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Abstract—This paper discusses the Clavel’s Delta parallel
robot and proposes an alternate solution to its Kkinemat-
ics/dynamic model. We meant to integrate these models into on
a small electrical driving circuit that integrates an onboard mi-
crocontroller. We designed the solution by taking into account
the reduced computing capability of small embedded systems.
Direct kinematics (DK), differential kinematics, both direct (J)
and inverse (inv]), and a simplified dynamic model will also
be presented. The novelty of the approach relies in a series of
geometric properties that allow to reduce the computational
load. When the three kinematics are computed together (DK,
J, inv]), their computations can be expressed in few lines of
code. The accuracy of motion, as well as the reduced computing
power, will be compared to classic algorithms . The proposed
algorithms have been implemented in a working system in the
context of a telemedicine project.

Keywords—Clavel’s Delta; Embedded Controller; Kinematics
Optimization;

I. INTRODUCTION

The Delta parallel robot was first introduced by Clavel
in 1989 [1], [2]. It is a pure 3D translational mechanism,
completely made trough rotational joints. This type of kine-
matics has numerous advantages with respect other 3 Degree
of Fredom Devices (DOF) devices. In particular it allows to
ground all the motors, thus minimizing the load of moving
masses; it is intrinsically parallel thus allowing high forces
at the end-effector; it preserves a very good compromise of
workspace/device size. This device kinematics has been ap-
plied in numerous cases of industrial and research products,
such as the Omega [3] haptic interface, and industrial [4],
[5] and medical [6] applications .

Since its original design the mechanism received much
attention in literature to optimize and make the design
more flexible. An example of the computational methods for
direct and inverse kinematics/dynamics of the Delta Robot
was presented by Lopez [7]. A trace of the computational
algorithm was presented by Zsombor and Murray in 2004
[8]. A possible variant, based on a recursive method was
proposed by Staicu that proposed a dynamic modelling of
the robot based on the inverse dynamic problem[9]. A com-
parison of screw theory based solutions for the gravitational
compensation was presented in [10]. Another design variant
for the optimization of kinematics was presented by Liu [11]
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where he consider how to optimize the design as a function
of the prescribed performances.

A good summary of the techniques used for the compu-
tation of direct/inverse kinematics and dynamics is summa-
rized in the works of Olson [12] and Williams [13].

The existing solutions to the kinematics always propose
unique solution method, that consist in two steps: first,
finding the spatial positions of the device elbows; and
second, to find the point of intersection of three different
spheres whose centers are in the elbows. In 2009 Murray and
Zsombor considered again how to reduce the computational
load, but without changing the overall methodology that still
consisted in finding the intersection of the three spheres[14].

While from one side the computational power of desktop
and industrial computers is progressively increasing, from
the other side, Human Robot Interfaces (HRI), Wearable
Robots (WR) and Internet of Things (IoT) are at they dawn,
and can only rely to use embedded systems, with reduced
computational capabilities.

For instance, recently we integrated the control of a
3DOF moving planar platform, named MOTORE [15] us-
ing and onboard small power computing DSP from Texas
Instruments (a TI-TMS320F28335). This type of device can
provide performances at about 100MHz, with only a rough
single precision floating point support that executes much
slowly than the base controller frequency.

Our objective is to fully integrate the electrical and
software control of a Delta-Like interface, in order to achieve
a fully-portable bio-medical system that only needs power
supply for being interactive. An overview of the system
operation is given in[16].

For this purpose we choose a similar architecture to the
TI’s one, an STM32F407 device from ST Microelectronics,
which has floating point capabilities while supporting a
32 bit integers thanks to the internal ARM cortexM4F
architecture [17].

To integrate on this microcontroller a controller which
includes Kinematics and Dynamics of the system, the com-
plete computational process has been reviewed. In what
follow we will present the geometrical ideas at the basis
of the new computational strategy, the optimization during
the numerical implementation, and an evaluation of the
performances on the on-board target.
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Figure 1. A top view of the device. Courtesy of ACCREA Ltd, adapted.

II. INTRODUCTION TO THE GEOMETRICAL ALGORITHM

The device we worked with has the mobile plate on its
top side, and the fixed basis is on the bottom. This setup,
upside-down with respect the original Clavel’s delta, is being
used with an handle on its mobile plate to allow operation
of haptic exploration and teleoperation. With respect to the
figure 1, the following relevant variables have been used.
The three motors, capstans and legs have been numbered in a
sequential order (1,2,3). We define a Cartesian base reference
frame XYZ, in which XY are in the plane of the motor
axes and the origin Op is on the radial symetry axis of the
device. The X axis is oriented from O g to motor 1, and the Z
axis is oriented upwards. We now define some geometrical
quantities (see figure 1) that will be user later on: Ry is
the radius of the circle tangent to the three capstans axes
(Capstans’ circle), we call C; the points in which the circle
is tangent to the i-th capstan. I?; is the radius of the moving
plate, that is defined by the three centers of the pins which
connect the forearms to the moving plate. Finally, Rp is
the maximum radius of the Delta elbow joints that occurs
when the elbows are horizontally aligned with the captan’s
rotation centers. We introduce three joint variables (namely
o1, P2, and ¢3), whose zero value is set in this condition of
maximum radius. The positiove direction of the three joint
variables is highlighted in figure 2 by means of the velocity
vectors (w1, wa, ws), and the related versors (11, N2, N3)-

The description of the device is completed by the length
of the lower limbs, the device arms indicated as L 4 in figure
2 and the device forearms shown with the term Lp. Also
we will define hg the vertical distance of the capstans-axes
plane to the motors-axes plane; E; (where i € {1,2,3}) the
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Figure 2. The side view of the device. Coutersy of ACCREA Ltd, adapted

position of the elbows’ centers, and IW; the position of the
wrists centers.

A summary of the construction parameters is summarized
in Table L.

TABLE I
VALUES OF THE DEVICE GEOMETRIC PARAMETERS
Coupling plate radius (Rp) 42mm
Capstans’ circle radius (Rps) 80mm
Maximum radius of encoumbrance (Rp) | 150mm
Length of device arms (L 4) 70mm
Length of device forearms (Lp) 183mm

At first we focus on the Direct Kinematics (DK) that
provides the pose of the moving plate with respect to the
rigid base frame given the joint angles ¢;. This pose will
be identified by a moving frame system whose axes are
parallel to the axes of the base frame, and whose origin Oy,
is aligned to Op along the Z axis when ¢ = ¢ = ¢35 = 0.

To determine the position of the moving plate origin O}y,
first we observe that this kinematics does not change if the
coupling plate radius (Rp) and the capstans’ circle radius
are increased or diminished by the same quantity. Hence, to
reduce the amount of variables in the realtime computation,
we decided to work with an equivalent system in which
the equivalent coupling plate radius is null, i.e. R, = 0,
and the equivalent capstans’ circle radius is computed as
Ry =Ry — Ry,

In order to minimize the number of quantities to be calcu-
lated in runtime, thus reducing the computational load, we
initialized the n; versors and the capstans’ center positions



(CQG)) as:

i = [bln(01)7 cos(@i), O]T (1)

CC; = [Ras cos(8;), Ry sin(6;), 07 @

where 6 5 = {0,27/3, —27/3}.

The first part of our algorithm is quite standard and
common to most existing direct kinematics solution. Using
the geometrical information and the joint displacements, we
compute the position of the three elbows as:

E,=L;+CC; 3

where

L; = [La cos(¢;)cos(6;), La cos(¢;)sin(6;), L 4 sin(¢;)]T
“
provides also the arm direction.

Since most of the parameters are calculated offline, the
realtime load is limited to the calculation of the goniometric
functions of ¢;, the products in equation 4 and the sum in
equation 3.

Also, having split the computation of the elbow position
in two parts, we will benefit of the arm direction information
that will reduce the amount of computation later. Given this
result, classic solutions that can be found in literature require
to find the position of the moving plate origin Oy as the
intersection of three spheres, centered in Fy, Ey and Es
respectively, and having the same radius that is equal to the
forearm length Lp. This procedure requires to write and
solve a complete system made of three quadratic equations.

Instead we imagined to solve the same issue by consid-
ering that the three elbows belonging to a unique sphere
centered in Oy, and passing through all E; (see figure 3. The
search for this center is much easier thanks to the following
properties. The intersection between this sphere and the
plane define by the three elbow points is a circle. This circle
is circumscribed to the elbow triangle. The position of the
center should stay on the axis of the circle; and, finally, the
offset on such axis can be easily determined by the Pitagora’s
theorem. As we will see, most of the information required
to apply these steps will use the same numerical quantities,
thus requiring minimal calculations.

Let us consider now the trinagle whose vertices are F1,
FEs and E3. We introduce a new non Cartesian reference
system, whose origin is F7, and whose axes are vy, vy and
vs, that are respresented in figure 3 and defined as

v = Es — Fy
U2=E3—E1
V3 = V1 X V2

&)

Said O, the position in the relative system of the circum-
scribed circle, we observe that is should be the intersection
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Figure 3.
kinematics.

The geometry variables that we use to solve the device

of the perpendicular bisectors of the triangle edges. Now,
O, solves equations 6.

0

0

Kl

V2
Therefore, after a simple algebraic manipulation and the
use of the pseudoinverse, we obtain:

= (6)

Oc 71)1/2
OC —’U2/2

O, = (v1C22(C11 — C12) + v2C11(Ca2 — C12))/(2A) (7)

where C1; = |v1], Coa = |va], C12 = v¥ wvy), and
the determinant of the pseudoinverse was defined as A =
C11Ca2 — C12C12.

The vertical offset may be determined on the vs axis by
imposing the Pitagora’s identity on the triangle described by
(Ow, O, E1). We have:

12— 070,

Ugvg

V3 = (®)

Where we expressed with 3 the coordinate along the vg
versor of the moving plate in the reference system that we
introduced in 5. This result leads us to:

Om =E1+0:+v373 )

III. DIFFERENTIAL KINEMATICS

Given the generic expression 10, we set the problem of the
Direct Differential Kinematics (DDK) as solving equation
10 for Jd, whereas the goal of the Inverse Differential

Kinematics is solving equation 11 for Jinwv.
Oy = Jdw (10)
(1)

w=JinvOy

being w = [wywows]T.



The DDK and the DIK are computed together. Even in this
case we determined the kinematics using a non conventional
geometric derivation. First we considered that the forearm
lengths do not change during motion, and hence, for each
elbow (i), we have:

(O — E)T(Op — Ey) = L% (12)

Which lead us to the following fundamental relationship:

(Om — E)T(Om — E;) =0 (13)

This formulation easily help us to describe the inverse dif-
ferential kinematics. By replacing each E; with its analytic
representation,

E; = n; x Liw; (14)

we have:

(Oum — E)TOn = Oy — E)T(n; x Liw;) =0
‘ s)
Wi = (Om—E)"Oum
" (Om—E)T (mixLi)
The equation 15 suggests us the generic row of Jinv
being computed as:

(Om—E)T (16)

Jinv; = (OnM—E;)T(n:x Ly)

The result of 16 is the only effective computation we
need, all the terms in the equations were already computed
offline and/or during the direct kinematics problem solution,
therefore it does not requires additional new terms to be
computed, and the overall computational load is minimal.

The direct kinematic my be then computed by superimpo-
sition of the effects. If we consider only one joint moving at
a time, we can directly know the direction of motion related
to this joint. If only joint three is moving, F; and FEy will
remain fixed. So the triangle (O, E1, F2) may only rotate
along the axis described by v;. This direction is computed
as cross product between the v; axis and the line passing
through the moving plate and the middle point between E;
and F, hence

jd3 = (OM — Elg) X U1 (17)

where 1
B = §(E1 + Es) (18)

The tilde here highlight the fact that Jd only refers to the
direction of the Jacobian and not the proper modulus.The
same equation may be repeated for the first and the sec-
ond row of the Jacobian. Once determined the Jacobian
directions, we scale them by knowing the identity product
between the direct and inverse Jacobian.

ki 0 0 1 00
Jd |0 ky 0| Jinv=1]0 1 0 (19)
0 0 ks 00 1

The equation 19 helps us to identify the scaling gains
each row should be multiplied in order to find the exact
direct Jacobian row:

Jd; = Jd;/(Jinv; Jd;) (20)

Once again, we only use pre-computed values to deter-
mine the exact values of the direct Jacobian matrix.

The above computation can be implemented in about 20
lines of Matlab code.

IV. SIMPLIFIED DYNAMIC MODEL

In what follow we will produce a simplified dynamic
models of the Delta Robot. In our simplified model, we
will only neglect part of the inertial and gyroscopic and
Coriolis effects due to the rotation of the device forearms.
The numerical approximation is good for most cases in
which the weight of the forearm is small and/or the speed
of motion is limited.

The dynamic model can be split into two components:
gravitational and inertial effects. In both case we proceed
to the analysis of the dynamics by operating the following
simplification. We considered the mass effects of the fore-
arm, as being generated only by two lumped masses being
placed on the elbow and on the wrist.

With such simplification (both masses equals exactly one
half of the overall forearm mass), the overall weight is
unchanged as well as the overall center of mass. As a
result there would be no errors in computing the overall
gravitational compensation.

To proceed in the dynamic model we off-line compute the
following values:

e My p the overall mass of the moving plate, including
the mass of the rotating joints and one half of the mass
of the theee forearms;

e MgH the overall mass of the shoulder joint which
moves the arm, it includes the capstan mass, and one
half of the mass of one forearm (for each joint);

e« GgH the position of the center of mass for the MgH
computed before;

e IgH the overall inertia moment with respect the joint
axis;

e TsH the (maximum) equivalent torque, produced on
the capstan joint by the weight force when GgH is
vertically aligned with the capstan axis;

e ¢gH the displacement angle assumed by the capstan
joint to achieve the vertical alignment described before.

All these values do not require any online computation. The
gravitational compensation may be then assumed for each
joint as the combined effect of the two torques applied by



the moving plate (73;9) and the “extended” capstan (7¢g)
itself, we have:

™9 = Jd [0, O, MUpg}T
Tcg,i = Tsm cos(d; — Psn)
The Dynamic compensation can be computed by analyz-
ing the inertia effects produced during motion. According to
our simplification we have two types of torque effects, the
inertia forces produced by the moving mass (T3,d) and the
inertia forces produced by the capstan (T d).

2y

T]\/[d = JdMUPOM

79,1 = Isu¢i
Here the only simplification we introduced was replacing
the forearm baricentral inertia (whose value for a uniformly
distributed bar is I.eal = 1/12M L2, with the inertia pro-
vided by two masses collocated at the end of the forearms:

Mg Lp
=255
where we indicated with My the overall mass of the
forearm. The relative error is therefore:
1
6
However considered the typical Delta structure we have
the combination of three effects that made this approxima-
tion highly acceptable: first the parallel structure intrinsically
limits the range of rotation of the forearms and therefore
the value of their derivatives; secondly the forearm weights
is usually much lighter than the capstans and the coupling
plate value; third the mass distribution is not usually equally
distributed since the presence of the bearings concentrate
much of the weight in the elbow and wrist positions. The
table II shows the case of the weight distribution in our Delta
system.

(22)

)2 =1/4MpL2%

quuiv

Ipr = MFL%'

TABLE 11
SUMMARY OF THE WEIGHT PARAMETERS IN THE ACCREA’S DELTA
Coupling plate 274gr
Coupling plate bearings 3 x 26gr

Forearm weights
Capstan weight
Coupling capstan bearings

2 x 20gr (each)
92gr (each)
26 gr (each)

As we deduce from table II, the 1/6 error is only in the
forearm moving part (one sixth of 40gr). This error, when
compared to the overall mass (40gr + 26gr +26gr = 92 g),
provides an overall error close to 7%. If we compare this
error to the mass of the moving mechanism (the moving
plate), the resulting error is smaller than 2%.

In most applications, these errors are far below the noise
provided by the estimation of the acceleration signal from
the encoders position. Therefore it can be handled by tradi-
tional robust control techniques.
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V. BENCHMARKING

First we tested accuracy of the provided algorithms. The
code was validated our geometric implementation against
the the one presented by Codourey in [18]. We choose
about 45,000 points equally spaced in the whole range of
the joint ranges. Both algorithms were implemented using
numeric float representation. The averaged RMS error on
the overall workspace was 15.24nm, with a maximum error
of 51.84nm. Both values resulted well below the encoders
resolution and close to the limit of representation for the
single precision mathematics. Some manually checked cases
revealed that this error was due to numerical approximation
in the [18] algorithms than the our. For instance at input
position [0.1,0.1,0.1] for the joint coordinates, which is
perfectly symmetric, we have:

o Codourey result: [2.88379¢ — 9,0, 0.154976]
o Our geometric result: [0, 0,0.154976]

from which we concluded the error was introduced by
numerical approximation in the three sphere intersection al-
gorithm. A preliminary numerical estimation of the compu-
tational cost was performed on a core i7@3.3GHz machine.
We executed 42M loops on the Kinematic computation all
over the workspace. Tests showed the proposed Kinematic
is about 15% more effective in the computation of the sole
end effector position. [18] algorithms provided averaged
computation time of 69nS against the average computing
time of 59nS of the geometric algorithms.

We expect more benefits however from the differential
kinematics and dynamics. These computations only require
few more vector products, while the analytic approach
requires again the computation of the lower legs velocities.
An example is provided by Lopez [7] which determines the
differential kinematics by computing the closure constraint
between the base and the moving plate of the delta and then
setting the differential to zero. A further simplification with
an external product lead the Lopez approach to the same
result as in 14. In our case however the introduction of the
intermediate terms (O —El-)T removes the need to perform
computations of additional terms. A simple comparison
between the estimated gravitational compensation load given
by [4] against our model is 154 vs. 15 cycles (where we
estimated 12 cycles per trigonometric function while we
decomposed cosine in 21 into a MAC operation).

Our target platform is a STM32F407@168MHz. We
estimated the computational load difference between the
proposed algorithm and existing ones on the target processor,
using the available cycle table from [17] and reported in
table III.

We should note the ability of the M4F to execute in
condensed cycles multiply, sign change and accumulation.
Trigonometric-operation cycle have been neglected assum-
ing they are in common between implementation and that
developer and the compiler may process them using an ad-



TABLE III
CORTEX M4F, FPU INSTRUCTION SET CYCLES SUMMARY.
Operation Cycles
Addition / Multiply 1
Mul.& Acc. 2
Divide / SQRT 14
Inverse Trig. 60

hoc lookup table. These operations were neglected because
that would be the same in both approaches and would be
ease through lookup table implementations. Moreover, the
assignment operation have been neglected. Table IV reports
the comparison, the last row of this table reports a weighted
number of cycles using data in Table III. The table compares
our algorithm with other two analytic methods available in
literature [12], [4]. Inverse trigonometric is not available
as an assembly instruction, its cost has been estimated as
60 cycles using as the template asin function available at
github.com/32bitmicro/newlib-nano-1.0.

As we can see the small difference in computational
load increases when we move to an embedded controller
scenario were complex operations (sqrt and divide) are not
possible at the a similar cost of elementary ones (multiply,
accumulate and combination of them). The Total Cycle
Count (TCC) is the estimated number of cycles and shows
how the analytic method requires 269 cycles against 138
of the geometric method. The geometric algorithm is about
twice more efficient than analytic one even only considering
the forward kinematics only.

TABLE IV
COMPARISON OF CYCLES CONSUMED BY DIFFERENT APPROACHES: THE
PROPOSED GEOMETRIC, AND EXISTING ANALYTIC METHODS.

Operation Proposed method | method [12] | method [4]
Addition 8 3 35
Multiply 16 18 41
Divide 3 7 2
Mul.& Acc. 29 54 0
SQRT 1 3 1
Inv. Trig. 0 0 3
TTC (138) (269) (298)

VI. CONCLUSION

In this paper we presented an alternative algorithm for the
real-time computation of the Clavel’s Delta parallel robot.
The proposed algorithms reduces the amount of computation
required while improving the robustness of the result even
in presence of reduced precision mathematical engines.

The results have been tested on an embedded platform
the relative controller has been embedded on. Overall results
showed capabilities to manage the whole device from one
single low cost microcontroller without introducing severe
compromises in the control design.
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