In the next edition of the course, we expect to make

space for an extra lecture slot, in which case we plan to cover functional data structures as an

additional topic.

Figure 9.6 shows a particular lecture script, as it is rendered on the 101wiki. Thus, each

lecture comes with a headline (a title), a summary, a longer list of concepts, and a shorter

list of 101haskell contributions covered by the lecture. This also clarifies the modus operandi

of the lecturer: the listed concepts are illustrated in some order; the listed contributions are

eventually explored. The exact order is unspecified but it may be influenced by the dynamics

of the lecture. If time turns out to be insufficient, some concepts or contributions may also be

182 Chapter 9. Evaluation of 101companies Software Chrestomathy

Figure 9.6: The script for a lecture on higher-order functions.

delegated to the lab.

Figure 9.7: Course evaluation: satisfaction of the students with practical illustrations on 1-6
scale (higher is better).

Course Evaluation

Our university runs evaluations for all courses. However, student participation in the polls is

voluntary. The questionnaires are relatively complex, which may add to the low turnout. Ten

9.4. Code-sharing Management 183

out of 73 enrolled students submitted their scores for the functional programming course. All

results are available online. 4 Our experience with other introductory courses (first or second

semester) suggests that these courses tend to be less well received. (A significant percentage

of students cancel their studies during this period; there is no “numerus clausus” for computer

science.) The present course received mostly favorable scores. The course received an overall

score of 2.3 (“good”) on a 1-5 (very good to insufficient) scale.

In figure 9.7, we show poll results for a question related to the use of practical examples. We

take the results to mean that the balanced use of the 101system as the running example was

appreciated.

The written final contained basic tasks for the first seven lecture topics of figure 9.5 and almost

all the students succeeded in the exam. (This is rather surprising for a first/second semester

course.) As we have not conducted the course previously, we cannot compare learning results.

Code-sharing Management

In [AJB+14] a new approach to a product line engineering (PLE) is presented. PLT adoption

strategy is incremental and minimally invasive. It is called a “Virtual platform” and provides a

number of cloning strategies, between ad-hoc clone and own-and, supported by six governance

levels. 101companies practice is classified as ad-hoc clone-and-own, supported by a feature

model, where each contribution is described as a set of features. PLE governance levels are

illustrated by using 101haskell chrestomathy described in chapter 5.

In [SL16] the clone-and-own approach by a combination of variability and clone manage-

ment (which we refer to as similarity management) is presented. 101companies is used in the

case study, where similarity for clowned-and-owned Haskell-based variants of a simple human-

resources management system is managed. Clone detection is used to manage the similarity

of contributions to help with understanding and evolution. The Linked Data exposed for the

101repo is traversed in the tree-like structure and the file content is mapped to file, URIs. In

this manner groups of perfect clones are determined.
4http://softlang.uni-koblenz.de/101haskell/

http://softlang.uni-koblenz.de/101haskell/

184 Chapter 9. Evaluation of 101companies Software Chrestomathy

Threats to validity

The main threat external validity is how adequate and realistic the context of the applicability

of the software chrestomathy as a design research artifact, to support usage scenarios described

in this chapter. To provide a sound answer, the replication and cross-validation at various

conditions is certainly required. The results of our evaluation should not be seen as directly

applicable to other or even similar contexts. Rather then the possibility of running such experi-

ments enabled by the 101companies makes it a relevant artifact – a result of the design research

carried out in this thesis. We consider the maturity of the 101companies software chrestomathy

as the main threat to internal validity, as the results of the evaluation methodology heavily relies

on the existing 101companies infrastructure.

Conclusion

We presented three cases for utilizing a software chrestomathy as a design research artifact

aligned with the research agenda on software chrestomathies. Our evaluation is not meant

to be an empirical one but to provide a solid argument towards the need for validation of

usefulness. The importance of the collaborative and learning aspects of software chrestomathy

stand out rather clearly in the evaluations presented, supporting the central goal of this work

– a software chrestomathy facilitating a knowledge-driven research infrastructure.

Chapter 10

Conclusion and Future Work

In this chapter we summarize the results and outline the directions of the future work. We

summarize the implemented requirements, then briefly reflect on the original research questions.

We offer an additional focus for future work – an extended research agenda – as this is a success

factor for 101companies software chrestomathy as a design research artifact.

Summary of the Thesis Achievements

In this work we instantiated 101 software chrestomathy as a design research artifact that fa-

cilitates an organization of software languages and technologies and provides a documentation

model to support knowledge organization and integration. Collection of contributions enables a

deeper understanding of the linguistic architecture of software products. In fact, the contribu-

tions of software chrestomathy, like any other software system, are non-instantiated technology

models. Table 10.1 summarizes the original requirements as worked out in several chapters of

this work.

Let us also review the original research questions and briefly reflect on how the result of this

work has helped to answer them:

• Can software chrestomathy be adopted in software-engineering research and education?
This chapter is an original part of the thesis.

185

186 Chapter 10. Conclusion and Future Work

Table 10.1: Requirements coverage per chapter

Requirement Chapter
R1. Core Properties of software chrestomathy 5
R2. Ontology-driven Classification 5
R3. Linking Documentation and Source Code 5
R4. Vocabulary Engineering Through Knowledge Integration 6
R5. Linked Data Enabled Infrastructure 5,7
R6. A Chrestomathic Ontology 7
R7. Linguistic Architecture of Software Products 8
R8. General-purpose Language for Technology Models 8

This is the core question in the research agenda for software chrestomathy. In this work

we investigated several application domains for a software chrestomathy 101companies.

Additionally, the evaluation of end-to-end research and educational scenarios is provided

in chapter 9.

• How can software chrestomathy be instantiated as a Research 2.0 platform? A semantic

wiki for documentation linked to source code of the open-source repositories provides an

open and extensible platform for software engineering research. An open contribution

model promotes a technological space agnostic collaboration model – a key element of

Research 2.0. An ontology processing workflow brings the ecosystem into an ontological

space. As we highlight in section 10.2, this enables a further research agenda on the

chrestomathic ontologies.

• How can software chrestomathy be made useful in understanding software languages and

technologies? Technology modeling is based on the linguistic architecture, introduced

in this work. Entities and relations as core notions in fact are also used by the docu-

mentation models of 101companies. Such shared ontology together with the Linked-Data

infrastructure bring a new dimension for exploring details of the complex nature of soft-

ware languages and technologies.

• How can software chrestomathy be made useful in software-engineering education? A

structural way of organizing information also facilitates an organization of software en-

gineering courses by using 101wiki. An extension to the semantic properties allowed us

10.2. Future Work 187

to organize the course as an ordered list of lectures, fully documented in the wiki. Intro-

duced concepts are strongly linked with the illustrative examples of various complexity.

The underlying infrastructure of 101companies, such as topic vocabularies and linkage to

external sources, makes a chrestomathy a useful tool in software engineering education,

providing a new perspective on content exploration and understanding.

Future Work

In the previous chapter we summarized how 101companies software chrestomathy enabled us

to answer the original research questions and motivated this work. However, being a useful

design research artifact also means that it should open certain directions for further usage. In

this section we highlight a number of those directions, most clearly followed by the content of

this thesis. In fact, some of them are already carried out in our research group as of time of

this writing.

Technology modeling agenda. The role of technology models in software engineering can

be further validated. The directions are the following: documentation and specification (cog-

nitive aspect, as it was mainly concerned in this work) can be extended to the automation

scenarios(a la make/ant/maven), or for error detection (as a type system for the composition

of elements), or other analyses (complexity metrics, etc.) Once the aim is refined, it can be

verified more objectively, using established empirical methods.

The notion of linguistic architecture, as developed in this work, was mainly driven by examples.

Further axiomatization for the underlying entity types and relations is needed. In this manner,

we can answer questions like these: -What does it mean that a system uses a language or

a technology? -What does it mean that a technology facilitates a certain concept (e.g., that

a technology for web-app development facilitates the model-view controller pattern)? -What

does it mean that two artifacts involved in a mapping (e.g., in Object/relational mapping)

correspond to each other? Such axiomatization combined with the illustrations will constitute

a core ontology for linguistic architecture.

188 Chapter 10. Conclusion and Future Work

Social coding agenda. A social coding – a new phenomenon in developers’ collaboration,

significantly raised by GitHub’s popularity is a new kind of software ecosystem. A software

chrestomathy can provide a complementary view on a social coding, especially from the per-

spective of the development of domain ontology. Such domain ontology is useful for researchers

studying software ecosystems. The ecosystem comprises certain aspects of collaborative au-

thoring, data representation, mapping, metamodeling, and schema-based validation – the same

aspects, as presented in the current work on 101companies software chrestomathy.

Methodological agenda. We do not claim that the techniques used in this work exhaustive

or definitive. On the contrary, we believe that a larger community effort is needed to obtain

more exhaustive and more definitive results. A chrestomathy-centric empirical method can

be developed. This allows the validation of given techniques on a large software corpus. In

the present work we focus on the complexity challenges for software chrestomathies. From

the corpus perspective, software chrestomathy can be a baseline for certain domains, such as

similarity management, as illustrated in chapter 9.

Educational agenda. Software chrestomathy opens a new perspective on learning, as shown

in chapter 9.However, a larger effort is needed to make chrestomathy a truly learning environ-

ment aligned with the best practices of E-Learning. An empirical study is needed to determine

to what extent the chrestomatic ontology and knowledge organization helps students better

comprehend knowledge, as compared to “traditional” methods such as lectures and books.

Conclusion.

To conclude this work, we would like to emphasize the importance of the research methodology

and the selection of the problem space. This enabled us to set up a scope for the research and a

way to evaluate the results. A structured semantic document model for a software chrestomathy

together with a collection of contributions enabled us to discover and motivate the linguistic

architecture and technology modeling as its application. Further we applied the model to the

10.3. Conclusion. 189

teaching context. At the end, we believe this open and expansible artifact can facilitate further

research directions, as highlighted earlier in this chapter.

Appendices

Themes of 101companies Implementations

MDE: Model-driven engineering theme of implementations
Description

Several aspects and flavors of developing of model-driven engineering components are exercised.
In particular, Model to Model transformations, Model to Text transformations and Text to
Model transformations are exercised. Different styles of Model to Model transformation, like the
declarative style used by ATL or the imperative style of EMF in Java are considered. For Text
to Model transformations, the shown contributions rely on mapping grammar elements on model
elements.

Members
- atl Model to Model transformations with ATL
- atlCutPlugin Model to Model transformations with an ATL plugin
- atlPluginUsage Model to Model transformations with ATL plugins
- atlTotalPlugin Model to Model transformations with an ATL plugin
- emfGenerative Model-Object mapping for Ecore and Java with EMF
- emfReflexive Reflexive EMF Model to Model transformation
- gra2mol ÐŢext to Model transformation with Gra2Mol
- jgralab Use TGraphs with JGraLab in Java for Model to Model transformations
- xtext IDE Creation with an XText- and Eclipse-based DSL editor

Figure 1: MDE theme of 101implementations

190

A.1. Themes of 101companies Implementations 191

Haskell data: A theme of Haskell-based contributions varying data representation
Description

Different feature models and design choices are exercised for the Haskell-based data model of
companies. Thereby, Haskell’s data modeling expressiveness and common styles are explored.
Any mentioning of "trivial data model" implies Flat company as opposed to Hierarchical
company. The remaining contributions involve data models that deal with Hierarchical company.
It should be noted that the contributions may serve additional purposes other than just
illustrating data modeling options.

Members
- haskellComposition Data composition in Haskell with algebraic data types
- haskellData Use of algebraic data types in Haskell
- haskellRecord Use of record types in Haskell
- haskellScott Exercise Scott encoding in Haskell
- haskellStarter Basic functional programming in Haskell
- haskellTermRep Data processing in Haskell with a universal representation
- haskellVariation Data variation in Haskell with algebraic data types

Figure 2: Haskell data theme of 101implementations

Haskell introduction: basics of Haskell
Description

An introductory collection of Haskell-based contributions. This theme collects the following
relatively basic Haskell-based contributions.

Members
- haskellStarter Basics of functional programming
- haskellEngineer Basics of software engineering
- haskellList List processing with map and friends
- haskellProfessional Idiomatic code for many features
- haskellLambda Anonymous functions
- haskellComposition Recursive algebraic data types
- haskellVariation Multiple constructors per type
- haskellMonoid Queries in monoidal style
- haskellLogging Logging in non-monadic style
- haskellWriter Logging in monadic style
- haskellParsec Parsing with the Parsec library
- haskellSyb Generic programming Ãă la SYB style

Figure 3: Haskell introduction theme of 101implementations

192 Appendices

Haskell potpourri: A potpourri of Language:Haskell-based contributions
Description

This theme demonstrates Language:Haskell’s approach to several programming problems:
concurrent programming, database programming, generic programming, GUI programming,
logging, parsing, unparsing, XML programming, web programming. Some of the contributions
nicely demonstrate some strengths and specifics of Haskell. This is true, arguably, for the
contributions that illustrate XML programming and generic programming. Some other
contributions are mainly included to provide coverage for important programming domains or
problems without necessarily arguing that the Haskell-based approach is particularly interesting
or attractive. This is true, for example, for the contribution that demonstrates GUI
programming. Relatively mature and established technologies are demonstrated as opposed to
research experiments.

Members
- haskellParsec Parsing with the Parsec library
- hughesPJ Unparsing with Text.PrettyPrint.HughesPJ
- wxHaskell GUI programming with wxHaskell
- happstack Web programming with Happstack
- haskellDB Database programming with HaskellDB
- hxt XML programming with HXT
- writerMonad Logging with the writer monad
- mvar Concurrent programming with MVars
- haskellSyb Generic programming in SYB style

Figure 4: Haskell potpourri of 101implementations

Haskell genericity: different styles of generic functional programming in Haskell
Description

There are different classes of generic programming. The present theme is concerned with the
class of generic programming that involves data type-polymorphic functions such that the
functions can be applied to data of different types as, for example, in the case of the "Scrap your
boilerplate" style of generic programming. The present theme is focused on different generic
programming styles as they exist for Language:Haskell. Certain features of the 101system are
particularly relevant for the present theme. These are the features for cutting and totaling
salaries as they illustrate the need for data transformations and queries that may need to fully
traverse compound data while only some details of such data (i.e., salaries) are conceptually
relevant. Thus, Feature:Total and Feature:Cut make up the baseline set of features to be covered
by any member contribution of this theme.

Members
- haskellSyb Generic programming in Haskell with SYB
- strafunski Strafunski approach generic programming in Haskell
- haskellTree Data processing in Haskell with functors and foldable types
- tabaluga Dealing with large bananas in Haskell

Figure 5: Haskell genericity of 101implementations

A.1. Themes of 101companies Implementations 193

NoSQL: Modern database theme of implementations
Description

Classically, relational (SQL-based) databases were used to manage large-volume data. These
days, additional options have become commonplace. For instance, there are technologies serving
the MapReduce programming model on distributed file systems; there are various NoSQL
approaches, e.g., document-based databases or BigTable clones. This theme is under
construction.

Members
- hadoop Data-parallel processing with Hadoop
- gremlin-neo4j A graph-based implementation using Neo4J and the Gremlin graph query DSL
- hbase A NoSQL implementation based on HBase
- mongodb Employ a document-oriented database
- riak A NoSQL implementation based on Riak

Figure 6: NoSQL theme of 101implementations

Python potpourri: Contributions achieving basic coverage of Python
Description

Contributions achieving basic coverage of Python. This theme is under construction.
Members

- py3k a basic implementation of the spec in Python 3
- pyjson Processing JSON -based data in Python
- pyjamas Web programming in Python with Pyjamas

Figure 7: Python potpourri theme of 101implementations

Scrap your boilerplate: Contributions that exercise "Scrap your boilerplate" style of generic
programming
Description

The "Scrap your boilerplate" (SYB) style of generic programming was originally conceived in a
Haskell context, but similar coding styles were subsequently proposed for other programming
languages. In fact, even for Haskell alone, variations on SYB style were proposed. Accordingly,
the present theme features contributions that exercise SYB style across different host languages.
In some cases, these contributions actually include libraries that support SYB style for the host
language at hand. Certain features of the 101system are particularly relevant for the present
theme. These are the features for cutting and totaling salaries which actually have their origin in
the SYB literature. Thus, features Total and Cut make up the baseline set of features to be
covered by any member contribution of this theme. Implementations of yet other features may
benefit from SYB style, too.

Members
- haskellSyb Generic programming in Haskell with SYB
- jsSyb Generic programming in Javascript with SYB
- pythonSyb Generic programming in Python with SYB
- javaSyb Exercise SYB-style generic programming with reflection in Java

Figure 8: Scrap your boilerplate theme of 101implementations

194 Appendices

Starter: A few very simple implementation of the 101system
Members

Contribution Language
argoUML UML
haskellStarter Haskell
html5local HTML5
javaComposition Java
prologStarter Prolog
pyjson Python
xslt XSLT

Figure 9: Starter theme of 101implementations

Web programming: Web programming theme of implementations
Description

There is a myriad of web-programming frameworks. This theme features implementations that
demonstrate arguably the most established frameworks, while at the same time aiming at
coverage of different languages and platforms. For instance, Silverlight may currently count as a
major web-programming approach for the .NET platform, and hence, an implementation was
included. Also, Language:PHP is generally popular for web development, and hence, an
implementation based on the popular Pyjamas framework was included. As far as Java is
concerned, there are again, in turn, many different approaches and frameworks, and the goal was
here to select a small number of different and popular approaches. Finally, in the case of HTML5,
the two options of a local applications versus a client/server architecture is demonstrated.

Members
- gwt Feature:Browsing web programming with GWT
- html5local Web programming based on the HTML5 ecosystem with local Web storage
- happstack Web programming in Haskell with Happstack
- html5ajax Web programming based on the HTML5 ecosystem using Ajax style
- jsf Web programming with JSF
- pyjamas Web programming in Python with Pyjamas
- rubyonrails Web programming in Ruby with Ruby on Rails
- seaside Web programming in Smalltalk with Seaside
- silverlight Web programming in C# with Silverlight
- strutsAnnotation Web programming in Java with Struts configuring with annotations
- zend Web programming in PHP with the Zend framework

Figure 10: Web programming theme of 101implementations

A.1. Themes of 101companies Implementations 195

Web applications in Java: A theme of Java-based web applications
Description

The theme collects contributions which exercise different kinds of web-application frameworks
for Java. Different technologies such as Struts, JSF, and GWT are explored. For some
technologies, different options of technology usage are explored, e.g., the use of annotations
versus XML-based configuration.

Members
- gwt Web programming in Java with GWT
- gwtTree Browsing web programming with GWT
- jsf Web programming with JSF
- seam Web application development with Java and the Seam framework
- strutsAnnotation Web programming in Java with Struts configuring with annotations
- strutsXml Web programming in Java with Struts configuring with XML

Figure 11: Web applications in Java theme of 101implementations

196 Appendices

The SoLaSoTe ontology of software languages, technolo-

gies, and concepts

Entities of SoLaSoTe

The kinds of entities (say, individuals) in the ontology give rise to what is called SoLaSoTe’s

set of entity types, which are developed in this section. We begin by providing an overview

of these types. Next, we describe these types in more detail and illustrate them by means of

representative entities. Finally, we discuss classification, as applied to the entities, subject to

additional types derived from the entity types, thereby establishing a taxnonomy-like hierarchy

with the entity types at the roots of classification. All entity types are modeled as RDFS

classes. The types and their instances are exercised by means of SPARQL queries applied to

the triplestore of the ontology.

Entity types–Overview

There are these entity types:

Output of query entityTypes.sparql

type comment

onto:Concept Software concepts
onto:Contribution Contributions of the 101 project
onto:Contributor Contributors to the 101 project
onto:Course Cources on programming and software engineering
onto:Document Documents in a broad sense
onto:Feature Software features
onto:Language Software languages
onto:Script Scripts as units of a course
onto:Tag Tags to be carried by entities
onto:Technology Software technologies
onto:Theme Containers of contributions
onto:Vocabulary Containers of terms

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 197

The list of entity types can be retrieved from SoLaSoTe’s triplestore as follows:

Query entityTypes.sparql

SELECT ?type ?comment {

?type rdfs:subClassOf onto:Entity .

FILTER (?type 6=onto:Entity) .

FILTER NOT EXISTS { ?type a onto:Classifier } .

?type rdfs:comment ?comment

}

ORDER BY ?type

That is, the entity types are organized as subclasses of a base type onto:Entity, but we do not

include subclasses of the SoLaSoTe-specific type onto:Classifier because these are non-root types

used for classification, as explained in detail in §A.2.2.2. (In different terms, we only include

direct subclasses of onto:Entity.) The following query determines the number of entities (say,

individuals or instances) for each type:

Query entities.sparql

SELECT ?type (COUNT(?type) AS ?count)

WHERE {

?type rdfs:subClassOf onto:Entity .

FILTER (?type 6=onto:Entity) .

FILTER NOT EXISTS { ?type a onto:Classifier } .

?entity a ?type

}

GROUP BY ?type

ORDER BY ?count

198 Appendices

Output of query entities.sparql

type count

Course 5
Tag 6
Document 7
Vocabulary 8
Theme 10
Contributor 14
Script 22
Feature 53
Language 103
Contribution 223
Technology 330
Concept 661

Prefixes used by SoLaSoTe

At the RDF level of representation, there is a designated prefix for each entity type. A few

additional prefixes are needed so that SoLaSoTe can also relate to other ontologies or RDF

resources. Here is a complete list of prefix declarations:

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

PREFIX onto:<http://101companies.org/ontology#>

PREFIX res:<http://101companies.org/resources#>

PREFIX tech:<http://101companies.org/resources/Technology#>

PREFIX lang:<http://101companies.org/resources/Language#>

PREFIX concept:<http://101companies.org/resources/Concept#>

PREFIX voc:<http://101companies.org/resources/Vocabulary#>

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 199

PREFIX doc:<http://101companies.org/resources/Document#>

PREFIX feature:<http://101companies.org/resources/Feature#>

PREFIX contrib:<http://101companies.org/resources/Contribution#>

PREFIX theme:<http://101companies.org/resources/Theme#>

PREFIX contributor:<http://101companies.org/resources/Contributor#>

PREFIX course:<http://101companies.org/resources/Course#>

PREFIX script:<http://101companies.org/resources/Script#>

PREFIX tag:<http://101companies.org/resources/Tag#>

PREFIX sesame:<http://www.openrdf.org/schema/sesame#>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

The prefixes can be explained as follows:

rdf The RDF data model.1

rdfs The schema for RDF.2

owl The Web Ontology Language.3

xsd XML Schema for data types.4

onto Classes of the SoLaSoTe ontology.

res Entities of SoLaSoTe.

lang Language entities of SoLaSoTe.

tech Technology entities of SoLaSoTe.

concept Concept entities of SoLaSoTe.

voc Vocabularies as collections of SoLaSoTe concepts.

doc Document entities of SoLaSoTe.
1http://101companies.org/wiki/Language:RDF
2http://101companies.org/wiki/Language:RDFS
3http://101companies.org/wiki/Language:OWL
4http://www.w3.org/2001/XMLSchema

http://101companies.org/wiki/Language:RDF
http://101companies.org/wiki/Language:RDFS
http://101companies.org/wiki/Language:OWL
http://www.w3.org/2001/XMLSchema

200 Appendices

feature Features of 101 as entities of SoLaSoTe.

contrib Contributions of 101 as entities of SoLaSoTe.

theme Themes as collections of contributions.

contributor Contributors of 101 as entities of SoLaSoTe.

script Scripts (parts of courses) as entities of SoLaSoTe.

course Courses as collections of scripts.

tag Tags applied to entities of SoLaSoTe.

sesame The namespace of the Sesame framework.5

foaf The ontology of the ‘Friend of a Friend’ project.6

Entity types–Details

Type ‘Language’ The following query retrieves all software languages:

Query languages.sparql

SELECT ?language ?headline (COUNT(?subject) AS ?count)

WHERE {

?language a onto:Language .

?language onto:hasHeadline ?headline .

?subject ?predicate ?language .

}

GROUP BY ?language ?headline

ORDER BY DESC(?count)

5http://101companies.org/wiki/Technology:Sesame
6http://www.foaf-project.org/

http://101companies.org/wiki/Technology:Sesame
http://www.foaf-project.org/

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 201

As there are many languages, we order them by ‘popularity’. Below, we show only the most

popular languages. By popularity we mean the numbers of any sort of subjects referring to the

languages—through any sort of predicate. In this manner, we see presumably more well-known,

less obscure entities.

Output of query languages.sparql (first few rows)

language headline

Java An OO programming language
Haskell A purely-functional programming language
XML The extensible markup language
JavaScript A multi-paradigm programming language for the web et al.
JSON The JavaScript Object Notation for data exchange
SQL Data definition and manipulation for relational databases
Python A multi-paradigm programming language
...

{

"@id": "Language",

"@type": [

"Entity",

"Instrument"

],

"comment": "Software languages",

"wikialias": [

"Software_language"

],

"properties": [

{

"property": "langDesignedBy",

"super": "designedBy",

202 Appendices

"range": "foaf:Person",

"minCardinality": "0",

"comment": "Designers of languages"

}

]

}

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 203

Type ‘Technology’ We apply the same kind of query as before:

Query technologies.sparql

SELECT ?technology ?headline (COUNT(?subject) AS ?count)

WHERE {

?technology a onto:Technology .

?technology onto:hasHeadline ?headline .

?subject ?predicate ?technology .

}

GROUP BY ?technology ?headline

ORDER BY DESC(?count)

Output of query technologies.sparql (first few rows)

technology headline

Gradle A build tool inspired by Ant and Maven
JUnit A framework for unit testing for Java
Eclipse An IDE for Java with a plug-in system
GHC A Haskell compiler
.NET A library and runtime for programming languages on Windows
ANTLR A parser generator with various language processing capabilities
Cabal A build automation tool for Language:Haskell
...

{

"@id": "Technology",

"@type": [

"Entity",

"Instrument",

204 Appendices

"System"

],

"comment": "Software technologies",

"wikialias": [

"Software_technology"

],

"properties": [

{

"property": "techUsesLang",

"super": "uses",

"range": "Language",

"minCardinality": "0",

"comment": "Use of languages by technologies"

},

{

"property": "techUsesTech",

"super": "uses",

"range": "Technology",

"minCardinality": "0",

"comment": "Use of technologies by technologies"

},

{

"property": "techUsesConcept",

"super": "uses",

"range": "Concept",

"minCardinality": "0",

"comment": "Use of concepts by technologies"

},

{

"property": "techDependsOnTech",

"super": "dependsOn",

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 205

"range": "Technology",

"minCardinality": "0",

"comment": "Technologies depending on technologies"

},

{

"property": "techDependsOnLang",

"super": "dependsOn",

"range": "Language",

"minCardinality": "0",

"comment": "Technologies depending on languages"

},

{

"property": "techDependsOnConcept",

"super": "dependsOn",

"range": "Concept",

"minCardinality": "0",

"comment": "Technologies depending on concepts"

},

{

"property": "techImplements",

"super": "implements",

"range": "Document",

"minCardinality": "0",

"comment": "Implementation of a standard or alike"

},

{

"property": "techDesignedBy",

"super": "designedBy",

"range": "foaf:Person",

"minCardinality": "0",

"comment": "Designers of technologies"

206 Appendices

}

]

}

Type ‘Concept’ We apply the same kind of query as before:

Query concepts.sparql

SELECT ?concept ?headline (COUNT(?subject) AS ?count)

WHERE {

?concept a onto:Concept .

?concept onto:hasHeadline ?headline .

?subject ?predicate ?concept .

}

GROUP BY ?concept ?headline

ORDER BY DESC(?count)

Output of query concepts.sparql (first few rows)

concept headline

Web programming The domain of web application development
Algebraic data type A type for the construction of terms
OO programming The object-oriented programming paradigm
Web browser A system for retrieving and presenting Web resources
Functional programming The functional programming paradigm
API An interface for reusable functionality
Software system A system of intercommunicating software components
...

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 207

{

"@id": "Concept",

"@type": [

"Entity",

"Instrument"

],

"comment": "Software concepts",

"wikialias": [

"Software_concept"

],

"properties": [

{

"property": "conceptMemberOf",

"super": "memberOf",

"range": "Vocabulary",

"minCardinality": "0",

"comment": "Concepts collected in vocabularies"

}

]

}

Type ‘Vocabulary’ Concepts can be collected in vocabularies. The collected concepts are

supposedly used in a certain context of programming or development or by a certain community.

There are not yet many vocabularies; we can list them all:

Query vocabularies.sparql

SELECT ?vocabulary ?headline

WHERE {

?vocabulary a onto:Vocabulary .

208 Appendices

?vocabulary onto:hasHeadline ?headline

}

ORDER BY ?vocabulary

Output of query vocabularies.sparql

vocabulary headline

Data structure Data structure concepts
Functional programming Functional programming concepts
Haskell Haskell concepts
Information system Information system concepts
OO programming OO programming concepts
Programming Programming concepts
Programming languages Programming language concepts
Programming theory Programming theory concepts

Concepts are included into vocabularies by means of the ‘memberOf’ predicate; see §A.2.3.3.

{

"@id": "Vocabulary",

"@type": [

"Entity",

"Container"

],

"comment": "Containers of terms"

}

Type ‘Contribution’ SoLaSoTe relies on the chrestomathy 101 for evidence in the form of

small systems that exercise languages, technologies, and concepts. These systems are called

contributions (since someone has to ‘contribute’ them to the chrestomathy). We sort contribu-

tions by popularity again:

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 209

Query contributions.sparql

SELECT ?contribution ?headline (COUNT(?subject) AS ?count)

WHERE {

?contribution a onto:Contribution .

?contribution onto:hasHeadline ?headline .

?subject ?predicate ?contribution

}

GROUP BY ?contribution ?headline

ORDER BY DESC(?count)

Output of query contributions.sparql (first few rows)

contribution headline

haskellEngineer Basic software engineering for Haskell
haskellComposition Data composition in Haskell with algebraic data types
mySqlMany A MySQL database with SQL scripts
javaComposition Object composition in Java
antlrAcceptor An ANTLR-based acceptor for textual syntax
javaInheritance Class inheritance in Java
antlrLexer Lexer-based text processing with ANTLR
antlrParser An ANTLR-based parser with semantic actions
jdom XML processing with JavaâĂŹs JDOM API
antlrObjects ANTLR-based object-text mapping for Java
antlrTrees Parsing and tree walking with ANTLR
jaxbComposition Object-XML mapping with JAXB of the Java platform
...

{

"@id": "Contribution",

"@type": [

"Entity",

210 Appendices

"System"

],

"comment": "Contributions of the 101project",

"properties": [

{

"property": "contribUsesLang",

"super": "uses",

"range": "Language",

"minCardinality": "1",

"comment": "Use of languages by contributions"

},

{

"property": "contribUsesTech",

"super": "uses",

"range": "Technology",

"minCardinality": "0",

"comment": "Use of technologies by contributions"

},

{

"property": "contribUsesConcept",

"super": "uses",

"range": "Concept",

"minCardinality": "0",

"comment": "Use of concepts by contributions"

},

{

"property": "contribDesignedBy",

"super": "designedBy",

"range": "Contributor",

"minCardinality": "1",

"comment": "Designers of contributions"

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 211

},

{

"property": "contribDevelopedBy",

"super": "developedBy",

"range": "Contributor",

"minCardinality": "1",

"comment": "Developers of contributions"

},

{

"property": "contribReviewedBy",

"super": "reviewedBy",

"range": "Contributor",

"minCardinality": "0",

"comment": "Reviewers of contributions"

},

{

"property": "contribImplements",

"super": "implements",

"range": "Feature",

"minCardinality": "1",

"comment": "Features implemented by contributions"

},

{

"property": "contribMemberOf",

"super": "memberOf",

"range": "Theme",

"minCardinality": "0",

"comment": "Contributions collected in themes"

},

{

"property": "contribVaries",

212 Appendices

"super": "varies",

"range": "Contribution",

"minCardinality": "0",

"comment": "Similarity of contributions"

},

{

"property": "contribBasedOn",

"super": "basedOn",

"range": "Contribution",

"minCardinality": "0",

"comment": "Reuse of contributions"

},

{

"property": "contribMoreComplexThan",

"super": "moreComplexThan",

"range": "Contribution",

"minCardinality": "0",

"comment": "Complexity of contributions"

}

]

}

Type ‘Contributor’ Contributions are designed, developed, and reviewed by contributors.

101 required GitHub identities for its contributors. This also helps with identity management

and authentication. The most active (most referenced) contributors are listed below:

Query contributors.sparql

SELECT ?contributor (COUNT(?subject) AS ?count)

WHERE {

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 213

?contributor a onto:Contributor .

?subject ?predicate ?contributor

}

GROUP BY ?contributor

ORDER BY DESC(?count)

Output of query contributors.sparql (first few rows)

contributor

rlaemmel
tschmorleiz
avaranovich
mpaul138
hartenfels
martinleinberger
todeslord
...

The shown names can be directly used to look up these persons on GitHub.7 Contributors are

associated with contributions by means of the ‘developedBy’ predicate and friends; see §A.2.3.5.

{

"@id": "Contributor",

"@type": [

"foaf:Person",

"Entity"

],

"comment": "Contributors to the 101project",

"properties": [

{

7For instance, avaranovich maps to https://github.com/avaranovich.

https://github.com/avaranovich

214 Appendices

"property": "profile",

"range": "rdfs:Literal",

"minCardinality": "1",

"comment": "Web page with info about contributor"

}

]

}

Type ‘Feature’ Contributions implement features of 101 ’s imaginary human resources man-

agement system (the 101system. We sort the features by popularity again:

Query features.sparql

SELECT ?feature ?headline (COUNT(?subject) AS ?count)

WHERE {

?feature a onto:Feature .

?feature onto:hasHeadline ?headline .

?subject ?predicate ?feature

}

GROUP BY ?feature ?headline

ORDER BY DESC(?count)

All features (as of writing) are shown here to convey that 101 ’s set of features is meant to be

manageable. The features at the bottom of the list are potentially obscure, experimental, or

outdated.

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 215

Output of query features.sparql

feature headline

Total Sum up the salaries of all employees
Cut Cut the salaries of all employees in half
Hierarchical company Support nested departments in companies
Parsing Parse an external format for companies
Closed serialization Serialize companies in a closed manner
Unparsing Unparse companies to an external format
Browsing Browse companies in a UI
Depth Compute the nesting depth of departments
Distribution Distribute company data and operations
Editing Edit companies in a UI
Web UI Support a web-based UI
Mapping Map companies across technological spaces
Persistence Persist companies
Flat company Support companies as plain collections of employees
Open serialization Serialize companies in an open manner
Ranking Check salaries to follow ranks in company hierarchy
Company Model companies
Median Compute the median of the salaries of all employees
Mentoring Associate employees in terms of mentoring
Restructuring UI support for restructuring company data
Task parallelism Apply task parallelism to total or cut salaries
Logging Log and analyze salary changes
Data parallelism Apply data parallelism to total or cut salaries
Serialization Serialize companies
Access control Control access for company data and operations
Singleton Support a single company, not many
History Maintain and analyze historical company data
Touch control Support touch control in the UI
Dimensionality Analyze salary distribution along different dimensions
Visualization Visualize companies
Offline mode Continue functioning even with an offline server
Geolocation Identify the geographic location of the user
Parallelism Total or cut salaries in parallel
Flattened company Represent hierarchical companies in a flat manner
Code generator Develop and demonstrate a code generator
Localization Support different languages in the UI
Reliability Make a server reliable
COI Associate employees in terms of conflicts of interest

Contributions are associated with features by means of the ‘implements’ predicate; see §A.2.3.3.

{

"@id": "Feature",

"@type": [

216 Appendices

"Entity",

"Description"

],

"comment": "Software features",

"wikialias": [

"Software_feature"

],

"properties": [

{

"property": "featureDependsOn",

"super": "dependsOn",

"range": "Feature",

"minCardinality": "0",

"comment": "Cross−feature constraint"

},

{

"property": "featureMoreComplexThan",

"super": "moreComplexThan",

"range": "Feature",

"minCardinality": "0",

"comment": "Comparison of complexity"

}

]

}

Type ‘Theme’ Contributions can be collected in themes. The assumption is here that the

collected contributions (systems) are of interest to a certain stakeholder, perhaps to persons

with a specific learning objective. Let’s have a look at the themes:

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 217

Query themes.sparql

SELECT ?theme ?headline

WHERE {

?theme a onto:Theme .

?theme onto:hasHeadline ?headline

}

ORDER BY ?theme

Output of query themes.sparql (first few rows)

theme headline

ANTLR Varying uses of ANTLR
GUI programming Varying GUI programming approaches
Haskell data Varying Haskell-based approaches to data modeling
Haskell genericity Varying generic programming approaches in Haskell
Haskell introduction Introductory Haskell-based contributions
Haskell potpourri A potpourri of Haskell-based contributions
MDE Demonstrations of model-driven engineering
Scrap your boilerplate Demonstrations of SYB style of generic programming
Starter Very simple contributions across the board
Web programming Demonstrations of web programming
...

Contributions are included into themes by means of the ‘memberOf’ predicate; see §A.2.3.3.

{

"@id": "Theme",

"@type": [

"Entity",

"Container"

],

"comment": "Containers of contributions"

}

218 Appendices

Type ‘Script’ Scripts are units of knowledge representation that are most likely outlines for

lectures or lab sessions. As of writing, they are used exclusively indeed for lecture scripting in

terms of the exercised concepts, technologies, languages, and examples (contributions). Here

are some illustrations:

Query scripts.sparql

SELECT ?script ?headline

WHERE {

?script a onto:Script .

?script onto:hasHeadline ?headline

}

ORDER BY ?script

Output of query scripts.sparql (first few rows)

script headline

Aspect-oriented programming Aspect-oriented programming in AspectJ
Data modeling in Haskell Basic data modeling techniques in Haskell
Data parallelism Data parallelism with Hadoop
Database programming Database access with JDBC and Hibernate
First steps in Haskell First steps of programming in Haskell
Functional OO programming Functional OO programming in Java
Functional data structures Functional data structures in Haskell
...

{

"@id": "Script",

"@type": "Entity",

"comment": "Scripts as units of a course",

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 219

"properties": [

{

"property": "scriptMemberOf",

"super": "memberOf",

"range": "Course",

"minCardinality": "0",

"comment": "Courses as containers of scripts"

},

{

"property": "scriptDependsOn",

"super": "dependsOn",

"range": "Script",

"minCardinality": "0",

"comment": "Constraints on script order"

}

]

}

Type ‘Course’ Scripts can be collected in courses. The collected scripts (i.e., lectures or

alike) are indeed meant to define the modules of an actual course. At this point, there are only

two courses that are modeled in this way:

Query courses.sparql

SELECT ?course ?headline

WHERE {

?course a onto:Course .

?course onto:hasHeadline ?headline

}

220 Appendices

Output of query courses.sparql

course headline

Lambdas in Koblenz Introduction to functional programming at the University of Koblenz-Landau
Programming in Koblenz An advanced BSc course on programming techniques and technologies in Koblenz
Data technologies for Debeka Professional training on modern data technologies
HaskellBarchart
Web programming for Debeka Professional training on modern web programming

Scripts are included into courses by means of the ‘memberOf’ predicate; see §A.2.3.3.

{

"@id": "Course",

"@type": [

"Entity",

"Container"

],

"comment": "Courses on programming and software engineering",

"properties": [

{

"property": "courseDesignedBy",

"super": "designedBy",

"range": "Contributor",

"minCardinality": "1",

"comment": "Designer of a contribution"

}

]

}

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 221

Type ‘Document’ Entities (such as languages, technologies, and concepts) are regularly

associated with ‘external’ resources; see the ‘sameAs’ predicate and friend in §A.2.3.3 for details.

In certain situations, it is reasonable though to reify an external resource (a document in a

broad sense) as a SoLaSoTe entity. In this manner, it is possible to make the external resource

participate in all of SoLaSoTe’s properties. We show the ‘headlines’ of some of the documents

reified on SoLaSoTe:

Query documents.sparql

SELECT ?headline

WHERE {

?doc a onto:Document .

?doc onto:hasHeadline ?headline

}

ORDER BY ?headline

Output of query documents.sparql (first few rows)

headline

A GPCE 2006 paper on software extension and integration
A report studying object encodings in Haskell
A textbook on information systems
...

We only show the headlines (i.e., short explanations) of the resources, not the names assigned

to them in SoLaSoTe, as there is no intuitive, comprehensive scheme for giving names to the

documents. There is also no comprehensive style for referring to them: some documents may

222 Appendices

be referrable to through DOIs; others may have a manifestation on Wikipedia; yet others may

be best resolvable on Amazon; etc. We refer to §A.2.3.3 for predicates that associate SoLaSoTe

entities with external resources.

{

"@id": "Document",

"@type": [

"foaf:Document",

"Entity",

"Description"

],

"comment": "Documents in a broad sense"

}

Type ‘Tag’ A simple tagging scheme is used for SoLaSoTe so that one can associate ‘tags’

with entities. As of writing, only very few tags are in use:

Query tags.sparql

SELECT ?tag ?headline

WHERE {

?tag a onto:Tag .

?tag onto:hasHeadline ?headline

}

ORDER BY ?tag

For instance, the ‘Stub’ tag is used to keep track of contributions whose documentation is

essentially missing or blatantly incomplete. This idea is inspired by Wikipedia’s stub notion.

We refer to §A.2.3.7 for the ‘carries’ predicate which is used to associate entities (such as

contributions) with tags.

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 223

{

"@id": "Tag",

"@type": "Entity",

"comment": "Tags to be carried by entities"

}

Classification of entities

SoLaSoTe’s entities are roughly classified on the grounds of the entity types, as described

previously. For instance, we may obviously ask whether lang:Java is a (software) language:

Query javaOfTypeLanguage.sparql

ASK {

lang:Java a onto:Language

}

Evaluation of this query literally returns ‘true’:

Output of query javaOfTypeLanguage.sparql

true

A more fine-grained classification is also supported on the grounds of a class hierarchy with the

entity types as root types. These extra classes are called ‘classifiers’. For instance, lang:Java is

of the following (classifier) types:

224 Appendices

Output of query typesOfJava.sparql

onto:OO programming language

onto:Programming language

The (classifier) types of an entity can be retrieved like this:

Query typesOfJava.sparql

SELECT ?type

WHERE {

lang:Java rdf:type ?type .

?type a onto:Classifier

}

ORDER BY ?type

As the query clarifiers, classifier types can be explicitly selected by testing for the extra type

onto:Classifier of those classes, thereby not confusing them with general types of the ontology—

such as onto:Language or Entity. The class(ifier) hierarchy can also be queried in itself—without

starting from entities. For instance, this is how we ask for the supertypes of the classifier

Query supertypesOfOoProgrammingLanguage.sparql

SELECT ?type

WHERE {

onto:OO_programming_language rdfs:subClassOf ?type .

?type a onto:Classifier .

FILTER (?type 6=onto:OO_programming_language)

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 225

}

ORDER BY ?type

Output of query supertypesOfOoProgrammingLanguage.sparql

onto:Programming language

This is how we query for all entities with a certain classifier; in this case, we are interested in

all OO programming languages:

Query ooProgrammingLanguage.sparql

SELECT ?language

WHERE { ?language rdf:type onto:OO_programming_language }

ORDER BY ?language

These are some OO programming languages:

Output of query ooProgrammingLanguage.sparql (first few rows)

lang:CSharp

lang:CoffeeScript

lang:FSharp

lang:Java

226 Appendices

lang:JavaScript

lang:Lua

lang:Perl

...

SoLaSoTe’s approach towards classification makes one specific assumption. For each classifier,

there is a corresponding concept (onto:Concept) of the same name modulo different prefixes

(‘onto’ for classifieres, ‘concept’ for concepts). Whether or not a concept has an associated

classifier depends on the fact whether the concept is actually used for classification.

In §A.2.1, we had queried for ‘popular’ concepts regardless of whether they are (associated

with) classifiers. Here is a similar query, which specifically focuses on ‘popular’ classifiers:

Query classifiers.sparql

SELECT ?concept ?headline (COUNT(?subject) AS ?count)

WHERE {

?concept a onto:Concept .

?concept onto:hasHeadline ?headline .

?classifier a onto:Classifier .

?classifier onto:classifies ?concept .

?subject ?predicate ?concept

}

GROUP BY ?concept ?headline

ORDER BY DESC(?count)

In the query, we use a predicate ‘classifies’ to look up the association between classifier and

concept. Here are the first few classifiers returned by the query:

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 227

Output of query classifiers.sparql (first few rows)

concept headline

Algebraic data type A type for the construction of terms
OO programming The object-oriented programming paradigm
Web browser A system for retrieving and presenting Web resources
Functional programming The functional programming paradigm
API An interface for reusable functionality
Software system A system of intercommunicating software components
Client A component accessing a service provided by a server
...

Clearly, this list overlaps with the ranking of popular concepts overall; see again §A.2.1. For

comparison, here is query for ‘popular’ non-classifier concepts:

Query nonClassifiers.sparql

SELECT ?concept ?headline (COUNT(?subject) AS ?count)

WHERE {

?concept a onto:Concept .

?concept onto:hasHeadline ?headline .

FILTER NOT EXISTS {

?classifier a onto:Classifier .

?classifier onto:classifies ?concept .

} .

?subject ?predicate ?concept

}

GROUP BY ?concept ?headline

ORDER BY DESC(?count)

228 Appendices

Output of query nonClassifiers.sparql (first few rows)

concept headline

Web programming The domain of web application development
Type class An abstraction mechanism for polymorphism
MVC Division of an architecture into model, view, and controller
Language A software language
Fold function A higher-order function for processing a data structure
GUI A graphical user interface
Objectware A technological space focused on OO programming
...

At this point, we have discussed SoLaSoTe’s entity types (rooted in onto:Entity and SoLaSoTe’s

classification types forming a class hierarchy rooted by the entity types with entities as instances.

SoLaSoTe uses yet a few extra ‘base types’ to capture commonalities of entity types in certain

contexts. Here is a list of these types and the corresponding subClassOf relationships:

Output of query baseTypes.sparql

type comment

onto:Container Base type for vocabularies, scripts, and themes
onto:Description Base type for features and documents
onto:Instrument Base type for languages, technologies, and concepts
onto:System Base type for technologies and contributions

Output of query baseTypeSubClassing.sparql

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 229

subtype supertype

onto:Function onto:Abstraction mechanism
onto:Instance method onto:Abstraction mechanism
onto:Method onto:Abstraction mechanism
onto:Static method onto:Abstraction mechanism
onto:Newtype onto:Algebraic data type
onto:Divide and conquer algorithm onto:Algorithm
onto:Search algorithm onto:Algorithm
onto:Search problem onto:Algorithmic problem
onto:Sorting problem onto:Algorithmic problem
onto:Subtype polymorphism onto:Bounded polymorphism
onto:Type-class polymorphism onto:Bounded polymorphism
onto:ADO .NET onto:Concept
onto:AST onto:Concept
onto:Abstract data type onto:Concept
onto:Abstract syntax onto:Concept
onto:Abstract syntax tree onto:Concept
onto:Abstraction onto:Concept
onto:Abstraction mechanism onto:Concept
onto:Accumulator onto:Concept
onto:Action onto:Concept
onto:Active record onto:Concept
onto:Ad-hoc polymorphism onto:Concept
onto:Ajax onto:Concept
onto:Algebraic data type onto:Concept
onto:Algorithm onto:Concept
onto:Algorithm design onto:Concept
onto:Algorithmic problem onto:Concept
onto:Android Manifest onto:Concept
onto:Android Menu onto:Concept
onto:Android Resource onto:Concept
onto:Android project onto:Concept
onto:Anonymous class onto:Concept
onto:Anonymous function onto:Concept
onto:AppWidget onto:Concept
onto:Application domain onto:Concept
onto:Architectural pattern onto:Concept
onto:Argument onto:Concept
onto:Aspect-oriented programming onto:Concept
onto:Assertion onto:Concept
onto:Association onto:Concept
onto:Association list onto:Concept
onto:Backup onto:Concept
onto:Base case onto:Concept
onto:Bidirectional transformation onto:Concept
onto:Bottom-up parsing onto:Concept
onto:Bounded polymorphism onto:Concept
onto:Business process onto:Concept
onto:CRUD onto:Concept
onto:Calculation onto:Concept
onto:Catamorphism onto:Concept
onto:Class onto:Concept
onto:Closure onto:Concept
onto:Code onto:Concept
onto:Combinator onto:Concept
onto:Command onto:Concept
onto:Computing onto:Concept
onto:Concrete data type onto:Concept
onto:Concrete syntax onto:Concept
onto:Concrete syntax tree onto:Concept
onto:Condition onto:Concept
onto:Constructor component onto:Concept
onto:Context-free grammar onto:Concept
onto:Cookie onto:Concept
onto:Core onto:Concept
onto:Corecursion onto:Concept

onto:Crosscutting concern onto:Concept
onto:Currying onto:Concept
onto:Data constructor onto:Concept
onto:Data generator onto:Concept
onto:Data model onto:Concept
onto:Data modeling onto:Concept
onto:Data structure onto:Concept
onto:Data structure design onto:Concept
onto:Data term onto:Concept
onto:Data type onto:Concept

onto:Data variation onto:Concept
onto:Database onto:Concept
onto:Database schema onto:Concept
onto:Datatype-generic programming onto:Concept
onto:Delta modifier onto:Concept
onto:Design pattern onto:Concept
onto:Dialog onto:Concept
onto:Directory onto:Concept
onto:Divide and conquer algorithm onto:Concept
onto:Documentation onto:Concept
onto:Documentation generation onto:Concept
onto:Endogenous model transformation onto:Concept
onto:Enumeration onto:Concept
onto:Equality onto:Concept
onto:Exception onto:Concept
onto:Exogenous model transformation onto:Concept
onto:Feature modeling onto:Concept
onto:Fibonacci number onto:Concept
onto:Fold algebra onto:Concept
onto:Function onto:Concept
onto:Functional OO programming onto:Concept
onto:Functional data structure onto:Concept
onto:Functional programming onto:Concept
onto:Functor onto:Concept
onto:Generative programming onto:Concept
onto:Generic programming onto:Concept
onto:Grammar onto:Concept
onto:Grammarware onto:Concept
onto:Graph onto:Concept
onto:Heap onto:Concept
onto:Hello_world_program onto:Concept
onto:Human resource management system onto:Concept
onto:IO Monad onto:Concept
onto:Immutable list onto:Concept
onto:Imperative data structure onto:Concept
onto:Induction onto:Concept
onto:Inductive step onto:Concept
onto:Information hiding onto:Concept
onto:Information system onto:Concept
onto:Instance method onto:Concept
onto:Language concept onto:Concept
onto:Linked list onto:Concept
onto:List onto:Concept
onto:List monoid onto:Concept
onto:Management system onto:Concept
onto:Mapping onto:Concept
onto:Maybe monad onto:Concept
onto:Method onto:Concept
onto:Model transformation onto:Concept
onto:Monad onto:Concept
onto:Monoid onto:Concept
onto:Newtype onto:Concept
onto:OO programming onto:Concept
onto:Object onto:Concept
onto:Operation onto:Concept
onto:Operator onto:Concept
onto:Operator precedence onto:Concept
onto:Output onto:Concept
onto:POO onto:Concept
onto:Packaging onto:Concept
onto:Parametric polymorphism onto:Concept
onto:Parse tree onto:Concept
onto:Parser generation onto:Concept
onto:Parsing onto:Concept
onto:Partial application onto:Concept
onto:Pattern matching onto:Concept
onto:Performance onto:Concept
onto:Pointer onto:Concept
onto:Polymorphic function onto:Concept
onto:Polymorphic type onto:Concept
onto:Polymorphism onto:Concept
onto:Predicate onto:Concept
onto:Prelude module onto:Concept
onto:Prepared statement onto:Concept
onto:Pretty printing onto:Concept
onto:Primitive data type onto:Concept
onto:Process onto:Concept
onto:Product monoid onto:Concept
onto:Profiling onto:Concept
onto:Program onto:Concept
onto:Program design onto:Concept
onto:Program generation onto:Concept
onto:Program generator onto:Concept
onto:Program optimization onto:Concept
onto:Programming onto:Concept
onto:Programming idiom onto:Concept
onto:Programming paradigm onto:Concept
onto:Proof onto:Concept
onto:Pure function onto:Concept
onto:Quadratic equation onto:Concept
onto:Quasi-quotation onto:Concept
onto:Random number onto:Concept
onto:Random number generator onto:Concept
onto:Reader monad onto:Concept
onto:Record type onto:Concept
onto:Recursion onto:Concept
onto:Recursive data structure onto:Concept
onto:Reference equality onto:Concept
onto:Refinement mode onto:Concept
onto:Reflection onto:Concept
onto:Regular expression onto:Concept
onto:Relational database onto:Concept
onto:Relational model onto:Concept
onto:Relational schema onto:Concept
onto:Remote method invocation onto:Concept
onto:Remote procedure call onto:Concept
onto:Requirements analysis onto:Concept
onto:Result onto:Concept
onto:Reverse_Polish_notation onto:Concept
onto:STM onto:Concept
onto:Schema-based validation onto:Concept
onto:Scoping onto:Concept
onto:Scrap your boilerplate onto:Concept
[-0.15in] onto:Search algorithm onto:Concept
onto:Search problem onto:Concept
onto:Semantic equality onto:Concept
onto:Semantics onto:Concept
onto:Software architecture onto:Concept
onto:Software artifact onto:Concept
onto:Software component onto:Concept
onto:Software design onto:Concept
onto:Software engineering onto:Concept
onto:Software product line onto:Concept
onto:Software system onto:Concept
onto:Sorting algorithm onto:Concept
onto:Sorting problem onto:Concept
onto:Space onto:Concept
onto:Specification onto:Concept
onto:Specification language onto:Concept
onto:Standard onto:Concept

onto:State onto:Concept

onto:State monad onto:Concept

onto:Static method onto:Concept

onto:Strategic programming onto:Concept

onto:Structural typing onto:Concept

onto:Structured programming onto:Concept

onto:Subtype onto:Concept

onto:Subtype polymorphism onto:Concept

onto:Subtyping onto:Concept

onto:Sum monoid onto:Concept

onto:Syntactic category onto:Concept

onto:Syntax onto:Concept

onto:Syntax tree onto:Concept

onto:TCP onto:Concept

onto:TMVar onto:Concept

onto:Tail onto:Concept

onto:Taxonomy onto:Concept

onto:Template metaprogramming onto:Concept

onto:Test case onto:Concept

onto:Test data generation onto:Concept

onto:Testing onto:Concept

onto:Text onto:Concept

onto:Textbook onto:Concept

onto:Thread onto:Concept

onto:Tool onto:Concept

onto:Top-down parsing onto:Concept

onto:Total order onto:Concept

onto:Traversal onto:Concept

onto:Traversal scheme onto:Concept

onto:Tree onto:Concept

onto:Type onto:Concept

onto:Type checking onto:Concept

onto:Type constraint onto:Concept

onto:Type constructor onto:Concept

onto:Type inference onto:Concept

onto:Type signature onto:Concept

onto:Type synonym onto:Concept

onto:Type system onto:Concept

onto:Type-class instance onto:Concept

onto:Type-class polymorphism onto:Concept

onto:UDP onto:Concept

onto:Uncurrying onto:Concept

onto:Unit testing onto:Concept

onto:Unparsing onto:Concept

onto:User interface onto:Concept

onto:Variability onto:Concept

onto:View onto:Concept

onto:Web application onto:Concept

onto:Writer monad onto:Concept

onto:XML processing onto:Concept

onto:Zipper onto:Concept

onto:Zipper monad onto:Concept

onto:101companies onto:Container

onto:Computing onto:Container

onto:Course onto:Container

onto:Data onto:Container

onto:Data modeling onto:Container

onto:Data parallelism onto:Container

onto:Datalog basics onto:Container

onto:Java mapping onto:Container

onto:MDE onto:Container

onto:Mathematics onto:Container

onto:NoSQL onto:Container

onto:Python potpourri onto:Container

onto:Software engineering onto:Container

onto:Software language engineering onto:Container

onto:Theme onto:Container

onto:Vocabulary onto:Container

onto:Web applications in Java onto:Container

onto:XML programming onto:Container

onto:Functional data structure onto:Data structure

onto:Graph onto:Data structure

onto:Heap onto:Data structure

onto:Immutable list onto:Data structure

onto:Imperative data structure onto:Data structure

onto:Linked list onto:Data structure

onto:List onto:Data structure

onto:Recursive data structure onto:Data structure

onto:Tree onto:Data structure

onto:Zipper onto:Data structure

onto:List monoid onto:Data type

onto:Monoid onto:Data type

onto:Product monoid onto:Data type

onto:Sum monoid onto:Data type

onto:Relational database onto:Database

onto:Document onto:Description

onto:Feature onto:Description

onto:Reference equality onto:Equality

onto:Semantic equality onto:Equality

onto:Immutable list onto:Functional data structure

onto:Context-free grammar onto:Grammar

onto:Linked list onto:Imperative data structure

onto:Human resource management system onto:Information system

onto:ADO .NET onto:Instrument

onto:AST onto:Instrument

onto:Abstract data type onto:Instrument

onto:Abstract syntax onto:Instrument

onto:Abstract syntax tree onto:Instrument

onto:Abstraction onto:Instrument

onto:Abstraction mechanism onto:Instrument

onto:Accumulator onto:Instrument

onto:Action onto:Instrument

onto:Active record onto:Instrument

onto:Ad-hoc polymorphism onto:Instrument

onto:Ajax onto:Instrument

onto:Algebraic data type onto:Instrument

onto:Algorithm onto:Instrument

onto:Algorithm design onto:Instrument

onto:Algorithmic problem onto:Instrument

onto:Android Manifest onto:Instrument

onto:Android Menu onto:Instrument

onto:Android Resource onto:Instrument

onto:Android project onto:Instrument

onto:Anonymous class onto:Instrument

onto:Anonymous function onto:Instrument

onto:AppWidget onto:Instrument

onto:Application domain onto:Instrument

onto:Architectural pattern onto:Instrument

onto:Argument onto:Instrument

onto:Aspect-oriented programming onto:Instrument

onto:Assertion onto:Instrument

onto:Association onto:Instrument

onto:Association list onto:Instrument

onto:Backup onto:Instrument

onto:Base case onto:Instrument

onto:Bidirectional transformation onto:Instrument

onto:Bottom-up parsing onto:Instrument

onto:Bounded polymorphism onto:Instrument

onto:Business process onto:Instrument

onto:CRUD onto:Instrument

onto:Calculation onto:Instrument

onto:Catamorphism onto:Instrument

onto:Class onto:Instrument

onto:Closure onto:Instrument

onto:Code onto:Instrument

onto:Combinator onto:Instrument

onto:Command onto:Instrument

onto:Computing onto:Instrument

onto:Concept onto:Instrument

onto:Concrete data type onto:Instrument

onto:Concrete syntax onto:Instrument

onto:Concrete syntax tree onto:Instrument

onto:Condition onto:Instrument

onto:Constructor component onto:Instrument

onto:Context-free grammar onto:Instrument

onto:Cookie onto:Instrument

onto:Core onto:Instrument

onto:Corecursion onto:Instrument

onto:Crosscutting concern onto:Instrument

onto:Currying onto:Instrument

onto:Data constructor onto:Instrument

onto:Data generator onto:Instrument

onto:Data model onto:Instrument

onto:Data modeling onto:Instrument

onto:Data structure onto:Instrument

onto:Data structure design onto:Instrument

onto:Data term onto:Instrument

onto:Data type onto:Instrument

onto:Data variation onto:Instrument

onto:Database onto:Instrument

onto:Database schema onto:Instrument

onto:Datatype-generic programming onto:Instrument

onto:Delta modifier onto:Instrument

onto:Design pattern onto:Instrument

onto:Dialog onto:Instrument

onto:Directory onto:Instrument

onto:Divide and conquer algorithm onto:Instrument

onto:Documentation onto:Instrument

onto:Documentation generation onto:Instrument

onto:Endogenous model transformation onto:Instrument

onto:Enumeration onto:Instrument

onto:Equality onto:Instrument

onto:Exception onto:Instrument

onto:Exogenous model transformation onto:Instrument

onto:Feature modeling onto:Instrument

onto:Fibonacci number onto:Instrument

onto:Fold algebra onto:Instrument

onto:Function onto:Instrument

onto:Functional OO programming onto:Instrument

onto:Functional data structure onto:Instrument

onto:Functional programming onto:Instrument

onto:Functor onto:Instrument

onto:Generative programming onto:Instrument

onto:Generic programming onto:Instrument

onto:Grammar onto:Instrument

onto:Grammarware onto:Instrument

onto:Graph onto:Instrument

onto:Heap onto:Instrument

onto:Hello_world_program onto:Instrument

onto:Human resource management system onto:Instrument

onto:IO Monad onto:Instrument

onto:Immutable list onto:Instrument

onto:Imperative data structure onto:Instrument

onto:Induction onto:Instrument

onto:Inductive step onto:Instrument

onto:Information hiding onto:Instrument

onto:Information system onto:Instrument

onto:Instance method onto:Instrument

onto:Language onto:Instrument

onto:Language concept onto:Instrument

onto:Linked list onto:Instrument

onto:List onto:Instrument

onto:List monoid onto:Instrument

onto:Management system onto:Instrument

onto:Mapping onto:Instrument

onto:Maybe monad onto:Instrument

onto:Method onto:Instrument

onto:Model transformation onto:Instrument

onto:Monad onto:Instrument

onto:Monoid onto:Instrument

onto:Newtype onto:Instrument

onto:OO programming onto:Instrument

onto:Object onto:Instrument

onto:Operation onto:Instrument

onto:Operator onto:Instrument

onto:Operator precedence onto:Instrument

onto:Output onto:Instrument

onto:POO onto:Instrument

onto:Packaging onto:Instrument

onto:Parametric polymorphism onto:Instrument

onto:Parse tree onto:Instrument

onto:Parser generation onto:Instrument

onto:Parsing onto:Instrument

onto:Partial application onto:Instrument

onto:Pattern matching onto:Instrument

onto:Performance onto:Instrument

onto:Pointer onto:Instrument

onto:Polymorphic function onto:Instrument

onto:Polymorphic type onto:Instrument

onto:Polymorphism onto:Instrument

onto:Predicate onto:Instrument

onto:Prelude module onto:Instrument

onto:Prepared statement onto:Instrument

onto:Pretty printing onto:Instrument

onto:Primitive data type onto:Instrument

onto:Process onto:Instrument

onto:Product monoid onto:Instrument

onto:Profiling onto:Instrument

onto:Program onto:Instrument

onto:Program design onto:Instrument

onto:Program generation onto:Instrument

onto:Program generator onto:Instrument

onto:Program optimization onto:Instrument

onto:Programming onto:Instrument

onto:Programming idiom onto:Instrument

onto:Programming paradigm onto:Instrument

onto:Proof onto:Instrument

onto:Pure function onto:Instrument

onto:Quadratic equation onto:Instrument

onto:Quasi-quotation onto:Instrument

onto:Random number onto:Instrument

onto:Random number generator onto:Instrument

onto:Reader monad onto:Instrument

onto:Record type onto:Instrument

onto:Recursion onto:Instrument

onto:Recursive data structure onto:Instrument

onto:Reference equality onto:Instrument

onto:Refinement mode onto:Instrument

onto:Reflection onto:Instrument

onto:Regular expression onto:Instrument

onto:Relational database onto:Instrument

onto:Relational model onto:Instrument

onto:Relational schema onto:Instrument

onto:Remote method invocation onto:Instrument

onto:Remote procedure call onto:Instrument

onto:Requirements analysis onto:Instrument

onto:Result onto:Instrument

onto:Reverse_Polish_notation onto:Instrument

onto:STM onto:Instrument

onto:Schema-based validation onto:Instrument

onto:Scoping onto:Instrument

onto:Scrap your boilerplate onto:Instrument

onto:Search algorithm onto:Instrument

onto:Search problem onto:Instrument

onto:Semantic equality onto:Instrument

onto:Semantics onto:Instrument

onto:Software architecture onto:Instrument

onto:Software artifact onto:Instrument

onto:Software component onto:Instrument

onto:Software design onto:Instrument

onto:Software engineering onto:Instrument

onto:Software product line onto:Instrument

onto:Software system onto:Instrument

onto:Sorting algorithm onto:Instrument

onto:Sorting problem onto:Instrument

onto:Space onto:Instrument

onto:Specification onto:Instrument

onto:Specification language onto:Instrument

onto:Standard onto:Instrument

onto:State onto:Instrument

onto:State monad onto:Instrument

onto:Static method onto:Instrument

onto:Strategic programming onto:Instrument

onto:Structural typing onto:Instrument

onto:Structured programming onto:Instrument

onto:Subtype onto:Instrument

onto:Subtype polymorphism onto:Instrument

onto:Subtyping onto:Instrument

onto:Sum monoid onto:Instrument

onto:Syntactic category onto:Instrument

onto:Syntax onto:Instrument

onto:Syntax tree onto:Instrument

onto:TCP onto:Instrument

onto:TMVar onto:Instrument

onto:Tail onto:Instrument

onto:Taxonomy onto:Instrument

onto:Technology onto:Instrument

onto:Template metaprogramming onto:Instrument

onto:Test case onto:Instrument

onto:Test data generation onto:Instrument

onto:Testing onto:Instrument

onto:Text onto:Instrument

onto:Textbook onto:Instrument

onto:Thread onto:Instrument

onto:Tool onto:Instrument

onto:Top-down parsing onto:Instrument

onto:Total order onto:Instrument

onto:Traversal onto:Instrument

onto:Traversal scheme onto:Instrument

onto:Tree onto:Instrument

onto:Type onto:Instrument

onto:Type checking onto:Instrument

onto:Type constraint onto:Instrument

onto:Type constructor onto:Instrument

onto:Type inference onto:Instrument

onto:Type signature onto:Instrument

onto:Type synonym onto:Instrument

onto:Type system onto:Instrument

onto:Type-class instance onto:Instrument

onto:Type-class polymorphism onto:Instrument

onto:UDP onto:Instrument

onto:Uncurrying onto:Instrument

onto:Unit testing onto:Instrument

onto:Unparsing onto:Instrument

onto:User interface onto:Instrument

onto:Variability onto:Instrument

onto:View onto:Instrument

onto:Web application onto:Instrument

onto:Writer monad onto:Instrument

onto:XML processing onto:Instrument

onto:Zipper onto:Instrument

onto:Zipper monad onto:Instrument

onto:Ajax onto:Language concept

onto:Class onto:Language concept

onto:Instance method onto:Language concept

onto:Method onto:Language concept

onto:Static method onto:Language concept

onto:Immutable list onto:List

onto:Linked list onto:List

onto:Human resource management system onto:Management system

onto:Instance method onto:Method

onto:Static method onto:Method

onto:Endogenous model transformation onto:Model transformation

onto:Exogenous model transformation onto:Model transformation

onto:IO Monad onto:Monad

onto:Maybe monad onto:Monad

onto:Reader monad onto:Monad

onto:State monad onto:Monad

onto:Writer monad onto:Monad

onto:Zipper monad onto:Monad

onto:List monoid onto:Monoid

onto:Product monoid onto:Monoid

onto:Sum monoid onto:Monoid

onto:Bottom-up parsing onto:Parsing

onto:Top-down parsing onto:Parsing

onto:Ad-hoc polymorphism onto:Polymorphism

onto:Bounded polymorphism onto:Polymorphism

onto:Parametric polymorphism onto:Polymorphism

onto:Subtype polymorphism onto:Polymorphism

onto:Type-class polymorphism onto:Polymorphism

onto:Hello_world_program onto:Program

onto:Generative programming onto:Programming

onto:Strategic programming onto:Programming

onto:Accumulator onto:Programming idiom

onto:Functor onto:Programming idiom

onto:IO Monad onto:Programming idiom

onto:Maybe monad onto:Programming idiom

onto:Monad onto:Programming idiom

onto:Reader monad onto:Programming idiom

onto:State monad onto:Programming idiom

onto:Writer monad onto:Programming idiom

onto:Zipper monad onto:Programming idiom

onto:Aspect-oriented programming onto:Programming paradigm

onto:Functional programming onto:Programming paradigm

onto:Generic programming onto:Programming paradigm

onto:OO programming onto:Programming paradigm

onto:Structured programming onto:Programming paradigm

onto:Hello_world_program onto:Software artifact

onto:Program onto:Software artifact

onto:OO programming onto:Structured programming

onto:Abstract syntax onto:Syntax

onto:Concrete syntax onto:Syntax

onto:Abstract syntax tree onto:Syntax tree

onto:Concrete syntax tree onto:Syntax tree

onto:Parse tree onto:Syntax tree

onto:Contribution onto:System

onto:Technology onto:System

onto:Unit testing onto:Testing

onto:Data parallelism onto:Theme

onto:Datalog basics onto:Theme

onto:Java mapping onto:Theme

onto:NoSQL onto:Theme

onto:Python potpourri onto:Theme

onto:Web applications in Java onto:Theme

onto:XML programming onto:Theme

onto:Algebraic data type onto:Type

onto:Newtype onto:Type

onto:Record type onto:Type

onto:101companies onto:Vocabulary

onto:Computing onto:Vocabulary

onto:Data onto:Vocabulary

onto:Data modeling onto:Vocabulary

onto:MDE onto:Vocabulary

onto:Mathematics onto:Vocabulary

onto:Software engineering onto:Vocabulary

onto:Software language engineering onto:Vocabulary

230 Appendices

For instance, both a software technology and a contribution (i.e., an implementation of 101 ’s

system) can be regarded as a ‘software system’. The idea is that these base types are conve-

nient in setting up SoLaSoTe’s properties, as discussed in more detail in For instance, both a

technology and a contribution may be said to be ‘developed by’ a person. For completeness’

sake, the list of base types and the corresponding subClassOf relationships can be retrieved

from SoLaSoTe’s triplestore as follows:

Query baseTypes.sparql

SELECT ?type ?comment {

?type rdfs:subClassOf onto:Resource .

?type rdfs:comment ?comment .

FILTER (?type 6=onto:Classifier) .

FILTER NOT EXISTS {

?type rdfs:subClassOf onto:Entity

}

}

ORDER BY ?type

Query baseTypeSubClassing.sparql

SELECT ?supertype ?subtype {

?supertype rdfs:subClassOf onto:Resource .

?subtype rdfs:subClassOf ?supertype .

FILTER (?supertype 6=rdfs:Resource) .

FILTER (?supertype 6=onto:Resource) .

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 231

FILTER (?supertype 6=onto:Entity) .

FILTER (?subtype 6=?supertype) .

FILTER NOT EXISTS { ?supertype a onto:Classifier } .

FILTER NOT EXISTS { ?subtype a onto:Classifier }

}

ORDER BY ?supertype ?subtype

Last but not least, SoLaSoTe also leverages external types, i.e., types of other ontologies. In

fact, besides RDF and RDFS, SoLaSoTe currently only uses these FOAF types:

Output of query externalTypes.sparql

232 Appendices

subtype supertype

onto:101companies onto:rdfs:Class
onto:ADO .NET onto:rdfs:Class
onto:AST onto:rdfs:Class
onto:Abstract data type onto:rdfs:Class
onto:Abstract syntax onto:rdfs:Class
onto:Abstract syntax tree onto:rdfs:Class
onto:Abstraction onto:rdfs:Class
onto:Abstraction mechanism onto:rdfs:Class
onto:Accumulator onto:rdfs:Class
onto:Action onto:rdfs:Class
onto:Active record onto:rdfs:Class
onto:Ad-hoc polymorphism onto:rdfs:Class
onto:Ajax onto:rdfs:Class
onto:Algebraic data type onto:rdfs:Class
onto:Algorithm onto:rdfs:Class
onto:Algorithm design onto:rdfs:Class
onto:Algorithmic problem onto:rdfs:Class
onto:Android Manifest onto:rdfs:Class
onto:Android Menu onto:rdfs:Class
onto:Android Resource onto:rdfs:Class
onto:Android project onto:rdfs:Class
onto:Anonymous class onto:rdfs:Class
onto:Anonymous function onto:rdfs:Class
onto:AppWidget onto:rdfs:Class
onto:Application domain onto:rdfs:Class
onto:Architectural pattern onto:rdfs:Class
onto:Argument onto:rdfs:Class
onto:Aspect-oriented programming onto:rdfs:Class
onto:Assertion onto:rdfs:Class
onto:Association onto:rdfs:Class
onto:Association list onto:rdfs:Class
onto:Backup onto:rdfs:Class
onto:Base case onto:rdfs:Class
onto:Bidirectional transformation onto:rdfs:Class
onto:Bottom-up parsing onto:rdfs:Class
onto:Bounded polymorphism onto:rdfs:Class
onto:Business process onto:rdfs:Class
onto:CRUD onto:rdfs:Class
onto:Calculation onto:rdfs:Class
onto:Catamorphism onto:rdfs:Class
onto:Class onto:rdfs:Class
onto:Classifier onto:rdfs:Class
onto:Closure onto:rdfs:Class
onto:Code onto:rdfs:Class
onto:Combinator onto:rdfs:Class
onto:Command onto:rdfs:Class
onto:Computing onto:rdfs:Class
onto:Concept onto:rdfs:Class
onto:Concrete data type onto:rdfs:Class
onto:Concrete syntax onto:rdfs:Class
onto:Concrete syntax tree onto:rdfs:Class
onto:Condition onto:rdfs:Class
onto:Constructor component onto:rdfs:Class
onto:Container onto:rdfs:Class
onto:Context-free grammar onto:rdfs:Class
onto:Contribution onto:rdfs:Class
onto:Contributor onto:foaf:Person
onto:Contributor onto:rdfs:Class
onto:Cookie onto:rdfs:Class
onto:Core onto:rdfs:Class
onto:Corecursion onto:rdfs:Class
onto:Course onto:rdfs:Class
onto:Crosscutting concern onto:rdfs:Class
onto:Currying onto:rdfs:Class
onto:Data onto:rdfs:Class

onto:Data constructor onto:rdfs:Class

onto:Data generator onto:rdfs:Class

onto:Data model onto:rdfs:Class

onto:Data modeling onto:rdfs:Class

onto:Data parallelism onto:rdfs:Class

onto:Data structure onto:rdfs:Class

onto:Data structure design onto:rdfs:Class

onto:Data term onto:rdfs:Class

onto:Data type onto:rdfs:Class

onto:Data variation onto:rdfs:Class

onto:Database onto:rdfs:Class

onto:Database schema onto:rdfs:Class

onto:Datalog basics onto:rdfs:Class

onto:Datatype-generic programming onto:rdfs:Class

onto:Delta modifier onto:rdfs:Class

onto:Description onto:rdfs:Class

onto:Design pattern onto:rdfs:Class

onto:Dialog onto:rdfs:Class

onto:Directory onto:rdfs:Class

onto:Divide and conquer algorithm onto:rdfs:Class

onto:Document onto:foaf:Document

onto:Document onto:rdfs:Class

onto:Documentation onto:rdfs:Class

onto:Documentation generation onto:rdfs:Class

onto:Endogenous model transformation onto:rdfs:Class

onto:Entity onto:rdfs:Class

onto:Enumeration onto:rdfs:Class

onto:Equality onto:rdfs:Class

onto:Exception onto:rdfs:Class

onto:Exogenous model transformation onto:rdfs:Class

onto:Feature onto:rdfs:Class

onto:Feature modeling onto:rdfs:Class

onto:Fibonacci number onto:rdfs:Class

onto:Fold algebra onto:rdfs:Class

onto:Function onto:rdfs:Class

onto:Functional OO programming onto:rdfs:Class

onto:Functional data structure onto:rdfs:Class

onto:Functional programming onto:rdfs:Class

onto:Functor onto:rdfs:Class

onto:Generative programming onto:rdfs:Class

onto:Generic programming onto:rdfs:Class

onto:Grammar onto:rdfs:Class

onto:Grammarware onto:rdfs:Class

onto:Graph onto:rdfs:Class

onto:Heap onto:rdfs:Class

onto:Hello_world_program onto:rdfs:Class

onto:Human resource management system onto:rdfs:Class

onto:IO Monad onto:rdfs:Class

onto:Immutable list onto:rdfs:Class

onto:Imperative data structure onto:rdfs:Class

onto:Induction onto:rdfs:Class

onto:Inductive step onto:rdfs:Class

onto:Information hiding onto:rdfs:Class

onto:Information system onto:rdfs:Class

onto:Instance method onto:rdfs:Class

onto:Instrument onto:rdfs:Class

onto:Java mapping onto:rdfs:Class

onto:Language onto:rdfs:Class

onto:Language concept onto:rdfs:Class

onto:Linked list onto:rdfs:Class

onto:List onto:rdfs:Class

onto:List monoid onto:rdfs:Class

onto:MDE onto:rdfs:Class

onto:Management system onto:rdfs:Class

onto:Mapping onto:rdfs:Class

onto:Mathematics onto:rdfs:Class

onto:Maybe monad onto:rdfs:Class

onto:Method onto:rdfs:Class

onto:Model transformation onto:rdfs:Class

onto:Monad onto:rdfs:Class

onto:Monoid onto:rdfs:Class

onto:Newtype onto:rdfs:Class

onto:NoSQL onto:rdfs:Class

onto:OO programming onto:rdfs:Class

onto:Object onto:rdfs:Class

onto:Operation onto:rdfs:Class

onto:Operator onto:rdfs:Class

onto:Operator precedence onto:rdfs:Class

onto:Output onto:rdfs:Class

onto:POO onto:rdfs:Class

onto:Packaging onto:rdfs:Class

onto:Parametric polymorphism onto:rdfs:Class

onto:Parse tree onto:rdfs:Class

onto:Parser generation onto:rdfs:Class

onto:Parsing onto:rdfs:Class

onto:Partial application onto:rdfs:Class

onto:Pattern matching onto:rdfs:Class

onto:Performance onto:rdfs:Class

onto:Pointer onto:rdfs:Class

onto:Polymorphic function onto:rdfs:Class

onto:Polymorphic type onto:rdfs:Class

onto:Polymorphism onto:rdfs:Class

onto:Predicate onto:rdfs:Class

onto:Prelude module onto:Standard Library

onto:Prelude module onto:rdfs:Class

onto:Prepared statement onto:rdfs:Class

onto:Pretty printing onto:rdfs:Class

onto:Primitive data type onto:rdfs:Class

onto:Process onto:rdfs:Class

onto:Product monoid onto:rdfs:Class

onto:Profiling onto:rdfs:Class

onto:Program onto:rdfs:Class

onto:Program design onto:rdfs:Class

onto:Program generation onto:rdfs:Class

onto:Program generator onto:rdfs:Class

onto:Program optimization onto:rdfs:Class

onto:Programming onto:rdfs:Class

onto:Programming idiom onto:rdfs:Class

onto:Programming paradigm onto:rdfs:Class

onto:Proof onto:rdfs:Class

onto:Pure function onto:rdfs:Class

onto:Python potpourri onto:rdfs:Class

onto:Quadratic equation onto:rdfs:Class

onto:Quasi-quotation onto:rdfs:Class

onto:Random number onto:rdfs:Class

onto:Random number generator onto:rdfs:Class

onto:Reader monad onto:rdfs:Class

onto:Record type onto:rdfs:Class

onto:Recursion onto:rdfs:Class

onto:Recursive data structure onto:rdfs:Class

onto:Reference equality onto:rdfs:Class

onto:Refinement mode onto:rdfs:Class

onto:Reflection onto:rdfs:Class

onto:Regular expression onto:rdfs:Class

onto:Relational database onto:rdfs:Class

onto:Relational model onto:rdfs:Class

onto:Relational schema onto:rdfs:Class

onto:Remote method invocation onto:rdfs:Class

onto:Remote procedure call onto:rdfs:Class

onto:Requirements analysis onto:rdfs:Class

onto:Resource onto:rdfs:Class

onto:Result onto:rdfs:Class

onto:Reverse_Polish_notation onto:rdfs:Class

onto:STM onto:rdfs:Class

onto:Schema-based validation onto:rdfs:Class

onto:Scoping onto:rdfs:Class

onto:Scrap your boilerplate onto:rdfs:Class

onto:Script onto:rdfs:Class

onto:Search algorithm onto:rdfs:Class

onto:Search problem onto:rdfs:Class

onto:Semantic equality onto:rdfs:Class

onto:Semantics onto:rdfs:Class

onto:Software architecture onto:rdfs:Class

onto:Software artifact onto:rdfs:Class

onto:Software component onto:rdfs:Class

onto:Software design onto:rdfs:Class

onto:Software engineering onto:rdfs:Class

onto:Software language engineering onto:rdfs:Class

onto:Software product line onto:rdfs:Class

onto:Software system onto:rdfs:Class

onto:Sorting algorithm onto:rdfs:Class

onto:Sorting problem onto:rdfs:Class

onto:Space onto:rdfs:Class

onto:Specification onto:rdfs:Class

onto:Specification language onto:rdfs:Class

onto:Standard onto:rdfs:Class

onto:State onto:rdfs:Class

onto:State monad onto:rdfs:Class

onto:Static method onto:rdfs:Class

onto:Strategic programming onto:rdfs:Class

onto:Structural typing onto:rdfs:Class

onto:Structured programming onto:rdfs:Class

onto:Subtype onto:rdfs:Class

onto:Subtype polymorphism onto:rdfs:Class

onto:Subtyping onto:rdfs:Class

onto:Sum monoid onto:rdfs:Class

onto:Syntactic category onto:rdfs:Class

onto:Syntax onto:rdfs:Class

onto:Syntax tree onto:rdfs:Class

onto:System onto:rdfs:Class

onto:TCP onto:rdfs:Class

onto:TMVar onto:rdfs:Class

onto:Tag onto:rdfs:Class

onto:Tail onto:rdfs:Class

onto:Taxonomy onto:rdfs:Class

onto:Technology onto:rdfs:Class

onto:Template metaprogramming onto:rdfs:Class

onto:Test case onto:rdfs:Class

onto:Test data generation onto:rdfs:Class

onto:Testing onto:rdfs:Class

onto:Text onto:rdfs:Class

onto:Textbook onto:rdfs:Class

onto:Theme onto:rdfs:Class

onto:Thread onto:rdfs:Class

onto:Tool onto:rdfs:Class

onto:Top-down parsing onto:rdfs:Class

onto:Total order onto:rdfs:Class

onto:Traversal onto:rdfs:Class

onto:Traversal scheme onto:rdfs:Class

onto:Tree onto:rdfs:Class

onto:Type onto:rdfs:Class

onto:Type checking onto:rdfs:Class

onto:Type constraint onto:rdfs:Class

onto:Type constructor onto:rdfs:Class

onto:Type inference onto:rdfs:Class

onto:Type signature onto:rdfs:Class

onto:Type synonym onto:rdfs:Class

onto:Type system onto:rdfs:Class

onto:Type-class instance onto:rdfs:Class

onto:Type-class polymorphism onto:rdfs:Class

onto:UDP onto:rdfs:Class

onto:Uncurrying onto:rdfs:Class

onto:Unit testing onto:rdfs:Class

onto:Unparsing onto:rdfs:Class

onto:User interface onto:rdfs:Class

onto:Variability onto:rdfs:Class

onto:View onto:rdfs:Class

onto:Vocabulary onto:rdfs:Class

onto:Web application onto:rdfs:Class

onto:Web applications in Java onto:rdfs:Class

onto:Writer monad onto:rdfs:Class

onto:XML processing onto:rdfs:Class

onto:XML programming onto:rdfs:Class

onto:Zipper onto:rdfs:Class

onto:Zipper monad onto:rdfs:Class

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 233

The following query results in the list shown above:

Query externalTypes.sparql

SELECT DISTINCT ?subtype ?supertype {

?subtype rdfs:subClassOf ?supertype .

?subtype rdfs:subClassOf onto:Resource .

FILTER (?supertype 6=rdfs:Resource) .

FILTER NOT EXISTS {

?supertype rdfs:subClassOf onto:Resource

}

}

ORDER BY ?subtype ?supertype

Relationships of SoLaSoTe

SoLaSoTe leverages several relationship types to characterize and relate individuals, as devel-

oped in the present section. We begin by providing an overview of the relationships. Next, we

describe refinements of these relationships that are often available to better constrain domains

and ranges to well-established scenarios. Eventually, we describe all relationships in more detail

and illustrate them by means of representative triples.

Relationship types–Overview

There are these overall relationships; ‘properties’ in the terminology of RDFS:

Output of query relationships.sparql

234 Appendices

property comment

basedOn Reuse of systems
carries Tagging of entities
dependsOn Dependence relationships
designedBy Designers of entities
developedBy Developers of entities
illustrates Descriptions serving for illustration
implements Systems implementing descriptions
linksTo Non-specific link to external resource
memberOf Membership relationships
mentions Nonspecific references to entities
moreComplexThan Complexity comparison of entities
partOf Whole-part relationships
profile Web page with info about contributor
reviewedBy Reviewer of entities
sameAs Equivalence relative to external resource
similarTo Similarity relative to external resource
supports Instruments supporting instruments
uses Use of instruments by systems
varies Similarity of systems

The relationships can be retrieved from SoLaSoTe’s triplestore as follows:

Query relationships.sparql

SELECT ?property ?comment

WHERE {

?property rdfs:domain ?domain .

?domain rdfs:subClassOf onto:Resource .

FILTER NOT EXISTS {

?property rdfs:subPropertyOf ?super .

FILTER (?super 6=?property)

} .

?property rdfs:comment ?comment

}

ORDER BY ?property ?comment

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 235

Before we discuss these predicates in more detail, we should also identify their types in the

sense of the assumed domain and range for each predicate:

Output of query domainsAndRanges.sparql

236 Appendices

property domain range

basedOn onto:System onto:System

carries onto:Entity onto:Tag

conceptMemberOf onto:Concept onto:Vocabulary

contribBasedOn onto:Contribution onto:Contribution

contribDesignedBy onto:Contribution onto:Contributor

contribDevelopedBy onto:Contribution onto:Contributor

contribImplements onto:Contribution onto:Feature

contribMemberOf onto:Contribution onto:Theme

contribMoreComplexThan onto:Contribution onto:Contribution

contribReviewedBy onto:Contribution onto:Contributor

contribUsesConcept onto:Contribution onto:Concept

contribUsesLang onto:Contribution onto:Language

contribUsesTech onto:Contribution onto:Technology

contribVaries onto:Contribution onto:Contribution

courseDesignedBy onto:Course onto:Contributor

dependsOn onto:Entity onto:Entity

designedBy onto:Entity onto:foaf:Person

developedBy onto:Entity onto:foaf:Person

featureDependsOn onto:Feature onto:Feature

featureMoreComplexThan onto:Feature onto:Feature

illustrates onto:Description onto:Instrument

implements onto:System onto:Description

langDesignedBy onto:Language onto:foaf:Person

linksTo onto:Entity onto:rdfs:Literal

memberOf onto:Entity onto:Container

mentions onto:Entity onto:Entity

moreComplexThan onto:Entity onto:Entity

partOf onto:Entity onto:Entity

profile onto:Contributor onto:rdfs:Literal

reviewedBy onto:Entity onto:foaf:Person

sameAs onto:Entity onto:rdfs:Literal

scriptDependsOn onto:Script onto:Script

scriptMemberOf onto:Script onto:Course

similarTo onto:Entity onto:rdfs:Literal

supports onto:Instrument onto:Instrument

techDependsOnConcept onto:Technology onto:Concept

techDependsOnLang onto:Technology onto:Language

techDependsOnTech onto:Technology onto:Technology

techDesignedBy onto:Technology onto:foaf:Person

techImplements onto:Technology onto:Document

techUsesConcept onto:Technology onto:Concept

techUsesLang onto:Technology onto:Language

techUsesTech onto:Technology onto:Technology

uses onto:System onto:Instrument

varies onto:System onto:System

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 237

Again, for completeness’ sake, the table has been produced by the following query:

Query domainsAndRanges.sparql

SELECT ?property ?domain ?range

WHERE {

?property rdfs:domain ?domain .

?property rdfs:range ?range .

?domain rdfs:subClassOf onto:Resource .

}

ORDER BY ?property ?domain ?range

Now let’s discuss these properties one by one, while also providing typical examples. We pick

a particular order that fits convenience of explanation.

Specialized relationships–Overview

Relationships–Details

Links to external resources This is a family of predicates all concerned with linking indi-

viduals of SoLaSoTe with external web-based resources, e.g., pages on Wikipedia or resources

according to DBpedia. Their meaning and purpose is closely related to owl:sameAs and vari-

ations that are discussed by the Semantic Web community [HHT11]. The use of onto:sameAs

expresses that the SoLaSoTe individual and the external resource’s URL refer to the same thing.

For instanceL

Query predicateSameAs1.sparql

238 Appendices

ASK {

"http://101companies.org/resources/Document#JLS"

onto:sameAs "http://docs.oracle.com/javase/specs/"

}

That is, there is an SoLaSoTe individual for the ‘Java Language Specification’ (JLS) of entity

type onto:Document; we use the onto:sameAs predicate to associate it with Oracle’s authorative

source for the JLS.

The use of onto:similarTo expresses that the SoLaSoTe individual and the external’s URL refer

to closely related but notably not the same things. An unspecific link to an external resource

is enabled by onto:linksTo. We query the links for an illustrative individual, concept:Monad:

Query predicateSameAs2.sparql

SELECT ?predicate ?url {

concept:Monad ?predicate ?url .

FILTER (

?predicate = onto:sameAs

∪?predicate = onto:similarTo

∪?predicate = onto:linksTo

)

}

Output of query predicateSameAs2.sparql

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 239

predicate url

onto:sameAs http://www.haskell.org/haskellwiki/Monad
onto:similarTo http://en.wikipedia.org/wiki/Monad(functionalprogramming)
onto:linksTo http://en.wikipedia.org/wiki/Monad(categorytheory)
onto:linksTo http://en.wikibooks.org/wiki/Haskell/Understandingmonads

That is, two pages, one on the Haskell wiki, another on Wikipedia, are linked to in ‘sameAs’

properties. The idea is here that these two pages describe the notion of monad exactly in the

functional programming-centric (perhaps even Haskell-biased) way as intended for SoLaSoTe.

Another page on Wikipedia is linked to in a ‘similarTo’ property because it is concerned with

the related notion of monad in category theory. Finally, a page on Wikibooks is linked to in

a ‘linksTo’ property to express that this page is not considered a definitional resource of the

notion at hand, but it does provide (pedagogically) valuable information.

Use of instruments by systems Systems (i.e., technologies and 101 ’s contributions) can

make use of instruments (i.e., software languages, technologies, and concepts). The property

of a system to use an instrument expresses that said instrument is used in the design or imple-

mentation or execution of said system. This may be more or less observable from the outside;

such a property expresses knowledge about ‘internals’.

More specifically, use of a language should be understood as ‘some artifact of the system being

written in said language’. For instance:

Query predicateUses1.sparql

ASK {

contrib:haskellStarter onto:uses lang:Haskell

}

 http://www.haskell.org/haskellwiki/Monad
http://en.wikipedia.org/wiki/Monad(functionalprogramming)
http://en.wikipedia.org/wiki/Monad(categorytheory)
 http://en.wikibooks.org/wiki/Haskell/Understanding monads

240 Appendices

Here, onto:haskellStarter is a simple Haskell-based contribution to 101. Use of a technology

should be understood as ‘the system being developed or executed with the help of said technol-

ogy’. Use of a concept should be understood as ‘the concept being exercised or taken dependence

on in the design or implementation or execution of the system’. For instance:

Query predicateUses2.sparql

ASK {

tech:JAXB onto:uses concept:Java_annotation

}

Here, tech:JAXB8 is the Java platform’s technology for XML-data binding, which indeed uses

‘Java annotations’ for controling the mapping.

Instruments supporting instruments A technology can support another technology in

that it provides some sort of interface in generalized sense (e.g., an I/O behavior or a plug-in

model) so that the supporting technology can be used with the supported technology. For

instance:

Query predicateSupports1.sparql

ASK {

tech:CMake onto:supports tech:Make

}

8... onto:sameAs http://www.oracle.com/technetwork/articles/javase/index-140168.html

tech:JAXB
http://www.oracle.com/technetwork/articles/javase/index-140168.html

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 241

Here, tech:CMake9 is a cross-platform, open-source build system which supports tech:Make in

that it CMake can generate native makefiles.

The predicate onto:supports generalizes the situation of technologies supporting technologies so

that instruments (i.e., languages, technologies, and concepts) support other instruments. Here

are the additional situations:

• A technology supporting a language: said interface can be leveraged by using the language.

• A technology supporting a concept: said interface (the use thereof) conforms to the

concept.

• A language supporting a concept: the language’s characteristics support the concept.

• A concept supporting an instrument: the concept is expected here to denote a class of

technologies and languages. Thus, this situation effectively reduces to one mentioned

before.

A few illustrative support relationships are queried here:

Query predicateSupports2.sparql

SELECT ?subject ?object {

?subject onto:supports ?object

}

Output of query predicateSupports2.sparql (first few rows)

9... onto:sameAs http://www.cmake.org/

http://www.cmake.org/

242 Appendices

subject object

tech:Phusion Passenger lang:Python
tech:HughesPJ concept:Unparsing
tech:CMake tech:Make
tech:CGI concept:Standard
tech:Moops concept:OO programming
concept:OO programming language concept:OO programming
concept:Multi-paradigm programming language concept:OO programming
tech:CMake tech:Visual Studio
concept:Functional programming language concept:Functional programming
concept:Multi-paradigm programming language concept:Functional programming
...

Descriptions serving for illustration As much as a system may use some instrument, a

feature description or any sort of document may be said to illustrate some instrument the point

being that a description may not be able to claim ‘use’ of the instrument, but it may very well

stipulate or explain or motivate its use. For instance:

Query predicateIllustrates1.sparql

ASK {

doc:Handbook_of_data_structures_and_applications

onto:illustrates

concept:Functional_data_structure

}

The listed handbook is claimed to illustrate the concept of functional data structures. The

‘illustrates’ predicate is specifically helpful in communicating the purpose of software features

of 101 ’s imaginary software system. Here is a query that looks up concepts illustrated by the

features:

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 243

Query predicateIllustrates2.sparql

SELECT ?feature ?concept ?headline {

?feature onto:illustrates ?concept .

?feature a onto:Feature .

?concept a onto:Concept .

?concept onto:hasHeadline ?headline

}

Output of query predicateIllustrates2.sparql (first few rows)

feature concept headline

Parsing Parsing Analysis of text and construction of parse trees
Distribution Client-server architecture Division of an architecture into client and server
Hierarchical company Recursive data structure A recursively defined data structure
Logging Separation of concerns A design principle to modularize concerns
Parsing Syntax Rules defining a software language
Flat company Data modeling The vocabulary in the context of data modeling
Flat company Data modeling The process of creating a data model

...

Whole-part relationships Whole-part relationships are used in many areas of modeling;

they make sense for SoLaSoTe, too. That is, some kinds of SoLaSoTe individuals may be

composites of other kinds of SoLaSoTe individuals. For instance:

Query predicatePartOf1.sparql

ASK {

244 Appendices

tech:javac onto:partOf tech:JDK

}

That is, the Java compiler, tech:javac,10 is part of the Java Development Kit, tech:JDK.11.

Operationally, by installing JDK on a machine, one also gets the executable for the Java

compiler. Here is another example exercising another entity type for whole-part relationships:

Query predicatePartOf2.sparql

ASK {

lang:XPath onto:partOf lang:XSLT

}

That is, the XPath query language for XML, lang:XPath,12 is part of the XSLT transformation

language for XML Development Kit, lang:XSLT.13. The ‘part of’ relationship must not be

confused here with a ‘subset off’ relationship. That is, by saying XPath is part of XSLT, we

refer to the fact that XPath expressions can be used in certain operand position in an XSLT

program.

Systems implementing descriptions Systems (i.e., technologies and 101 ’s contributions)

can implement descriptions (i.e., features or documents). The idea is that the descriptions serve

essentially as requirements. For instance:

10... onto:sameAs http://en.wikipedia.org/wiki/Javac
11... onto:sameAs http://en.wikipedia.org/wiki/Java_Development_Kit
12... onto:sameAs http://www.w3.org/TR/xpath/
13... onto:sameAs http://www.w3.org/TR/xslt

http://en.wikipedia.org/wiki/Javac
http://en.wikipedia.org/wiki/Java_Development_Kit
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xslt

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 245

Query predicateImplements1.sparql

ASK {

contrib:haskellStarter onto:implements feature:Total

}

Here, onto:haskellStarter is again the simple Haskell-based contribution to 101, which was ex-

ercised already earlier on. The triple states that the contribution implements feature:Total (a

feature for totaling all salaries in a company of 101 ’s system). Here is another example:

Query predicateImplements2.sparql

ASK {

tech:javac onto:implements doc:JLS

}

Here, tech:javac refers to the ‘standard’ Java compiler, as part of JDK, and doc:JLS refers again

to the Java Language Specification, as noted earlier. Clearly, the ‘standard’ is supposed to

implement the language ‘standard’.

Collections of entities SoLaSoTe organizes individuals in containers. There are the follow-

ing use cases:

• Vocabularies as containers with terms (typically concepts) as members.

• Courses as containers with scripts (units such as lectures) as members.

• Themes as containers with (101 ’s) contributions as members.

246 Appendices

These kinds of containment are illustrated in turn.

Query memberOfVocabulary.sparql

SELECT ?concept ?headline {

?concept a onto:Concept .

?concept onto:memberOf voc:Functional_programming .

?concept onto:hasHeadline ?headline

}

ORDER BY ?concept

Output of query memberOfVocabulary.sparql (first few rows)

concept headline

Action A monad-based computation
Algebraic data type A type for the construction of terms
Anamorphism A corecursion scheme for data types dualizing catamorphisms
Anonymous function A function without a name based on lambda abstraction
Applicative functor A kind of functor that models some monad-like computations
Arrow A functional programming idiom for composing computations
Catamorphism A recursion scheme for data types
...

Query memberOfCourse.sparql

SELECT ?script {

?script onto:memberOf course:Lambdas_in_Koblenz .

}

ORDER BY ?script

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 247

Output of query memberOfCourse.sparql (first few rows)

script

Data modeling in Haskell
First steps in Haskell
Functional data structures
Functors and friends
Generic functions
Higher-order functions in Haskell
Monads
...

SoLaSoTe’s individuals may engage in different kinds of collections. (As evident from the

queries to follow, such engagement is expressed through the ‘memberOf’ predicate, which is

also discussed again in §A.2.3.3.) We mentioned vocabularies, themes, and courses as forms of

collections in §A.2.1. Collection complements classification (§A.2.2.2).

Collection of concepts as vocabularies We refer back to §A.2.2.1 for the entity type

of vocabularies. For instance, the ‘Haskell vocabulary’ collects concepts that are essentially

specific to the Haskell style of functional programming or the Haskell community.

Query haskellVocabulary.sparql

SELECT ?concept ?headline

WHERE {

?concept onto:memberOf voc:Haskell .

?concept onto:hasHeadline ?headline

}

ORDER BY ?concept

248 Appendices

Output of query haskellVocabulary.sparql (first few rows)

concept headline

Either type A polymorphic type for disjoint (indexed) sums
Haskell package A distribution unit for Haskell
Haskell script A file with Haskell code
IO system The monadic approach to IO in Haskell
MVar A thread synchronization variable in Haskell
Maybe type A polymorphic type for handling optional values and error
Prelude module The standard library of Haskell
...

Collection of contributions as themes We refer back to §A.2.2.1 for the entity type of

themes. For instance, the ‘Starter’ theme collects contributions that demonstrate some simple

features across the board, i.e., for different software languages without relying on ‘advanced’

software technologies or software concepts.

Query starterTheme.sparql

SELECT ?contribution ?headline

WHERE {

?contribution onto:memberOf theme:Starter .

?contribution onto:hasHeadline ?headline

}

ORDER BY ?contribution

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 249

Output of query starterTheme.sparql

contribution headline

argoUML Structural modeling in UML with Technology:ArgoUML
haskellStarter Basic functional programming in Language:Haskell
html5local Web programming based on the Language:HTML5 ecosystem with local Technology:Web storage
javaComposition Object composition in Java
javaInheritance Class inheritance in Java
prologStarter a simple Language:Prolog-based implementation
pyjson Processing Language:JSON-based data in Language:Python
xslt XML processing with Language:XSLT

Dependence relationship

SoLaSoTe’s individuals may depend on each other in different ways. Scripts, i.e., course units

such as lectures or labs, may depend on each other in the sense that one unit builds upon content

of another unit. Consider the following dependencies for a course on functional programming:

Query dependsOnScript.sparql

SELECT ?earlier ?later {

?earlier a onto:Script .

?later a onto:Script .

?later onto:dependsOn ?earlier .

?earlier onto:memberOf course:Lambdas_in_Koblenz .

?later onto:memberOf course:Lambdas_in_Koblenz

}

Output of query dependsOnScript.sparql

250 Appendices

earlier later

Unparsing and parsing in Haskell Monads
Functors and friends Unparsing and parsing in Haskell
Functors and friends Monads
Functors and friends Generic functions
Type-class polymorphism Functors and friends
Higher-order functions in Haskell Type-class polymorphism
Higher-order functions in Haskell Functional data structures
Searching and sorting in Haskell Data modeling in Haskell
First steps in Haskell Software engineering for Haskell
Software engineering for Haskell Searching and sorting in Haskell
Data modeling in Haskell Higher-order functions in Haskell

For instance, the somewhat advanced topic of ‘functors’ (and friends) depends on prior coverage

of ‘type-class polymorphism’. Clearly, such dependency relationships can be used to arrange

the units in an actual sequential order and it helps self-learners in processing the content in a

reasonable order. Here is indeed a query which orders the scripts in such a way; we also list

the number of scripts that are prerequistes for each script:

Query prerequisites.sparql

SELECT DISTINCT

?script

(COUNT(?prerequisite) AS ?count)

WHERE {

?script onto:memberOf course:Lambdas_in_Koblenz .

OPTIONAL { ?script onto:dependsOn+ ?prerequisite }

}

GROUP BY ?script

ORDER BY ?count

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 251

Output of query prerequisites.sparql

script count

First steps in Haskell 0
Software engineering for Haskell 1
Searching and sorting in Haskell 2
Data modeling in Haskell 3
Higher-order functions in Haskell 4
Type-class polymorphism 5
Functional data structures 5
Functors and friends 6
Unparsing and parsing in Haskell 7
Generic functions 7
Monads 8

Another kind of dependency concerns features of 101 ’s system. That is, one feature may ‘imply’

(say, depend on) another feature. For instance, a feature to compute the ‘depth’ of department

nesting implies the feature for ‘hierachical companies’, as flat companies would not give rise to

a meaningful notion of depth. We query all feature dependencies as follows:

Query dependsOnFeature.sparql

SELECT ?feature ?implied {

?feature a onto:Feature .

?implied a onto:Feature .

?feature onto:dependsOn ?implied

}

Output of query dependsOnFeature.sparql

252 Appendices

feature implied

Editing Browsing
Restructuring Browsing
Web UI Browsing
Restructuring Browsing
History Total
Reliability Distribution
Offline mode Distribution
Restructuring Editing
Restructuring Editing
History Median
Dimensionality History
Depth Hierarchical company

Yet another kind of dependency concerns instruments to depend on other instruments in the

sense that one instrument cannot be ‘reasonably’ used without the other. For illustration,

consider the following dependencies for Ruby on Rails:

Query dependsOnInstrument.sparql

SELECT ?dependency ?headline {

tech:Ruby_on_Rails onto:dependsOn ?dependency .

?dependency a onto:Instrument .

?dependency onto:hasHeadline ?headline

}

Output of query dependsOnInstrument.sparql

dependency headline

MVC Division of an architecture into model, view, and controller
Ruby A multi-paradigm programming language
Rake A build automation tool for Ruby
WEBrick A web server for Ruby on Rails

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 253

For instance, there is no ‘reasonable’ way of using Rails other than complying with the archi-

tectural pattern of MVC. Also, web development with Rails assumes that all functionality etc.

is coded in Rails; likewise for the other dependencies.

Designers, developers, reviewers of entities

These properties are concerned with persons and specifically their involvement in the design,

development, and reviewing of different kinds of SoLaSoTe’s individuals. This is a list of relevant

scenarios:

• Persons may design languages, technologies, (101 ’s) contributions, and courses.

• Persons may develop technologies and contributions.

• Persons may review contributions.

SoLaSoTe leverages the entity type onto:Contributor for persons concerned with (101 ’s) con-

tributions. Here is query for the contributions developed by one of the present document’s

authors:

Query developedBy.sparql

SELECT ?contribution ?headline {

?contribution onto:developedBy contributor:avaranovich .

?contribution a onto:Contribution .

?contribution onto:hasHeadline ?headline

}

254 Appendices

Output of query developedBy.sparql (first few rows)

contribution headline

xsdDataSet X/O mapping with .NETś xsd.exe and strongly typed DataSets
xsdClasses Object/XML mapping with C# and .NETś xsd.exe
wp7 Basics of programming for Windows Phone 7
csharp Basics of programming in C# and .NET
wcf A web service based on .NETś WCF
silverlight Web programming in C# with Silverlight
wpf GUI programming with .NETś WP

...

Nonspecific references to entities

The documentation of SoLaSoTe on the 101wiki may use ‘semantically weak’ references to

SoLaSoTe’s individuals. We call them ‘semantically weak’ in that these references would not

use any of the specific predicate, but they are essentially plain hyperlinks. These references are

represented through ‘mentions’ properties in SoLaSoTe.

For instance, the following query lists all individuals mentioned by a simple Haskell-based

contribution to 101, contrib:haskellStarter:

Query predicateMentions.sparql

SELECT ?object ?headline {

contrib:haskellStarter onto:mentions ?object .

?object onto:hasHeadline ?headline

}

ORDER BY ?object ?headline

A.2. The SoLaSoTe ontology of software languages, technologies, and concepts 255

Output of query predicateMentions.sparql

object headline

concept:Closed serialization Technology- and platform-dependent serialization
concept:Data composition Composition of compound data from parts
concept:Float The primitive data type of floating-point numbers
concept:Function application Apply a function to an argument
concept:Functional programming The functional programming paradigm
concept:Pattern matching Matching values against patterns to bind variables
concept:Pure function A function with referential transparency
concept:Recursion The use of self-reference in defining abstractions
concept:String The primitive data type of strings
concept:Tuple An indexed collection of component values
concept:Type synonym Abstraction over type expressions
contrib:haskellEngineer Basic software engineering for Haskell
feature:Total Sum up the salaries of all employees
lang:Haskell A purely-functional programming language

A good number of concepts is mentioned because they are presumably demonstrated (‘used’) by

the contribution. The feature ‘Total’ is mentioned because the documentation discusses some

details of this particular feature; other features are implemented, but not discussed explicitly.

The language Haskell is mentioned for obvious reasons.

Ideally, all mentioned individuals should also be linked in a semantically strong way, i.e., by

using one of the predicates other than ‘mention’. This can be regarded as a quality criterion

for the documention on 101wiki.

Tagging of entities

A simple tagging scheme is used for SoLaSoTe so that one can associate ‘tags’ with individuals.

As of writing, the only noteworthy example of a tag in use is ‘Stub’, which is used to keep track

of contributions whose documentation is essentially missing or blatantly incomplete. This idea

is inspired by Wikipedia’s stub notion.

Bibliography

[ABK+07a] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-

niak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. Springer,

2007.

[ABK+07b] SÃűren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-

ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In

The Semantic Web, volume 4825 of Lecture Notes in Computer Science, pages

722–735. Springer Berlin Heidelberg, 2007.

[ACC00] Giuliano Antoniol, Gerardo Casazza, and Aniello Cimitile. Traceability recovery

by modeling programmer behavior. In Reverse Engineering, 2000. Proceedings.

Seventh Working Conference on, pages 240–247. IEEE, 2000.

[ACDLM99] Giuliano Antoniol, Gerardo Canfora, Andrea De Lucia, and Ettore Merlo. Re-

covering code to documentation links in OO systems. In Reverse Engineering,

1999. Proceedings. Sixth Working Conference on, pages 136–144. IEEE, 1999.

[ADR06] Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki - A Tool

for Social, Semantic Collaboration. In International Semantic Web Conference,

pages 736–749, 2006.

[AG97] Robert Allen and David Garlan. A formal basis for architectural connec-

tion. ACM Transactions on Software Engineering and Methodology (TOSEM),

6(3):213–249, 1997.

256

BIBLIOGRAPHY 257

[AGA13] Nasir Ali, Y Gueneuc, and Giuliano Antoniol. Trustrace: Mining software repos-

itories to improve the accuracy of requirement traceability links. Software En-

gineering, IEEE Transactions on, 39(5):725–741, 2013.

[Ahm08] Emdad Ahmed. Use of Ontologies in Software Engineering. In 17th International

Conference on Software Engineering and Data Engineering (SEDE-2008), Pro-

ceedings, pages 145–150. ISCA, 2008.

[AJB+14] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas

Schmorleiz, Ralf Lämmel, Stefan Stănciulescu, Andrzej Wąsowski, and Ina

Schaefer. Flexible product line engineering with a virtual platform. In Compan-

ion Proceedings of the 36th International Conference on Software Engineering,

ICSE Companion 2014, pages 532–535. ACM, 2014.

[AK03] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling foun-

dation. Software, IEEE, 20(5):36–41, Sept 2003.

[And11] Android.com. People and Roles in Android Open Source Project (AOSP), 2011.

http://source.android.com/source/roles.html. Last visited April 19, 2011.

[AS08] Colin Atkinson and Dietmar Stoll. Orthographic modeling environment, 2008.

[AT14] Colin Atkinson and Christian Tunjic. Towards orthographic viewpoints for enter-

prise architecture modeling. In Enterprise Distributed Object Computing Confer-

ence Workshops and Demonstrations (EDOCW), 2014 IEEE 18th International,

pages 347–355. IEEE, 2014.

[ATN04] Pavlo Antonenko, Serkan Toy, and Dale Niederhauser. Modular object-oriented

dynamic learning environment: What open source has to offer. Association for

Educational communications and Technology, 2004.

[ATSM07] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter.

Design recovery and maintenance of build systems. In ICSM, pages 114–123,

2007.

http://source.android.com/source/roles.html

258 BIBLIOGRAPHY

[ATV08] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. STBenchmark: to-

wards a benchmark for mapping systems. Proc. VLDB Endow., 1:230–244, Au-

gust 2008.

[AZ12] Charu C. Aggarwal and ChengXiang Zhai, editors. Mining Text Data. Springer,

2012.

[Bac13] Alberto Bacchelli. Mining challenge 2013: Stack overflow. In The 10th Working

Conference on Mining Software Repositories, page to appear, 2013.

[Bak04] Lynne Rudder Baker. The ontology of artifacts. Philosophical explorations,

7(2):99–111, 2004.

[Bat05] Don S. Batory. Feature Models, Grammars, and Propositional Formulas. In

Software Product Lines, 9th International Conference, SPLC 2005, Proceedings,

volume 3714 of LNCS, pages 7–20. Springer, 2005.

[BCH07] Chris Bizer, Richard Cyganiak, and Tom Heath. How to publish Linked Data on

the web, 2007. Online tutorial http://wifo5-03.informatik.uni-mannheim.

de/bizer/pub/LinkedDataTutorial/.

[BdAF13] Monalessa Perini Barcellos and Ricardo de Almeida Falbo. A software measure-

ment task ontology. In SAC, pages 311–318. ACM, 2013.

[BDJ+03] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine

Rougui. First experiments with the atl model transformation language: Trans-

forming xslt into xquery. In 2nd OOPSLA Workshop on Generative Techniques

in the context of Model Driven Architecture, volume 37, 2003.

[Ber12] Olivier Berger. Linked data descriptions of debian source packages using

adms.sw. In Proc. of Semantic Web Enabled Software Engineering, 2012.

[Béz04] J. Bézivin. In Search of a Basic Principle for Model Driven Engineering. Novatica

Journal, Special Issue, 5(2):21–24, 2004.

http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/

BIBLIOGRAPHY 259

[BGGN08] Andrea Brühlmann, Tudor Gîrba, Orla Greevy, and Oscar Nierstrasz. Enriching

Reverse Engineering with Annotations. In Proceedings of MoDELS 2008 (Model

Driven Engineering Languages and Systems), volume 5301 of LNCS, pages 660–

674. Springer, 2008.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so

far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[BJ06] Jean Bézivin and Frédéric Jouault. Using ATL for Checking Models. ENTCS,

152:69–81, 2006.

[BJB08] M. Barbero, F. Jouault, and J. Bézivin. Model Driven Management of Complex

Systems: Implementing the Macroscope’s Vision. In Proceedings of ECBS ’08,

pages 277–286. IEEE, 2008.

[BJRV05] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez. Mod-

eling in the Large and Modeling in the Small. In European MDA Workshops

MDAFA 2003 and MDAFA 2004, Revised Selected Papers, volume 3599 of LNCS,

pages 33–46. Springer, 2005.

[BJV04a] J. Bézivin, F. Jouault, and P. Valduriez. On the need for Megamodels. In

Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven Software

Development workshop, 2004.

[BJV04b] Jean Bezivin, Frederic Jouault, and Patrick Valduriez. On the Need for Meg-

amodels. In Proceedings of Workshop on Best Practices for Model-Driven Soft-

ware Development at the 19th Annual ACM Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, 2004.

[BLK09] Steven Bird, Edward Loper, and Ewan Klein. Natural Language Processing with

Python. O’Reilly Media Inc., 2009.

[BMB11] Vanessa Araujo Borges, José Carlos Maldonado, and Ellen Francine Barbosa.

Towards the establishment of supporting mechanisms for modeling and gener-

ating educational content. In SAC, pages 1202–1207, 2011.

260 BIBLIOGRAPHY

[BNRM08] Ellen Francine Barbosa, Elisa Yumi Nakagawa, Ana C. Riekstin, and José Carlos

Maldonado. Ontology-based development of testing related tools. In SEKE,

pages 697–702, 2008.

[Boh13] Shannon Bohle. What is e-science and how should it be managed? Nature. com,

Spektrum der Wissenschaft (Scientific American), http://www. scilogs. com/sci-

entific_and_medicallib raries/what-is-e-science-and-how-should-it-be-managed,

2013.

[Bos04] Jan Bosch. Software architecture: The next step. In Software Architecture,

volume 3047 of Lecture Notes in Computer Science, pages 194–199. Springer

Berlin Heidelberg, 2004.

[Bou09] Maged N. Kamel Boulos. Semantic Wikis: A Comprehensible Introduction with

Examples from the Health Sciences. Journal of Emerging Technologies in Web

Intelligence, 1(1):94–96, 2009.

[CCA+13] Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, and Jacques

Perronnet. Extracting business rules from cobol: A model-based framework. In

Proc. WCRE 2013, pages 409–416. IEEE, 2013.

[CJB99] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What Are

Ontologies, and Why Do We Need Them? IEEE Intelligent Systems, 14:20–26,

1999.

[Cro07] Nigel Cross. From a design science to a design discipline: Understanding de-

signerly ways of knowing and thinking. In Ralf Michel, editor, Design Research

Now, Board of International Research in Design. BirkhÃďuser Basel, 2007.

[CS13] D. Correa and A. Sureka. Integrating issue tracking systems with community-

based question and answering websites. In Software Engineering Conference

(ASWEC), 2013 22nd Australian, pages 88–96, June 2013.

BIBLIOGRAPHY 261

[CSH07] Thomas M Connolly, Mark Stansfield, and Thomas Hainey. An application of

games-based learning within software engineering. British Journal of Educa-

tional Technology, 38(3):416–428, 2007.

[dCAG14] Victorio A de Carvalho, João Paulo A Almeida, and Giancarlo Guizzardi. Using

reference domain ontologies to define the real-world semantics of domain-specific

languages. In Advanced Information Systems Engineering, pages 488–502, 2014.

[DDT99] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why FAMIX and not

UML. In Proceedings of UMLâĂŹ99, volume 1723, 1999.

[DEH+05] Ernst-Erich Doberkat, Gregor Engels, Jan Hendrik Hausmann, Marc Lohmann,

Jörg Pleumann, and Jens Schröder. Software engineering and elearning: The

musoft project. eleed Journal, 2005.

[Dek13] Makx Dekkers. Asset description metadata schema (adms). https://dvcs.w3.

org/hg/gld/raw-file/default/adms/index.html, jun 2013. [Online; accessed

08.07.2013].

[dG11] Mathieu d’Aquin and Aldo Gangemi. Is there beauty in ontologies? Applied

Ontology, 6(3):165–175, 2011.

[DGD06] Dragan Djuric, Dragan Gasevic, and Vladan Devedzic. The Tao of Modeling

Spaces. Journal of Object Technology, 5(8):125–147, 2006.

[DJ03] Melis Dagpinar and Jens H. Jahnke. Predicting Maintainability with Object-

Oriented Metrics - An Empirical Comparison. In Proc. of WCRE 2003, pages

155–164. IEEE, 2003.

[DKM13] Zinovy Diskin, Sahar Kokaly, and Tom Maibaum. Mapping-aware megamodel-

ing: Design patterns and laws. In Proc. of SLE 2013, volume 8225 of LNCS,

pages 322–343. Springer, 2013.

[DMC12] Zinovy Diskin, TomMaibaum, and Krzysztof Czarnecki. Intermodeling, Queries,

and Kleisli Categories. In Fundamental Approaches to Software Engineering -

https://dvcs.w3.org/hg/gld/raw-file/default/adms/index.html
https://dvcs.w3.org/hg/gld/raw-file/default/adms/index.html

262 BIBLIOGRAPHY

15th International Conference, FASE 2012. Proceedings, volume 7212 of LNCS,

pages 163–177. Springer, 2012.

[DP09] Stéphane Ducasse and Damien Pollet. Software Architecture Reconstruction: A

Process-Oriented Taxonomy. IEEE Trans. Software Eng., 35(4):573–591, 2009.

[DQPvS03] Remco M. Dijkman, Dick A. C. Quartel, Luís Ferreira Pires, and Marten van

Sinderen. An Approach to Relate Viewpoints and Modeling Languages. In

7th Int’l Enterprise Distributed Object Computing Conference (EDOC 2003),

Proceedings, pages 14–27. IEEE, 2003.

[DRGP13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature

location in source code: a taxonomy and survey. Journal of Software: Evolution

and Process, 25(1):53–95, 2013.

[DRLP13] Coen De Roover, Ralf Lämmel, and Ekaterina Pek. Multi-dimensional explo-

ration of API usage. In Proc. of ICPC 2013, pages 152–161. IEEE, 2013.

[DRR+05] Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Hoecht. Self-

organized reuse of software engineering knowledge supported by semantic wikis.

In Proceedings of the Workshop on Semantic Web Enabled Software Engineering

(SWESE), page 76, 2005.

[DXC11] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. Specifying Overlaps of

Heterogeneous Models for Global Consistency Checking. In Models in Software

Engineering - Workshops and Symposia at MODELS 2010, Reports and Revised

Selected Papers, volume 6627 of LNCS. Springer, 2011.

[DYG+12] Stefan Dietze, Hong Qing Yu, Daniela Giordano, Eleni Kaldoudi, Nikolas Dovro-

lis, and Davide Taibi. Linked education: interlinking educational resources and

the web of data. In SAC, 2012.

[EBGR01] Khaled El Emam, Saïda Benlarbi, Nishith Goel, and Shesh N. Rai. The con-

founding effect of class size on the validity of object-oriented metrics. IEEE

Trans. Software Eng., 27(7):630–650, 2001.

BIBLIOGRAPHY 263

[Egy03] Alexander Egyed. A scenario-driven approach to trace dependency analysis.

Software Engineering, IEEE Transactions on, 29(2):116–132, 2003.

[EKKM08] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini. Defining

and Continuous Checking of Structural Program Dependencies. In Proceedings

of the 30th International Conference on Software Engineering, ICSE ’08, pages

391–400. ACM, 2008.

[EKS03] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code.

Software Engineering, IEEE Transactions on, 29(3):210–224, 2003.

[ES07] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, 2007.

[ES13] Jérôme Euzenat and Pavel Shvaiko. Classifications of ontology matching tech-

niques. In Ontology matching, pages 73–84. Springer, 2013.

[FA98] Roberto Fiutem and Giuliano Antoniol. Identifying design-code inconsistencies

in object-oriented software: a case study. In Software Maintenance, 1998. Pro-

ceedings., International Conference on, pages 94–102. IEEE, 1998.

[FACF14] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. Queso

- A quality model for open source software ecosystems. In ICSOFT-EA 2014

- Proceedings of the 9th International Conference on Software Engineering and

Applications, Vienna, Austria, 29-31 August, 2014, pages 209–221, 2014.

[Fav04a] Jean-Marie Favre. CacOphoNy: Metamodel-Driven Architecture Recovery. In

11th Working Conference on Reverse Engineering (WCRE 2004), Proceedings,

pages 204–213. IEEE, 2004.

[Fav04b] Jean-Marie Favre. CacOphoNy: Metamodel-Driven Architecture Recovery.

In Proceedings of WCRE 2004 (Working Conference on Reverse Engineering),

pages 204–213. IEEE, 2004.

[Fav05a] Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. metamodels

– Episode II: Story of thotus the baboon. In Language Engineering for Model-

264 BIBLIOGRAPHY

Driven Software Development, number 04101 in Dagstuhl Seminar Proceedings,

2005.

[Fav05b] Jean-Marie Favre. Foundations of Model (Driven) (Reverse) Engineering: Mod-

els – Episode I: Stories of The Fidus Papyrus and of The Solarus. In Language

Engineering for Model-Driven Software Development, number 04101 in Dagstuhl

Seminar Proceedings, 2005.

[FB07] Andrea Forte and Amy Bruckman. Constructing text: : Wiki as a toolkit for

(collaborative?) learning. In Int. Sym. Wikis, pages 31–42, 2007.

[FFK+92] A. Finkelsetin, A. Finkelstein, J. Kramer, J. Kramer, B. Nuseibeh, B. Nuseibeh,

L. Finkelstein, L. Finkelstein, M. Goedicke, and M. Goedicke. Viewpoints: A

framework for integrating multiple perspectives in system development. 1992.

[FGLP11] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina Pek. Empirical

Language Analysis in Software Linguistics. In Software Language Engineering

- Third International Conference, SLE 2010, Revised Selected Papers, volume

6563 of LNCS, pages 316–326. Springer, 2011.

[FH09] Peter Fox and James A Hendler. Semantic escience: encoding meaning in next-

generation digitally enhanced science. The Fourth Paradigm, 2, 2009.

[FLL+12a] J-M Favre, Ralf Lammel, Martin Leinberger, Thomas Schmorleiz, and Andrei

Varanovich. Linking documentation and source code in a software chrestomathy.

In Reverse Engineering (WCRE), 2012 19th Working Conference on, pages 335–

344. IEEE, 2012.

[FLL+12b] Jean-Marie Favre, Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz, and

Andrei Varanovich. Linking documentation and source code in a software

chrestomathy. In WCRE, pages 335–344, 2012.

[FLSV12] Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich.

101companies: A Community Project on Software Technologies and Software

BIBLIOGRAPHY 265

Languages. In Proceedings of TOOLS 2012 (Int’l Conference on Objects, Models,

Components, Patterns), volume 7304 of LNCS, pages 58–74. Springer, 2012.

[FLV12] Jean-Marie Favre, Ralf Lämmel, and Andrei Varanovich. Modeling the linguistic

architecture of software products. In MoDELS, pages 151–167, 2012.

[FM06] Liliana Favre and Liliana Martinez. Formalizing mda components. In Proc. of

ICSR 2006, pages 326–339, 2006.

[FN04a] J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software Evolution

through Transformations. ENTCS, 127(3), 2004. Proceedings of the SETra

Workshop.

[FN04b] J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software Evolution

through Transformations. ENTCS, 127(3), 2004. Proc. of the SETra Workshop.

[FRJ09] Martin Feilkas, Daniel Ratiu, and E Jurgens. The loss of architectural knowledge

during system evolution: An industrial case study. In Program Comprehension,

2009. ICPC’09. IEEE 17th International Conference on, pages 188–197. IEEE,

2009.

[Gas08] Holger Gast. Patterns and traceability in teaching software architecture. In

Proceedings of the 6th International Symposium on Principles and Practice of

Programming in Java, PPPJ 2008, volume 347 of ACM International Conference

Proceeding Series, pages 23–31. ACM, 2008.

[GCS13] Carlos Gómez, Brendan Cleary, and Leif Singer. A study of innovation diffusion

through link sharing on stack overflow. In Proceedings of the 10th Working Con-

ference on Mining Software Repositories, MSR ’13, San Francisco, CA, USA,

May 18-19, 2013, pages 81–84, 2013.

[GD11] Matan Gavish and David Donoho. A universal identifier for computational re-

sults. Procedia Computer Science, 4:637–647, 2011.

266 BIBLIOGRAPHY

[GFK+04] Aldo Gangemi, Frehiwot Fisseha, Johannes Keizer, Jos Lehmann, Anita Liang,

Ian Pettman, Margerita Sini, and Marc Taconet. A core ontology of fishery and

its use in the fishery ontology service project. 2004.

[GG07] Ismênia Galvão and Arda Goknil. Survey of Traceability Approaches in Model-

Driven Engineering. In EDOC 2007, pages 313–326. IEEE Computer Society,

2007.

[GGM+02] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and

Luc Schneider. Sweetening ontologies with dolce. In Knowledge engineering

and knowledge management: Ontologies and the semantic Web, pages 166–181.

Springer, 2002.

[GLM+08] Ioannis Giannoukos, Ioanna Lykourentzou, Giorgos Mpardis, Vassilis Nikolopou-

los, Vassilis Loumos, and Eleftherios Kayafas. Collaborative e-learning environ-

ments enhanced by wiki technologies. In PETRA, page 59, 2008.

[GM11] Pieter Van Gorp and Steffen Mazanek. Share: a web portal for creating and

sharing executable research papers. In ICCS, pages 589–597, 2011.

[Goe11] Stijn Goedertier. Asset description metadata schema for software. https:

//joinup.ec.europa.eu/asset/adms_foss/description, dec 2011. [Online;

accessed 25.04.2015].

[Gou13] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the

10th Working Conference on Mining Software Repositories, MSR’13, pages 233–

236, 2013.

[GPFI+] AsunciÃşn GÃşmez-PÃľrez, Mariano FernÃąndez, Facultad De Informtica, E. U.

Politcnica, and Campus Universitario Ctra. Towards a method to conceptualize

domain ontologies.

[Gra96] Robert M. Grant. Prospering in dynamically-competitive environments: Orga-

nizational capability as knowledge integration. Organization Science, 7(4):375–

387, 1996.

https://joinup.ec.europa.eu/asset/adms_foss/description
https://joinup.ec.europa.eu/asset/adms_foss/description

BIBLIOGRAPHY 267

[Gra07] Bas Graaf. Model-Driven Evolution of Software Architectures. Dissertation, Delft

University of Technology, 2007.

[Gro06] Object Management Group. Object Constraint Language Object Constraint Lan-

guage, OMG Available Specification, Version 2.0, 2006.

[Gru95] Thomas R Gruber. Toward principles for the design of ontologies used for knowl-

edge sharing? International journal of human-computer studies, 43(5):907–928,

1995.

[GS09] Peter Godfrey-Smith. Theory and reality: An introduction to the philosophy of

science. University of Chicago Press, 2009.

[GTS10] Lars Grammel, Christoph Treude, and Margaret-Anne Storey. Mashup environ-

ments in software engineering. In Proceedings of the 1st Workshop on Web 2.0

for Software Engineering, Web2SE ’10, pages 24–25. ACM, 2010.

[Gui05] Giancarlo Guizzardi. Ontological foundations for structural conceptual models.

CTIT, Centre for Telematics and Information Technology, 2005.

[Had03] Said Hadjerrouit. Toward a constructivist approach to e-learning in software

engineering. In E-Learn: World Conference on E-Learning in Corporate, Gov-

ernment, Healthcare, and Higher Education, pages 507–514. Association for the

Advancement of Computing in Education (AACE), 2003.

[Ham08] Mohamed Hamada. An integrated virtual environment for active and collab-

orative e-learning in theory of computation. IEEE Transactions on Learning

Technologies, 1(2):117–130, 2008.

[HAMM10] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. On the Use

of Automated Text Summarization Techniques for Summarizing Source Code.

In Proceedings of WCRE 2010 (Working Conference on Reverse Engineering),

pages 35–44. IEEE, 2010.

268 BIBLIOGRAPHY

[HB11a] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global

Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Pub-

lishers, 2011.

[HB11b] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global

Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology.

Morgan & Claypool, 2011. 1st edition.

[HHJW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip Wadler.

Type Classes in Haskell. TOPLAS, 18(2):109–138, 1996.

[HHT11] Harry Halpin, Patrick J. Hayes, and Henry S. Thompson. When owl:sameAs

isn’t the Same Redux: A preliminary theory of identity and inference on the

Semantic Web. In Proc. of LHD 2011), pages 25–30, 2011.

[HMMP10] Rich Hilliard, Ivano Malavolta, Henry Muccini, and Patrizio Pelliccione. Realiz-

ing Architecture Frameworks Through Megamodelling Techniques. In Proc. of

ASE’10, pages 305–308. ACM, 2010.

[HN03] Jimmy C Huang and Sue Newell. Knowledge integration processes and dynamics

within the context of cross-functional projects. International Journal of Project

Management, 21(3):167 – 176, 2003.

[HNS99] C. Hofmeister, R.L. Nord, and D. Soni. Describing software architecture with

uml. In Software Architecture, volume 12 of IFIP âĂŤ The International Feder-

ation for Information Processing, pages 145–159. Springer US, 1999.

[HOJT05] William H. Harrison, Harold Ossher, Stanley M. Sutton Jr., and Peri L. Tarr.

Supporting aspect-oriented software development with the Concern Manipula-

tion Environment. IBM Systems Journal, 44(2):309–318, 2005.

[How08] James Howison. Cross-repository data linking with RDF and OWL: Towards

common ontologies for representing FLOSS data. In WoPDaSD (Workshop on

Public Data at International Conference on Open Source Software), 2008.

BIBLIOGRAPHY 269

[HSG10] Regina Hebig, Andreas Seibel, and Holger Giese. On the unification of meg-

amodels. In Proceedings of the 4th Int’l Workshop on Multi Paradigm Modeling

(MPM’10) at the 13th IEEE/ACM Int’l Conference on Model Driven Engineer-

ing Languages and Systems (MoDELS 2010), Oslo, Norway, 10 2010.

[HSGPML14] Brian Henderson-Sellers, Cesar Gonzalez-Perez, Tom McBride, and Graham

Low. An ontology for {ISO} software engineering standards: 1) creating the

infrastructure. Computer Standards & Interfaces, 36(3):563 – 576, 2014.

[HTT] Tony Hey, Stewart Tansley, and Kristin Tolle. Jim gray on escience: A trans-

formed scientific method. Fourth Paradigm.

[Hue97] Gérard Huet. The Zipper. J. Funct. Program., 7(5):549–554, 1997.

[Hut07] Graham Hutton. Programming in Haskell. Cambridge University Press, 2007.

http://www.cs.nott.ac.uk/ gmh/book.html.

[HWRK11] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen.

Empirical assessment of mde in industry. In Proceedings of the 33rd International

Conference on Software Engineering, ICSE ’11, pages 471–480, 2011.

[HZMK08] Matthias Hauswirth, Dmitrijs Zaparanuks, Amirhossein Malekpour, and

Mostafa Keikha. The JavaFest: a collaborative learning technique for Java

programming courses. In Proceedings of the 6th International Symposium on

Principles and Practice of Programming in Java, PPPJ 2008, volume 347 of

ACM International Conference Proceeding Series, pages 3–12. ACM, 2008.

[ICH12] Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas1. Integrating floss

repositories on the web. 2012.

[IH12] Aftab Iqbal and Michael Hausenblas. Integrating developer-related information

across open source repositories. In IRI, pages 69–76, 2012.

270 BIBLIOGRAPHY

[IUHT09] Aftab Iqbal, Oana Ureche, Michael Hausenblas, and Giovanni Tummarello.

Ld2sd: Linked data driven software development. In SEKE, pages 240–245,

2009.

[Jac04] J.-P. Jacquot. A full Java post-graduate curriculum. In Proceedings of the 3rd

International Symposium on Principles and Practice of Programming in Java,

PPPJ 2004, volume 91 of ACM International Conference Proceeding Series,

pages 46–51. ACM, 2004.

[Jan14] Slinger Jansen. Measuring the health of open source software ecosystems:

Beyond the scope of project health. Information & Software Technology,

56(11):1508–1519, 2014.

[JK06] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Proc. of

MODELS 2005, Satellite Events, volume 3844 of LNCS, pages 128–138. Springer,

2006.

[Jon72] Karen Sparck Jones. A statistical interpretation of term specificity and its ap-

plication in retrieval. Journal of Documentation, 28:11âĂŞ21, 1972.

[JSB12] Ethan K. Jackson, Wolfram Schulte, and Nikolaj Bjørner. Detecting Specifica-

tion Errors in Declarative Languages with Constraints. In Proc. of MODELS

2012, pages 399–414, 2012.

[JVB+10] Frédéric Jouault, Bert Vanhooff, Hugo Bruneliere, Guillaume Doux, Yolande

Berbers, and Jean Bézivin. Inter-dsl coordination support by combining meg-

amodeling and model weaving. In SAC, pages 2011–2018, 2010.

[KBA02a] I. Kurtev, J. Bézivin, and M. Aksit. Technological Spaces: an Initial Appraisal.

In CoopIS, DOA 2002 Federated Conferences, Industrial track, 2002.

[KBA02b] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological spaces: An initial

appraisal. In CoopIS, DOA’2002 Federated Conferences, Industrial track, 2002.

BIBLIOGRAPHY 271

[KDSG14] Eirini Kalliamvakou, Daniela Damian, Leif Singer, and Daniel M German. The

code-centric collaboration perspective: Evidence from github. Technical report,

Technical Report DCS-352-IR, University of Victoria, 2014.

[KFH+12a] Iman Keivanloo, Christopher Forbes, Aseel Hmood, Mostafa Erfani, Christopher

Neal, George Peristerakis, and Juergen Rilling. A Linked Data platform for

mining software repositories. In Proc. of MSR 2012, pages 32–35. IEEE, 2012.

[KFH+12b] Iman Keivanloo, Christopher Forbes, Aseel Hmood, Mostafa Erfani, Christopher

Neal, George Peristerakis, and Juergen Rilling. A Linked Data platform for

mining software repositories. In Proc. of MSR 2012, pages 32–35. IEEE, 2012.

[KFH+12c] Iman Keivanloo, Christopher Forbes, Aseel Hmood, Mostafa Erfani, Christopher

Neal, George Peristerakis, and Juergen Rilling. A linked data platform for mining

software repositories. In MSR, pages 32–35, 2012.

[KFRC11] Iman Keivanloo, Christopher Forbes, Juergen Rilling, and Philippe Charland.

Towards sharing source code facts using linked data. In Proceedings of the 3rd

International Workshop on Search-Driven Development: Users, Infrastructure,

Tools, and Evaluation, SUITE ’11, pages 25–28. ACM, 2011.

[KG11] Siim Karus and Harald Gall. A study of language usage evolution in open

source software. In Proceedings of MSR 2011 (Mining Software Repositories),

pages 13–22. IEEE, 2011.

[KGB+14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M

German, and Daniela Damian. The promises and perils of mining github. In

Proceedings of the 11th Working Conference on Mining Software Repositories,

pages 92–101. ACM, 2014.

[KK12] Bernhard Katzmarski and Rainer Koschke. Program complexity metrics and

programmer opinions. In Proc. of ICPC 2012, pages 17–26. IEEE, 2012.

272 BIBLIOGRAPHY

[KKS+11] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni. De-

sign Defects Detection and Correction by Example. In Program Comprehension

(ICPC), 2011 IEEE 19th International Conference on, pages 81–90, June 2011.

[KLL09] Sungwon Kang, Seonah Lee, and Danhyung Lee. A framework for tool-based

software architecture reconstruction. Int’l Journal of Software Engineering and

Knowledge Engineering, 19(2):283–30, 2009.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented

Programming. In Proc. of ECOOP 1997, volume 1241 of LNCS, pages 220–242.

Springer, 1997.

[KLRB11] Peter Kraker, Derick Leony, Wolfgang Reinhardt, and Günter Beham. The case

for an open science in technology enhanced learning. International Journal of

Technology Enhanced Learning, 3(6):643–654, 2011.

[KLV05] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline

for grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, 2005.

[KLW06] Kostas Kontogiannis, Panos Linos, and Kenny Wong. Comprehension and Main-

tenance of Large-Scale Multi-Language Software Applications. In Proceedings of

ICSM 2006 (Int’l Conference on Software Maintenance), pages 497–500, 2006.

[KMA04] Andrew Jensen Ko, Brad A Myers, and Htet Htet Aung. Six learning barriers

in end-user programming systems. In Visual Languages and Human Centric

Computing, 2004 IEEE Symposium on, pages 199–206. IEEE, 2004.

[Knu84] Donald E. Knuth. Literate programming. The Computer Journal, 27:97–111,

1984.

[KS96] Gerald Kotonya and Ian Sommerville. Requirements engineering with view-

points. 1996.

BIBLIOGRAPHY 273

[Küh06a] Thomas Kühne. Matters of (meta-) modeling. Software & Systems Modeling,

5(4):369–385, 2006.

[Küh06b] Thomas Kühne. Matters of (Meta-) Modeling. Software and Systems Modeling,

5:369–385, 2006.

[KUM11] Shingo Kawamura, Minoru Uehara, and Hideki Mori. A Method for Project

Member Role Assignment in Open Source Software Development Using Self-

Organizing Maps, 2011.

[KWDE98] Bernt Kullbach, Andreas Winter, Peter Dahm, and Jürgen Ebert. Program Com-

prehension in Multi-Language Systems. In Proceedings of WCRE 1998 (Working

Conference on Reverse Engineering), pages 135–143, 1998.

[KYNM06] Toshinobu Kasai, Haruhisa Yamaguchi, Kazuo Nagano, and Riichiro Mizoguchi.

Building an ontology of IT education goals. International Journal of Continuing

Engineering Education and Life Long Learning, 16:1–17, 2006.

[Lae13] Software chrestomathies. Science of Computer Programming, 2013.

[Läm13] Ralf Lämmel. Software chrestomathies. Liber amicorum Paul Klint. Available

online http://softlang.uni-koblenz.de/chrestomathy/, 2013.

[Lay04] B. Layton. Coptic Gnostic Chrestomathy: A Selection of Coptic Texts with

Grammatical Analysis and Glossary. Peeters Pub, 2004.

[Lin00] Marcia C Linn. Designing the knowledge integration environment. International

Journal of Science Education, 22(8):781–796, 2000.

[Lip11] Miran Lipovaca. Learn You a Haskell for Great Good! no starch press, 2011.

http://learnyouahaskell.com/.

[LJ03a] Ralf Lämmel and Simon L. Peyton Jones. Scrap your boilerplate: a practical

design pattern for generic programming. In Proc. of TLDI’03, pages 26–37.

ACM, 2003.

http://softlang.uni-koblenz.de/chrestomathy/

274 BIBLIOGRAPHY

[LJ03b] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design

pattern for generic programming. In Proc. of TLDI 2003, pages 26–37. ACM,

2003.

[LK94] Mark Lorenz and Jeff Kidd. Object-oriented software metrics: a practical guide.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[LLSV14a] R. Lammel, M. Leinberger, T. Schmorleiz, and A. Varanovich. Comparison of

feature implementations across languages, technologies, and styles. In Software

Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014

Software Evolution Week - IEEE Conference on, pages 333–337, Feb 2014.

[LLSV14b] Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz, and Andrei Varanovich.

Comparison of Feature Implementations across Languages, Technologies, and

Styles. In Proc. of IEEE CSMR-WCRE 2014. IEEE, 2014.

[LM01] Daan Leijen and Erik Meijer. Parsec: Direct Style Monadic Parser Combinators

for the Real World. Technical report, University of Utrecht, 2001. Technical

Report no. UU-CS-2001-27.

[LM06a] Ralf Lämmel and Erik Meijer. Mappings Make Data Processing Go ’Round.

In Generative and Transformational Techniques in Software Engineering, Int’l

Summer School, GTTSE 2005. Revised Papers, volume 4143 of LNCS, pages

169–218. Springer, 2006.

[LM06b] Ralf Lämmel and Erik Meijer. Revealing the x/o impedance mismatch - (chang-

ing lead into gold). In SSDGP, pages 285–367, 2006.

[LM07] R. Lämmel and E. Meijer. Revealing the X/O impedance mismatch (Changing

lead into gold). In Spring School on Datatype-Generic Programming, Lecture

Notes, volume 4719 of LNCS, pages 285–367. Springer, 2007.

[LMV13] Ralf Lämmel, Dominik Mosen, and Andrei Varanovich. Method and tool support

for classifying software languages with wikipedia. In SLE, pages 249–259, 2013.

BIBLIOGRAPHY 275

[LOV02] Christoph Stoermer Liam OâĂŹBrien and Chris Verhoef. Software architec-

ture reconstruction: Practice needs and current approaches. Technical report,

Carnegie Mellon, 2002.

[LP07] Patrick Connor Linskey and Marc Prud’hommeaux. An In-depth Look at the

Architecture of an Object/Relational Mapper. In Proceedings of SIGMOD 2007,

pages 889–894. ACM, 2007.

[LPT06] Josh Lerner, Parag Pathak, and Jean Tirole. The Dynamics of Open Source

Contributors. In Allied Social Science Associations 2006 Annual Meeting. AEA

Conference Papers, page 14 pages, 2006.

[LR11] Kevin Lano and Shekoufeh Kolahdouz Rahimi. Model-driven development of

model transformations. In Theory and Practice of Model Transformations,

Fourth Int’l Conference, ICMT 2011, Zurich, Switzerland, June 27-28, 2011.

Proceedings, LNCS, pages 47–61. Springer, 2011.

[LSV14] Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich. The 101haskell

Chrestomathy—A Whole Bunch of Learnable Lambdas. In Postproceedings of

IFL 2013, 2014. 12 pages. To appear in ACM DL.

[Lun08] Mircea Lungu. Towards reverse engineering software ecosystems. In Software

Maintenance, 2008. ICSM 2008. IEEE International Conference on, pages 428–

431. IEEE, 2008.

[LV14] Ralf Lämmel and Andrei Varanovich. Interpretation of Linguistic Architecture.

16 pages. Accepted at ECMFA 2014, 2014.

[LVL+14] Ralf Lämmel, Andrei Varanovich, Martin Leinberger, Thomas Schmorleiz, and

Jean-Marie Favre. Declarative Software Development (Distilled Tutorial). In

Proc. of PPDP 2014. ACM, 2014. 6 pages.

[MAB07] Sergey Melnik, Atul Adya, and Philip A. Bernstein. Compiling mappings to

bridge applications and databases. In SIGMOD ’07: Proceedings of the 2007

276 BIBLIOGRAPHY

ACM SIGMOD international conference on Management of data, pages 461–

472. ACM, 2007.

[Man13] Many contributors. Rosetta Code, 2013. Wiki: http://rosettacode.org —

Accessed on 20 Mar 2014.

[May04] Richard E Mayer. Should there be a three-strikes rule against pure discovery

learning? American psychologist, 59(1):14, 2004.

[MBM13] Diego Mendez, Benoit Baudry, and Martin Monperrus. Empirical evidence of

large-scale diversity in api usage of object-oriented software. In Source Code

Analysis and Manipulation (SCAM), 2013 IEEE 13th International Working

Conference on, pages 43–52. IEEE, 2013.

[MCG14] Tom Mens, Maëlick Claes, and Philippe Grosjean. ECOS: ecological studies

of open source software ecosystems. In 2014 Software Evolution Week - IEEE

Conference on Software Maintenance, Reengineering, and Reverse Engineering,

CSMR-WCRE 2014, Antwerp, Belgium, February 3-6, 2014, pages 403–406,

2014.

[Mei06] Erik Meijer. There is no impedance mismatch: (language integrated query in

visual basic 9). In OOPSLA Companion, pages 710–711, 2006.

[Mes10] Jill P Mesirov. Computer science. accessible reproducible research. Science (New

York, NY), 327(5964), 2010.

[MFB09] Pierre-Alain Muller, Frédéric Fondement, and Benoit Baudry. Modeling Model-

ing. InModel Driven Engineering Languages and Systems, 12th Int’l Conference,

MODELS 2009, Proceedings, volume 5795 of LNCS, pages 2–16. Springer, 2009.

[MFBC11] Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry, and Benoît Combe-

male. Modeling modeling modeling. Software and Systems Modeling, pages

1–13, 2011.

http://rosettacode.org

BIBLIOGRAPHY 277

[MG08] Shah J. Miah and John Gammack. A mashup architecture for web end-user ap-

plication designs. In Second IEEE International Conference on Digital Ecosys-

tems and Technologies, 2008.

[MM03] Andrian Marcus and Jonathan I. Maletic. Recovering Documentation-to-Source-

Code Traceability Links using Latent Semantic Indexing. In Proc. of ICSE 2003,

pages 125–137. ACM, 2003.

[MMM+11] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn

Hartmann. Design lessons from the fastest q&a site in the west. In Proceedings

of the SIGCHI conference on Human factors in computing systems, pages 2857–

2866. ACM, 2011.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion mod-

els: bridging the gap between source and high-level models. In Proceedings of

SIGSOFT FSE 1995 (ACM SIGSOFT Symposium on Foundations of Software

Engineering), pages 18–28. ACM, 1995.

[MNS01] Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software Reflexion Mod-

els: Bridging the Gap between Design and Implementation. IEEE Trans. Soft-

ware Eng., 27:364–380, 2001.

[MS05] David G Messerschmitt and Clemens Szyperski. Software ecosystem: under-

standing an indispensable technology and industry. MIT Press Books, 1, 2005.

[MS12] Philip Mayer and Andreas Schroeder. Cross-language code analysis and refac-

toring. In Source Code Analysis and Manipulation (SCAM), 2012 IEEE 12th

International Working Conference on, pages 94–103. IEEE, 2012.

[MSC+01] Spiros Mancoridis, Timothy S. Souder, Yih-Farn Chen, Emden R. Gansner, and

Jeffrey L. Korn. REportal: A Web-Based Portal Site for Reverse Engineering.

In Proceedings of WCRE 2001 (Working Conference on Reverse Engineering),

pages 221–230. IEEE, 2001.

278 BIBLIOGRAPHY

[MSRM04a] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic. An information retrieval

approach to concept location in source code. In Reverse Engineering, 2004.

Proceedings. 11th Working Conference on, pages 214–223, Nov 2004.

[MSRM04b] Andrian Marcus, Andrey Sergeyev, Václav Rajlich, and Jonathan I. Maletic. An

Information Retrieval Approach to Concept Location in Source Code. In Proc.

of WCRE 2004, pages 214–223. IEEE, 2004.

[MT07] Shailey Minocha and Peter G Thomas. Collaborative learning in a wiki en-

vironment: Experiences from a software engineering course. New Review of

Hypermedia and Multimedia, 13(2):187–209, 2007.

[MV11] Bart Meyers and Hans Vangheluwe. A framework for evolution of modelling

languages. Sci. Comput. Program., 76(12):1223–1246, 2011.

[MVDBK14a] Kim Mens, MGJ Van Den Brand, and Holger M Kienle. Guest editors’ intro-

duction to the 4th issue of experimental software and toolkits (est-4). Science

of Computer Programming, 79:1–5, 2014.

[MvdBK14b] Kim Mens, M.G.J. van den Brand, and Holger M. Kienle. Guest editorsâĂŹ in-

troduction to the 4th issue of experimental software and toolkits (est-4). Science

of Computer Programming, 79(0):1 – 5, 2014.

[MVG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electron.

Notes Theor. Comput. Sci., 152:125–142, March 2006.

[MWHH06] Daniel L. Moise, Kenny Wong, H. James Hoover, and Daqing Hou. Reverse

Engineering Scripting Language Extensions. In 14th Int’l Conference on Program

Comprehension (ICPC 2006). Proceedings, pages 295–306. IEEE, 2006.

[Nas05] Naslavsky, Leila and Alspaugh, Thomas A and Richardson, Debra J and Ziv,

Hadar. Using scenarios to support traceability. In Proceedings of the 3rd in-

ternational workshop on Traceability in emerging forms of software engineering,

pages 25–30. ACM, 2005.

BIBLIOGRAPHY 279

[NCH+11] Piotr Nowakowski, Eryk Ciepiela, Daniel HarÄŹÅĳlak, Joanna Kocot, Marek

Kasztelnik, Tomasz BartyÅĎski, Jan Meizner, Grzegorz Dyk, and Maciej

Malawski. The collage authoring environment. Procedia Computer Science,

4(0):608 – 617, 2011. Proceedings of the International Conference on Computa-

tional Science, {ICCS} 2011.

[NdAFA13] Julio Cesar Nardi, Ricardo de Almeida Falbo, and João Paulo A Almeida. Foun-

dational ontologies for semantic integration in eai: a systematic literature re-

view. In Collaborative, Trusted and Privacy-Aware e/m-Services, pages 238–249.

Springer, 2013.

[Nie11] Michael Nielsen. Reinventing Discovery: The New Era of Networked Science.

Princeton University Press, 2011.

[NL12] Oscar Nierstrasz and Mircea Lungu. Agile software assessment (Invited paper).

In Proceedings of ICPC 2012 (Int’l Conference on Program Comprehension),

pages 3–10. IEEE, 2012.

[NS00] Lee Naish and Leon Sterling. Stepwise enhancement and higher-order program-

ming in prolog. Journal of Functional and Logic Programming, 2000(4), 2000.

[Obe06] Daniel Oberle. Semantic management of middleware, volume 1. Springer Science

& Business Media, 2006.

[OLG+06] Daniel Oberle, Steffen Lamparter, Stephan Grimm, Denny Vrandecic, Steffen

Staab, and Aldo Gangemi. Towards ontologies for formalizing modularization

and communication in large software systems. Applied Ontology, 1(2):163–202,

2006.

[Ome02] Borys Omelayenko. Integrating Vocabularies: Discovering and Representing

Vocabulary Maps. In Proc. of ISWC 2002, volume 2342 of LNCS, pages 206–

220. Springer, 2002.

280 BIBLIOGRAPHY

[ON08] Shaul Oreg and Oded Nov. Exploring motivations for contributing to open source

initiatives: The roles of contribution context and personal values. Computers in

Human Behavior, 24(5):2055–2073, 2008.

[OSG08] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O’Reilly

Media, 2008. http://book.realworldhaskell.org/.

[PDMG14] Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaël Guéhéneuc. De-

tection of REST Patterns and Antipatterns: A Heuristics-Based Approach. In

Proceedings of ICSOC 2014, volume 8831 of LNCS, pages 230–244. Springer,

2014.

[Per11] Vassilios Peristeras. Open government metadata, September 2011.

[PFGJ02] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Revealer: A Lexical Pattern

Matcher for Architecture Recovery. In Proceedings of WCRE 2002 (Working

Conference on Reverse Engineering), pages 170–. IEEE, 2002.

[PGM+07] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich.

Feature location using probabilistic ranking of methods based on execution sce-

narios and information retrieval. Software Engineering, IEEE Transactions on,

33(6):420–432, 2007.

[PGS02] Domenico M. Pisanelli, Aldo Gangemi, and Geri Steve. G.: Ontologies and

information systems: the marriage of the century. In In Proceedings of LYEE

Workshop, 2002.

[PMTG14] Francis Palma, Naouel Moha, Guy Tremblay, and Yann-Gaël Guéhéneuc. Spec-

ification and Detection of SOA Antipatterns in Web Services. In Proceedings of

ECSA 2014, volume 8627 of LNCS, pages 58–73. Springer, 2014.

[PTRC07] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A

design science research methodology for information systems research. Journal

of management information systems, 24(3):45–77, 2007.

http://book.realworldhaskell.org/

BIBLIOGRAPHY 281

[PXT+11] Xin Peng, Zhenchang Xing, Xi Tan, Yijun Yu, and Wenyun Zhao. Iterative

context-aware feature location (NIER track). In Proc. of ICSE 2011, pages

900–903. ACM, 2011.

[RBB97] Martin Rajman, Romaric BESANÃĞON, and R. Besancon. Text Mining: Nat-

ural Language techniques and Text Mining applications. In Proc. of DS-7, pages

7–10. Hall, 1997.

[RDL08] Anna Riccioni, Enrico Denti, and Roberto Laschi. An experimental environment

for teaching Java security. In Proceedings of the 6th International Symposium

on Principles and Practice of Programming in Java, PPPJ 2008, volume 347 of

ACM International Conference Proceeding Series, pages 13–22. ACM, 2008.

[RFD+08] Daniel Ratiu, Martin Feilkas, Florian Deissenboeck, Jan Jürjens, and Radu

Marinescu. Towards a Repository of Common Programming Technologies

Knowledge. In Proc. of the Int. Workshop on Semantic Technologies in Sys-

tem Maintenance (STSM), 2008.

[RFJ08] Daniel Ratiu, Martin Feilkas, and Jan Jurjens. Extracting domain ontologies

from domain specific APIs. In Software Maintenance and Reengineering, 2008.

CSMR 2008. 12th European Conference on, pages 203–212. IEEE, 2008.

[RH06] Francisco Ruiz and José R Hilera. Using ontologies in software engineering and

technology. In Ontologies for software engineering and software technology, pages

49–102. Springer, 2006.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models for re-

quirements traceability. Software Engineering, IEEE Transactions on, 27(1):58–

93, 2001.

[RJJ+08] Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kiselyov,

and Bruno C. d. S. Oliveira. Comparing libraries for generic programming

in Haskell. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell,

Haskell 2008, pages 111–122. ACM, 2008.

282 BIBLIOGRAPHY

[Ron12] Ronald Bourret. Xml data binding resources, 2001–2012.

[Rue01] Fritz Ruehr. The Evolution of a Haskell Programmer, 2001. Website: http:

//www.willamette.edu/~fruehr/haskell/evolution.html —Accessed on 20

Mar 2014.

[RW02] Václav Rajlich and Norman Wilde. The role of concepts in program comprehen-

sion. In Proc. of IWPC 2002, pages 271–280. IEEE, 2002.

[RYR13] Mohammad Masudur Rahman, Shamima Yeasmin, and Chanchal K. Roy. An

ide-based context-aware meta search engine. In WCRE, pages 467–471, 2013.

[SAtDL04] Maarten W. A. Steen, David H. Akehurst, Hugo W. L. ter Doest, and Marc M.

Lankhorst. Supporting Viewpoint-Oriented Enterprise Architecture. In 8th Int’l

Enterprise Distributed Object Computing Conference (EDOC 2004), Proceed-

ings, pages 201–211. IEEE, 2004.

[SCBR06] Margaret-Anne D. Storey, Li-Te Cheng, R. Ian Bull, and Peter C. Rigby. Shared

waypoints and social tagging to support collaboration in software development.

In Proceedings of CSCW 2006 (Computer Supported Cooperative Work), pages

195–198. ACM, 2006.

[SCFC09] J-S. Sottet, G. Calvary, J-M. Favre, and J. Coutaz. Megamodeling and

Metamodel-Driven Engineering for Plastic User Interfaces: MEGA-UI. In

Human-Centered Software Engineering, Springer Human-Computer Interaction

Series, pages 173–200, 2009.

[SdAFV13] Erica F. Souza, Ricardo de Almeida Falbo, and N. L. Vijaykumar. Ontologies in

software testing: A systematic literature review. In ONTOBRAS, volume 1041

of CEUR Workshop Proceedings, pages 71–82. CEUR-WS.org, 2013.

[SDdOV08] Leonardo Silva, Samuel Domingues, and Marco Tulio de Oliveira Valente. Non-

invasive and non-scattered annotations for more robust pointcuts. In Proceedings

of ICSM 2008 (Int’l Conference on Software Maintenance), pages 67–76. IEEE,

2008.

http://www.willamette.edu/~fruehr/haskell/evolution.html
http://www.willamette.edu/~fruehr/haskell/evolution.html

BIBLIOGRAPHY 283

[SE93] Steve Easterbrook School and Steve Easterbrook. Domain modelling with hier-

archies of alternative viewpoints. 1993.

[SFFC+13] Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph Treude,

Margaret-Anne Storey, and Kurt Schneider. Mutual assessment in the social

programmer ecosystem: An empirical investigation of developer profile aggrega-

tors. In Proceedings of the 2013 conference on Computer supported cooperative

work, pages 103–116. ACM, 2013.

[SFS14] Leif Singer, Fernando Marques Figueira Filho, and Margaret-Anne D. Storey.

Software engineering at the speed of light: how developers stay current using

twitter. In 36th International Conference on Software Engineering, ICSE ’14,

Hyderabad, India - May 31 - June 07, 2014, pages 211–221, 2014.

[SG96] Mary Shaw and David Garlan. Software architecture: perspectives on an emerg-

ing discipline, volume 1. Prentice Hall Englewood Cliffs, 1996.

[SG05] Sergey Sosnovsky and Tatiana Gavrilova. Development of Educational Ontol-

ogy for C-Programming. In Proceedings of the XI-th International Conference

Knowledge-Dialogue-Solution, volume 1, pages 127–132. FOI ITHEA, 2005.

[SKG+13] Zéphyrin Soh, Foutse Khomh, Y-G Guéhéneuc, Giuliano Antoniol, and Bram

Adams. On the effect of program exploration on maintenance tasks. In Reverse

Engineering (WCRE), 2013 20th Working Conference on, pages 391–400. IEEE,

2013.

[SL16] Thomas Schmorleiz and Ralf Lämmel. Similarity management of ‘cloned and

owned’ variants. In Proc. of SAC 2016. ACM, 2016. 6 pages.

[Smi01] Fois introduction: Ontology—towards a new synthesis. In Proceedings of the

International Conference on Formal Ontology in Information Systems - Volume

2001, FOIS ’01, pages .3–.9, 2001.

[Smi11] Eefke Smit. Abelard and héloise: Why data and publications belong together.

D-lib magazine, 17(1):7, 2011.

284 BIBLIOGRAPHY

[SMSB11] Dimitrios L Settas, Georgios Meditskos, Ioannis G Stamelos, and Nick Bassili-

ades. SPARSE: A symptom-based antipattern retrieval knowledge-based system

using Semantic Web technologies. Expert Systems with Applications, 38(6):7633–

7646, 2011.

[SNG10] Andreas Seibel, Stefan Neumann, and Holger Giese. Dynamic hierarchical mega

models: comprehensive traceability and its efficient maintenance. Software &

Systems Modeling, 9(4):493–528, 2010.

[SSFS11] Ansgar Scherp, Carsten Saathoff, Thomas Franz, and Steffen Staab. Designing

core ontologies. Applied Ontology, 6(3):177–221, 2011.

[SSS06] Martin Sulzmann, Tom Schrijvers, and Peter J. Stuckey. Principal Type Infer-

ence for GHC-Style Multi-parameter Type Classes. In Proc. of APLAS 2006,

volume 4279 of LNCS, pages 26–43. Springer, 2006.

[SSSS01] Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure. Knowledge

processes and ontologies. IEEE Intelligent Systems, 16(1):26–34, 2001.

[SZ92] John F. Sowa and John A. Zachman. Extending and formalizing the framework

for information systems architecture. IBM systems journal, 31(3):590–616, 1992.

[Tho03] Dave Thomas. The Impedance Imperative: Tuples + Objects + Infosets = Too

Much Stuff! Journal of Object Technology, 2(5):7–12, September–October 2003.

[Tho11] Simon Thompson. Haskell: The Craft of Functional Programming (3rd edition).

Addison-Wesley, 2011. http://www.haskellcraft.com/craft3e/Home.html.

[Til08] Stefan Tilkov. Rest anti-patterns @ONLINE, jul 2008.

[TKB10] Jonas Tappolet, Christoph Kiefer, and Abraham Bernstein. Semantic web en-

abled software analysis. Web Semantics: Science, Services and Agents on the

World Wide Web, 8(2):225–240, 2010.

http://www.haskellcraft.com/craft3e/Home.html

BIBLIOGRAPHY 285

[TMWW93] Scott R. Tilley, Hausi A. Müller, Michael J. Whitney, and KennyWong. Domain-

Retargetable Reverse Engineering. In Proceedings of ICSM 1993 (Int’l Confer-

ence on Software Maintenance), pages 142–151. IEEE, 1993.

[TRT14] Federico Tomassetti, Giuseppe Rizzo, and Marco Torchiano. Spotting automat-

ically cross-language relations. In Software Maintenance, Reengineering and Re-

verse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Con-

ference on, pages 338–342. IEEE, 2014.

[TS10] Eli Tilevich and Myoungkyu Song. Reusable enterprise metadata with pattern-

based structural expressions. In Proceedings of AOSD 2010 (Aspect-Oriented

Software Development), pages 25–36. ACM, 2010.

[TT14] Federico Tomassetti and Marco Torchiano. An empirical assessment of polyglot-

ism in github. In Proceedings of the 18th International Conference on Evaluation

and Assessment in Software Engineering, page 17. ACM, 2014.

[TTV13] Federico Tomassetti, Marco Torchiano, and Antonio Vetro. Classification of

language interactions. In Empirical Software Engineering and Measurement,

2013 ACM/IEEE International Symposium on, pages 287–290. IEEE, 2013.

[TVT+13] Federico Tomassetti, Antonio Vetró, Marco Torchiano, Markus Voelter, and

Bernd Kolb. A model-based approach to language integration. In Proceedings

of the 5th International Workshop on Modeling in Software Engineering, pages

76–81. IEEE Press, 2013.

[TWSM94] Scott R. Tilley, Kenny Wong, Margaret-Anne D. Storey, and Hausi A. Müller.

Programmable reverse engineering. Int’l Journal of Software Engineering and

Knowledge Engineering, 4(4):501–520, 1994.

[vDHK+04] Arie van Deursen, Christine Hofmeister, Rainer Koschke, Leon Moonen, and

Claudio Riva. Symphony: View-Driven Software Architecture Reconstruction.

In Proceedings of WICSA 2004 (Working IEEE / IFIP Conference on Software

Architecture), pages 122–134. IEEE, 2004.

286 BIBLIOGRAPHY

[VFS13] B. Vasilescu, V. Filkov, and A. Serebrenik. Stackoverflow and github: Asso-

ciations between software development and crowdsourced knowledge. In Social

Computing (SocialCom), 2013 International Conference on, pages 188–195, Sept

2013.

[VJBB11] Andrés Vignaga, Frédéric Jouault, Marya Bastarrica, and Hugo Brunelière. Typ-

ing Artifacts in Megamodeling. Software and Systems Modeling, pages 1–15,

2011.

[VKP02] Antje Von Knethen and Barbara Paech. A survey on tracing approaches in prac-

tice and research. Frauenhofer Institut Experimentelles Software Engineering,

IESE-Report No, 95, 2002.

[VKV+06] Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer.

Semantic Wikipedia. In Proceedings of the 15th international conference on

World Wide Web, WWW ’06, pages 585–594. ACM, 2006.

[VSG11] Thomas Vogel, Andreas Seibel, and Holger Giese. The Role of Models and

Megamodels at Runtime. In Models in Software Engineering - Workshops and

Symposia at MODELS 2010, Reports and Revised Selected Papers, volume 6627

of LNCS, pages 224–238. Springer, 2011.

[Wad92] Philip Wadler. The Essence of Functional Programming. In Conference Record

of POPL 1992, pages 1–14. ACM, 1992.

[Wei13] Jim Weirich. OO example code, 2013. Website: http://onestepback.org/

articles/poly — Accessed on 20 Mar 2014.

[WGGM14] Xiaowei Wang, Nicola Guarino, Giancarlo Guizzardi, and John Mylopoulos. To-

wards an Ontology of Software: a Requirements Engineering Perspective. In

Formal Ontology in Information Systems - Proceedings of the Eighth Interna-

tional Conference, FOIS 2014, September, 22-25, 2014, Rio de Janeiro, Brazil,

pages 317–329, 2014.

http://onestepback.org/articles/poly
http://onestepback.org/articles/poly

BIBLIOGRAPHY 287

[WGGS92] Norman Wilde, Juan A Gomez, Thomas Gust, and Douglas Strasburg. Locating

user functionality in old code. In Software Maintenance, 1992. Proceerdings.,

Conference on, pages 200–205. IEEE, 1992.

[WLJ13] Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study on developer

interactions in stackoverflow. In SAC, pages 1019–1024, 2013.

[WPXZ13] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. Improving feature

location practice with multi-faceted interactive exploration. In Proc. of ICSE

2013, pages 762–771. ACM, 2013.

[WvP10] Stefan Winkler and Jens von Pilgrim. A survey of traceability in requirements

engineering and model-driven development. Software and System Modeling,

9(4):529–565, 2010.

[YYN+07] Yunwen Ye, Yasuhiro Yamamoto, Kumiyo Nakakoji, Yoshiyuki Nishinaka, and

Mitsuhiro Asada. Searching the library and asking the peers: learning to use

Java APIs on demand. In Proceedings of the 5th International Symposium on

Principles and Practice of Programming in Java, PPPJ 2007, volume 272 of

ACM International Conference Proceeding Series, pages 41–50. ACM, 2007.

[Zac87] John A Zachman. A framework for information systems architecture. IBM

systems journal, 26(3):276–292, 1987.

[Zac02] John Zachman. The zachman framework for enterprise architecture. Zachman

International, 79, 2002.

[ZN04] Jianna J. Zhang and Huy Nguyen. An example oriented on-line java tutorial

for university students. In John Waldron, editor, Proceedings of the 3rd Inter-

national Symposium on Principles and Practice of Programming in Java, PPPJ

2004, Las Vegas, Nevada, USA, June 16-18, 2004, volume 91 of ACM Interna-

tional Conference Proceeding Series, pages 52–60. ACM, 2004.

	Abstract
	Acknowledgements
	Introduction
	Research Context
	Technological Spaces
	Data Mining from Community Knowledge Resources
	Linked Data and Open Data for Software Engineering
	Viewpoints in Software Architecture

	Problem Statement
	Organizing Software Languages and Technologies
	Ontology-based Knowledge Management
	Knowledge Integration
	Discovery Learning
	Understanding Modern Software Products

	Research Method
	Contributions
	Software Chrestomathy
	Technology Modeling

	Basic Terminology
	Structure of the Thesis
	Related Publications

	Background
	Program Chrestomathies
	Linguistic Architecture
	Instances of Linguistic Architecture

	State of the Art
	Technical Spaces and Polyglotism
	Education and Knowledge Engineering
	Ontologies for Software Engineering
	Linked Data for Software-Engineering Research
	Open-Source and Social-Software Ecosystems

	Problem Space
	Challenges
	Open Science Challenge
	Knowledge Engineering Challenge
	Knowledge Integration Challenge
	Reverse Engineering Challenge
	Linked Data Challenge
	Ontology Engineering Challenge
	Technology Modeling Challenge
	Educational Challenge

	Requirements
	Core Properties of Software Chrestomathy (R1)
	Ontology-driven Classification (R2)
	Linking Documentation and Source Code (R3)
	Vocabulary Engineering Through Knowledge Integration (R4)
	Linked Data Enabled Infrastructure (R5)
	A Chrestomathic Ontology (R6)
	Linguistic Architecture of Software Products (R7)
	General-purpose Language for Technology Models (R8)

	Validation

	101companies Software Chrestomathy
	Introduction
	Welcome 101companies
	Illustration
	Features of the 101companies System
	An Excerpt of 101haskell
	Feature Hierarchical company
	Feature Total
	Feature Cut
	Feature Parsing
	Feature Logging

	Stakeholders of the 101companies Project
	Key Categories of the 101companies Ontology
	Themes of 101companies Contributions
	Linking Documentation and Source Code
	101companies Chrestomathy – Inventory
	The Exploration Use Case
	Specification of the Information of Interest
	Classification of Metadata
	Rule-based Metadata Assignment
	The 101meta Language
	Language Links
	Technology Links
	Concept Links
	Links Related to the 101companies Domain
	Method Assignments
	Fragment Scope
	Summary of 101meta Usage

	The 101ecosystem
	Related Work
	Conclusion

	Chrestomathic Knowledge Integration
	Introduction
	Selection of Textbooks
	Term Extraction
	Vocabulary Consolidation
	Monitoring Vocabulary Usage
	Conclusion

	A Chrestomathic Ontology
	Introduction
	Basic Principles of SoLaSoTe
	Classification criteria
	Design principles

	Ontology authoring with 101wiki
	SoLaSoTe
	Entity Types
	Metadata
	References to External Resources
	References to Code Fragments

	Workflow of ontology processing
	Evaluation criteria
	Conclusion

	Technology Modeling
	Introduction
	Illustration of Linguistic Architecture
	Entity and Relationship Types for Megamodels
	Background
	Entity Types of MegaL
	Relationship Types of MegaL

	An Initial Megamodel for O/X Mapping
	Stepwise Development of the Megamodel
	Summary of the Megamodel
	Discussion

	A Megamodel for O/X Mapping with .NET
	The Use of Schema-Derived Object Models
	Technology Components for .NET
	Additional Linguistic Details
	Discussion

	Linked Megamodels
	Binding Placeholder Entities
	Exploring Linked Megamodels
	MegaL/RDF, Linked Megamodels and Linked Data

	Interpretation of Linguistic Architecture
	Megamodeling with MegaL
	An Illustrative Megamodel
	Interpretation of Megamodels
	Traceability Recovery
	Executable Specification of MegaL
	Specification Style
	Abstract Syntax of Megamodels
	Well-formedness of Megamodels
	Abstract Syntax of Interpretations
	Correctness and Completeness
	Evaluation of Relationships

	Related work
	Conclusion

	Evaluation of 101companies Software Chrestomathy
	Introduction
	Comparison of Feature Implementations across Languages, Technologies, and Styles
	The Underlying Infrastructure
	Methodology
	Execution
	Results
	Related Work

	A Chrestomathy-based Course
	Teaching Concept
	Course Content
	Course Evaluation

	Code-sharing Management
	Threats to validity
	Conclusion

	Conclusion and Future Work
	Summary of the Thesis Achievements
	Future Work
	Conclusion.

	Appendices
	Themes of 101companies Implementations
	The SoLaSoTe ontology of software languages, technologies, and concepts
	Entities of SoLaSoTe
	Prefixes used by SoLaSoTe
	Relationships of SoLaSoTe

	Bibliography

