
ar
X

iv
:m

at
h/

94
01

21
4v

1 
 [

m
at

h.
L

O
] 

 1
5 

Ja
n 

19
94

RANDOM SPARSE UNARY PREDICATES

1 Introduction.

Let n be a positive integer, 0 ≤ p ≤ 1. The random unary predicate Un,p is a
probability space over predicates U on [n] = {1, . . . , n} with the probabilities
determined by

Pr[U(x)] = p, 1 ≤ x ≤ n

and the events U(x) being mutually independent over 1 ≤ x ≤ n. Informally,
we think of flipping a coin for each x to determine if U(x) holds, the coin
coming up “heads” with probability p. We shall examine the first order
language < [n],≤, U > with equality, a unary predicate U and a binary
predicate ≤. Examples of sentences in this language are:

A : ∃xU(x)

B : ∃xU(x) ∧ ∀y¬y < x

C : ∃x,yU(x) ∧ U(y) ∧ ∀z¬[x < z ∧ z < y]

(>,≥, < are natuarally definable from ≤ and equality.) For any such sen-
tence S we have the probability

Pr[Un,p |= S]

While the use of unary predicates is natural for logicians there are two other
equivalent formulations that will prove useful. We may think of U as a
subset of [n] and speak about i ∈ U rather than U(i). Second we may
associate with U a sequence of zeroes and ones where the i-th term is one if
U(i) and zero if ¬U(i). Thus we may talk of starting at i and going to the
next one. We shall use all three formulations interchangably.

Ehrenfeucht [??] showed that for any constant p and any sentence S in
this language

lim
n→∞

Pr[Un,p |= S]

exists. In the case of sentences A and C the limiting probability is one. But
sentence B effectively states 1 ∈ U , hence its limiting probability is p. We
get around these edge effects with a new language, consisting of equality,
a unary predicate U , and a ternary predicate C. We consider C as a built
in predicate on [n] with C(x, y, z) holding if and only if either x < y < z
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or y < z < x or z < x < y. Thinking of [n] as a cycle, with 1 coming
directly after n, C(x, y, z) is the relation that x to y to z goes in a clockwise
direction. For any sentence S in this new language we can again define
Pr[Un,p |= S] only in this case Ehrenfeucht’s results give a Zero-One Law:
for any constant p and sentence S

lim
n→∞

Pr[Un,p |= S] = 0 or 1

We shall call the first language the linear language and the second language
the circular language. As a general guide, the circular language will tend to
Zero-One Laws while the linear language, because of edge effects, will tend
to limit laws.

We shall not restrict ourselves to p constant but rather consider p = p(n)
as a function of n. We have in mind the “Evolution of Random Graphs”
as first developed by Erdős and Rényi. Here as p = p(n) evolves from zero
to one the unary predicate evolves from holding for no x to holding for all
x. Analogously (but without formal definition) we have threshold functions

for various properties. For example, p(n) = n−1 is a threshold property for
A. When p(n) ≪ n−1 almost surely A fails while when p(n) ≫ n−1 almost
surely A holds. In Shelah,Spencer [??] we showed that when p = n−α

with α ∈ (0, 1), irrational then a Zero-One Law held for the random graph
G(n, p) and in  Luczak, Spencer [??] we found a near characterization of
those p = p(n) for which the Zero-One Law held. The situation with random
unary predicates turns out to be somewhat simpler. Let us say p = p(n)
satisfies the Zero-One Law for circular unary predicates if for every sentence
S in the circular language

lim
n→∞

Pr[Un,p(n) |= S] = 0 or 1

Here is our main result.
Theorem 1. Let p = p(n) be such that p(n) ∈ [0, 1] for all n and either

p(n) ≪ n−1

or for some positive integer k

n− 1

k ≪ p(n) ≪ n− 1

k+1

or for all ǫ > 0
n−ǫ ≪ p(n) and n−ǫ ≪ 1 − p(n)
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or for some positive integer k

n−
1

k ≪ 1 − p(n) ≪ n− 1

k+1

or
1 − p(n) ≪ n−1

Then p(n) satisfies the Zero-One Law for circular unary predicates. Inversely
if p(n) falls into none of the above categories then it does not satisfy the
Zero-One Law for circular unary predicates.

The inverse part is relatively simple. Let Ak be the sentence that there
exist k consecutive elements x1, . . . , xk ∈ U . (x, y are consecutive if for
no z is C(x, z, y). For k = 2 this is example C. ) Then Pr[Ak] is (for a
given n) a monotone function of p. When p(n) ∼ cn−1/k and c a positive
constant the probability Pr[Ak] approaches a limit strictly between zero and
one. (Roughly speaking, n−1/k is a threshold function for Ak.) Thus for
p(n) to satisfy the Zero-One law we must have p(n) ≪ n−1/k or p(n) ≫
n−1/k. Further (replacing U with ¬U), the same holds with p(n) replaced
by 1 − p(n). For p(n) to fall between these cracks it must be in one of the
above five categories.

Remark. Dolan [??] has shown that p(n) satisfies the Zero-One Law for
linear unary predicates if and only if p(n) ≪ n−1 or n−1 ≪ p(n) ≪ n−1/2

or 1− p(n) ≪ n−1 or n−1 ≪ 1− p(n) ≪ n−1/2. For n−1/2 ≪ p(n) = o(1) he
considered the following property:

D : ∃xU(x)∧[U(x+1)∨U(x+2)]∧¬∃y[U(y)∧[U(y+1)∨U(y+2)]∧y < x]∧U(x+1)

(Addition is not in our language but we write x + 1 as shorthand for that
z for which x < z but there is no w with x < w < z.) In our zero-one
formulation D basically states that the first time we have 11 comes before
the first time we have 101. This actually has limiting probability .5. This
example illustrates that limiting probability for linear unary predicates can
depend on edge effects and not just edge effects looking at U on a fixed
size set 1, . . . , k or n, n− 1, . . . , n− k. We defer our results for linear unary
predicates to section 4.

When p(n) ≪ n−1 the Zero-One Law is trivially satisfies since almost
surely there is no x for which U(x). Also, if p(n) satisfies the Zero-One Law
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so does 1−p(n). Suppose p = p(n) satisfies p(n) ≫ n−ǫ and 1−p(n) ≫ n−ǫ

for all ǫ > 0. We show in a section 3 that for every t there is a sequence
A1 · · ·AR with the property that for any sentence A of quantifier depth
t either all models < [u], C, U > that contain A1 · · ·AR as a subsequence
satisfy A or no such models satisfy A. (< [u], C, U > contains A1 · · ·AR as
a subsequence if for some 1 ≤ j ≤ u for all 1 ≤ i ≤ R we have U(j + i)
if and only if xi = 1, with j + i defined modulo u.) For p(n) in this range
< [u], C, U > almost surely contains any such fixed sequence A1 · · ·AR as a
subsequence and hence the Zero-One Law is satisfied. This leaves us with
only one case in Theorem 1, and that will be the object of the next section.

2 The Main Case.

Here we let k be a positive integer and assume

n− 1

k ≪ p(n) ≪ n−
1

k+1

Our object is to show that p(n) satisfies the Zero-One Law for circular unary
predicates. We shall let t be a fixed, though arbitrary large, positive integer.
We shall examine the equivalence class under the t-move Ehrenfeucht game
of the circular model. For the most part, however, we shall examine linear
models.

We define (as Ehrenfeucht did) an equivalence class on models M =<
n,≤, U >, two models M,M ′ being equivalent if they satisfy the same depth
t sentences or, equivalently, if the t-move Ehrenfeucht game on M,M ′ is won
by the “Duplicator”. The addition of models (with M on [n], M ′ on [n′] we
define M +M ′ on [n+n′]) yields an addition of equivalence classes. We shall
denote the equivalence classes by x, y, . . . and the sum by x + y. Results
from the beautiful theory of these classes are given in Section 3.

Let us consider a random unary function U defined on all positive in-
tegers 1, 2, . . . and with Pr[U(i)] = p for all i, these events mutually inde-
pendent. (In the end only the values of U(i) for 1 ≤ i ≤ n will “count”
but allowing U to be defined over all positive integers allows for a “fictitious
play” that shall simplify the analysis.) Now for any starting point i examine
i, i + 1, . . . until reaching the first j (perhaps i itself) for which U(j). Call
[i, j] the 1-interval of i. (With probability one there will be such a j; ficti-
tious play allows us to postpone the analysis of those negligible cases when
no j is found before j > n.) What are the possible Ehrenfeucht values of
< [i, j],≤, U >? The model must have a series of zeroes (i.e., ¬U) followed
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by one one (i.e., U). There is an s (s = 3t will do) so that all such models
with at least s zeroes have the same Ehrenfeuct value. We can write these
values as a1, . . . as and b (ai having i − 1 zeroes, b having s zeroes). Call
this value the 1-value of i. The probability of the 1-value being any partic-
ular ai is ∼ p while the probability of it being b is ∼ 1. (All asymptotics
are as p → 0.) We let E1 denote this set of possible 1-values and we split
E1 = P1 ∪ T1 with P1 = {b} and T1 = {a1, . . . , as}. The 1-values in T1 we
call 1-transient, the 1-value in P1 we call 1-persistent.

Now (with an eye toward induction) we define the 2-interval of i = i0.
Take the 1-interval of i, say [i0, i1). Then take the 1-interval of i1, say [i1, i2).
Continue until reaching a 1-interval [iu, iu+1) whose 1-value is 1-transient.
(Of course, this could happen with the very first interval.) We call [i, iu+1)
the 2-interval of i. Now we describe the possible 2-values for this 2-interval.
In terms of Ehrenfeucht value we can write the interval as b+ b+ . . .+ b+ai
where there are u (possibly zero) b’s. Any b+ . . .+ b with at least s addends
b has (see §3.4) the same value, call it B. Let jb denote the sum of j b’s. We
define the transient 2-values T2 as those of the form jb + ai with 0 ≤ j < s
and the persistent 2-values P2 as those of the form B + ai. For example,
let t = 5 and s = 35 = 243. Then i has 2-value 6b + a22 if, starting at i,
six times there are at least 243 zeroes before a one and after the sixth one
there are 21 zeroes and then a one. The 2-value is B + a5 if at least 243
times there are at least 243 zeroes before the next one and the first time
two ones appear less than 243 apart they are exactly 5 apart. What are the
probabilities for i = i0 having any particular 2-value? The first 1-interval
[i0, i1) has distribution for 1-value as previously discussed: ∼ p for each ai
and ∼ 1 for b. Having determined the first 1-interval the values starting at
i1 have not yet been examined. Hence the 1-value of the second 1-interval
will be independent of the 1-value of the first and, in general, the sequence
of 1-values will be of mutually independent values. Then the transient 2-
values jb+ ai each have probability ∼ p while the persistent 2-values B + ai
will each have probability 1

s + o(1). We let P2 denote the set of persistent
2-values, T2 the set of transient 2-values and E2 = P2∪T2 the set of 2-values.

The 3-value will contain all the notions of the general case. Begin-
ning at i = i0 take its 2-interval [i0, i1). Then take successive 2-intervals
[i1, i2), . . . , [iu−1, iu) until reaching an interval [iu, iu+1) whose 2-value is
transient. The 3-interval for i is then [i, iu+1). Let x1, . . . , xu, yu+1 be
the 2-values for the successive intervals. Fromthe procedure all xi ∈ P2

while yu+1 ∈ T2. Now consider (see §3.1)the Ehrenfeucht equivalence classes
(again with respect to a t-move game) over ΣP2. (ΣA is the set of strings
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over alphabet A.) Let α be the equivalence class for the string x1 · · · xu,
then the 3-value of i is defined as the pair β = αyu+1. We let E3 be the
set of all such pairs and we call β persistent (and place it in P3) if α is a
persistent state (as defined in §3.2)in ΣP2; otherwise we call β transient and
place it in T3. If x1 · · · xu and x′1 · · · x

′
u′ are equivalent as strings in P2 then

x1 + . . .+xu and x′1 + . . .+x′u′ have (as shown in §3.4) the same Ehrenfeucht
value. So the 3-value of i determines the Ehrenfeucht value of the 3-interval
of i though possibly it has more information. What are the probabilities
for the 3-value of i? Again we get a string of 2-values z1z2 . . . whose values
are mutually independent and we stop when we hit a transient 2-value. We
shall see (in the course of the full induction argument) that the probability
of having 3-value β is ∼ cβ for persistent β and ∼ cβp for transient β.

Now let us define k-interval and k-value, including the split into persis-
tent and transient k-values by induction on k. Suppose Ek, Pk, Tk have been
defined. Beginning at i = i0 let [i0, i1) be the k-interval and then take suc-
cesive k-intervals [i1, i2), . . . , [iu−1, iu) until reaching a k-interval [iu, iu+1)
with transient k-value. Then [i, iu+1) is the k+1-interval of i. (Incidentally,
suppose U(i). Then [i, i + 1) is the 1-interval of i which is transient. But
then [i, i + 1) is the 2-interval of i and is transient. For all k [i, i + 1) is
the k-interval of i and is transient.) Let x1, . . . , xu, yu+1 be the succesive
k-values of the intervals. Let α be the equivalence class of x1 · · · xu in ΣPk.
Then i has k + 1-value β = αyu+1. This value is persistent if α is persistent
and transient if α is transient. This defines Ek+1, Pk+1, Tk+1, completing the
induction. Our construction has assured that the k-value of i determines
the Ehrenfeucht value of the k-interval of i, though it may have even more
information.

Now let us fix i and look at the distribution of its k-value V k. We
show, by induction on k, that for every persistent β Pr[V k = β] = cβ + o(1)
while for every transient β Pr[V k = β] = (cβ + o(1))p. Here each cβ is
a positive constant. Assume the result for k and set pβ = Pr[V k = β]
for all β ∈ Ek. Let p∗ be the probability that V k is transient so that
p∗ ∼ cp, c a positive constant. Let x1, . . . , xu, yu+1 be the successive k-
values of the k-intervals beginning at i, stopping at the first transient value.
We can assume these values are taken independently from the inductively
defined distribution on Ek. The distribution of the first transient value is the
conditional distribution of V k given that V k is transient so the probability
that it is some transient y is dy + o(1) where dy = cy/

∑

cy′ , the sum over
all transient y′. Note all dy are positive constants.

The key to the argument is the distribution for the Ehrenfeucht equiva-
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lence class α for the finite sequence x1 · · · xu ∈ ΣPk. Let M be the set of all
such equivalence classes. Let Lu be the event that precisely u persistent x’s
are found and then a transient y. Then Pr[Lu] = (1 − p∗)up∗ precisely. For
β ∈ Pk let p+β = pβ/(1 − p∗), the conditional probability that V k = β given

that V k is persistent. Note that (as p → 0)

p+β ∼ pβ ∼ cβ

Conditioning on Lu the x1, . . . , xu are mutually independent with distri-
butions given by the p+β . Define on M a Markov Chain (see §3.3) with

transition probability p+β from and α to α + β. We let M(p) denote this
Markov Chain. Observe that the set of states M is independent of p and
the nonzeroness of the transition probabilities is independent of p ∈ (0, 1)
though the actual transition probabilities do depend on p. There is a partic-
ular state O representing the null sequence. Let f(u, α) be the probability
of being at state α at time u, beginning at O at time zero. Then f(u, α) is
precisely the conditional distribution for α given Lu. But therefore, letting
W denote the Ehrenfeucht equivalence class,

Pr[W = α] =
∞
∑

u=0

f(u, α)(1 − p∗)up∗

Let Mo be the Markov Chain on the same set with transition probability cβ
from α to α + β and let f o(u, α) be the probability of going from O to α in
u steps under Mo. Observe that Mo is the limit of M(p) as p → 0 in that
taking the limit of any (1-step) transition probability in M(p) as p → ∞
gives the transition probability in Mo.

Now we need some Markov Chain asymptotics. Assume α is transient.
We claim (recall p∗ ∼ cp)

Pr[W = α] ∼

[

c
∞
∑

u=0

f o(u, α)

]

p

and that the interior sum converges. In general the probability of remaining
in a transient state drops exponentially in u so there exist constants K, ǫ so
that f o(u, α) < K(1 − ǫ)u for all u giving the convergence. Moreover there
exists ǫ1, ǫ2,K1 so that for all 0 < p < ǫ1 we bound uniformly f(u, α) <
K1(1 − ǫ2)u for all u. Pick ǫ3 ≤ ǫ1 so that for 0 < p < ǫ3 we have p∗ ≤ 2cp.
For any positive δ we find U so that for 0 < p < ǫ3

∑∞
u=U f(u, α)(1 − p∗)up∗

p
<

∞
∑

u=U

K1(1 − ǫ2)
u p

∗

p
≤

2cK1

ǫ2
(1 − ǫ2)

U <
δ

2
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For any fixed 0 ≤ u < U we have limp→0 f(u, α) = f o(u, α) so that

lim
p→0

∑

0≤u<U f(u, α)(1 − p∗)up∗

p
=

∑

0≤u<U

cf o(u, α)

With U sufficiently large this may be made within δ/2 of c
∑∞

0 f o(u, α).
But this holds for δ arbitrarily small, giving the claimed asymptotics of
Pr[W = α].

Remark. The rough notion here is that the probability of having a tran-
sient k + 1-value is dominated by having few persistent k-intervals and then
a transient k-interval. The transient 2-intervals all had at most s persistent
1-intervals. The situation changes with 3-intervals. Recall Bai consisted
of at least s ones each preceeded by at least s zeroes and then two ones i
apart. Consider an arbitrarily long grouping of 2-intervals of 2-value Bai
but, say, with none of the form Ba3, i.e., 1001 not appearing and then, say,
follow the last one, say Ba1, with a one so that the 3- interval ends 111. For
every u there is a ∼ cup probability of this being the 3-interval with u such
2-intervals and cu > 0 but all such 3-intervals would be considered transient
since a persistent sequence in ΣP2 must surely contain every value in P2.

Now suppose α is persistent. Again we have the precise formula

Pr[W = α] =
∞
∑

u=0

f(u, α)(1 − p∗)up∗

only this time it is the tail of the sum that dominates. As α is persistent there
is a limiting probability L = limu→∞ f o(u, α) with L > 0 and furthermore
the M(p) approach Mo in the sense that

L = lim
p→0

lim
u→∞

f(u, α)

We claim
Pr[W = α] = L + o(1)

For any δ > 0 there exist ǫ and U so that for p ≤ ǫ and u ≥ U we have

L− δ < f(u, α) < L + δ
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Then, as
∑∞

u=0 L(1 − p∗)up∗ = L,

|Pr[W = α] − L| ≤ δ
∞
∑

u=U

(1 − p∗)up∗ + (L + 1)
∑

0≤u<U

(1 − p∗)up∗

For fixed U the second sum is o(1) (as p∗ → 0) while the first sum is less
than δ so the entire expression is less than 2δ for p sufficiently small. As δ
was arbitrary this gives the claim.

Recall that the k+1-value of the full k+1-interval is a pair consisting of
the Ehrenfeucht value W just discussed and the k-value of the first transient
type yu+1. The transient type’s value has a limiting distribution which is
independent of W , for conditional on any Lu the distribution on yu+1 is the
same. All possible y ∈ Tk have a limiting probability dy ∈ (0, 1). Hence
the probability of a k + 1-value being β = αy is simply the product of the
probabilities and hence approaches a constant if α, and hence β, is persistent
and is ∼ cp if α, and hence β is transient. This completes the inductive
argument for the limiting probabilities of the k-values of the k-intervals.

We now let L = Lk be the length of the k-interval of i and find bounds on
the distribution of L. A simple induction shows that if the sequence 1 · · · 1
of k ones appears after i then the k-interval of i ends with this sequence or
possibly before. Thus we get the crude bound

Pr[L > ka] < (1 − pk)a

so that asymptotically

Pr[L > αp−k] < e−cα

where c is a positive constant. In fact, this gives the correct order of magni-
tude, L is (speaking roughly) almost always on the order of p−k. We claim
that there are positive constants ǫt, ct so that

Pr[Lt > ǫtp
−t] > ct

The argument is by induction, for t = 1 the random variable L1 is simply
the number of trials until a success which occurs with probability p and
the distribution is easily computable. Assume this true for t and let (as
previously shown) etp be the asymptotic probability that a t-interval will
be transient. Pick ft positive with ftet < .5. With probability at least
.5, the first γ = ftp

−1 t-intervals after i will be persistent. Conditioning

9



on an interval being persistent is conditioning on an event that holds with
probability 1− o(1) so that each of these t-intervals will have length at least
ǫtp

−t with probability at least ct − o(1). As the lengths are independent
with conditional probability at least .99 at least ctγ/2 of the intervals have
length at least ǫtp

−t. Thus with probability at least, say .4 the total length
Lt+1 is at least ctγǫtp

−t/2 which is ǫt+1p
−(t+1) for an appropriate constant

ǫt+1, completing the induction.
Up to now the relation between p and n, the number of integers, has not

appeared. Recall that p → 0 and n → ∞ so that npk → ∞ but npk+1 → 0.
Now begin at i = i0 = 1 and generate the k-interval [i0, i1). Then generate
the k-interval [i1, i2) beginning at i1 and continue. (We do this with k
fixed. Even if one of the intervals is transient we simply continue with k-
intervals. Again we imagine continuing forever through the integers.) Let
N be that maximal u for which iu − 1 ≤ n, so that we have split [n] into
N k-intervals plus some excess. As each sequence of k ones definitely will
end a k-interval N is at least the number of disjoint subintervals of k ones.
Simple expectation and variance calculations show that N > .99npk almost
surely. On the other side set, with foresight, c = 4c−1

k ǫ−1
k . If N < cnpk

then the sum of the lengths of the first cnpk k-intervals would be less than n.
But these lengths are independent identically distributed variables and each
length is at least ǫkp

−k with probability at least ck so that almost surely at
least ckcnp

k/2 of them would have length at least ǫkp
−k and thus their total

length would be at least (cckǫk/2)n > n. That is, almost surely

C1np
k < N < C2np

k

where C1, C2 are absolute constants.
Let β1, . . . , βN be the k-values of the k-intervals generated by this pro-

cedure. Now we make two claims about this procedure. We first claim that
almost surely none of the βi are transient. Each βi has probability ∼ cp of
being transient so the probability that some βi, 1 ≤ i ≤ C2np

k is transient
is at most ∼ (cp)C2np

k = Θ(npk+1) = o(1). And almost surely N < C2np
k,

proving the claim.
Let A1 · · ·AR be any fixed sequence of elements of Pk. The second claim

is that almost surely A1 · · ·Ar appears as a subsequence of the β sequence,
more precisely that almost surely there exists i with 1 ≤ i ≤ N −R so that
βi+j = Aj for 1 ≤ j ≤ R. (For technical reasons we want the subsequence
not to start with β1.) As each βi has a positive probability of being any
particular x ∈ Pk and the βi are independent and C1np

k → ∞ almost surely
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this fixed sequence will appear in the first C1np
k β’s. And almost surely

N > C1np
k, proving the claim.

We have a third claim that is somewhat technical. For any 1 ≤ j ≤ k let
β1, . . . , βu denote the j-values of the successive j-intervals starting at one,
where βu is the last such interval that is in Pj. We know that almost surely
β1 · · · βu is persistent in ΣPj . We claim further that almost surely β2β3 · · · βu
is persistent in ΣPj. It suffices to show this for any particular j as there are
only a finite number of them. For any integer A we have u− 1 ≥ A almost
surely and the probability that β2 · · · βA+1 is transient goes to zero with A
so almost surely β2 · · · βu is persistent. Let us call [b, c) a super k-interval
(for a given U) if it is a k-interval and further for every 1 ≤ j ≤ k letting
β1, . . . , βu be the successive j-values of the j-intervals beginning at b and
stopping with the last persistent value - that then β2β3 · · · βu is persistent
in ΣPj . So almost surely the k-interval [1, i1) is a super k-interval.

We shall show, for an appropriate sequence A1, . . . , AR, that all U satis-
fying the above three claims give models < n,C,U > which have the same
Ehrenfeucht value.

We first need some glue. Call [a, b) an incomplete k-interval (with respect
to some fixed arbitrary U) if the k-interval beginning at a is not completed
by b− 1. Suppose [a, b) is an incomplete k-interval and [b, c) is a persistent
super k-interval. We claim [a, c) is a persistent k-interval. The argument
is by induction on k. For k = 1, [a, b) must consist of just zeroes while
[b, c) consists of at least s zeroes followed by a one. But then so does [a, c).
Assume the result for k and let [a, b) be an incomplete k + 1-interval and
[b, c) be a persistent k + 1-interval. We split [a, b) into a (possibly empty)
sequence x1, x2, . . . , xr of persistent k-intervals followed by (possibly null) in-
complete k-interval [a+, b) with value, say, y. We split [b, c) (renumbering for
convenience) into a sequence xr+1, . . . , xs, ys+1 of k-intervals, all persistent
except the last which is transient. Then, by induction, y+xr+1 is a persistent
k-interval with some value x′r+1. Then [a, c) splits into k-intervals with val-
ues x1, . . . , xr, x

′
r+1, xr+2, . . . , xs, ys+1. By the super-persistency xr+2 · · · xs

is persistent in ΣPk and hence (see §3.2) so is x1 · · · xrx
′
r+1xr+2 · · · xs and

therefore [a, c) is a persistent k + 1- interval.
Now let < [n], C, U > be any model that meets the three claims above,

all of which hold almost surely for p in this range. We set i = i0 = 1 and find
successive k-intervals [i0, i1), [i1, i2), . . . until [iu−1, iu) and then U on [iu, n]
gives an incomplete k-interval. By the third claim [1, i1) is superpersistent
and so the “interval” [iu, n]∪ [1, i1) (going around the corner) is k-persistent.
Hence we have split [n] (now thinking of it as a cycle with 1 following n )
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into k-persistent intervals with k-values x1, x2, . . . , xu. The k-value for x1
may be different from that for [1, i1) but the others have remained the same.
This sequence contains the sequence A1 · · ·AR described in §3.5 . But this
implies (see §3.6) that the Ehrenfeuct value is determined, completing the
proof.

3 Background.

3.1 The Ehrenfeucht Game.

Let A be a fixed finite alphabet (in application A is Pk or {0, 1}) and t a
fixed positive integer. We consider the space ΣA of finite sequences a1 · · · au
of elements of A. We can associate with each sequence a model < [u],≤, f >
where f : [u] → A is given by f(i) = ai. For completeness we describe the
t-round Ehrenfeucht Games on sequences a1 · · · au and a′1 · · · a

′
u′ . There are

two players, Spoiler and Duplicator. On each round the Spoiler first selects
one term from either sequencs and then the Duplicator chooses a term from
the other sequence. Let i1, . . . it be the indices of the terms chosen from the
first sequence, iq in the q-th round and let i′1, . . . i

′
t denote the corresponding

indices in the second sequence. For Duplicator to win he must first assure
that aiq = a′i′q for each q, i.e. that he selects each round the same letter as

Spoiler did. Second he must assure that for all a, b

ia < ib ⇔ i′a < i′b and ia = ib ⇔ i′a = i′b

(It is a foolish strategy for Spoiler to pick an already selected term since
Duplicator will simply pick its already selected counterpart but this possib-
lity comes in in the Recursion discussed later.) This is a perfect information
game so some player will win. Two sequences are called equivalent if Dupli-
cator wins. Ehrenfeucht showed that this is an equivalence class and that
two sequences are equivalent if their models have the same truth value on
all sentences of quantifier depth at most t. We let M denote the set of
equivalence classes which is known to be a finite set. ΣA forms a semigroup
under concatenation, denoted +, and this operation filters to an operation,
also denoted +, on M . We use x, y, . . . to denote elements of M : x+ y their
sum; O is the equivalence class of the null sequence which acts as identity.
We associate a ∈ A with the sequence a of length one and its equivalence
class (which contains only it),, also called a. We let jx denote x + . . . + x
with j summands. From analysis of the Ehrenfeucht game (see §3.4) it is
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known that there exists s (for definiteness we may take s = 3t) so that:

jx = kx for all j, k ≥ s, x ∈ M

Example. With A = {0, 1} we naturally associate sequences such as 101
with < {1, 2, 3},≤, f > with f(1) = 1, f(2) = 0, f(3) = 1. The addition of
101 and 1101 is their concatenation (in that order) 1011101. The first order
language has as atomic formulas x ≤ y, x = y and f(x) = a for each a ∈ A.
The sentence

∃x∃y∃zf(x) = 1 ∧ f(y) = 0 ∧ f(z) = 1 ∧ x < y ∧ y < z

is satisfied by 01110001 but not by 000111000 so these are in different equiva-
lence classes with t = 3. We could also write that 101 appears as consecutive
terms with

∃x∃y∃zf(x) = 1∧f(y) = 0∧f(z) = 1∧x < y∧y < z∧¬∃w[(x < w∧w < y)∨(y < w∧w < z)]

Informally we would just say ∃xf(x) = f(x + 1) = f(x + 2) = 1 but the
quantifier depth is four.

3.2 Persistent and Transient.

Definition and Theorem. We call x ∈ M persistent if

∀y∃zx + y + z = x (1)

∀y∃zz + y + x = x (2)

∃p∃s∀yp + y + s = x (3)

These three properties are equivalent. We call x transient if it is not persis-
tent.
Proof of Equivalence.

(3) ⇒ (1) : Take z = s, regardless of y. Then

x + y + z = (p + y + s) + y + s = p + (y + s + y) + s = x

(1) ⇒ (3) : Let Rx = {x+ v : v ∈ M}. We first claim there exists u ∈ M
with |Rx + u| = 1, i.e., all x + y + u the same. Otherwise take u ∈ M
with |Rx + u| minimal and say v,w ∈ Rx + u. As Rx + u ⊆ Rx we write
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v = x+ u1, w = x+ u2. From(1), with y = u1, we have x = v + u3 and thus
w = v + u4 with u4 = u3 + u2. Then

w + su4 = v + (s + 1)u4 = v + su4

Adding su4 to R+u sends v,w to the same element so |R+u+su4| < |R+u|,
contradicting the minimality. Now say Rx + u = {u5}. Again by (1) there
exists u6 with u5 +u6 = x. Then Rx + (u+u6) = {x} so that (3) holds with
p = x, s = u + u6.

By reversing addition (noting that (3) is selfdual while the dual of (1)
is (2)) these arguments give that (3) and (2) are equivalent, completing the
proof.

Let x be persistent and consider v = x+y. Let z be such that x+w+z =
x for all w. Then for all w v+w+(z+y) = (x+(y+w)+z)+y = x+y = v and
hence v is persistent. Dually,if x is persistent y + x is persistent. Together

If x is persistent then w1 + x + w2 is persistent

for any w1, w2 ∈ M .
From (1) the relation x ≡R u defined by ∃v(x+ v = u) is an equivalence

relation on the set of persistent x ∈ M . We let Rx denote the ≡R-class
containing x so that

Rx = {x + v : v ∈ M}

From(2) the relation x ≡L u defined by ∃v(v + x = u) is also an equivalence
relation on the set of persistent x ∈ M . We let Lx denote the ≡L-class
containing x so that Lx = {v + x : v ∈ M}. Let x be persistent and let p, s
(by (3)) be such that p+ z + s = x for all x. Setting z = O, x = p+ s. Thus
for all z

x + z + x = (p + s) + z + (p + s) = p + (s + z + p) + s = x

Let Rx, Ly be equivalence classes under ≡R,≡L respectively. Then x +
y ∈ Rx ∩ Ly. Let z ∈ Rx ∩ Ly. Then there exist a, b with x = z + a and
y = b + z so that x + y = z + (a + b) + z. But as z is persistent the above
argument (with z as x and a + b as z) gives z + (a + b) + z = z. Thus

Rx ∩ Ly = {x + y} for all persistent x, y

Remarks. Let A = {0.1}. A sequence a1 · · · au is transient if and only if
there is a sentence Q of quantifier depth at most t so that a1 · · · au fails Q
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but there is an extension to a1 · · · auau+1 · · · av which satisfies Q such that
all further extensions a1 · · · avav+1 · · · aw also satisfy Q. For example, with
t = 4, let Q be the existence of a block 101. If a sequence does not satisfy
Q then the extension given by adding 101 does satisfy Q and all further
extensions will satisfy Q. Thus for a1 · · · au to be persistent for t = 4 it must
contain 101 and indeed all blocks of length three. We think of property (3) of
persistency as indicating that a persistent sequence is characterized by p, its
prefix, and s, its suffix. There are properties such as ∃xf(x) = 1∧¬∃yy < x
that depend on the left side of the sequence, in this case the value f(1).
There are other properties such as ∃xf(x) = 1 ∧ ¬∃yx < y which depend
on the right side of the sequence. There will be sequences with values p, s
for the left and right side respectively so that the Ehrenfeucht value of the
sequence is now determined, regardless of what is placed in the middle.

Remarks. Certain sentences Q have the property that if any a1 · · · au
satisfies Q then all extensions a1 · · · auau+1 · · · av satisfy Q. The sentence
that the first term of the sequence is 1 has this property; the sentence that
the last term of the sequence is 1 does not have this property. Call such
properties unrighteous, as they (roughly) do not depend on the right hand
side of the sequence. Sequences with Ehrenfeucht value in a given Rx all
have the same truth value for all unrighteous properties. Sequences with
Ehrenfeucht value in a given Lx would all have the same truth value for all
(correspondingly defined) unleftuous properties.

3.3 The Markov Chain.

Now consider a probability distribution over A, selecting each a with nonzero
probability pa. This naturally induces a distribution over Au, the sequences
of length u, assuming each element is chosen independently. This then leads
to a distribution over the equivalence classes M . For all u ≥ 0, x ∈ M let
Pu(x) be the probability that a random string a1 · · · au is in class x. On M
we define a Markov Chain, for each x the transition probability from x to
x + a being pa.

In Markov Chain theory the states x ∈ M are split into persistent and
transient, a state x is persistent if and only if it lies in a minimal closed set.
We claim Markov Chain persistency is precisely persistency as defined by
(1), (2), (3). If C is closed and x ∈ C then Rx ⊆ C and Rx is itself closed.
If x satisfies (1) then Ru = Rx for all u = x + y ∈ Rx so x is Markov Chain
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persistent. Conversely if x is Markov Chain persistent then Rx must be
minimal closed so Ru = Rx for all u = x + y ∈ Rx and so x satisfies (1).

The Markov Chain M restricted to a minimal closed set Rx is aperiodic
since x + sa ∈ Rx and (x + sa) + a = x + sa. Hence from Markov Chain
theory when x is persistent limu→∞ Pu(x) exists.

A random walk on M , beginning at O, will with probability one eventu-
ally reach a minimal closed set Rx and then it must stay in Rx forever. Let
P [Rx] denote the probability that Rx is the closed state reached.

3.4 Recursion.

Again let A be a finite alphabet, M the set of equivalence classes of ΣA and
now specify some B ⊆ M . As B is also a finite set we can define equivalence
classes (with respect to the same constant t) on ΣB, let M+ denote the set
of such classes. Now let b1 · · · bu and b1 · · · b

′
u′ be equivalent sequences of

ΣB. We claim that

b1 + . . . + bu = b′1 + . . . + b′u′

as elements of M . Let s1, . . . , su, s
′
1, . . . , s

′
u′ be specific elements of ΣA in the

repective bi or b′i classes. It suffices to give a strategy for Duplicator with
models s1 + . . . + su and s′1 + . . . + s′u′ . Suppose Spoiler picks an element
x in, say, some si. In the game on ΣB we know Duplicator has a winning
reply to bi of some b′i′ . Now Duplicator will pick some x′ in s′i′ . To decide
the appropriate x′ in s′i′ to pick Duplicator considers a subgame on si and
s′i′ . As these are equivalent Duplicator will be able to find such x′ for the at
most t times that he is required to.

This general recursion includes the previous statement that for all j, k ≥
s and any x ∈ M we have jx = kx. Here B = {x} and this says that
Duplicator can win the t-move Ehrenfeucht game between a sequence of j x’s
and a sequence of k x’s; that is, that < [j],≤> and < [k],≤> are equivalent -
a basic result on Ehrenfeucht games. In our argument we apply it inductively
with A = Pk. We know, inductively, that all k-intervals having the same
k-value x ∈ Pk have the same Ehrenfeucht value. Now the k + 1-interval
of i is associated with a sequence x1 · · · xu ∈ ΣPk and a “tail” yu+1 ∈ Tk.
We call two such k + 1-intervals equivalent if x1 · · · x

′
u′ and x′1 · · · x

′
u′ are

equivalent in ΣPk and yu+1 = y′u′+1. Now x1 + . . .+xu = x′1 + . . .+x′u′ and
so the k + 1-intervals have equal Ehrenfeucht value.
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3.5 Cycles.

Again let M be the set of equivalence classes on ΣA. Now consider cycles
a1 · · · au (thinking of a1 following au) with ai ∈ A and consider equivalence
classes under the (t + 1)-move Ehrenfeucht game. Here we must preserve
the ternary clockwise predicate C(x, y, z). Any first move ai reduces the
cycle to a linear structure ai · · · aua1 · · · ai−1 of the form < [u],≤, f > with
an Ehrenfeucht value x = xi. Two cycles are equivalent if they yield the
same set of values xi ∈ M .

For every persistent x ∈ M let (by (3)) p = px, q = sx be such that
x = px+y+sx for all y ∈ M . Let Px and Sx be fixed sequences (i.e., elements
of ΣA) for these equivalence classes and let Rx be the sequence consisting
of Sx in reverse order followed by Px. If the cycle a1 · · · au contains Rx

as a subsequence then selecting ai as the first element of Px gives a linear
structure beginning with Px and ending with Sx, hence of value px+y+sx =
x.

Let R ∈ ΣA be a specific sequence given by the concatenation of the
above Rx for all persistent x ∈ M . Then we claim R is a universal sequence in
the sense that all a1 · · · au ∈ ΣA (for any u) that contain R as a subsequence
are equivalent. For every persistent x ∈ M there is an ai so that ai · · · ai−1

has value x. Conversely every ai belongs to at most one of the Rx creating R
(maybe none if ai isn’t part of R) and so there will be an Rx not containing
that ai. Then in ai · · · ai−1 the subsequence Rx will appear as an interval.
Hence the value of ai · · · ai−1 can be written w1 +x+w2, which is persistent.
That is, the values of ai · · · ai−1 are precisely the persistent x and hence the
class of a1 · · · au in the circular t + 1-Ehrenfeucht game is determined.

3.6 Recursion on Cycles.

Again let A be a finite alphabet, M the set of equivalence classes in ΣA and
specify some B ⊆ M . Suppose a cycle a1 · · · au on A may be decomposed into
intervals s1, . . . , sr with Ehrenfeucht values b1 · · · br. Then the Ehrenfeucht
value of the cycle b1 · · · br determines the Ehrenfeucht value of a1 · · · au. The
argument is the same as for recursion on intervals. Let a1 · · · au and a′1 · · · a

′
u′

be decomposed into s1 · · · sr and s′1 · · · s
′
r′ with Ehrenfeucht values b1 · · · br

and b1 · · · b
′
r′ . Spoiler picks x in some si. In the game on cycles over B

Duplicator can respond b′i′ to bi. Then Duplicator picks an x′ ∈ s′i′ so that
he can win the subgame on si and s′i′ .

We apply this is §2 with A = {0, 1} and B = Pk. Here the β ∈ Pk
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may have more information than the Ehrenfeucht value but this only helps
Duplicator.

4 The Linear Model.

We have already remarked in §1 that Zero-One Laws generally do not hold
for the linear model < [n],≤, U > and that P. Dolan has characterized those
p = p(n) for which they do. Our main object in this section is the following
convergence result.
Theorem 2. Let k be a positive integer, and S a first order sentence. Then
there is a constant c = ck,S so that for any p = p(n) satisfying

n−
1

k ≪ p(n) ≪ n− 1

k+1

we have
lim
n→∞

Pr[Un,p |= S] = c

Again we shall fix the quantifier depth t of S and consider Ehrenfeucht
classes with respect to that t. For each β ∈ Pk let cβ be the constant defined
in §2 as the limiting probability that a k-interval has k-value β. Let M be
the set of equivalence classes of ΣPk, a Markov Chain as defined in §3, and
for each ≡R-class Rx let P [Rx], as defined in §3, be the probability that a
random sequence β1β2 · · · eventually falls into Rx.

In < [n],≤, U > let β1 · · · βN denote the sequence of k-values of the
successive k-intervals, denoted [1, i1), [i1, i2), . . ., from 1.

Set, with foresight, δ = 10−23−t.
We shall call U on [n] right nice if it satisfies two conditions. The first is

simply that all the β1, . . . , βN described above are persistent. We know from
§2 that this holds almost surely. The second will be a particular universality
condition. Let A1 · · ·AR be a specific sequence in ΣPk with the property
that for every Rx and Ly there exists a q so that

A1 · · ·Aq ∈ Ly and Aq+1 · · ·AR ∈ Rx

(We can find such a sequence for a particular choice of Rx and Ly by taking
specific sequences in ΣPk in those classes and concatenating them. The full
sequence is achieved by concatenting these sequences for all choices of Rx

and Ly. Note that as some A1 · · ·Aq ∈ Ly the full sequence is persistent.)
The second condition is that inside any interval [x, x + δn] ⊂ [1, n] there
exist R consecutive k-intervals [iL, iL+1), . . . , [iL+R, iL+R+1) whose k-values
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are, in order, precisely A1, . . . , AR. We claim this condition holds almost
surely. We can cover [1, n] with a finite number of intervals [y, y+ δ

3n] and it
suffices to show that almost always all of them contain such a sequence, so it
suffices to show that a fixed [y, y + δ

3n] has such a sequence. Generating the

k-intervals from 1 almost surely a k-interval ends after y and before y + δ
6n.

Now we generate a random sequence β1 · · · on an interval of length δ
6n.

But constants do not affect the analysis of §2 and almost surely A1 · · ·AR

appears.
Now on < [n],≤, U > define U r by U r(i) if and only if U(n+ 1− r). U r

is the sequence U in reverse order. Call U left nice if U r is right nice. Call
U nice if it is right nice and left nice. As all four conditions hold almost
surely, the random Un,p is almost surely nice.

Let U be nice and let β1 · · · βN and βr
1 · · · β

r
Nr denote the sequences of k-

values for U and U r respectively and let Rx and Rxr denote their ≡R-classes
respectively. (Both exist since the sequences are persistent.)
Claim. The values Rx and Rxr determine the Ehrenfeucht value of nice U .

We first show that Theorem 2 will follow from the Claim. Let Rx, Rxr

be any two ≡R-classes. Let U be random and consider < [δn],≤, U >. The
sequence of k-values lies in Rx with probability P [Rx] + o(1). The same
holds for U r on [δn]. But U r examines U on [(1 − δ)n, n] so as δ < .5
the values of the ≡R-classes are independent and so the joint probability of
the values being Rx and Rxr respectively is P [Rx]P [Rxr ] + o(1). Given the
Claim < [n],≤, U > would then have a value v = v(Rx, Rxr). As

∑

P [Rx]P [Rxr ] =
∑

P [Rx]
∑

P [Rxr ] = 1 × 1 = 1

this would give a limiting distribution for the Ehrenfeucht value v on <
[n],≤, U >.

Now for the claim. Fix two models M =< [n],≤, U > and M ′ =< [n′],≤
, U ′ >, both nice and both with the same values Rx, Rxr . Consider the t-
move Ehrenfeucht game. For the first move suppose Spoiler picks m ∈ M .
By symmetry suppose m ≤ n

2 . Let [ir−1, ir) be one of the k-intervals with,
say, .51n ≤ ir ≤ .52n. We allow Duplicator a “free” move and have him
select ir. Let β1 · · · βN and β′

1 · · · β
′
N ′ be the sequences of k-values for M and

M ′ respectively. Let z be the class of β1 · · · βr. Since U is nice this sequence
already contains A1 · · ·AR and hence is persistent so z ∈ Rx. Let z′ be the
class of βr+1 · · · βN . By the same argument z′ is persistent. In M ′ inside of,
say, [.5n, .51n] we find the block A1 · · ·AR. By the universality property we
can split this block into a segment in Lz and another in Rz′ . Adding more
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to the left or right doesn’t change the nature of this split. Thus there is
an interval [i′r′−1, i

′
r′) so that β′

1 · · · β
′
r′ ∈ Lz and β′

r′+1 · · · β
′
N ′ ∈ Rz′ . Spoiler

plays i′r′ in response to ir.
The class of β1 · · · βr is z and z ∈ Rx. The class z′ of β′

1 · · · β
′
r′ is in

Lz and Rx. As z ∈ Lz ∩ Rx, z = z′. Thus [1, ir) under M and [1, i′r′)
under M ′ have the same Ehrenfeucht value. Thus Duplicator can respond
successfully to the at most t moves (including the initial move m) made in
these intervals. Thus Spoiler may as well play the remaining t − 1 moves
on M1 =< [ir, n],≤, U > and M ′

1 =< [i′r′ , n
′],≤, U ′ >. These intervals have

lengths n1 ≥
n
3 and n′

1 ≥
n′

3 respectively. But now M and M ′ are both nice
with respect to δ1 = 3δ - the sequence A1 · · ·AR still appears inside every
interval of length δn ≤ δ1n1 in M and δ1n

′
1 in M ′. Hence we can apply

the same argument for the second move - for convenience still looking at
Ehrenfeucht values with respect to the t move game. After t moves we still
have nice Mt,M

′
t with respect to δt ≤ 10−2 so the arguments are still valid.

But at the end of t rounds Duplicator has won.
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