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On interval edge colorings of biregular bipartite graphs
with small vertex degrees
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DK-5230 Odense, Denmark

August 29, 2014

Abstract. A proper edge coloring of a graph with colors 1, 2, 3, . . . is called an interval
coloring if the colors on the edges incident to each vertex form an interval of integers. A
bipartite graph is (a, b)-biregular if every vertex in one part has degree a and every vertex
in the other part has degree b. It has been conjectured that all such graphs have interval
colorings. We prove that all (3, 6)-biregular graphs have interval colorings and that all (3, 9)-
biregular graphs having a cubic subgraph covering all vertices of degree 9 admit interval
colorings. Moreover, we prove that slightly weaker versions of the conjecture hold for (3, 5)-
biregular, (4, 6)-biregular and (4, 8)-biregular graphs. All our proofs are constructive and
yield polynomial time algorithms for constructing the required colorings.

1 Introduction

A proper edge coloring of a graph G with colors 1, 2, 3, . . . is called an interval coloring
(or consecutive coloring) if the colors on the edges incident to each vertex form an interval
of integers. The notion of interval colorings was introduced by Asratian and Kamalian [4]
(available in English as [3]), motivated by the problem of finding compact school timetables,
that is, timetables such that the lectures of each teacher and each class are scheduled in
consecutive periods. Hansen [11] described another scenario (obtained from Jesper Bang-
Jensen): a school wishes to schedule parent-teacher conferences in time slots so that every
person’s conferences occur in consecutive slots. A solution exists if and only if the bipartite
graph with vertices for parents and teachers and edges for the required meetings has an
interval coloring.

All regular bipartite graphs have interval colorings, since they decompose into perfect
matchings. Not every (non-bipartite) graph has an interval coloring, since a graph G with
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an interval coloring must have a proper ∆(G)-edge-coloring [4] (obtained from the interval
coloring by taking colors modulo ∆(G)). Sevastjanov [20] proved that determining whether
a bipartite graph has an interval coloring is NP-complete, and he also gave the first concrete
example of a bipartite graph having no interval coloring. Nevertheless, trees [11, 3], complete
bipartite graphs [11, 4], grids [10], and outerplanar bipartite graphs [9, 5] all have interval
colorings. Hansen [11] showed that all bipartite graphs of maximum degree 3 have interval
4-colorings, and Giaro [8] showed that one can decide in polynomial time whether bipartite
graphs with maximum degree 4 have interval 4-colorings.

A bipartite graph with parts X and Y is called (a, b)-biregular if all vertices of X have
degree a and all vertices of Y have degree b. In this paper we study the following well-known
conjecture [11, 14, 21]:

Conjecture 1.1. Every (a, b)-biregular graph has an interval coloring.

By results of [11] and [13], all (2, b)-biregular graphs admit interval colorings (the result
for odd b was obtained independently by Kostochka [15]). Several sufficient conditions for a
(3, 4)-biregular graph to admit an interval coloring has been obtained [2, 7, 19, 22]. In [6] we
give a sufficient condition for a (3, 5)-biregular graph to admit an interval coloring. However,
in general, Conjecture 1.1 is still wide open; the smallest unsolved case is (a, b) = (3, 4).

In the paper we present a simple proof of the following.

Theorem 1.2. Every (3, 6)-biregular graph has an interval 7-coloring.

Note that the number of colors used in Theorem 1.2 is best possible in the sense that
the problem to determine whether a (3, 6)-biregular graph has an interval 6-coloring is NP-
complete [1]. Using Theorem 1.2, we present a family of (3, 9)-biregular graphs having interval
colorings: such a graph has an interval 10-coloring if it has a 3-regular subgraph covering all
vertices of degree 9.

In this paper we also consider two natural generalizations of interval colorings. For a set A
of positive integers, A is near-interval if there is a positive integer n(A) such that A∪{n(A)}
is an interval; A is cyclic interval modulo t if either A or {1, . . . , t} \ A is an interval. A
proper t-edge coloring f of a graph G is a near-interval coloring if the set of colors on the
edges incident to any vertex of G is near-interval; f is a cyclic interval coloring if the set of
colors on the edges incident to any vertex is cyclic interval modulo t.

Near-interval colorings were first studied in [18] under the name interval (t, 1)-colorings.
Therein the authors e.g. give examples of bipartite graphs having no near-interval colorings,
and they provide bounds on the number of colors in near-interval colorings for different
families of graphs. Cyclic interval colorings are studied in e.g. [17, 16]. In particular, the
general question of determining whether a bipartite graph G has a cyclic interval coloring is
NP-complete [16] and there are concrete examples of connected bipartite graphs having no
cyclic interval coloring [17]. Trivially, any bipartite graph with an interval coloring also has
a cyclic interval coloring with ∆(G) colors, but the converse does not hold [17].

In [6] we give some conditions for a (3, 5)-biregular graph to admit a cyclic interval
coloring. Here, we establish that slightly weaker versions of Conjecture 1.1 hold for (3, 5)-
biregular, (4, 6)-biregular and (4, 8)-biregular graphs by proving the following:

(i) Every (3, 5)-biregular graph has a near-interval coloring;
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(ii) Every (4, 6)-biregular graph has a near-interval coloring;

(iii) Every (4, 8)-biregular graph has a cyclic interval coloring.

In Section 2 we give the proof of Theorem 1.2. Statements (i) and (ii) are proved in Section
3, where we also present an infinite family of (4, 6)-biregular graphs having interval colorings.
In Section 4 we consider (4, 8)-biregular graphs: we prove (iii) and briefly discuss the problem
of constructing interval colorings of (4, 8)-biregular graphs. The proofs of these results are all
constructive and yield polynomial algorithms for constructing the corresponding colorings.

2 Proof of the main result

In this section we prove Theorem 1.2. First we introduce some notation and also state
some preliminary results. Throughout the paper, we use the notation G = (X, Y ;E) for a
bipartite graph G with bipartition (X, Y ) and edge set E = E(G). We use the convention
that if G = (X, Y ;E) is (a, b)-biregular, then the vertices in X have degree a. We denote by
dG(v) the degree of a vertex v in G, and by NG(v) the set of vertices adjacent to v in G. If
V ′ ⊆ V (G), then NG(V

′) = ∪v∈V ′NG(v), and dG(V
′) =

∑
v∈V ′ dG(v). The maximum degree

in G is denoted by ∆(G), and the minimum degree in G is denoted by δ(G).
For an edge coloring ϕ of a graph G, let M(ϕ, i) = {e ∈ E(G) : ϕ(e) = i}. If e ∈ M(ϕ, i),

then e is colored i under ϕ. For a vertex v ∈ V (G), we say that a color i appears at v under
ϕ if there is an edge e incident to v with ϕ(e) = i, and we set

ϕ(v) = {ϕ(e) : e ∈ E(G) and e is incident to v}.

If c /∈ ϕ(v), then c is missing at v under ϕ. Moreover, if ϕ(v) = {c}, that is, ϕ(v) is singleton,
then ϕ(v) usually denotes the color c rather than the set {c}. In all the above definitions, we
often leave out the explicit reference to a coloring ϕ, if the coloring is clear from the context.

We shall say that a proper edge coloring of a graph G using positive integers is interval at
a vertex v ∈ V (G) if the colors on the edges incident to v form an interval of integers. For the
proof of Theorem 1.2, we will use the following result (which easily follows from Petersen’s
2-factor theorem for regular graphs of even degree).

Theorem 2.1. [11] If G is (2, 2k)-biregular for some positive integer k, then G has an
interval 2k-coloring where for each vertex x of degree 2, there is a positive integer j such that
the edges incident with x are colored 2j − 1 and 2j (i.e. the smaller color is always odd).

Proof of Theorem 1.2. Let G = (X, Y ;E) be a (3, 6)-biregular graph. Define a new graph
H from G by replacing each vertex y of degree 6 in G by two vertices y′ and y′′ of degree
3, where y′ is adjacent to three of the neighbors of y and y′′ is adjacent to the other three
neighbors of y. The graph H is 3-regular, so by Hall’s condition it has a perfect matching
M . In G, M induces a subgraph F in which each vertex in Y has degree 2 and each vertex
in X has degree 1.

The graph G−E(F ) is (2, 4)-biregular, so by Theorem 2.1, there is an interval 4-coloring
f of G− E(F ) such that each vertex of X receives colors 1 and 2 or 3 and 4 on its incident
edges. We define a new proper edge coloring f ′ from f by replacing colors 1 and 2, with colors
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2 and 3, respectively; and colors 3 and 4 by colors 5 and 6, respectively. Thus f ′ is a proper
edge coloring of G−E(F ) using colors 2, 3, 5, 6 and for each vertex x ∈ X , f ′(x) = {2, 3} or
f ′(x) = {5, 6}.

We will now define an edge coloring g of F so that g and f ′ together form an interval
7-coloring of G. For each vertex y ∈ Y , we color the edges of F incident to y according to
the following. Let x and x′ be the neighbors of y in F .

• If f ′(x) = f ′(x′) = {2, 3}, then we set g(xy) = 1 and g(x′y) = 4;

• if f ′(x) = f ′(x′) = {5, 6}, then we set g(xy) = 4 and g(x′y) = 7;

• if f ′(x) = {2, 3} and f ′(x′) = {5, 6}, then we set g(xy) = 4 and g(x′y) = 7.

The colorings f ′ and g together form an interval 7-coloring of G.

Remark 1. Since Theorem 2.1 is true also in the multigraph setting (see e.g. [11]), in
particular, every (2, 4)-biregular multigraph has an interval 4-coloring such that each vertex
of degree 2 receives colors 1, 2 or 3, 4 on its incident edges, the proof of Theorem 1.2 is also
valid in the multigraph setting. Thus, in fact every (3, 6)-biregular multigraph has an interval
7-coloring.

Remark 2. To see that not every (3, 6)-biregular graph has an interval 6-coloring, take the
graph G to consist of two disjoint copies of the complete graph K7 on 7 vertices. Add seven
new vertices to G and extend each of the 42 edges of G to a 3-set by adding one of the
new vertices such that each of the seven new vertices is in exactly six 3-sets. The result is
a 6-regular 3-uniform hypergraph H . Consider the corresponding (3, 6)-biregular graph with
partite sets E(H) and V (H) and an edge joining e ∈ E(H) to x ∈ V (H) whenever e contains
x. An interval 6-coloring of this graph corresponds to a factorization of H into two 3-factors.
In turn a 3-factor of H corresponds to a 3-factor in G and hence in K7. But no 3-regular
graph has seven vertices.

Using Theorem 1.2, we can prove that a particular family of (3, 9)-biregular graphs admit
interval colorings.

Corollary 2.2. If G is a (3, 9)-biregular graph having a 3-regular subgraph covering all ver-
tices of degree 9, then G has an interval 10-coloring.

Proof. Let G = (X, Y ;E) be a (3, 9)-biregular graph having a 3-regular subgraph F covering
all vertices of degree 9 in G. Let X ′ be the set of vertices of F that have degree 3 in G. Then
G−X ′ is (3, 6)-biregular, and so it has an interval 7-coloring f . Suppose that f uses colors
1, . . . , 7. Then for each vertex y ∈ Y , we have f(y) = {1, . . . , 6} or f(y) = {2, . . . , 7}.

We will now define a proper edge coloring of F . By Hall’s condition, F has a perfect
matching M . We define the proper edge coloring g of F in the following way. Let e ∈ M .

• If e is incident with a vertex y ∈ Y such that f(y) = {2, . . . , 7}, then we color e with
10;

• if e is incident with a vertex y ∈ Y such that f(y) = {1, . . . , 6}, then we color e with 7.
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K3,8 K3,8 K3,8 K3,8 K3,8 K3,8 K3,8 K3,8 K3,8

w1 w2 w3

. . . . . .

Figure 1: The graph H = H(G).

This yields a coloring of the edges of M . F − M is 2-regular so by König’s edge coloring
theorem, we may define g on F −M by letting it be a proper edge coloring using colors 8
and 9. The edge colorings f and g form an interval 10-coloring of G.

Next, we prove that the number of colors used in Corollary 2.2 is best possible. Let
G = (X, Y ;E) be a (3, 9)-biregular graph. If G has a decomposition into three edge-disjoint
3-regular subgraphs G1, G2, G3, then we may construct an interval 9-coloring of G by properly
coloring the edges of Gi with colors 3i−2, 3i−1, 3i, for i = 1, 2, 3 (using König’s edge coloring
theorem). Conversely, if G has an interval 9-coloring using colors 1, . . . , 9, then the subgraph
Gi induced by edges colored 3i− 2, 3i− 1, 3i is 3-regular and covers Y , for i = 1, 2, 3. Hence,
we have the following:

Proposition 2.3. A (3, 9)-biregular graph G has an interval 9-coloring if and only if it admits
a decomposition into three edge-disjoint 3-regular subgraphs.

Now, let G = (X, Y ;E) be a (3, 6)-biregular graph. We shall construct a (3, 9)-biregular
graph H = H(G) from G. Since dG(X) = dG(Y ), we have that |X| = 2k and |Y | = k for
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some positive integer k. Suppose that X = {x1, . . . , x2k} and Y = {y1, . . . , yk}, and let

Z = {z(1)1 , z
(1)
2 , z

(1)
3 , z

(2)
1 , z

(2)
2 , z

(2)
3 , . . . , z

(k)
1 , z

(k)
2 , z

(k)
3 } and W = {w1, . . . , wk}

be two sets of 3k and k new vertices, respectively. Moreover, let L be a new graph consisting
of three pairwise disjoint copies K

(1)
3,8 , K

(2)
3,8 , K

(3)
3,8 of the complete bipartite graph K3,8, where

the vertices in K
(i)
3,8 of degree 8 are denoted by ai1, ai2, ai3, respectively, i = 1, 2, 3. We take k

pairwise disjoint copies L1, . . . , Lk of the graph L, and denote the vertices in Lj corresponding

to a11, . . . , a33, by a
(j)
11 , . . . , a

(j)
33 , j = 1, . . . , k. Set L = ∪k

j=1Lj .
For each j = 1, . . . , k, we define a set Ej of edges by letting

Ej ={yjz
(j)
1 , yjz

(j)
2 , yjz

(j)
3 } ∪ {wja

(j−1)
33 , wja

(j)
23 , wja

(j+1)
13 }∪

{z(j)1 a
(j)
11 , z

(j)
1 a

(j)
21 , z

(j)
2 a

(j)
12 , z

(j)
2 a

(j)
31 , z

(j)
3 a

(j)
22 , z

(j)
3 a

(j)
32 },

where all indices are taken modulo k. We now define the graph H = H(G) by setting

V (H) = V (G) ∪ V (L) ∪W ∪ Z and E(H) = E(G) ∪ E(L) ∪ E1 ∪ · · · ∪ Ek.

The graph H is (3, 9)-biregular and contains G as a subgraph (see Figure 1). Moreover,
it is straightforward to verify that H has a decomposition into 3-regular subgraphs if and
only if G has a 3-regular subgraph covering Y .

Suppose that G has no 3-regular graph covering Y . (Such a (3, 6)-biregular graph is easy
to construct, an explicit example appears in Remark 2.) Then the graph H = H(G) has a
3-regular subgraph covering all vertices of degree 9, but no decomposition into edge-disjoint
3-regular subgraphs; that is, H satisfies the hypothesis of Corollary 2.2 and by Proposition
2.3 it has no interval 9-coloring. Hence, the number of colors used in Corollary 2.2 is best
possible.

Furthermore, in [1] the following was proved:

Proposition 2.4. [1] It is an NP-complete problem to determine if a (3, 6)-biregular graph
has a 3-regular subgraph covering all vertices of degree 6.

Remark 3. It is not hard to verify that a (3, 6)-biregular graph has an interval 6-coloring if
and only if it has a 3-regular subgraph covering all vertices of degree 6; so Proposition 2.4 is
the result underlying the fact that the problem to determine if a (3, 6)-biregular graph has
an interval 6-coloring is NP-complete [1].

Now, let G = (X, Y ;E) be a (3, 6)-biregular graph. Since the graph H = H(G) con-
structed above admits a decomposition into 3-regular subgraphs if and only if G has a 3-
regular subgraph covering Y , it follows from Proposition 2.3 and 2.4 that the problem to
determine if a (3, 9)-biregular graph has an interval 9-coloring is NP-complete. In fact, the
problem of deciding whether a (3, 9)-biregular graph satisfies the hypothesis of Corollary 2.2
is also NP-complete.

Proposition 2.5. The problem of determining whether a (3, 9)-biregular graph has a 3-regular
subgraph covering all vertices of degree 9 is NP-complete.

The proof of Proposition 2.5 is deferred to the appendix.
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3 Near-interval colorings

In this section we consider near-interval colorings. This edge coloring model was studied by
Petrosyan et al. in [18] under the name interval (t, 1)-colorings. If f is a proper edge coloring
of a graph G, v ∈ V (G), and f(v) is near-interval, then we say that f is near-interval at v.

In [18] Petrosyan et al. investigate the question of existence of near-interval colorings
for different families of graphs; in particular, they give examples of bipartite graphs having
no near-interval colorings. Here we are interested in the question whether (a, b)-biregular
graphs have such colorings. This is a useful relaxation of Conjecture 1.1: for instance, for
each positive integer n ≥ 4, it is unknown whether all (n−1, n)-biregular graphs have interval
colorings. However, it is an immediate consequence of König’s edge coloring theorem that
every such graph has a near-interval n-coloring. In fact, we have the following:

Proposition 3.1. If G is a bipartite graph with δ(G) = n− 1 and ∆(G) = n, then G has a
near-interval n-coloring.

The question whether Proposition 3.1 extends to general (a, b)-biregular graphs is open.
In particular, it is unknown whether all (n−2, n)-biregular graphs have near-interval colorings
if n ≥ 7. The case n = 4 has an affirmative solution by the result of [11]. We shall prove
that all (3, 5)- and (4, 6)-biregular graphs have near-interval colorings. For (3, 5)-biregular
graphs, this follows from Theorem 1.2.

Corollary 3.2. Every (3, 5)-biregular graph has a near-interval 6-coloring.

Proof. Let G = (X, Y ;E) be a (3, 5)-biregular graph. Then |X| = 5k and |Y | = 3k, for some
positive integer k. Let Y = {y1, . . . , y3k}. From G we form a (3, 6)-biregular graph H by
adding a set X ′ = {x′

1, . . . , x
′

k} of k new vertices, and putting an edge between x′

i and each of
the vertices y3i−2, y3i−1, y3i, for i = 1, . . . , k. The obtained graph H is (3, 6)-biregular, so by
Theorem 1.2 it has an interval 7-coloring f . Moreover, it follows from the proof of Theorem
1.2 that if x ∈ X , then

f(x) ∈ {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}, {5, 6, 7}}.

Let E1 = {e ∈ E(G) : f(e) ∈ {3, 5}}, and note that E1 covers X . Let J be the subgraph
of G induced by the edges in E1. Then each vertex of X has degree 1 in J , and each vertex
of Y has degree 1 or 2 in J . Let M be a (minimal) matching in G−E1 saturating all vertices
of Y of degree 1 in J ; such a matching exists by Hall’s condition (or by König’s edge coloring
theorem). Next, let J ′ be the subgraph of G induced by E1∪M . Since every vertex of Y has
degree 2 in J ′, the graph G−E(J ′) has maximum degree 3. Define a proper 5-edge coloring
g of G by properly coloring the edges of G − E(J ′) with colors 1, 2, 5, and the edges of J ′

with colors 3 and 4. Since E1 covers X , we have that g(x) 6= {1, 2, 5} for each vertex x ∈ X .
Moreover, g(y) = {1, 2, 3, 4, 5} for each vertex y ∈ Y . This implies that g is near-interval at
every vertex v of G except if v ∈ X and

g(v) ∈ {{1, 3, 5}, {1, 4, 5}}.

From g we define a new proper edge coloring g′ of G in the following way: for each edge
e = xy, such that x ∈ X , g(e) = 1 and g(x) ∈ {{1, 3, 5}, {1, 4, 5}}, we set g′(e) = 6; we retain
the color of every other edge of G. The obtained coloring g′ is near-interval at every vertex
of G.
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Note that a proper 5-edge coloring f of a (3, 5)-biregular graph G = (X, Y ;E) is a near-
interval 5-coloring of G if and only if {1, 5} * f(x) for each vertex x ∈ X . Moreover, since
G is (3, 5)-biregular, |X| = 5k and |Y | = 3k. Thus |M(f, 1)| = |M(f, 5)| = 3k, which implies
that there is a vertex x ∈ X such that {1, 5} ⊆ f(x). Hence, no (3, 5)-biregular graph has a
near-interval 5-coloring, which means that the number of colors used in Corollary 3.2 is best
possible.

Let us now prove that all (4, 6)-biregular graphs have near-interval 7-colorings.

Theorem 3.3. Every (4, 6)-biregular graph has a near-interval 7-coloring.

Proof. Let G = (X, Y ;E) be a (4, 6)-biregular graph. Since all vertex degrees in G are even,
there is a closed eulerian trail T in G. Let E1 be the set of all even-indexed edges of T , and
put E2 = E(G)\E1. Set G1 = G[E1] and G2 = G[E2], and note that Gi is (2, 3)-biregular for
i = 1, 2. We define a proper edge coloring f of G using colors 2, . . . , 7 by properly coloring the
edges of G1 with colors 2, 6, 7; and the edges of G2 with colors 3, 4, 5. Then f(y) = {2, . . . , 7}
for each vertex y ∈ Y . Each vertex x ∈ X receives two colors from {2, 6, 7} and two colors
from {3, 4, 5} on its incident edges. This implies that if f is not near-interval at some vertex
x ∈ X , then

f(x) ∈ {{2, 3, 4, 7}, {2, 3, 5, 7}, {2, 4, 5, 7}}.

For every such vertex x we recolor the edge colored 7 incident to x by color 1. The obtained
edge coloring is a near-interval 7-coloring of G.

Note that a proper 6-edge coloring f of a (4, 6)-biregular graph G = (X, Y ;E) is a near-
interval 6-coloring of G if and only if {1, 6} * f(x) for each vertex x ∈ X . Since G is
(4, 6)-biregular, |X| = 3k and |Y | = 2k, for some positive integer k. Thus, |M(f, 1)| = 2k
and |M(f, 6)| = 2k, which implies that {1, 6} ⊆ f(x) for some vertex x ∈ X . Hence, the
number of colors used in Theorem 3.3 is best possible.

Next, we give two sufficient conditions for a (4, 6)-biregular graph to admit an interval
8-coloring. Note that Hanson and Loten [12] proved that an interval coloring of an (a, b)-
biregular graph uses at least a+ b− gcd(a, b) colors, where gcd denotes the greatest common
divisor. Hence, no (4, 6)-biregular graph has an interval coloring with fewer than 8 colors.

Proposition 3.4. Let G = (X, Y ;E) be a (4, 6)-biregular graph. If there are partitions
X = X1 ∪X2 ∪X3 and Y = Y1 ∪ Y2, such that either

(i) G[Xi ∪ Yj] is 2-regular for i ∈ {1, 2, 3} and j ∈ {1, 2}, or

(ii) G[X2 ∪ Yi] is 2-regular for i = 1, 2, and G[X1 ∪ Y1] and G[X3 ∪ Y2] is 4-regular,

then G has an interval 8-coloring.

Proof. Let G = (X, Y ;E) be a (4, 6)-biregular graph satisfying (i) or (ii) of Proposition 3.4.
Suppose first that (i) holds. Then there are partitionsX = X1∪X2∪X3 and Y = Y1∪Y2, such
that G[Xi∪Yj ] is 2-regular for i ∈ {1, 2, 3} and j ∈ {1, 2}. By König’s edge coloring theorem
there is a proper edge coloring using 2 colors of each G[Xi ∪ Yj ]. We define an edge coloring
of G by properly coloring the edge set of each G[Xi∪Yj] using colors 2(i+ j)−3, 2(i+ j)−2,
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for i = 1, 2, 3 and j = 1, 2. It is straightforward to verify that the obtained coloring is interval
at every vertex of G.

Suppose now that (ii) holds. Then there are partitions X = X1∪X2∪X3 and Y = Y1∪Y2,
such that G[X2∪Yi] is 2-regular for i = 1, 2, and G[X1∪Y1] and G[X3∪Y2] are both 4-regular.
We properly color the edges of G as follows (again using König’s edge coloring theorem):

• color the edges of G[X1 ∪ Y1] with colors 1, 2, 3, 4;

• color the edges of G[X3 ∪ Y2] with colors 5, 6, 7, 8;

• color the edges of G[X2 ∪ Yi] with colors 8− 2i− 1, 8− 2i, for i = 1, 2.

It is straightforward to verify that the obtained coloring is interval at every vertex of G.

Since (4, 6)-biregular graphs satisfying condition (i) or (ii) of Proposition 3.4 is the edge-
disjoint union of regular bipartite graphs, Proposition 3.4 establishes existence of interval
colorings for an infinite family of (4, 6)-biregular graphs.

On the other hand, any (4, 6)-biregular graph satisfying (i) or (ii) of Proposition 3.4 has
a 4-regular subgraph covering all vertices of degree 6; and it is easy to construct examples
of (4, 6)-biregular graphs having no such subgraph. Consider, for instance, a (4, 6)-biregular
graph G = (X, Y ;E) where Y = {1, 2, . . . , 8} and the neighborhoods of the vertices in X are
twelve 4-subsets A1, . . . , A12 of {1, 2, . . . , 8}. G has a 4-regular subgraph covering Y if and
only if there are four 4-subsets among A1, . . . , A12 such that each of the numbers 1, . . . , 8
belongs to exactly two of these 4-subsets. An explicit example failing this condition is

A1 = {1, 2, 3, 4}, A2 = {1, 2, 3, 4}, A3 = {1, 2, 5, 6}, A4 = {1, 2, 5, 6},

A5 = {1, 2, 7, 8}, A6 = {1, 2, 7, 8}, A7 = {3, 5, 7, 8}, A8 = {3, 5, 7, 8},

A9 = {4, 5, 6, 8}, A10 = {4, 5, 6, 8}, A11 = {3, 4, 6, 7}, A12 = {3, 4, 6, 7}.

Straightforward case analysis shows that there are no four 4-subsets such that each of
the numbers 1, . . . , 8 belongs to exactly two of these 4-subsets. Hence, the corresponding
(4, 6)-biregular graph has no 4-regular subgraph covering Y and therefore does not satisfy
the hypothesis of Proposition 3.4. However, it is an easy exercise to prove that this graph
does have an interval coloring with 8 colors.

Note further that since the proof of Proposition 3.4 relies only on the application of
König’s edge coloring theorem, which is valid in the multigraph setting as well, the proof
works equally well for (4, 6)-biregular multigraphs. The latter also holds for Theorem 3.3.

4 (4, 8)-biregular graphs

In this section we consider (4, 8)-biregular graphs. We will prove that all (4, 8)-biregular
graphs have cyclic interval colorings, but let us first briefly discuss the question of the exis-
tence of interval 8-colorings of (4, 8)-biregular graphs. Let G = (X, Y ;E) be a (4, 8)-biregular
graph. If f is an interval 8-coloring of G, then the edges with colors in {1, 2, 3, 4} span a
4-regular subgraph of G covering Y ; and the edges with colors in {5, 6, 7, 8} span a 4-regular
graph covering Y . Conversely, if G has two edge-disjoint 4-regular graphs covering Y , then
it clearly has an interval 8-coloring. Thus we have the following:
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Proposition 4.1. A (4, 8)-biregular graph has an interval 8-coloring if and only if it has a
4-regular subgraph covering the vertices of degree 8.

Unfortunately, the problem of determining whether a (4, 8)-biregular graph has a 4-regular
subgraph covering all vertices of degree 8 is NP-complete, as the following proposition states.
The proof is deferred to the appendix.

Proposition 4.2. The problem of determining whether a (4, 8)-biregular graph has a 4-regular
subgraph covering all vertices of degree 8 is NP-complete.

Propositions 4.1 and 4.2 imply the following:

Corollary 4.3. The problem of determining whether a (4, 8)-biregular graph has an interval
8-coloring is NP-complete.

We now turn our attention to cyclic interval colorings and first note the following analogue
of Proposition 3.1 for cyclic interval colorings.

Proposition 4.4. If G is a bipartite graph with δ(G) = n− 1 and ∆(G) = n, then G has a
cyclic interval n-coloring.

It follows from Proposition 4.4 that all (n − 1, n)-biregular graphs have cyclic interval
colorings. Note further that any interval coloring of a bipartite graph G can be transformed
into a cyclic interval ∆(G)-coloring by taking all colors modulo ∆(G). So Conjecture 1.1 in
fact has the following weaker consequence for which the answer is unknown:

Conjecture 4.5. Every (a, b)-biregular graph has a cyclic interval max{a, b}-coloring.

The smallest unsolved case of Conjecture 4.5 is (a, b) = (3, 5). In [6] we gave some
conditions for a (3, 5)-biregular graph to admit a cyclic interval coloring; such a graph G =
(X, Y ;E) has a cyclic interval 5-coloring if it has a 3-regular subgraph covering Y , or a
(3, 4)-biregular subgraph covering Y . Here we prove that all (4, 8)-biregular graphs have
cyclic interval 8-colorings.

Theorem 4.6. Every (4, 8)-biregular graph has a cyclic interval 8-coloring.

Proof. Let G = (X, Y ;E) be a (4, 8)-biregular graph. Since all vertex degrees in G are even,
G has a closed Eulerian trail T with an even number of edges. Let E1 be the set of all
even-indexed edges in G, and put E2 = E(G) \ E1. Set G1 = G[E1] and G2 = G[E2], and
note that Gi is (2, 4)-biregular for i = 1, 2.

By Theorem 2.1, each Gi has an interval 4-coloring such that each vertex in X receives
colors 1, 2 or 3, 4 on its incident edges. Let fi be such a coloring of Gi, i = 1, 2. From f1 we
define a new proper edge coloring g1, by replacing colors 3 and 4 by 5 and 6, respectively;
from f2 we define a new proper edge coloring g2 by replacing colors 1 and 2 by colors 7 and
8, respectively. Note that if y ∈ Y , then g1(y) ∪ g2(y) = {1, . . . , 8}.

If x ∈ X , then g1(x) ∈ {{1, 2}, {5, 6}} and g2(x) ∈ {{3, 4}, {7, 8}}. Hence, g1 and g2
together form a cyclic interval 8-coloring of G.

Finally, let us remark that the proof of Theorem 4.6 is also valid for multigraphs, since
Theorem 2.1 holds for multigraphs.
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thesis, Linköping University, 2005.

[8] K. Giaro, The complexity of consecutive ∆-coloring of bipartite graphs: 4 is easy, 5 is
hard, Ars Combin. 47 (1997), 287–298.

[9] K. Giaro, M. Kubale, Compact scheduling of zero-one time operations in multi-stage
systems, Discrete Applied Mathematics 145 (2004), 95-103

[10] K. Giaro, M. Kubale, Consecutive edge-colorings of complete and incomplete Cartesian
products of graphs, Congressus Numerantium 128 (1997), 143-149.

[11] H. M. Hansen, Scheduling with minimum waiting periods (in Danish), Master Thesis,
Odense University, Odense, Denmark, 1992.

[12] D. Hanson, C. O. M. Loten, A lower bound for interval colouring bi-regular bipartite
graphs, Bulletin of the ICA 18 (1996), 69-74.

[13] D. Hanson, C.O.M Loten, B. Toft, On interval colourings of bi-regular bipartite graphs,
Ars Combinatoria 50 (1998), 23–32.

[14] T. R. Jensen, B. Toft, Graph Coloring problems, Wiley Interscience, 1995.

[15] A. V. Kostochka, Unpublished manuscript, 1995

[16] M. Kubale, A. Nadolski, Chromatic scheduling in a cyclic open shop, European Journal
of Operational Research 164, (2005), 585–591.

[17] A. Nadolski, Compact cyclic edge-colorings of graphs, Discrete Mathematics 308, (2008),
2407–2417.

11



[18] P. A. Petrosyan, H. Z. Arakelyan, V. M. Baghdasaryan A generalization of interval
edge-colorings of graphs, Discrete Applied Mathematics 158 (2010), 1827–1837.

[19] A. V. Pyatkin, Interval coloring of (3,4)-biregular bipartite graphs having large cubic
subgraphs, Journal of Graph Theory 47 (2004), 122–128.

[20] S. V. Sevastjanov, Interval colorability of the edges of a bipartite graph (in Russian),
Metody Diskretnogo Analiza, 50 (1990), 61–72.

[21] M. Stiebitz, B. Toft, D. Scheide, L.M. Favrholdt, Graph edge colouring: Vizing’s theorem
and Goldberg’s conjecture, Wiley Interscience, 2012.

[22] Fan Yang, Xiangwen Li, Interval coloring of (3, 4)-biregular bigraphs having two (2,3)-
biregular bipartite subgraphs, Applied Mathematics Letters 24 (2011), 1574-1577.

Appendix

In this section we give the proofs of Propositions 2.5 and 4.2.

Proof of Proposition 2.5 (sketch). Let G = (X, Y ;E) be a (3, 6)-biregular graph. From G we
shall construct a (3, 9)-biregular graph H with parts XH and YH such that H has a 3-regular
subgraph covering YH if and only if G has a 3-regular subgraph covering Y . By Proposition
2.4, this suffices for proving the proposition.

Suppose that Y = {y1, . . . , yk}. Let K
(1)
3,8 , . . . , K

(6)
3,8 be 6 pairwise disjoint copies of the

complete bipartite graph K3,8, and let K
(1)
4,2 , . . . , K

(3)
4,2 be 3 pairwise disjoint copies of the

complete bipartite graph K4,2. Set K = K
(1)
3,8 ∪ · · · ∪ K

(6)
3,8 and K′ = K

(1)
4,2 ∪ K

(1)
4,2 ∪ K

(3)
4,2 .

Suppose that the parts of K are

T = {t1, . . . , t48} and U = {u1, . . . , u18},

where the vertices in U are labelled according to Figure 2. Suppose that the parts of K′ are

A = {a1, . . . , a12} and B = {b1, . . . , b6},

where the vertices of A and B are labelled according to Figure 2. Let W = {w1, w2, w3} and
Z = {z1, . . . , z10} be two disjoint sets of new vertices distinct from all vertices in G and not
in any of the complete bipartite graphs. Let

Ewa = {w1u1, w1u4, w2u7, w2u10, w3u13, w3u16},

and for i = 1, 2, 3, let

Ei = {a4i−3u6i−4, a4i−2u6i−3, a4i−1u6i−1, a4iu6i}.

We now define the auxiliary graph J from K ∪ K′ and the vertices in W by adding the new
edges in Ewa and E1 ∪ E2 ∪ E3. From J we define the graph L by adding the vertices in Z
and letting the neighborhoods of these vertices be:

NL(zi) = {b1, b2, b3}, for i = 1, . . . , 5
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and
NL(zi) = {b4, b5, b6}, for i = 6, . . . , 10.

The graph L is bipartite, all vertices in one part have degree 9, and all vertices in the other
part have degree 2 or 3; in fact dL(v) = 2 if and only if v ∈ W (see Figure 2).

w1 w2 w3

K
(1)
3,8

u1 u2 u3

K
(2)
3,8

u4 u5 u6

K
(3)
3,8

u7 u8 u9

K
(4)
3,8

u10 u11 u12

K
(5)
3,8

u13 u14 u15

K
(6)
3,8

u16 u17 u18

K
(1)
4,2 K

(2)
4,2 K

(3)
4,2

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

b1 b2 b3 b4 b5 b6

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

Figure 2: The graph L in the proof of Proposition 2.5.

We take k pairwise disjoint copies L(1), . . . , L(k) of the graph L and denote the vertices in
each L(i) corresponding to

• w1, w2, w3 by w
(i)
1 , w

(i)
2 , w

(i)
3 ,

• a1, . . . , a12, by a
(i)
1 , . . . , a

(i)
12 ,

• u1, . . . , u18 by u
(i)
1 , . . . , u

(i)
18 , and

• b1, . . . , b6 by b
(i)
1 , . . . , b

(i)
6 ,

respectively. Set Wi = {w(i)
1 , w

(i)
2 , w

(i)
3 }. Now we define the graph H from G and the copies

of L by for each i = 1, . . . , k adding the edges in {yiw
(i)
1 , yiw

(i)
2 , yiw

(i)
3 } to G∪L(1) ∪ · · ·∪L(k).

The graph H is (3, 9)-biregular and we denote its parts by XH and YH , respectively.
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We will now prove that G has a cubic subgraph covering Y if and only if H has a cubic
subgraph covering YH . If G has a cubic subgraph covering Y , then it is straightforward to
verify from Figure 2 that H has a cubic subgraph covering YH .

Conversely, suppose that H has a cubic subgraph Q covering YH . We will prove that
none of the vertices in W1 ∪ · · · ∪ Wk are in Q. If this holds, then the part of Q which
is in G is a 3-regular graph covering Y , which implies the desired result. Suppose, for a
contradiction, that there are integers i, j such that w

(i)
j is in Q. Suppose for example that

j = 1. Since each of the vertices in {u(i)
1 , u

(i)
2 , . . . , u

(i)
6 } have degree 3 in Q, this implies that

{a(i)1 , a
(i)
2 , a

(i)
3 , a

(i)
4 } ⊆ V (Q). However, this implies that dQ(b

(i)
1 ) ≥ 4, a contradiction. The

cases when j ∈ {2, 3} can be dealt with similarly. Thus we conclude that the part of Q that
lies in G is 3-regular, as required.

Proof of Proposition 4.2 (Sketch). Let G = (X, Y ;E) be a (3, 6)-biregular graph. Consider
the graph J in Figure 3. Let F be a fixed subgraph of J induced by s, w1, w2, w3, a1, a3, a5, b,
and all vertices of degree 6 in each copy of K6,3, and three arbitrary vertices of degree three
in each copy of K6,3.

s t

w1 w2 w3

K6,3 K6,3 K6,3

a1 a2 a3 a4 a5 a6

b

Figure 3: The graph J in the proof of Proposition 4.2.

We shall construct a (4, 8)-biregular graph H from several copies of G and J , such that
H has a 4-regular subgraph covering all vertices of degree 8 if and only if G has a 3-regular
subgraph covering Y . By Proposition 2.4, this will imply the desired result.
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Since G is (3, 6)-biregular, we have that |X| = 2k and |Y | = k, for some positive integer
k. Let

X = {x1, . . . , x2k} and Y = {y1, . . . , yk}.

We take 4 pairwise disjoint copies G(1), . . . , G(4) of the graph G, where each G(j) has parts

X(j) = {x(j)
1 , . . . , x

(j)
2k } and Y (j) = {y(j)1 , . . . , y

(j)
k }.

For each i ∈ {1, . . . , k} and each j ∈ {1, 2, 3, 4}, let J (j)
i be a copy of the graph J ; that is,

J
(1)
1 , . . . , J

(4)
k are 4k pairwise disjoint copies of the graph J in Figure 3. For each i ∈ {1, . . . , k}

and j ∈ {1, 2, 3, 4}, let F (j)
i be the subgraph of J

(j)
i , corresponding to the subgraph F of J ,

and set F̂ = ∪i,jF
(j)
i . For each J

(j)
i , denote by s

(j)
i , t

(j)
i , b

(j)
i , the vertices corresponding to s, t

and b in J , respectively (see Figure 3). We now form the auxiliary graph L from G(1), . . . , G(4)

and J
(1)
1 , . . . , J

(4)
k and a set of 2k new vertices Z = {z(1)1 , . . . z

(1)
k , z

(2)
1 , . . . , z

(2)
k } in the following

way: for each i ∈ {1, . . . , k} and each j ∈ {1, 2, 3, 4},

• join y
(j)
i and s

(j)
i by an edge,

• join y
(j)
i and t

(j)
i by an edge, and

• join b
(j)
i to z

(1)
i and z

(2)
i by two edges.

A schematic of the graph L in the case when k = 3 appears in Figure 4.

G(1)

y
(1)
1 y

(1)
2 y

(1)
3

G(2)

y
(2)
1 y

(2)
2 y

(2)
3

. . . G(4)

y
(4)
1 y

(4)
2 y

(4)
3

J
(1)
1

s
(1)
1 t

(1)
1

b
(1)
1

J
(1)
2

s
(1)
2 t

(1)
2

b
(1)
2

J
(1)
3

s
(1)
3 t

(1)
3

b
(1)
3

J
(2)
1

s
(2)
1 t

(2)
1

b
(2)
1

J
(2)
2

s
(2)
2 t

(2)
2

b
(2)
2

J
(2)
3

s
(2)
3 t

(2)
3

b
(2)
3

. . .

J
(4)
3

s
(4)
3 t

(4)
3

b
(4)
3

z
(1)
1 z

(1)
2 z

(1)
3 z

(2)
1 z

(2)
2 z

(2)
3

Figure 4: The graph L in the case when k = 3 in the proof of Proposition 4.2.
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Next, let K
(1)
4,7 , . . . , K

(2k)
4,7 be 2k pairwise disjoint copies of the complete bipartite graph

K4,7; and for each K
(i)
4,7, suppose that the parts of K

(i)
4,7 are

Ci = {c(i)1 , . . . , c
(i)
4 } and Di = {d(i)1 , . . . , d

(i)
7 },

where vertices in Ci all have degree 7, and vertices in Di all have degree 4. We are now ready
to form the graph H from L and K

(1)
4,7 , . . . , K

(2k)
4,7 by for each i = 1, . . . , 2k and j = 1, 2, 3, 4,

joining x
(j)
i with c

(i)
j by an edge. The obtained graph H is (4, 8)-biregular. Set C = ∪2k

i=1Ci,

and D = ∪2k
i=1Di.

Suppose first that G has a 3-regular subgraph Q that covers Y . Then for each j ∈
{1, 2, 3, 4}, Q induces a 3-regular subgraph Q(j) in G(j) covering Y (j). We set Q̂ = ∪jQ

(j).
Let I ⊆ {1, . . . , 2k} be a set defined by i ∈ I if and only if xi is in Q. Let I ′ = {1, . . . , 2k}\I.
We define the graph R by letting it be the subgraph of H induced by the vertices in

⋃

i∈I

{d(i)1 , d
(i)
2 , d

(i)
3 } ∪

⋃

i∈I′

{d(i)1 , d
(i)
2 , d

(i)
3 , d

(i)
4 } ∪ C ∪ {z(1)1 , . . . , z

(1)
k } ∪ V (Q̂ ∪ F̂ ).

The graph R is 4-regular and covers all vertices of degree 8 in H .
Now suppose that H has a 4-regular subgraph S covering all vertices of degree 8. We

shall prove that S induces a 3-regular subgraph of G(1) that covers Y (1). If this holds, then
clearly G has a 3-regular subgraph covering Y .

Each vertex of X(1)∩V (S) has degree 3 in the subgraph of H induced by V (G(1))∩V (S).
Hence, we only need to prove that each vertex of Y (1) has degree 3 in the subgraph of H
induced by V (G(1))∩ V (S). Let y

(1)
i ∈ Y (1). Suppose first that none of s

(1)
i and t

(1)
i are in S.

It is straightforward to verify from Figure 3 that then b
(1)
i cannot be adjacent to any vertex

of J
(1)
i in S and thus dS(b

(1)
i ) ≤ 2, which contradicts that S is 4-regular and covers all vertices

of degree 8 in H .
Now suppose that both s

(1)
i and t

(1)
i are in S. Again, from Figure 3 one may verify that

this implies that dS(b
(1)
i ) ≥ 6, a contradiction as well. Thus we conclude that exactly one of

the vertices in {s(1)i , t
(1)
i } is in S. Hence, y

(1)
i has degree 3 in the subgraph of H induced by

V (G(1)) ∩ V (S), as required.

16


	On Interval Edge Colorings - TP
	IntervalColoring36_revised

