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On a Glimm – Effros dichotomy theorem for Souslin

relations in generic universes

Vladimir Kanovei ∗†‡

01 August 1995

Abstract

We prove that if every real belongs to a set generic extension of the constructible
universe then every Σ1

1 equivalence E on reals either admits a ∆1 reduction to
the equality on the set 2<ω1 of all countable binary sequences, or continuously
embeds E0, the Vitali equivalence.

The proofs are based on a topology generated by OD sets.
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Introduction

This paper presents a proof of the following theorem:

Theorem 1 1 Let E be a Σ1
1 equivalence on reals. Assume that

(†) each real belongs to a “virtual” generic extension 2 of the constructible universe L.

Then at least one 3 of the following two statements hold :

(I) E admits a ∆HC
1 reduction 4 to the equality on the set 2<ω1 of all countable

binary sequences .

(II) E0 ⊑ E continuously .

Remarks on the theorem

By a “virtual” generic extension L we mean a set generic extension, say, L[G], which
is not necessarily an inner class in the basic universe V (in other words, G ∈ V is not
assumed). 5

Notice that the assumption (†) of the theorem follows e. g. from the hypothesis
that the universe is a set generic extension of L. In fact the theorem remains true in a
weaker assumption that each real x belongs to a “virtual” generic extension of L[z0]
for one and the same real z0 which does not depend on x .

We refer the reader to Harrington, Kechris, and Louveau [2] on matters of the early
history of “Glimm – Effros” theorems — those of type: each equivalence of certain

class either admits a reduction to equality or embeds E0 — and relevant problems in
probability and the measure theory. (However Section 1 contains the basic notation.)

The modern history of the topic began in the paper [2] where it is proved that each
Borel equivalence on reals either admits a Borel reduction to the equality on reals or
embeds E0. The proof is based on an advanced tool in descriptive set theory, the Gandy

– Harrington topology on reals, generated by Σ1
1 sets.

Hjorth and Kechris [4] found that the case of Σ1
1 relations is much more complicated.

Some examples have shown that one cannot find a reasonable “Glimm – Effros” result

1 It follows from an e-mail discussion between G. Hjorth and the author in May – July 1995 that
G. Hjorth may have proved equal or similar theorem independently.

2 By a generic extension of some M we always mean a set generic extension via a forcing notion
P ∈M. Here the extensions could be different for different reals.

3 If all reals are constructible from one of them then the statements are compatible.
4 By ∆HC

1 we denote the class of all subsets of HC (the family of all hereditarily countable sets)
which are ∆1 in HC by formulas which may contain reals and countable ordinals as parameters.

5 The assumption that a set S ⊆ Ord belongs to a “virtual” set generic extension of L can be
adequately formalized as follows: there exists a Boolean valued extension of L[S] in which it is true

that the universe is a set generic extension of the constructible universe, see Lemma 5 below.
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for Σ1
1 relations simply taking a nonBorel reduction in (I) or discontinuous embedding

in (II) ; it seemms that the equality on reals rather than countable binary sequences in
(I) does not match completely the nature of Σ1

1 relations.

Hjort and Kechris [4] suggested the adequate approach: one has to take 2<ω1 as
the domain of the equality in (I) . (This approach is referred to as the Ulm – type

classification in [4], in connection with a classification theorem of Ulm in algebra.) On
this way they proved that the dichotomy (I) vs. (II) holds for each Σ1

1 equivalence
relation on reals, in the assumption of the “sharps” hypothesis (and the latter can be
dropped provided the Σ1

1 relation occasionally has only Borel equivalence classes).

Theorem 1 of this paper establishes the same result (not paying attention on the
possible compatibility of (I) and (II) ) in the completely different than sharps assump-
tion: each real belongs to a generic extension of L. Of course it is the principal problem
(we may refer to the list of open problems in [4]) to eliminate the “forcing” assumption
and prove the result in ZFC .

One faces much more problems in higher projective classes. In fact there exists a sort
of upper bound for “Glimm – Effros” theorems in ZFC. Indeed, in a nonwellfounded (of
“length” ω1 × ZZ, i. e. ω1 successive copies of the integers) iterated Sacks extension 6

of L the Σ1
2 equivalence

x E y iff L[x] = L[y]

neither continuously embeds E0 nor admits a real–ordinal definable reduction to the
equality on P(κ) for a cardinal κ .

Thus the interest can be paid on classes Π1
1, ∆1

2, Π1
2. One may expect that ∆1

2

relations admit a theorem similar to Theorem 1. 7

More complicated relations can be investigated in strong extensions of ZFC or in
special models. Hjorth [3] proved that in the assumption of AD and V = L[reals]
every equivalence on reals either admits a reduction (here obviously a real–ordinal de-
finable reduction) to the equality on a set 2κ, κ ∈ Ord, or continuously embeds E0.

Kanovei [6] proved even a stronger result (reduction to the equality on 2<ω1 ) in Solovay
model for ZF+DC .

The organization of the proof

Theorem 1 is the main result of this paper. The proof is arranged as follows.

First of all, we shall consider only the case when E is a lightface Σ1
1 relation; if in

fact E is Σ1
1(z) in some z ∈ N then this z simply enters the reasoning in a uniform

way, not influenting substantially any of the arguments.

The splitting point between the statements (I) and (II) of Theorem 1 is determined
in Section 1. It occurs that we have (I) in the assumption that

6 See Groszek [1] or Kanovei [7] on matters of nonwellfounded Sacks iterations.
7 G. Hjorth informed the author that he had partial results in this domain.
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(‡) each real x belongs to a “virtual” λ-collapsing generic extension of L (for some
ordinal λ ) in which E is closed in a topolody generated by OD sets on the set
D ∩Weakλ(L) of all reals λ-weak over L. (We say that x ∈ D is λ-weak over L
iff it belongs to a α-collapsing extension of L for some α < λ .)

On the opposite side, we have (II) provided the assumption (‡) fails.

Both sides of the proof depend on properties of reals in collapsing extensions close
to those of Solovay model. The facts we need are reviewed in Section 2.

Section 3 proves assertion (I) of Theorem 1 assuming (‡). The principal idea has
a semblance of the corresponding parts in [2] and especially [4] 8 : in the assumption of
(‡), each λ-weak over L real in the relevant “virtual” λ-collapsing extension belongs
to a set (one and the same for all E-equivalent reals) which admits a characterization
in terms of an element of 2<ω1. An absoluteness argument allows to extend this fact to
the universe of Theorem 1.

Sections 4 and 5 prove (II) of Theorem 1 in the assumption that (‡) fails (but
(†) still holds, as Theorem 1 assumes). In fact is this case E is not closed on the set
D ∩Weakλ(L) in a “virtual” λ-collapsing extension of L for some λ. This suffices to
see that E embeds E0 continuously in the “virtual” universe; moreover, E embeds E0

in a certain special sense which can be expressed by a Σ1
2 formula (unlike the existence

of an embedding in general which needs Σ1
3 ). We conclude that E embeds E0 in the

universe of Theorem 1 as well by Shoenfield.

The construction of the embedding of E0 into E follows the principal idea of Har-
rington, Kechris, and Louveau [2], yet associated with another topology and arranged
in a different way. (In particular we do not play the strong Choquet game to define the
necessary sequence of open sets.)

Important remark

It will be more convenient to consider D = 2ω, the Cantor space, rather than N = ωω,

as the basic Polish space for which Theorem 1 is being proved.

8 Yet we use a technique different from the approach of [4], completely avoiding any use of recursion
theory.
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1 Approach to the proof of the main theorem

First of all, we shall prove only the “lightface” case of the theorem, so that E will be
supposed to be a Σ1

1 equivalence on reals. The case when E is Σ1
1 [z] for a real z

does not differ much: the z uniformly enters the reasoning.

By “reals” we shall understand points of the Cantor set D = 2ω rather than the
Baire space N = ωω; this choice is implied by some technical reasons.

The purpose of this section is to describe how the two cases of Theorem 1 will appear.
This needs to recall some definitions.

1–A Collapsing extensions

Let α be an ordinal. Then α<ω is the forcing to collapse α down to ω. If G ⊆ α<ω

is α<ω-generic over a transitive model M (M is a set or a class) then f =
⋃

G

is a function from ω onto α, so that α is countable in M [G] = M [f ]. Functions
f : ω −→ α obtained this way will be called α<ω-generic over M .

By λ-collapse universe hypothesis , λ-CUH in brief, we shall mean the following
assumption: V = L[f0] for a λ<ω-generic over L collapse function f0 ∈ λ

ω .

By the assumption of Theorem 1, each real z belongs to a “virtual” λ<ω-generic
extension of L, the constructible universe, for some ordinal λ. Such an extension
satisfies λ-CUH.

Remark 2 The extension is not necessarily supposed to be an inner class in the uni-
verse of Theorem 1, see Introduction. ✷

A set is λ-weak over M ( λ an ordinal in a model M ) iff it belongs to a “virtual”
α<ω-generic extension of M for some α < λ. We define

Weakλ(M) = {x : x is λ-weak over M} .

In the assumption λ-CUH, reals in Weakλ(L) behave approximately like all reals in
Solovay model.

1–B The OD topology

In ZFC, Let T be the topology generated on a given set X (for instance, X = D =
2ω, the Cantor set) by all OD subsets of X. T 2 is the product of two copies of T ,
a topology on D2 .

This topology plays the same role in our consideration as the Gandy – Harrington
topology in the proof of the classical Glimm – Effros theorem (for Borel relations)
in Harrington, Kechris, and Louveau [2]. In particular, it has similar (although not
completely similar: some special Σ1

1-details vanish) properties.
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We define E to be the T 2-closure of E in D2. Thus x 6E y iff there exist OD
sets X and Y containing resp. x and y and such that x′ 6E y′ for all x′ ∈ X,
y′ ∈ Y . Obviously X and Y can be chosen as E-invariant (simply replace them by
their E-saturations), and then Y can be replaced by the complement of X, so that

x E y ←→ ∀X [X is OD & X is E-invariant −→ (x ∈ X ←→ y ∈ X) ] .

Therefore E is an OD equivalence on D .

1–C The cases

In [2], the two cases are determined by the equality E = E : if it holds that E admits
a Borel reduction on ∆(D), otherwise E embeds E0. Here the splitting condition is
a little bit more complicated. First of all, we have to consider the equality in different
universes. Second, the essential domain of the equivalence is now a proper subset of D,
the set of all weak reals.

Case 1. For each real z, there exist an ordinal λ and a “virtual” λ<ω-generic extension
V of the constructible universe L containing z such that the following is true in V :
E coincides with E on D ∩Weakλ(L) and x is λ-weak over L .

(Notice that, for a Σ1
1 binary relation E, the assertion that E is an equivalence is

Π1
2 , therefore absolute for all models with the same ordinals, in particular for L and

all generic extensions of L .)

Case 2. Not Case 1.

Theorem 3 Suppose that each real belongs to a “virtual” generic extension of L.
Then, for the given Σ1

1 equivalence relation E, we have

– assertion (I) of Theorem 1 in Case 1, and

– assertion (II) of Theorem 1 in Case 2.

This is how Theorem 1 well be proved.
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2 On collapsing extensions

In this section, we fix a limit constructible cardinal λ. The purpose is to establish
some properties of λ-collapsing generic extensions (= the universe under the hypothesis
λ-CUH). It will be shown that weak ponts (introduced in Section 1) behave approxi-
mately like all reals in Solovay model.

2–A Basic properties

We recall that a set S is λ-weak over M iff S belongs to an α<ω-generic extension
of the model M for some α < λ .

The hypothesis λ-CUH (the one which postulates that the universe is a λ-generic
extension of L ) will be assumed during the reasoning, but we shall not mind to specify
λ-CUH in all formulations of theorems.

Proposition 4 Assume λ-CUH. Let S ⊆ Ord be λ-weak over L. Then

1. The universe V is a λ<ω-generic extension of L[S] .

2. If Φ is a sentence containing only sets in L[S] as parameters then Λ (the empty

sequence) decides Φ in the sense of λ<ω as a forcing notion over L[S] .

3. If a set X ⊆ L[S] is OD[S] then X ∈ L[S] .

( OD[S] = S–ordinal definable, that is, definable by an ∈-formula having S and ordinals
as parameters.) The proof (a copy of the proof of Theorem 4.1 in Solovay [10]) is based
on several lemmas, including the following crucial lemma:

Lemma 5 Suppose that P ∈ L is a p.o. set, and a set G ⊆ P is P -generic over L.
Let S ∈ L[G], S ⊆ Ord. Then there exists a set Σ ⊆ P, Σ ∈ L[S] such that G ⊆ Σ
and G is Σ-generic over L[S] .

Proof of the lemma. We extract the result from the proof of Lemma 4.4 in [10].

We argue in L[S] .

Let S be the name for S in the language of the forcing P .

Define a sequence of sets Aα ⊆ P (α ∈ Ord) by induction on α .

(A1) p ∈ A0 iff either σ ∈ S but p forces (in L and in the sense of P as the notion
of forcing) σ 6∈ S, or σ 6∈ S but p forces σ ∈ S — for some σ ∈ Ord .

(A2) p ∈ Aα+1 iff there exists a dense set D ⊆ P, D ∈ L such that every q ∈ D

satisfying p ≤ q (means: q is stronger than p ) belongs to Aα .

(A3) If α is a limit ordinal then Aα =
⋃

β<αAβ .
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The following properties of these sets are easily verifiable (see Solovay [10]): first, if
p ∈ Aα and p ≤ q ∈ P then q ∈ Aα , second, if β < α then Aβ ⊆ Aα .

Since each Aα is a subset of P, it follows that Aδ = Aδ+1 for some ordinal δ. We
put Σ = P \ Aδ. Thus Σ intends to be the set of all conditions p ∈ P which do not
force something about S which contradicts the factual information about S .

We prove, following [10], that Σ is as required. This yields a pair of auxiliary facts.

(Σ1) G ⊆ Σ .

Indeed assume on the contrary that G ∩Aγ 6= ∅ for some γ. Let γ be the least such
an ordinal. Clearly γ is not limit and γ 6= 0; let γ = α + 1. Let p ∈ Aγ ∩G. Since
G is generic, definition (A2) implies G ∩ Aα 6= ∅, contradiction.

(Σ2) If D ∈ L is a dense subset of P then D ∩ Σ is a dense subset of Σ .

This is easy: if p ∈ Σ then p 6∈ Aδ+1; hence by (A2) there exists q ∈ D \Aδ, q ≥ p .

We prove that G is Σ-generic over L[S]. Let D ∈ L[S] be a dense subset of Σ;
we have to check that D ∩G 6= ∅. Suppose that D ∩G = ∅, and get a contradiction.

Since D ∈ L[S], there exists an ∈-formula Φ(x, y) containing only ordinals as pa-
rameters and such that Φ(S, y) holds in L[S] iff y = D .

Let Ψ(G′) be the conjunction of the following formulas:

(1) S ′ = S[G′] (the interpretation of the “term” S via G′ ) is a set of ordinals, and
there exists unique D′ ∈ L[S ′] such that Φ(S ′, D′) holds in L[S ′] ;

(2) D′ is a dense subset of Σ′ where Σ′ is the set obtained by applying our definition
of Σ within L[S ′] ;

(3) D′ ∩G′ = ∅ .

Then Ψ(G) is true in L[G] by our assumptions. Let p ∈ G force Ψ over L. Then
p ∈ Σ by (Σ1). By the density there exists q ∈ D with p ≤ q. We can consider a
Σ-generic over L[S] set G′ ⊆ Σ containing q. Then G′ is also P -generic over L by
(Σ1). We observe that S[G′] = S because G′ ⊆ Σ. It follows that D′ and Σ′ (as
is the description of Ψ ) coinside with resp. D and Σ. In particular q ∈ D′ ∩ G′, a
contradiction because p forces (3) . ✷

Proof of the proposition. Item 1. Lemma 5 (for P = λ<ω ) implies that the universe
is a Σ-generic extension of L[S] for a certain tree Σ ⊆ λ<ω, Σ ∈ L[S]. Notice that λ

is a cardinal in L[S] because S is α-weak over L where α < λ; on the other hand,
λ is countable in the universe by λ-CUH. It follows that there exists a condition u ∈ G
such that the set of all λ-branching points of Σ is cofinal over u in Σ. In other words,
the set {v ∈ Σ : u ⊆ v} includes in L[S] a cofinal subset order isomorphic to λ<ω .

Items 2 and 3. It suffices to refer to item 1 and argue as in the proofs of Lemma 3.5
and Corollary 3.5 in [10] for L[S] as the initial model. ✷
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2–B Coding of reals and sets of reals in the model

We let IFα(M) be the set of all α<ω-generic over M functions f ∈ αω .

The following definitions intend to introduce a useful coding system for reals (i. e.
points of D = 2ω in this research) and sets of reals in collapsing extensions.

Let α ∈ Ord. By Termα we denote the set of all indexed sets t = 〈α, 〈tn : n ∈ ω〉〉
– the “terms” – such that tn ⊆ α<ω for each n . We put Term<λ =

⋃

α<λ Termα .

“Terms” t ∈ Termα are used to code functions C : αω −→ D = 2ω; namely, for
every f ∈ αω we define x = Ct(f) ∈ D by: x(n) = 1 iff f |m ∈ tn for some m .

Assume that t = 〈α, 〈tn : n ∈ ω〉〉 ∈ Termα, u ∈ α<ω, M arbitrary. We introduce
the sets Xtu(M) = {Ct(f) : u ⊂ f ∈ IFα(M)} and Xt(M) = XtΛ(M) = Ct ”IFα(M) .

Proposition 6 Assume λ-CUH. Let S ⊆ Ord be λ-weak over L. Then :

1. If α < λ, F ⊆ IFα(L[S]) is OD[S], and f ∈ F, then there exists m ∈ ω such

that each f ′ ∈ IFα(L[S]) satisfying f ′ |m = f |m belongs to F .

2. For each real x ∈ D ∩Weakλ(L[S]), there exist α < λ, t ∈ Termα ∩ L[S], and

f ∈ IFα(L[S]) such that x = Ct(f) .

3. Each OD[S] set X ⊆ D ∩Weakλ(L[S]) is a union of sets of the form Xt(L[S]),
where t ∈ Term<λ ∩ L[S] .

4. Suppose that t ∈ Termα ∩ L[S], α < λ, and u ∈ α<ω. Then every OD[S] set

X ⊆ Xtu(L[S]) is a union of sets of the form Xtv(L[S]), where u ⊆ v ∈ α<ω .

Proof Item 1. We observe that F = {f ′ ∈ αω : Φ(S, f ′)} for an ∈-formula Φ. Let
Ψ(S, f ′) denote the formula: “ Λ λ<ω-forces Φ(S, f ′) over the universe”, so that

F = {f ′ ∈ αω : Ψ(S, f ′) is true in L[S, f ′]}.

by Proposition 4 (items 1 and 2). Therefore, since f ∈ F ⊆ IFα[S], there exists m ∈ ω
such that the restriction u = f |m α<ω-forces Ψ(S, f̂) over L[S] where f̂ is the name
of the α-collapsing function.

Item 2. By the choice if x, this real belongs to a α<ω-generic extension of L[S].
Thus x ∈ L[S, f ] where f ∈ IFα(L[S]). Let x̂ be the name of x. It suffices to define
tn = {u ∈ α<ω : u forces x̂(n) = 1} and take t = 〈α, 〈tn : n ∈ ω〉〉 .

Item 3. Consider a real x ∈ X. We use item 2 to obtain α < λ, f ∈ IFα(L[S]),
and t ∈ Termα ∩ L[S] such that x = Ct(f). Then we apply item 1 to the OD[S] set
F = {f ′ ∈ IFα[S] : Ct(f

′) ∈ X} and the f defined above. This results in a condition
u = f |m ∈ λ<ω (m ∈ ω ) such that x ∈ Xtu[S] ⊆ X. Finally the set Xtu[S] is equal
to Xt′ [S] for some other t′ ∈ Termα ∩ L[S] .

Item 4. Similar to the previous item. ✷
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3 The case of closed relations: classifiable points

In this section, we prove the “case 1” of Theorem 3. Thus let E be a Σ1
1 equivalence

relation.

3–A Classifiable points

First of all, we introduce the notion of an E-classifiable point.

As usual, HC denotes the set of all hereditarily countable sets. ΣHC
1 will denote

the collection of all subsets of HC definable in HC by a parameter-free Σ1 formula.
The class ΠHC

1 is understood the same way, and ∆HC
1 = ΣHC

1 ∩ΠHC
1 .

Let us fix a constructible ∆HC
1 enumeration Term ∩ L = {τ [ξ] : ξ < ω1} such that

each t ∈ Term ∩ L has uncountably many numbers ξ < ω1 satisfying t = τ [ξ]. The
following lemma gives a more special characterization for E, the T 2-closure of E, based
on this enumeration.

Lemma 7 Assume λ-CUH. Let x, y ∈ D ∩Weakλ(L). Then x E y if and only if for

each ξ < ω1 we have x ∈ [Xτ [ξ](Lξ)]E ←→ y ∈ [Xτ [ξ](Lξ)]E .

Proof The “only if” part follows from the fact that the sets Xτ [ξ](Lγ) are OD. Let
us prove the “if” direction. Assume that x 6E y. There exists an OD set X such
that x ∈ [X ]E but y 6∈ [X ]E. By Proposition 6, we obtain x ∈ Xt(L) ⊆ [X ]E, where
t = 〈α, 〈tn : n ∈ ω〉〉 ∈ Termα ∩ L, α < λ. Since λ is a limit cardinal in L, there
exists a constructible cardinal γ, α < γ < λ, such that IFα(L) = IFα(Lγ). Then
t′ = 〈γ, 〈tn : n ∈ ω〉〉 is τ [ξ] for some ξ, γ ≤ ξ < ω1. Then Xt(L) = Xτ [ξ](Lξ) . ✷

For each x ∈ D, we define ϕx ∈ 2ω1 as follows: ϕx(ξ) = 1 iff x ∈ [Xτ [ξ](Lξ)]E .

Definition 8 We introduce the notion of a E-classifiable point. We let T be the
set of all triples 〈x, ψ, t〉 such that x ∈ D, ψ ∈ 2<ω1, t ∈ Termα ∩ Lγ[ψ], where
α < γ = domψ < ω1, and the following conditions (a) through (d) are satisfied.

(a) Lγ[ψ] models ZFC− (minus the Power Set axiom) so that ψ can occur as an
extra class parameter in Replacement and Separation.

(b) It is true in Lγ[ψ] that 〈Λ,Λ〉 forces Ct(f̂) E Ct(ĝ) in the sense of α<ω×α<ω as

the forcing, where f̂ and ĝ are names for the generic functions in αω .

(c) For each ξ < γ, ψ(ξ) = 1 iff x ∈ [Xτ [ξ](Lξ)]E — so that ψ = ϕx |γ .

(d) x belongs to [Xt(Lγ[ψ])]E .

A point x ∈ D is E-classifiable iff there exist ψ and t such that 〈x, ψ, t〉 ∈ T . ✷
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The author learned from Hjorth and Kechris [4] the idea of forcing over countable models
to get a ∆1 reduction function, the key idea of this definition.

Lemma 9 TE is a ∆HC
1 set (provided E is Σ1

1 ).

Proof Notice that conditions (a) and (b) in Definition 8 are ∆HC
1 because they

reflect truth within Lγ[ψ] and the enumeration τ [ξ] was chosen in ∆HC
1 .

Condition (d) is obviously ΣHC
1 (provided E is at least Σ1

2 ), so it remains to
convert it also to a ΠHC

1 form. Notice that in the assumption of (a) and (b) , the set
X = Xt(Lγ [ψ]) consists of pairwise E-equivalent points.

(Indeed, consider a pair of α<ω-generic over Lγ[ψ] functions f, g ∈ αω (not neces-
sarily a generic pair). Let h ∈ αω be an α<ω-generic over both Lγ[ψ, f ] and Lγ[ψ, g]
function. Then, by (b) , Ct(h) E Ct(f) holds in Lγ[ψ, f, h], therefore in the universe
by Shoenfield. Similarly, Ct(h) E Ct(g). It follows that Ct(f) E Ct(g), as required.)

Therefore (d) is equivalent to the formula ∀ y ∈ Xt(Lγ [ψ]) (xEy) because Xt(Lγ[ψ])
is not empty. This is clearly ΠHC

1 provided E is at least Π1
2 .

Let us consider (c) . The right–hand side of the equivalence “iff” in (c) is Σ1
1 with

inserted ∆HC
1 functions, therefore ∆HC

1 . It follows that (c) itself is ∆HC
1 . 9

✷

3–B The classification theorem

The following lemma will allow to define a ∆HC
1 reduction of the given Σ1

1 equivalence
relation E to the equality on 2<ω1 .

Lemma 10 In the assumption of Case 1 of Subsection 1–C, each point x ∈ D is

E-classifiable.

Proof Let x ∈ D. By the assumption of Case 1, there exist an ordinal λ and a
“virtual” λ<ω-generic extension V of the constructible universe L containing x such
that E coincides with E on D ∩Weakλ(L) in V and x is λ-weak over L in V .

Thus we have the two universes, V and the universe of the lemma, with one and
the same class of ordinals. Since by Lemma 9 “being E-classifiable” is a ΣHC

1 , therefore
Σ1

2 notion, it suffices to prove that x is E-classifiable in the “virtual” universe V .

We observe that λ-CUH is true in V .

We argue in V .

Notice that ϕ = ϕx is λ-weak over L : indeed ϕ ∈ L[x] by Proposition 4 since ϕ is
OD[x] . It follows that [x]E is OD[ϕ] by Lemma 7, because E = E on D∩Weakλ(L).
Therefore by Proposition 6, x ∈ Xt(L[ϕ]) ⊆ [x]E for some t ∈ Termα ∩ L[ϕ], α < λ .

9 Here we do not see how to weaken the assumption that E is Σ1
1 ; even if the relation is Π1

1 , (c)
becomes ∆HC

2 .
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The model Lω1
[ϕ] has an elementary submodel Lγ [ψ], where γ < ω1 and ψ = ϕ |γ,

containing t and α. We prove that 〈x, ψ, t〉 ∈ TE. Since conditions (a) and (c) of
Definition 8 obviously hold for Lγ[ψ], let us check requirements (b) and (d) .

We check (b) . Indeed otherwise there exist conditions u, v ∈ α<ω such that 〈u, v〉
forces Ct(f̂) 6E Ct(ĝ) in Lγ[ψ] in the sense of α<ω×α<ω as the notion of forcing. Then

〈u, v〉 also forces Ct(f̂) 6E Ct(ĝ) in Lω1
[ϕ] . Let us consider an α<ω×α<ω-generic over

L[ϕ] pair 〈f, g〉 ∈ αω × αω such that u ⊂ f and v ⊂ g. Then both y = Ct(f) and
z = Ct(g) belong to Xt(L[ϕ]), so y E z because Xt(L[ϕ]) ⊆ [x]E .

On the other hand, y E z is false in Lω1
[ϕ, f, g], that is, in L[ϕ, f, g], by the

forcing property of 〈u, v〉. Therefore we have x 6E y (in the “virtual” universe V ) by
Shoenfield, contradiction.

We check (d) . Take any α<ω-generic over L[ϕ] function f ∈ αω. Then y = Ct(f)
belongs to Xt(L[ϕ]), hence y E x. On the other hand, f is generic over Lγ[ψ] .

Thus 〈x, ψ, t〉 ∈ TE. This means that x is E-classifiable, as required. ✷

Definition 11 Let x ∈ D. It follows from Lemma 10 that there exists the least
ordinal γ = γx < ω1 such that TE(x, ϕx |γ, t) for some t. We put ψx = ϕx |γ and
let tx denote the least, in the sense of the OD[ψx] wellordering of Lγ[ψx], “term”
t ∈ Term[ψx] ∩ Lγ [ψx] which satisfies TE(x, ψx, t). We put U(x) = 〈ψx, tx〉 . ✷

Lemma 12 If each x ∈ D is E-classifiable then the map U is a ∆HC
1 reduction of

E to equality.

Proof First of all, U is ∆HC
1 by Lemma 9.

If x E y then U(x) = U(y) because Definition 8 is E-invariant for x .

Let us prove the converse. Assume that U(x) = U(y), that is, in particular, ψx =
ψy = ψ ∈ 2<ω and tx = ty = t ∈ Termα[ψ] ∩ Lγ[ψ], where α < γ = domψ < ω1 .

By (d) we have Ct(f) E x and Ct(g) E y for some α<ω-generic over Lγ[ψ] functions
f, g ∈ αω. However Ct(f) E Ct(g) (see the proof of Lemma 9). ✷

Corollary 13 [The classification theorem]

In the assumption of Case 1 of Subsection 1–C, E admits a ∆HC
1 reduction to the

equality on 2<ω1 .

Proof The range of the function U can be covered by a subset R ⊆ HC (all pairs
〈ψ, t〉 such that ...) which admits a 1− 1 ∆HC

1 correspondence with 2<ω1 . ✷

This completes the proof of the “case 1” part of Theorem 3.

12



4 OD forcing

This section starts the proof of the “Case 2” part of Theorem 3. At the beginning, we
reduce the problem to a more elementary form.

4–A Explanation

Thus let us suppose that each real x belongs to a “virtual” generic extension of L, but
the assumption of Case 1 in Subsection 1–C fails.

This means the following. There exists a real z ∈ D such that for every ordinal λ
and a “virtual” λ<ω-generic extension V of the constructible universe L containing z,

the following is true in V : if z is λ-weak over L then E does not coincide with E

on D ∩Weakλ(L) .

We know indeed that z belongs to a “virtual” generic extension of L. Therefore
there exists a limit constructible cardinal λ such that z belongs to a λ<ω-generic
extension V of L and z is weak in V. (Simply take λ sufficiently large.)

Let us fix λ and V . As the condensed matter of this reasoning, we obtain

• V is a “virtual” λ<ω-generic extension of L, λ is a limit cardinal in L, and
E ⊂

6=
E on D ∩Weakλ(L) in V .

This is the description of the starting position of the proof of the “Case 2” part of
Theorem 3. The aim is to see that in this case E continuously embeds E0 in the
universe of Theorem 3.

The general plan will be first to prove that E continuously embeds E0 in the

auxiliary “virtual” universe V, and second, to get the result in the universe of Theorem 3
by Shoenfield.

After a short examination, one can see a problem in this plan: the existence of a
continuous embedding E0 into E is in fact a Σ1

3 statement:

∃ continuous 1− 1 U : D −→ D ∀ x, y ∈ D





x E0 y −→ U(x) E U(y), and

x 6E0 y −→ U(x) 6E U(y)





The lower implication in the square brackets is Π1
1 , which would match the total Σ1

2 ,

but the upper one is Σ1
1 , so that the total result is Σ1

3 , worse than one needs for
Shoenfield.

4–B Special embeddings and proof of the “Case 2” part of Theorem 3

To overcome this obstacle, we strengthen the upper implication to convert it to a Π1
1

(actually ∆1
1 ) statement. We recall that the Σ1

1 set E ⊆ D2 admits a partition
E =

⋃

α<ω1
Eα onto Borel sets Eα – the constituents , uniquely defined as soon as we

have fixed a Π0
1 set F ⊆ D2 ×N which projects onto E.

13



Definition 14 A 1 − 1 function φ : D −→ D is a special embedding of E0 into E

iff

(1) there exists an ordinal α < ω1 such that 〈φ(0k∧0∧z), φ(0k∧1∧z)〉 ∈ Eα

for all z ∈ D and k ∈ ω , and

(2) for all x, y ∈ D, if x 6E0 y then φ(x) 6E φ(y) . ✷

( 0k is the sequence of k zeros.) First of all, let us see that a special embedding is an
embedding in the usual sense. We have to prove that x E0 y implies φ(x) E φ(y). We
say that a pair of points x, y ∈ D is a neighbouring pair iff there exist k ∈ ω and
z ∈ D such that x = 0k∧0∧z and y = 1k∧1∧z or vice versa. Obviously a neighbouring
pair is E0-equivalent. Conversely, if x E0 y then x and y can be connected by a finite
chain of neighbouring pairs in D. Therefore condition (1) actually suffices to guarantee
that x E0 y −→ φ(x) E φ(y) .

Obviously the existence of a special embedding of E0 into E is a Σ1
2 property.

Thus, by Shoenfield, to complete the proof of the “Case 2” part of Theorem 3, it suffices
to prove the following theorem (and apply it in the auxiliary “virtual” universe V ).

Theorem 15 Assume λ-CUH. Let E be a Σ1
1 relation and E⊂

6=
E on D∩Weakλ(L).

Then E0 admits a special continuous embedding into E .

This theorem is being proved in this and the next section. During the course of the
proof, we assume λ-CUH and fix a Σ1

1 equivalence E satisfying E ⊂
6=

E on the set

D ∩Weakλ(L) (although the last assumption will not be used at the beginning).

In this section, we consider important interactions between E and E. The next
section defines the required embedding. This will complete the proof of theorems 15
and 3, and Theorem 1 – the main theorem.

4–C OD topology and the forcing

We recall that T be the topology generated by all OD sets.

A set X will be called T -separable if the OD power set POD(X) = P(X) ∩OD
has only countably many different OD subsets.

Lemma 16 Assume λ-CUH. Let α < λ and t ∈ Termα ∩ L. Each set X = Xt(L)
satisfying X ⊆ D ∩Weakλ(L) is T -separable.

Proof By Proposition 6 every OD subset of X is uniquely determined by an OD
subset of α<ω. Since each OD set S ⊆ α<ω is constructible, we obtain an OD map
h : α+ onto POD(X), where α+ is the least cardinal in L bigger than α. Therefore
POD(X) has ≤ α++-many OD subsets. It remains to notice that α++ < λ because λ

is a limit cardinal in L, but λ is countable in the universe. ✷

14



Let XX = {X ⊆ D : X is OD and nonempty } .

Let us consider XX as a forcing notion (smaller sets are stronger conditions) for
generic extensions of L. Of course formally XX 6∈ L, but XX is OD order isomorphic
to a partially ordered set in L . (Indeed it is known that there exists an OD map ℓ :
ordinals onto the class of all OD sets. Since XX itself is OD, XX is a 1–1 image of an
OD set XX′ of ordinals via ℓ. By Proposition 4 both XX′ and the ℓ-preimage of the
order on XX belong to L .)

It also is true that a set G ⊆ XX is XX-generic over L iff it nonempty intersects
every dense OD subset of XX .

Corollary 17 Assume λ-CUH. If a set X ∈ XX satisfies X ⊆ D ∩Weakλ(L) then

there exists a XX-generic over L set G ⊆ XX containing X .

Proof We can suppose, by Proposition 6, that X = Xt(L) where t ∈ Termα ∩ L and
α < λ. Now apply Lemma 16. ✷

Lemma 18 Assume λ-CUH. If G ⊆ XX is a generic over L set containing the set

D ∩Weakλ(L) then the intersection
⋂

G is a singleton {a} = {aG} .

Proof Assume that this is not the case. Let XX′ ∈ L be a constructible p. o. set order
isomorphic XX via an OD function ℓ : XX′ onto XX. Then G′ = ℓ−1(G) is XX′-generic
over L. We assert that the statement that

⋂

G is not a singleton can be converted to
a sentence relativized to L[G′] .

(Indeed, it follows from the reasoning in the proof of Lemma 16 that L[G′] is in fact
a P -generic extension of L for a certain set P ∈ L, P ⊆ XX′ of a cardinality α < λ

in L. The next L-cardinal α+ is < λ since λ is a limit cardinal in L. Therefore
G′ belongs to a α+<ω

-generic extension of L, so G′ is weak. Then by Proposition 4
the universe V = L[f0] is a λ<ω-generic extension of L[G′]. This is enough to convert
any statement about G′ in V – like the statement:

⋂

ℓ ”G′ is not a singleton – to a
sentence relativized to L[G′] .)

Then there exists X ∈ XX, X ⊆ D ∩Weakλ(L), such that
⋂

G is not a singleton
for every generic over L set G ⊆ XX containing X. We can assume that X = Xt(L),
where t ∈ Termα ∩ L, α < λ. Then X is T -separable; let {Xn : n ∈ ω} be an
enumeration of all OD dense subsets of POD(X). Using Proposition 4 (item 1), we
obtain an increasing α<ω-generic over L sequence u0 ⊆ u1 ⊆ u2 ⊆ ... of un ∈ α<ω

such that Xn = Xtun
(L) ∈ Xn. Obviously this gives an XX-generic over L set G ⊆ XX

containing X and all Xn .

Now let f =
⋃

n∈ω un; f ∈ αω and f is α<ω-generic over L. Then x = Ct(f) ∈ Xn

for all n, so x ∈
⋂

G. Since
⋂

G obviously cannot contain more than one point, it is
a singleton, so we get a contradiction with the choice of X . ✷

Reals aG will be called OD-generic over L .
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4–D The product forcing

We recall that E is assumed to be a Σ1
1 equivalence on D; E is the closure of E in

the topology T 2 (the product of two copies of T ).

For a set P ⊆ D2, we put pr1P = {x : ∃ y P (x, y)} and pr2P = {y : ∃ x P (x, y)}.
Notice that if P is OD, so are pr1P and pr2P .

The classical reasoning in Harrington, Kechris, and Louveau [2] plays on interactions
between E and E. In the forcing setting, we have to fix a restriction by E directly in
the definition of the product forcing. Thus we consider

IP = IP(E) = {P ⊆ E : P is OD and nonempty and P = (pr1P × pr2P ) ∩ E}

as a forcing notion. As above for XX, the fact that formally IP does not belong to L
does not cause essential problems.

The following assertion connects IP and XX .

Assertion 19 Assume λ-CUH. Then

1. If P ∈ IP then pr1P and pr2P belong to XX .

2. If X, Y ∈ XX and P = (X × Y ) ∩ E 6= ∅ then P ∈ IP .

3. If P ∈ IP, X ∈ XX, X ⊆ pr1P, then there exists Q ∈ IP, Q ⊆ P, such that

X = pr1Q. Similarly for pr2 .

Proof Set Q = {〈x, y〉 ∈ P : x ∈ X & y E x} in item 3. ✷

A set P ∈ IP is IP-separable if the set IP⊆P = {Q ∈ IP : Q ⊆ P } has only countably
many different OD subsets.

Lemma 20 Assume λ-CUH. Let t, t′ ∈ Term<λ∩L. Suppose that the sets X = Xt(L)
and Y = Xt′(L) satisfy X ∪ Y ⊆ D ∩Weakλ(L), and finally that P = (X × Y ) ∩ E

is nonempty. Then P ∈ IP and P is IP-separable.

Proof P ∈ IP by Assertion 19. A proof of the IP-separability can be obtained by a
minor modification of the proof of Lemma 16. ✷

Lemma 21 Assume λ-CUH. Let G ⊆ IP be a IP-generic over L set containing

(D ∩Weakλ(L))
2 ∩ E. Then the intersection

⋂

G contains a single point 〈a, b〉 where

a and b are OD-generic over L and a E b .

Proof By Assertion 19, both G1 = {pr1P : P ∈ G} and G2 = {pr1P : P ∈ G} are
OD-generic over L subsets of XX, so that there exist unique OD-generic over L points
a = aG1

and b = aG2
. It remains to show that 〈a, b〉 ∈ E .
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Suppose not. There exists an E-invariant OD set A such that we have x ∈ A and
y ∈ B = D \A. Then A ∈ G1 and B ∈ G2 by the genericity. There exists a condition
P ∈ G such that pr1P ⊆ A and pr2B ⊆ B, therefore P ⊆ (A× B) ∩ E = ∅, which
is impossible. ✷

Pairs 〈a, b〉 as in Lemma 21 will be called IP-generic and denoted by 〈aG, bG〉 .

For sets X and Y and a binary relation R , let us write X R Y if and only if
∀ x ∈ X ∃ y ∈ Y (x R y) and ∀ y ∈ Y ∃ x ∈ X (x R y) .

Lemma 22 Assume λ-CUH. Let P0 ∈ IP, P0 ⊆ (D ∩ Weakλ(L))
2, points a, a′ ∈

X0 = pr1P0 be OD-generic over L, and a E a′. There exists a point b such that both

〈a, b〉 and 〈a′, b〉 belong to P0 and are IP-generic pairs.

Proof By Lemma 20 and Proposition 6 there exists a IP-separable set P1 ⊆ P0 such
that a ∈ X1 = pr1P1. We put Y1 = pr2P1; then X1 E Y1, and P1 = (X1 × Y1) ∩ E .

We let P ′ = {〈x, y〉 ∈ P0 : y ∈ Y1}. Then P ′ ∈ IP and P1 ⊆ P ′ ⊆ P0. Furthermore
a′ ∈ X ′ = pr1P

′. (Indeed, since a ∈ X1 and X1 E Y1, there exists y ∈ Y1 such that
a E y; then a′ E y as well because a E a′, therefore 〈a′, y〉 ∈ P ′ .) By Lemma 20 and
Proposition 6 there exists a IP-separable set P ′

1 ⊆ P ′ such that a′ ∈ X ′
1 = pr1P

′
1. Then

Y ′
1 = pr2P

′
1 ⊆ Y1 .

It follows from the choice of P and P ′ that IP admits only countably many different
dense OD sets below P1 and below P ′

1. Let {Pn : n ∈ ω} and {P ′
n : n ∈ ω} be

enumerations of both families of dense sets. We define sets Pn, P
′
n ∈ IP (n ∈ ω)

satisfying the following conditions:

(i) a ∈ Xn = pr1Pn and a′ ∈ X ′
n = pr1P

′
n ;

(ii) Y ′
n = pr2P

′
n ⊆ Yn = pr2Pn and Yn+1 ⊆ Y ′

n ;

(iii) Pn+1 ⊆ Pn , P ′
n+1 ⊆ P ′

n , Pn ∈ Pn−2 , and P ′
n ∈ P

′
n−2 .

By (iii) both sequences {Pn : n ∈ ω} and {P ′
n : n ∈ ω} are IP-generic over L, so by

Lemma 21 they result in two generic pairs, 〈a, b〉 ∈ P0 and 〈a′, b〉 ∈ P0, having the
first terms equal to a and a′ by (i) and second terms equal to each other by (ii). Thus
it suffices to conduct the construction of Pn and P ′

n .

The construction goes on by induction on n .

Assume that Pn and P ′
n have been defined. We define Pn+1. By (ii) and Asser-

tion 19, the set P = (Xn × Y ′
n) ∩ E ⊆ Pn belongs to IP and a ∈ X = pr1P. (Indeed,

〈a, b〉 ∈ P, where b satisfies 〈a′, b〉 ∈ P ′
n, because a E a′ .) However Pn−1 is dense

in IP below P ⊆ P0; therefore pr1Pn−1 = {pr1P
′ : P ′ ∈ Pn−1} is dense in XX below

X = pr1P. Since a is generic, we have a ∈ pr1P
′ for some P ′ ∈ Pn−1, P ′ ⊆ P. It

remains to put Pn+1 = P ′, and then Xn+1 = pr1Pn+1 and Yn+1 = pr2Pn+1 .

After this, to define P ′
n+1 we let P = (X ′

n × Yn+1) ∩ E, etc. ✷
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4–E The key set

We recall that λ-CUH is assumed, E is a Σ1
1 equivalence on D, and E is the

T 2-closure of E in D2. By the assumption of Theorem 15, E ⊂
6=

E on D ∩Weakλ(L).

This means that there exist E-classes of elements of D∩Weakλ(L) which include more
than one E-class. We define the union of all those E-classes,

H = {x ∈ D ∩Weakλ(L) : ∃ y ∈ D ∩Weakλ(L) (x E y & x 6E y)} .

Obviously H is OD, nonempty, and E-invariant inside D ∩Weakλ(L), and moreover
H ′ = H2 ∩ E 6= ∅, so that in particular H ′ ∈ IP by Assertion 19.

Lemma 23 Assume λ-CUH. If a, b ∈ H and 〈a, b〉 is IP-generic over L then

a 6E b .

Proof Otherwise there exists a set P ∈ IP, P ⊆ H × H such that a E b holds for
all IP-generic 〈a, b〉 ∈ P. We conclude that then a E a′ −→ a E a′ for all OD-generic
points a, a′ ∈ X = pr1P ; indeed, take b such that both 〈a, b〉 ∈ P and 〈a′, b〉 ∈ P
are IP-generic, by Lemma 22. In other words the relations E and E coincide on the
set Y = {x ∈ X : x is OD-generic over L} ∈ XX. ( Y is nonempty by corollaries 17 and
18.)

Moreover, E and E coincide on the set Z = [Y ]E ∩ D ∩Weakλ(L). Indeed if z, z′ ∈
Z, z E z′, then let y, y′ ∈ Y satisfy z E y and z′ E y′. Then y E y′, therefore y E y′,

which implies z E z′.

We conclude that Y ∩H = ∅ .

(Indeed, suppose that x ∈ Y ∩H. Then by definition there exists y ∈ D∩Weakλ(L)
such that x E y but x 6E y. Then y 6∈ Z because E and E coincide on Z. Thus the
pair 〈x, y〉 belongs to the OD set P = Y × [(D∩Weakλ(L))\Z]. Notice that P does
not intersect E by definition of Z. Therefore 〈x, y〉 cannot belong to the closure E

of E, contradiction.)

But ∅ 6= Y ⊆ X ⊆ H, contradiction. ✷

Lemma 23 is a counterpart of the proposition in Harrington, Kechris, Louveau [2]
that E |H is meager in E |H. But in fact the main content of this argument in [2] was
implicitly taken by Lemma 22.

Lemma 24 Assume λ-CUH. Let X, Y ⊆ H be nonempty OD sets and X E Y .

There exist nonempty OD sets X ′ ⊆ X and Y ′ ⊆ Y such that X ′ ∩Y ′ = ∅ but still

X ′ E Y ′ .

Proof There exist points x0 ∈ X and y0 ∈ Y such that x0 6= y0 but x0 E y0.

(Otherwise X = Y, and E is the equality on X, which is impossible, see the previous
proof.) Let U and V be disjoint Baire intervals in D containing resp. x0 and y0.

The sets X ′ = X ∩ U ∩ [Y ∩ V ]
E

and Y ′ = Y ∩ V ∩ [X ∩ U ]
E

are as required. ✷
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5 Embedding E0 into E

In this section we end the proof of Theorem 15. Thus we prove, assuming λ-CUH and
E⊂

6=
E on D∩Weakλ(L), that E embeds E0 via a continuous special (see Definition 14)

embedding.

5–A The embedding

By the assumption the set H of Subsection 4–E is nonempty; obviously H is OD.
By lemmas 16, 20, and Proposition 6 there exists a nonempty T -separable OD set
X0 ⊆ H such that the set P0 = (X0 ×X0) ∩ E belongs to IP and is IP-separable. We
observe that pr1P0 = pr2P0 = X0 ⊆ H ⊆ D ∩Weakλ(L) .

We define a family of sets Xu (u ∈ 2<ω) satisfying

(a) Xu ⊆ X0, Xu is nonempty and OD, and Xu∧i ⊆ Xu, for all u and i .

In addition to the sets Xu, we shall define relations Juv ⊆ D2 for some pairs 〈u, v〉,
to provide important interconnections between branches in 2<ω .

Let u, v ∈ 2n. We say that 〈u, v〉 is a neighbouring pair iff u = 0k∧0∧r and
v = 0k∧1∧r for some k < n ( 0k is the sequence of k terms each equal to 0 ) and
some r ∈ 2n−k−1 (possibly k = n− 1, that is, r = Λ ).

Thus we define sets Juv ⊆ Xu × Xv for all neighbouring pairs 〈u, v〉, so that the
following requirements (b) and (c) will be satisfied.

(b) Juv is OD, pr1 Juv = Xu, pr2 Juv = Xv, and Ju∧i , v∧i ⊆ Juv for every neighbour-
ing pair 〈u, v〉 and each i ∈ {0, 1} .

(c) For any k, the set Jk = J0k∧0 , 0k∧1 is T -separable, and Jk ⊆ Eα for some ordinal
α = α(k) < ω1 .

Notice that if 〈u, v〉 is neighbouring then 〈u∧i, v∧i〉 is neighbouring, but 〈u∧i, v∧j〉 is
not neighbouring for i 6= j (unless u = v = 0k for some k ).

It follows that Xu Juv Xv, therefore Xu EXv, for all neighbouring pairs u, v. 10

Remark 25 Every pair of u, v ∈ 2n can be tied in 2n by a finite chain of neighbouring
pairs. It follows that Xu EXv and Xu EXv hold for all pairs u, v ∈ 2n . ✷

Three more requirements will concern genericity.

Let {Xn : n ∈ ω} be a fixed (not necessarily OD ) enumeration of all dense in XX
below X0 subsets of XX. Let {Pn : n ∈ ω} be a fixed enumeration of all dense in IP
below P0 subsets of IP. It is assumed that Xn+1 ⊆ Xn and Pn+1 ⊆ Pn. Note that

10 We recall that X J Y means that ∀x ∈ X ∃ y ∈ Y (x J y) and ∀ y ∈ Y ∃x ∈ X (x J y) .
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X ′ = {P ∈ IP : P ⊆ P0 & pr1P ∩ pr2P = ∅} is dense in IP below P0 by Lemma 24,
so we can suppose in addition that P0 = X ′ .

In general, for any T -separable set S let {Xn(S) : n ∈ ω} be a fixed enumeration
of all dense subsets in the algebra POD(S) \ {∅} such that Xn+1(S) ⊆ Xn(S) .

We now formulate the three additional requirements.

(g1) Xu ∈ Xn whenever u ∈ 2n .

(g2) If u, v ∈ 2n and u(n−1) 6= v(n−1) (that is, the last terms of u, v are different),
then Puv = (Xu ×Xv) ∩ E ∈ Pn .

(g3) If 〈u, v〉 = 〈0k∧0∧r, 0k∧1∧r〉 ∈ (2n)2 then Juv ∈ Xn(Jk) .

In particular (g1) implies by Corollary 18 that for any a ∈ 2ω the intersection
⋂

n∈ωXa |n

contains a single point, denoted by φ(a), which is OD-generic over L, and the map φ

is continuous in the Polish sense.

Assertion 26 Assume λ-CUH. φ is a special continuous 1–1 embedding E0 to E .

Proof Let us prove that φ is 1–1. Suppose that a 6= b ∈ 2ω. Then a(n−1) 6= b(n−1)
for some n. Let u = a |n, v = b |n, so that we have x = φ(a) ∈ Xu and y = φ(b) ∈
Xv. But then the set P = (Xu ×Xv) ∩ E belongs to Pn by (g2), therefore to P0. This
implies Xu ∩Xv = ∅ by definition of P0, hence φ(a) 6= φ(b) as required.

Furthermore if a 6E0 b (which means that a(k) 6= b(k) for infinitely many numbers
k ) then 〈φ(a), φ(b)〉 is IP-generic by (g2), so φ(a) 6E φ(b) by Lemma 23.

Let us finally verify that 〈φ(0k∧0∧c), φ(0k∧1∧c)〉 ∈ Eα for all c ∈ D and k ∈ ω,

where α = supk α(k) < ω1. The sequence of sets Wm = J0k∧0∧c |m, 0k∧1∧c |m (m ∈ ω)
is then generic over L by (g3) in the sense of the forcing POD(Jk) \ {∅} (we recall
that Jk = J0k∧0 , 0k∧1 ), which is simply a copy of XX, so that by Corollary 18 the
intersection of all sets Wm is a singleton. Obviously the singleton can be only equal to
〈φ(0k∧0∧c) , φ(0k∧1∧c)〉. We conclude that φ(0k∧0∧c) Eα φ(0

k∧1∧c), as required. ✷

5–B Two preliminary lemmas

Thus the theorem is reduced to the construction of sets Xu and Juv. Before the con-
struction starts, we prove a couple of important lemmas.

Lemma 27 Assume λ-CUH. Let X, Y ⊆ D∩Weakλ(L) be OD sets such that (X×
Y ) ∩ E is nonempty. Then (X × Y ) ∩ E contains a weak over L point 〈x, y〉 .

Proof First of all, by Proposition 6 we can assume that X = Xt(L) and Y = Xt′(L),
where t and t′ belong to some Termα∩L, α < λ. Then, since λ is a limit L-cardinal,
we have X = Xt(Lβ) and Y = Xt′(Lβ) for a suitable β, α ≤ β < λ. Take an arbitrary
β<ω-generic over L function f ∈ βω. Then the statement (X × Y ) ∩ E 6= ∅ turns out
to be a Σ1

1 formula with reals in L[f ] (those coding f, t, t′ ) as parameters. Notice
that all sets in L[f ] are weak over L, so it remains to apply Shoenfield. ✷
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Lemma 28 Assume λ-CUH. Let n ∈ ω, and Xu be a nonempty OD set for each

u ∈ 2n. Assume that an OD set Juv ⊆ N 2 is given for every neighbouring pair of

u, v ∈ 2n so that Xu Juv Xv .

1. If u0 ∈ 2n and X ′ ⊆ Xu0
is OD and nonempty then there exists a system

of OD nonempty sets Yu ⊆ Xu (u ∈ 2n) such that Yu Juv Yv holds for all

neighbouring pairs u, v, and in addition Yu0
= X ′ .

2. Suppose that u0, v0 ∈ 2n is a neighbouring pair and nonempty OD sets X ′ ⊆ Xu0

and X ′′ ⊆ Xv0 satisfy X ′ Ju0v0X
′′. Then there exists a system of OD nonempty

sets Yu ⊆ Xu (u ∈ 2n) such that Yu Juv Yv holds for all neighbouring pairs u, v,

and in addition Yu0
= X ′, Yv0 = X ′′.

Proof Notice that 1 follows from 2. Indeed take arbitrary v0 such that either 〈u0, v0〉
or 〈v0, u0〉 is neighbouring, and put respectively X ′′ = {y ∈ Xv0 : ∃ x ∈ X

′ (x Ju0v0 y)},
or X ′′ = {y ∈ Xv0 : ∃ x ∈ X

′ (y Jv0u0
x)} .

To prove item 2, we use induction on n.

For n = 1 — then u0 = 〈0〉 and v0 = 〈1〉 — we take Yu0
= Y ′ and Yv0 = Y ′′ .

The step. We prove the lemma for n + 1 provided it has been proved for n; n ≥
1. The principal idea is to divide 2n+1 on two copies of 2n, minimally connected
by neighbouring pairs, and handle them more or less separately using the induction
hypothesis. The two “copies” are U0 = {s∧0 : s ∈ 2n} and U1 = {s∧1 : s ∈ 2n} .

The only neighbouring pair that connects U0 and U1 is the pair of û = 0n∧0 and
v̂ = 0n∧1. If in fact u0 = û and v0 = v̂ then we apply the induction hypothesis
(item 1) independently for the families {Xu : u ∈ U0} and {Xu : u ∈ U1} and the
given sets X ′ ⊆ Xu0

and X ′′ ⊆ Xv0 . Assembling the results, we get nonempty OD
sets Yu ⊆ Xu (u ∈ 2n+1) such that Yu Juv Yv for all neighbouring pairs u, v, perhaps
with the exception of the pair of u = u0 = û and v = v0 = v̂, and in addition Yu0

= X ′

and Yv0 = X ′′. Thus finally Yû Jûv̂ Yv̂ by the choice of X ′ and Y ′ .

It remains to consider the case when both u0 and v0 belong to one and the same
domain, say to U0. Then we first apply the induction hypothesis (item 2) to the family
{Xu : u ∈ U0} and the sets X ′ ⊆ Xu0

and X ′′ ⊆ Xv0 . This results in a system of
nonempty OD sets Yu ⊆ Xu (u ∈ U0); in particular we get an OD nonempty set
Yû ⊆ Xû. We put Yv̂ = {y ∈ Xv̂ : ∃ x ∈ Yû (x Jûv̂ y)}, so that Yû Jûv̂ Yv̂, and apply the
induction hypothesis (item 1) to the family {Xu : u ∈ U1} and the set Yv̂ ⊆ Xv̂ . ✷

5–C The construction

We put XΛ = X0.

Now assume that the sets Xs (s ∈ 2n) and relations Jst for all neighbouring pairs
of s, t ∈ 2≤n have been defined, and expand the construction at level n + 1.

We first put As∧i = Xs for all s ∈ 2n and i ∈ {0, 1}. We also define Quv = Jst for
any neighbouring pair of u = s∧i, v = t∧i in 2n+1 other than the pair û = 0n∧0, v̂ =
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0n∧1. For the latter one (notice that Aû = Av̂ = X0n ) we put Qûv̂ = E, so that
Au Quv Av holds for all neighbouring pairs of u, v ∈ 2n+1 including the pair 〈û, v̂〉 .

The sets Au and relations Quv will be reduced in several steps to meet requirements
(a), (b), (c) and (g1), (g2), (g3) of Subsection 5–A.

Part 1. After 2n+1 steps of the procedure of Lemma 28 (item 1) we obtain a
system of nonempty OD sets Bu ⊆ Au (u ∈ 2n+1) such that still Bu Quv Bv for all
neighbouring pairs u, v in 2n+1, but Bu ∈ Xn+1 for all u. Thus (g1) is fixed.

Part 2. To fix (g2), consider an arbitrary pair of u0 = s0
∧0, v0 = t0

∧1, where
s0, t0 ∈ 2n. By Remark 25 and density of the set Pn+1 there exist nonempty OD
sets B′ ⊆ Bu0

and B′′ ⊆ Bv0 such that P = (B′ × B′′) ∩ E ∈ Pn+1 and pr1P = B′,

pr2P = B′′, so in particular B′ EB′′. Now we apply Lemma 28 (item 1) separately
for the two systems of sets, {Bs∧0 : s ∈ 2n} and {Bt∧1 : t ∈ 2n} (compare with the
proof of Lemma 28 !), and the sets B′ ⊆ Bs0∧0, B′′ ⊆ Bt0∧1 respectively. This
results in a system of nonempty OD sets B′

u ⊆ Bu (u ∈ 2n+1) satisfying B′
u0

= B′

and B′
v0

= B′′, so that we have (B′
u0
×B′

v0
) ∩ E ∈ Pn+1, and still B′

u Quv B
′
v for all

neighbouring pairs u, v ∈ 2n+1, perhaps with the exception of the pair of û = 0n∧0, v̂ =
0n∧1, which is the only one that connects the two domains. To handle this exceptional
pair, note that B′

û EB
′
u0

and B′
v̂ EB

′
v0

(Remark 25 is applied to each of the two
domains), so that B′

û EB
′
v̂ since B′ E B′′. Finally we observe that Qûv̂ is so far equal

to E .

After 2n+1 steps (the number of pairs u0, v0 to be considered) we get a system of
nonempty OD sets Cu ⊆ Bu (u ∈ 2n+1) such that (Cu × Cv) ∩ E ∈ Pn+1 whenever
u(n) 6= v(n), and still Cu Quv Cv for all neighbouring pairs u, v ∈ 2n+1. Thus (g2) is
fixed.

Part 3. We fix (c) for the exceptional neighbouring pair of û = 0n∧0, v̂ = 0n∧1.
Since E is T 2-dense in E, and Cû E Cv̂, the set R = (Cû × Cv̂) ∩ E is nonempty. We
observe that the OD set

R
′ = {〈x, y〉 ∈ R : 〈x, y〉 is weak over L}

is nonempty, too, by Lemma 27. Then, since R
′ ⊆ R ⊆ E, the intersection R

′′ = R
′∩Eα

is nonempty for some α < ω1. ( Eα is the α-th constituent of the Σ1
1 -set E .) Finally

some nonempty OD set Q ⊆ R
′′ is T -separable by Lemma 16. Consider the OD sets

C ′ = pr1 Q (⊆ Cû) and C ′′ = pr2 Q (⊆ Cv̂); obviously C ′ Q C ′′, so that C ′ Qûv̂ C
′′.

(We recall that at the moment Qûv̂ = E. ) Using Lemma 28 (item 2) again, we obtain
a system of nonempty OD sets Yu ⊆ Cu (u ∈ 2n+1) such that still Yu Quv Yv for
all neighbouring pairs u, v in 2n+1, and Yû = C ′, Yv̂ = C ′′. We re–define Qûv̂ by
Qûv̂ = Q (then Qûv̂ ⊆ Eα ), but this keeps Yû Qûv̂ Yv̂ .

Part 4. We fix (g3). Consider a neighbouring pair u0, v0 in 2n+1. Then we
have u0 = 0k∧0∧r, v0 = 0k∧1∧r for some k ≤ n and r ∈ 2n−k. It follows that
Q′ = Qu0v0 ∩ (Yu0

× Yv0) is a nonempty (since Yu0
Qu0v0 Yv0 ) OD subset of Jk =
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J0k∧0 , 0k∧1 by the construction. Let Q ⊆ Q′ be a nonempty OD set in Xn+1(Jk).
We now define Y ′ = pr1Q and Y ′′ = pr2Q (then Y ′ Q Y ′′ and Y ′ Qu0v0 Y

′′ ) and
run Lemma 28 (item 2) for the system of sets Yu (u ∈ 2n+1) and the sets Y ′ ⊆ Yu0

,

Y ′′ ⊆ Yv0 . After this define the “new” Qu0v0 by Qu0v0 = Q .

Do this consequtively for all neighbouring pairs; the finally obtained sets – let them
be Xu (u ∈ 2n+1) – are as required. The final relations Juv (u, v ∈ 2n+1) can be
obtained as the restrictions of sets Quv to Xu ×Xv .

This ends the construction.

This also ends the proof of theorems 15 and 3, and Theorem 1 (the main theorem),
see Subsection 4–B. ✷
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